4 Author: Will Deacon <will.deacon@arm.com>
5 Date : 07 September 2012
7 This document is based on the ARM booting document by Russell King and
8 is relevant to all public releases of the AArch64 Linux kernel.
10 The AArch64 exception model is made up of a number of exception levels
11 (EL0 - EL3), with EL0 and EL1 having a secure and a non-secure
12 counterpart. EL2 is the hypervisor level and exists only in non-secure
13 mode. EL3 is the highest priority level and exists only in secure mode.
15 For the purposes of this document, we will use the term `boot loader'
16 simply to define all software that executes on the CPU(s) before control
17 is passed to the Linux kernel. This may include secure monitor and
18 hypervisor code, or it may just be a handful of instructions for
19 preparing a minimal boot environment.
21 Essentially, the boot loader should provide (as a minimum) the
24 1. Setup and initialise the RAM
25 2. Setup the device tree
26 3. Decompress the kernel image
27 4. Call the kernel image
30 1. Setup and initialise RAM
31 ---------------------------
33 Requirement: MANDATORY
35 The boot loader is expected to find and initialise all RAM that the
36 kernel will use for volatile data storage in the system. It performs
37 this in a machine dependent manner. (It may use internal algorithms
38 to automatically locate and size all RAM, or it may use knowledge of
39 the RAM in the machine, or any other method the boot loader designer
43 2. Setup the device tree
44 -------------------------
46 Requirement: MANDATORY
48 The device tree blob (dtb) must be no bigger than 2 megabytes in size
49 and placed at a 2-megabyte boundary within the first 512 megabytes from
50 the start of the kernel image. This is to allow the kernel to map the
51 blob using a single section mapping in the initial page tables.
54 3. Decompress the kernel image
55 ------------------------------
59 The AArch64 kernel does not currently provide a decompressor and
60 therefore requires decompression (gzip etc.) to be performed by the boot
61 loader if a compressed Image target (e.g. Image.gz) is used. For
62 bootloaders that do not implement this requirement, the uncompressed
63 Image target is available instead.
66 4. Call the kernel image
67 ------------------------
69 Requirement: MANDATORY
71 The decompressed kernel image contains a 32-byte header as follows:
73 u32 magic = 0x14000008; /* branch to stext, little-endian */
74 u32 res0 = 0; /* reserved */
75 u64 text_offset; /* Image load offset */
76 u64 res1 = 0; /* reserved */
77 u64 res2 = 0; /* reserved */
79 The image must be placed at the specified offset (currently 0x80000)
80 from the start of the system RAM and called there. The start of the
81 system RAM must be aligned to 2MB.
83 Before jumping into the kernel, the following conditions must be met:
85 - Quiesce all DMA capable devices so that memory does not get
86 corrupted by bogus network packets or disk data. This will save
87 you many hours of debug.
89 - Primary CPU general-purpose register settings
90 x0 = physical address of device tree blob (dtb) in system RAM.
91 x1 = 0 (reserved for future use)
92 x2 = 0 (reserved for future use)
93 x3 = 0 (reserved for future use)
96 All forms of interrupts must be masked in PSTATE.DAIF (Debug, SError,
98 The CPU must be in either EL2 (RECOMMENDED in order to have access to
99 the virtualisation extensions) or non-secure EL1.
103 Instruction cache may be on or off.
104 Data cache must be off and invalidated.
105 External caches (if present) must be configured and disabled.
108 CNTFRQ must be programmed with the timer frequency.
109 If entering the kernel at EL1, CNTHCTL_EL2 must have EL1PCTEN (bit 0)
113 All CPUs to be booted by the kernel must be part of the same coherency
114 domain on entry to the kernel. This may require IMPLEMENTATION DEFINED
115 initialisation to enable the receiving of maintenance operations on
119 All writable architected system registers at the exception level where
120 the kernel image will be entered must be initialised by software at a
121 higher exception level to prevent execution in an UNKNOWN state.
123 The boot loader is expected to enter the kernel on each CPU in the
126 - The primary CPU must jump directly to the first instruction of the
127 kernel image. The device tree blob passed by this CPU must contain
130 1. An 'enable-method' property. Currently, the only supported value
131 for this field is the string "spin-table".
133 2. A 'cpu-release-addr' property identifying a 64-bit,
134 zero-initialised memory location.
136 It is expected that the bootloader will generate these device tree
137 properties and insert them into the blob prior to kernel entry.
139 - Any secondary CPUs must spin outside of the kernel in a reserved area
140 of memory (communicated to the kernel by a /memreserve/ region in the
141 device tree) polling their cpu-release-addr location, which must be
142 contained in the reserved region. A wfe instruction may be inserted
143 to reduce the overhead of the busy-loop and a sev will be issued by
144 the primary CPU. When a read of the location pointed to by the
145 cpu-release-addr returns a non-zero value, the CPU must jump directly
148 - Secondary CPU general-purpose register settings
149 x0 = 0 (reserved for future use)
150 x1 = 0 (reserved for future use)
151 x2 = 0 (reserved for future use)
152 x3 = 0 (reserved for future use)