2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
86 pgoff_t start
; /* start of range currently being fallocated */
87 pgoff_t next
; /* the next page offset to be fallocated */
88 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
89 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
92 /* Flag allocation requirements to shmem_getpage */
94 SGP_READ
, /* don't exceed i_size, don't allocate page */
95 SGP_CACHE
, /* don't exceed i_size, may allocate page */
96 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
97 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
98 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages
/ 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
113 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
114 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
115 struct shmem_inode_info
*info
, pgoff_t index
);
116 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
117 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
119 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
120 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
122 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
123 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
126 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
128 return sb
->s_fs_info
;
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
137 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
139 return (flags
& VM_NORESERVE
) ?
140 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
143 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
145 if (!(flags
& VM_NORESERVE
))
146 vm_unacct_memory(VM_ACCT(size
));
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
155 static inline int shmem_acct_block(unsigned long flags
)
157 return (flags
& VM_NORESERVE
) ?
158 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
161 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
163 if (flags
& VM_NORESERVE
)
164 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
167 static const struct super_operations shmem_ops
;
168 static const struct address_space_operations shmem_aops
;
169 static const struct file_operations shmem_file_operations
;
170 static const struct inode_operations shmem_inode_operations
;
171 static const struct inode_operations shmem_dir_inode_operations
;
172 static const struct inode_operations shmem_special_inode_operations
;
173 static const struct vm_operations_struct shmem_vm_ops
;
175 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
176 .ra_pages
= 0, /* No readahead */
177 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
180 static LIST_HEAD(shmem_swaplist
);
181 static DEFINE_MUTEX(shmem_swaplist_mutex
);
183 static int shmem_reserve_inode(struct super_block
*sb
)
185 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
186 if (sbinfo
->max_inodes
) {
187 spin_lock(&sbinfo
->stat_lock
);
188 if (!sbinfo
->free_inodes
) {
189 spin_unlock(&sbinfo
->stat_lock
);
192 sbinfo
->free_inodes
--;
193 spin_unlock(&sbinfo
->stat_lock
);
198 static void shmem_free_inode(struct super_block
*sb
)
200 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
201 if (sbinfo
->max_inodes
) {
202 spin_lock(&sbinfo
->stat_lock
);
203 sbinfo
->free_inodes
++;
204 spin_unlock(&sbinfo
->stat_lock
);
209 * shmem_recalc_inode - recalculate the block usage of an inode
210 * @inode: inode to recalc
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
215 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
218 * It has to be called with the spinlock held.
220 static void shmem_recalc_inode(struct inode
*inode
)
222 struct shmem_inode_info
*info
= SHMEM_I(inode
);
225 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
227 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
228 if (sbinfo
->max_blocks
)
229 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
230 info
->alloced
-= freed
;
231 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
232 shmem_unacct_blocks(info
->flags
, freed
);
237 * Replace item expected in radix tree by a new item, while holding tree lock.
239 static int shmem_radix_tree_replace(struct address_space
*mapping
,
240 pgoff_t index
, void *expected
, void *replacement
)
245 VM_BUG_ON(!expected
);
246 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
248 item
= radix_tree_deref_slot_protected(pslot
,
249 &mapping
->tree_lock
);
250 if (item
!= expected
)
253 radix_tree_replace_slot(pslot
, replacement
);
255 radix_tree_delete(&mapping
->page_tree
, index
);
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
266 static bool shmem_confirm_swap(struct address_space
*mapping
,
267 pgoff_t index
, swp_entry_t swap
)
272 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
274 return item
== swp_to_radix_entry(swap
);
278 * Like add_to_page_cache_locked, but error if expected item has gone.
280 static int shmem_add_to_page_cache(struct page
*page
,
281 struct address_space
*mapping
,
282 pgoff_t index
, gfp_t gfp
, void *expected
)
286 VM_BUG_ON(!PageLocked(page
));
287 VM_BUG_ON(!PageSwapBacked(page
));
289 page_cache_get(page
);
290 page
->mapping
= mapping
;
293 spin_lock_irq(&mapping
->tree_lock
);
295 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
297 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
301 __inc_zone_page_state(page
, NR_FILE_PAGES
);
302 __inc_zone_page_state(page
, NR_SHMEM
);
303 spin_unlock_irq(&mapping
->tree_lock
);
305 page
->mapping
= NULL
;
306 spin_unlock_irq(&mapping
->tree_lock
);
307 page_cache_release(page
);
313 * Like delete_from_page_cache, but substitutes swap for page.
315 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
317 struct address_space
*mapping
= page
->mapping
;
320 spin_lock_irq(&mapping
->tree_lock
);
321 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
322 page
->mapping
= NULL
;
324 __dec_zone_page_state(page
, NR_FILE_PAGES
);
325 __dec_zone_page_state(page
, NR_SHMEM
);
326 spin_unlock_irq(&mapping
->tree_lock
);
327 page_cache_release(page
);
332 * Like find_get_pages, but collecting swap entries as well as pages.
334 static unsigned shmem_find_get_pages_and_swap(struct address_space
*mapping
,
335 pgoff_t start
, unsigned int nr_pages
,
336 struct page
**pages
, pgoff_t
*indices
)
340 unsigned int nr_found
;
344 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
345 (void ***)pages
, indices
, start
, nr_pages
);
347 for (i
= 0; i
< nr_found
; i
++) {
350 page
= radix_tree_deref_slot((void **)pages
[i
]);
353 if (radix_tree_exception(page
)) {
354 if (radix_tree_deref_retry(page
))
357 * Otherwise, we must be storing a swap entry
358 * here as an exceptional entry: so return it
359 * without attempting to raise page count.
363 if (!page_cache_get_speculative(page
))
366 /* Has the page moved? */
367 if (unlikely(page
!= *((void **)pages
[i
]))) {
368 page_cache_release(page
);
372 indices
[ret
] = indices
[i
];
376 if (unlikely(!ret
&& nr_found
))
383 * Remove swap entry from radix tree, free the swap and its page cache.
385 static int shmem_free_swap(struct address_space
*mapping
,
386 pgoff_t index
, void *radswap
)
390 spin_lock_irq(&mapping
->tree_lock
);
391 error
= shmem_radix_tree_replace(mapping
, index
, radswap
, NULL
);
392 spin_unlock_irq(&mapping
->tree_lock
);
394 free_swap_and_cache(radix_to_swp_entry(radswap
));
399 * Pagevec may contain swap entries, so shuffle up pages before releasing.
401 static void shmem_deswap_pagevec(struct pagevec
*pvec
)
405 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
406 struct page
*page
= pvec
->pages
[i
];
407 if (!radix_tree_exceptional_entry(page
))
408 pvec
->pages
[j
++] = page
;
414 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416 void shmem_unlock_mapping(struct address_space
*mapping
)
419 pgoff_t indices
[PAGEVEC_SIZE
];
422 pagevec_init(&pvec
, 0);
424 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426 while (!mapping_unevictable(mapping
)) {
428 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
432 PAGEVEC_SIZE
, pvec
.pages
, indices
);
435 index
= indices
[pvec
.nr
- 1] + 1;
436 shmem_deswap_pagevec(&pvec
);
437 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
438 pagevec_release(&pvec
);
444 * Remove range of pages and swap entries from radix tree, and free them.
445 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
450 struct address_space
*mapping
= inode
->i_mapping
;
451 struct shmem_inode_info
*info
= SHMEM_I(inode
);
452 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
453 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
454 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
455 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
457 pgoff_t indices
[PAGEVEC_SIZE
];
458 long nr_swaps_freed
= 0;
463 end
= -1; /* unsigned, so actually very big */
465 pagevec_init(&pvec
, 0);
467 while (index
< end
) {
468 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
469 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
470 pvec
.pages
, indices
);
473 mem_cgroup_uncharge_start();
474 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
475 struct page
*page
= pvec
.pages
[i
];
481 if (radix_tree_exceptional_entry(page
)) {
484 nr_swaps_freed
+= !shmem_free_swap(mapping
,
489 if (!trylock_page(page
))
491 if (!unfalloc
|| !PageUptodate(page
)) {
492 if (page
->mapping
== mapping
) {
493 VM_BUG_ON(PageWriteback(page
));
494 truncate_inode_page(mapping
, page
);
499 shmem_deswap_pagevec(&pvec
);
500 pagevec_release(&pvec
);
501 mem_cgroup_uncharge_end();
507 struct page
*page
= NULL
;
508 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
510 unsigned int top
= PAGE_CACHE_SIZE
;
515 zero_user_segment(page
, partial_start
, top
);
516 set_page_dirty(page
);
518 page_cache_release(page
);
522 struct page
*page
= NULL
;
523 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
525 zero_user_segment(page
, 0, partial_end
);
526 set_page_dirty(page
);
528 page_cache_release(page
);
537 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
538 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
539 pvec
.pages
, indices
);
541 if (index
== start
|| unfalloc
)
546 if ((index
== start
|| unfalloc
) && indices
[0] >= end
) {
547 shmem_deswap_pagevec(&pvec
);
548 pagevec_release(&pvec
);
551 mem_cgroup_uncharge_start();
552 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
553 struct page
*page
= pvec
.pages
[i
];
559 if (radix_tree_exceptional_entry(page
)) {
562 nr_swaps_freed
+= !shmem_free_swap(mapping
,
568 if (!unfalloc
|| !PageUptodate(page
)) {
569 if (page
->mapping
== mapping
) {
570 VM_BUG_ON(PageWriteback(page
));
571 truncate_inode_page(mapping
, page
);
576 shmem_deswap_pagevec(&pvec
);
577 pagevec_release(&pvec
);
578 mem_cgroup_uncharge_end();
582 spin_lock(&info
->lock
);
583 info
->swapped
-= nr_swaps_freed
;
584 shmem_recalc_inode(inode
);
585 spin_unlock(&info
->lock
);
588 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
590 shmem_undo_range(inode
, lstart
, lend
, false);
591 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
593 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
595 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
597 struct inode
*inode
= dentry
->d_inode
;
600 error
= inode_change_ok(inode
, attr
);
604 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
605 loff_t oldsize
= inode
->i_size
;
606 loff_t newsize
= attr
->ia_size
;
608 if (newsize
!= oldsize
) {
609 i_size_write(inode
, newsize
);
610 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
612 if (newsize
< oldsize
) {
613 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
614 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
615 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
616 /* unmap again to remove racily COWed private pages */
617 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
621 setattr_copy(inode
, attr
);
622 #ifdef CONFIG_TMPFS_POSIX_ACL
623 if (attr
->ia_valid
& ATTR_MODE
)
624 error
= generic_acl_chmod(inode
);
629 static void shmem_evict_inode(struct inode
*inode
)
631 struct shmem_inode_info
*info
= SHMEM_I(inode
);
633 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
634 shmem_unacct_size(info
->flags
, inode
->i_size
);
636 shmem_truncate_range(inode
, 0, (loff_t
)-1);
637 if (!list_empty(&info
->swaplist
)) {
638 mutex_lock(&shmem_swaplist_mutex
);
639 list_del_init(&info
->swaplist
);
640 mutex_unlock(&shmem_swaplist_mutex
);
643 kfree(info
->symlink
);
645 simple_xattrs_free(&info
->xattrs
);
646 WARN_ON(inode
->i_blocks
);
647 shmem_free_inode(inode
->i_sb
);
652 * If swap found in inode, free it and move page from swapcache to filecache.
654 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
655 swp_entry_t swap
, struct page
**pagep
)
657 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
663 radswap
= swp_to_radix_entry(swap
);
664 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
669 * Move _head_ to start search for next from here.
670 * But be careful: shmem_evict_inode checks list_empty without taking
671 * mutex, and there's an instant in list_move_tail when info->swaplist
672 * would appear empty, if it were the only one on shmem_swaplist.
674 if (shmem_swaplist
.next
!= &info
->swaplist
)
675 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
677 gfp
= mapping_gfp_mask(mapping
);
678 if (shmem_should_replace_page(*pagep
, gfp
)) {
679 mutex_unlock(&shmem_swaplist_mutex
);
680 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
681 mutex_lock(&shmem_swaplist_mutex
);
683 * We needed to drop mutex to make that restrictive page
684 * allocation, but the inode might have been freed while we
685 * dropped it: although a racing shmem_evict_inode() cannot
686 * complete without emptying the radix_tree, our page lock
687 * on this swapcache page is not enough to prevent that -
688 * free_swap_and_cache() of our swap entry will only
689 * trylock_page(), removing swap from radix_tree whatever.
691 * We must not proceed to shmem_add_to_page_cache() if the
692 * inode has been freed, but of course we cannot rely on
693 * inode or mapping or info to check that. However, we can
694 * safely check if our swap entry is still in use (and here
695 * it can't have got reused for another page): if it's still
696 * in use, then the inode cannot have been freed yet, and we
697 * can safely proceed (if it's no longer in use, that tells
698 * nothing about the inode, but we don't need to unuse swap).
700 if (!page_swapcount(*pagep
))
705 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707 * beneath us (pagelock doesn't help until the page is in pagecache).
710 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
711 GFP_NOWAIT
, radswap
);
712 if (error
!= -ENOMEM
) {
714 * Truncation and eviction use free_swap_and_cache(), which
715 * only does trylock page: if we raced, best clean up here.
717 delete_from_swap_cache(*pagep
);
718 set_page_dirty(*pagep
);
720 spin_lock(&info
->lock
);
722 spin_unlock(&info
->lock
);
725 error
= 1; /* not an error, but entry was found */
731 * Search through swapped inodes to find and replace swap by page.
733 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
735 struct list_head
*this, *next
;
736 struct shmem_inode_info
*info
;
741 * There's a faint possibility that swap page was replaced before
742 * caller locked it: caller will come back later with the right page.
744 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
748 * Charge page using GFP_KERNEL while we can wait, before taking
749 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750 * Charged back to the user (not to caller) when swap account is used.
752 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
755 /* No radix_tree_preload: swap entry keeps a place for page in tree */
757 mutex_lock(&shmem_swaplist_mutex
);
758 list_for_each_safe(this, next
, &shmem_swaplist
) {
759 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
761 found
= shmem_unuse_inode(info
, swap
, &page
);
763 list_del_init(&info
->swaplist
);
768 mutex_unlock(&shmem_swaplist_mutex
);
774 page_cache_release(page
);
779 * Move the page from the page cache to the swap cache.
781 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
783 struct shmem_inode_info
*info
;
784 struct address_space
*mapping
;
789 BUG_ON(!PageLocked(page
));
790 mapping
= page
->mapping
;
792 inode
= mapping
->host
;
793 info
= SHMEM_I(inode
);
794 if (info
->flags
& VM_LOCKED
)
796 if (!total_swap_pages
)
800 * shmem_backing_dev_info's capabilities prevent regular writeback or
801 * sync from ever calling shmem_writepage; but a stacking filesystem
802 * might use ->writepage of its underlying filesystem, in which case
803 * tmpfs should write out to swap only in response to memory pressure,
804 * and not for the writeback threads or sync.
806 if (!wbc
->for_reclaim
) {
807 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
812 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813 * value into swapfile.c, the only way we can correctly account for a
814 * fallocated page arriving here is now to initialize it and write it.
816 * That's okay for a page already fallocated earlier, but if we have
817 * not yet completed the fallocation, then (a) we want to keep track
818 * of this page in case we have to undo it, and (b) it may not be a
819 * good idea to continue anyway, once we're pushing into swap. So
820 * reactivate the page, and let shmem_fallocate() quit when too many.
822 if (!PageUptodate(page
)) {
823 if (inode
->i_private
) {
824 struct shmem_falloc
*shmem_falloc
;
825 spin_lock(&inode
->i_lock
);
826 shmem_falloc
= inode
->i_private
;
828 index
>= shmem_falloc
->start
&&
829 index
< shmem_falloc
->next
)
830 shmem_falloc
->nr_unswapped
++;
833 spin_unlock(&inode
->i_lock
);
837 clear_highpage(page
);
838 flush_dcache_page(page
);
839 SetPageUptodate(page
);
842 swap
= get_swap_page();
847 * Add inode to shmem_unuse()'s list of swapped-out inodes,
848 * if it's not already there. Do it now before the page is
849 * moved to swap cache, when its pagelock no longer protects
850 * the inode from eviction. But don't unlock the mutex until
851 * we've incremented swapped, because shmem_unuse_inode() will
852 * prune a !swapped inode from the swaplist under this mutex.
854 mutex_lock(&shmem_swaplist_mutex
);
855 if (list_empty(&info
->swaplist
))
856 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
858 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
859 swap_shmem_alloc(swap
);
860 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
862 spin_lock(&info
->lock
);
864 shmem_recalc_inode(inode
);
865 spin_unlock(&info
->lock
);
867 mutex_unlock(&shmem_swaplist_mutex
);
868 BUG_ON(page_mapped(page
));
869 swap_writepage(page
, wbc
);
873 mutex_unlock(&shmem_swaplist_mutex
);
874 swapcache_free(swap
, NULL
);
876 set_page_dirty(page
);
877 if (wbc
->for_reclaim
)
878 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
885 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
889 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
890 return; /* show nothing */
892 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
894 seq_printf(seq
, ",mpol=%s", buffer
);
897 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
899 struct mempolicy
*mpol
= NULL
;
901 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
904 spin_unlock(&sbinfo
->stat_lock
);
908 #endif /* CONFIG_TMPFS */
910 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
911 struct shmem_inode_info
*info
, pgoff_t index
)
913 struct vm_area_struct pvma
;
916 /* Create a pseudo vma that just contains the policy */
918 /* Bias interleave by inode number to distribute better across nodes */
919 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
921 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
923 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
925 /* Drop reference taken by mpol_shared_policy_lookup() */
926 mpol_cond_put(pvma
.vm_policy
);
931 static struct page
*shmem_alloc_page(gfp_t gfp
,
932 struct shmem_inode_info
*info
, pgoff_t index
)
934 struct vm_area_struct pvma
;
937 /* Create a pseudo vma that just contains the policy */
939 /* Bias interleave by inode number to distribute better across nodes */
940 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
942 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
944 page
= alloc_page_vma(gfp
, &pvma
, 0);
946 /* Drop reference taken by mpol_shared_policy_lookup() */
947 mpol_cond_put(pvma
.vm_policy
);
951 #else /* !CONFIG_NUMA */
953 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
956 #endif /* CONFIG_TMPFS */
958 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
959 struct shmem_inode_info
*info
, pgoff_t index
)
961 return swapin_readahead(swap
, gfp
, NULL
, 0);
964 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
965 struct shmem_inode_info
*info
, pgoff_t index
)
967 return alloc_page(gfp
);
969 #endif /* CONFIG_NUMA */
971 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
972 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
979 * When a page is moved from swapcache to shmem filecache (either by the
980 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
981 * shmem_unuse_inode()), it may have been read in earlier from swap, in
982 * ignorance of the mapping it belongs to. If that mapping has special
983 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
984 * we may need to copy to a suitable page before moving to filecache.
986 * In a future release, this may well be extended to respect cpuset and
987 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
988 * but for now it is a simple matter of zone.
990 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
992 return page_zonenum(page
) > gfp_zone(gfp
);
995 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
996 struct shmem_inode_info
*info
, pgoff_t index
)
998 struct page
*oldpage
, *newpage
;
999 struct address_space
*swap_mapping
;
1004 swap_index
= page_private(oldpage
);
1005 swap_mapping
= page_mapping(oldpage
);
1008 * We have arrived here because our zones are constrained, so don't
1009 * limit chance of success by further cpuset and node constraints.
1011 gfp
&= ~GFP_CONSTRAINT_MASK
;
1012 newpage
= shmem_alloc_page(gfp
, info
, index
);
1016 page_cache_get(newpage
);
1017 copy_highpage(newpage
, oldpage
);
1018 flush_dcache_page(newpage
);
1020 __set_page_locked(newpage
);
1021 SetPageUptodate(newpage
);
1022 SetPageSwapBacked(newpage
);
1023 set_page_private(newpage
, swap_index
);
1024 SetPageSwapCache(newpage
);
1027 * Our caller will very soon move newpage out of swapcache, but it's
1028 * a nice clean interface for us to replace oldpage by newpage there.
1030 spin_lock_irq(&swap_mapping
->tree_lock
);
1031 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1034 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1035 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1037 spin_unlock_irq(&swap_mapping
->tree_lock
);
1039 if (unlikely(error
)) {
1041 * Is this possible? I think not, now that our callers check
1042 * both PageSwapCache and page_private after getting page lock;
1043 * but be defensive. Reverse old to newpage for clear and free.
1047 mem_cgroup_replace_page_cache(oldpage
, newpage
);
1048 lru_cache_add_anon(newpage
);
1052 ClearPageSwapCache(oldpage
);
1053 set_page_private(oldpage
, 0);
1055 unlock_page(oldpage
);
1056 page_cache_release(oldpage
);
1057 page_cache_release(oldpage
);
1062 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1064 * If we allocate a new one we do not mark it dirty. That's up to the
1065 * vm. If we swap it in we mark it dirty since we also free the swap
1066 * entry since a page cannot live in both the swap and page cache
1068 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1069 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1071 struct address_space
*mapping
= inode
->i_mapping
;
1072 struct shmem_inode_info
*info
;
1073 struct shmem_sb_info
*sbinfo
;
1080 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1084 page
= find_lock_page(mapping
, index
);
1085 if (radix_tree_exceptional_entry(page
)) {
1086 swap
= radix_to_swp_entry(page
);
1090 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1091 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1096 /* fallocated page? */
1097 if (page
&& !PageUptodate(page
)) {
1098 if (sgp
!= SGP_READ
)
1101 page_cache_release(page
);
1104 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1110 * Fast cache lookup did not find it:
1111 * bring it back from swap or allocate.
1113 info
= SHMEM_I(inode
);
1114 sbinfo
= SHMEM_SB(inode
->i_sb
);
1117 /* Look it up and read it in.. */
1118 page
= lookup_swap_cache(swap
);
1120 /* here we actually do the io */
1122 *fault_type
|= VM_FAULT_MAJOR
;
1123 page
= shmem_swapin(swap
, gfp
, info
, index
);
1130 /* We have to do this with page locked to prevent races */
1132 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1133 !shmem_confirm_swap(mapping
, index
, swap
)) {
1134 error
= -EEXIST
; /* try again */
1137 if (!PageUptodate(page
)) {
1141 wait_on_page_writeback(page
);
1143 if (shmem_should_replace_page(page
, gfp
)) {
1144 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1149 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1150 gfp
& GFP_RECLAIM_MASK
);
1152 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1153 gfp
, swp_to_radix_entry(swap
));
1155 * We already confirmed swap under page lock, and make
1156 * no memory allocation here, so usually no possibility
1157 * of error; but free_swap_and_cache() only trylocks a
1158 * page, so it is just possible that the entry has been
1159 * truncated or holepunched since swap was confirmed.
1160 * shmem_undo_range() will have done some of the
1161 * unaccounting, now delete_from_swap_cache() will do
1162 * the rest (including mem_cgroup_uncharge_swapcache).
1163 * Reset swap.val? No, leave it so "failed" goes back to
1164 * "repeat": reading a hole and writing should succeed.
1167 delete_from_swap_cache(page
);
1172 spin_lock(&info
->lock
);
1174 shmem_recalc_inode(inode
);
1175 spin_unlock(&info
->lock
);
1177 delete_from_swap_cache(page
);
1178 set_page_dirty(page
);
1182 if (shmem_acct_block(info
->flags
)) {
1186 if (sbinfo
->max_blocks
) {
1187 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1188 sbinfo
->max_blocks
) >= 0) {
1192 percpu_counter_inc(&sbinfo
->used_blocks
);
1195 page
= shmem_alloc_page(gfp
, info
, index
);
1201 SetPageSwapBacked(page
);
1202 __set_page_locked(page
);
1203 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1204 gfp
& GFP_RECLAIM_MASK
);
1207 error
= radix_tree_preload(gfp
& GFP_RECLAIM_MASK
);
1209 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1211 radix_tree_preload_end();
1214 mem_cgroup_uncharge_cache_page(page
);
1217 lru_cache_add_anon(page
);
1219 spin_lock(&info
->lock
);
1221 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1222 shmem_recalc_inode(inode
);
1223 spin_unlock(&info
->lock
);
1227 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1229 if (sgp
== SGP_FALLOC
)
1233 * Let SGP_WRITE caller clear ends if write does not fill page;
1234 * but SGP_FALLOC on a page fallocated earlier must initialize
1235 * it now, lest undo on failure cancel our earlier guarantee.
1237 if (sgp
!= SGP_WRITE
) {
1238 clear_highpage(page
);
1239 flush_dcache_page(page
);
1240 SetPageUptodate(page
);
1242 if (sgp
== SGP_DIRTY
)
1243 set_page_dirty(page
);
1246 /* Perhaps the file has been truncated since we checked */
1247 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1248 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1262 info
= SHMEM_I(inode
);
1263 ClearPageDirty(page
);
1264 delete_from_page_cache(page
);
1265 spin_lock(&info
->lock
);
1267 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1268 spin_unlock(&info
->lock
);
1270 sbinfo
= SHMEM_SB(inode
->i_sb
);
1271 if (sbinfo
->max_blocks
)
1272 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1274 shmem_unacct_blocks(info
->flags
, 1);
1276 if (swap
.val
&& error
!= -EINVAL
&&
1277 !shmem_confirm_swap(mapping
, index
, swap
))
1282 page_cache_release(page
);
1284 if (error
== -ENOSPC
&& !once
++) {
1285 info
= SHMEM_I(inode
);
1286 spin_lock(&info
->lock
);
1287 shmem_recalc_inode(inode
);
1288 spin_unlock(&info
->lock
);
1291 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1296 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1298 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1300 int ret
= VM_FAULT_LOCKED
;
1302 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1304 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1306 if (ret
& VM_FAULT_MAJOR
) {
1307 count_vm_event(PGMAJFAULT
);
1308 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1314 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1316 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1317 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1320 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1323 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1326 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1327 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1331 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1333 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1334 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1335 int retval
= -ENOMEM
;
1337 spin_lock(&info
->lock
);
1338 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1339 if (!user_shm_lock(inode
->i_size
, user
))
1341 info
->flags
|= VM_LOCKED
;
1342 mapping_set_unevictable(file
->f_mapping
);
1344 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1345 user_shm_unlock(inode
->i_size
, user
);
1346 info
->flags
&= ~VM_LOCKED
;
1347 mapping_clear_unevictable(file
->f_mapping
);
1352 spin_unlock(&info
->lock
);
1356 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1358 file_accessed(file
);
1359 vma
->vm_ops
= &shmem_vm_ops
;
1363 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1364 umode_t mode
, dev_t dev
, unsigned long flags
)
1366 struct inode
*inode
;
1367 struct shmem_inode_info
*info
;
1368 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1370 if (shmem_reserve_inode(sb
))
1373 inode
= new_inode(sb
);
1375 inode
->i_ino
= get_next_ino();
1376 inode_init_owner(inode
, dir
, mode
);
1377 inode
->i_blocks
= 0;
1378 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1379 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1380 inode
->i_generation
= get_seconds();
1381 info
= SHMEM_I(inode
);
1382 memset(info
, 0, (char *)inode
- (char *)info
);
1383 spin_lock_init(&info
->lock
);
1384 info
->flags
= flags
& VM_NORESERVE
;
1385 INIT_LIST_HEAD(&info
->swaplist
);
1386 simple_xattrs_init(&info
->xattrs
);
1387 cache_no_acl(inode
);
1389 switch (mode
& S_IFMT
) {
1391 inode
->i_op
= &shmem_special_inode_operations
;
1392 init_special_inode(inode
, mode
, dev
);
1395 inode
->i_mapping
->a_ops
= &shmem_aops
;
1396 inode
->i_op
= &shmem_inode_operations
;
1397 inode
->i_fop
= &shmem_file_operations
;
1398 mpol_shared_policy_init(&info
->policy
,
1399 shmem_get_sbmpol(sbinfo
));
1403 /* Some things misbehave if size == 0 on a directory */
1404 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1405 inode
->i_op
= &shmem_dir_inode_operations
;
1406 inode
->i_fop
= &simple_dir_operations
;
1410 * Must not load anything in the rbtree,
1411 * mpol_free_shared_policy will not be called.
1413 mpol_shared_policy_init(&info
->policy
, NULL
);
1417 shmem_free_inode(sb
);
1422 static const struct inode_operations shmem_symlink_inode_operations
;
1423 static const struct inode_operations shmem_short_symlink_operations
;
1425 #ifdef CONFIG_TMPFS_XATTR
1426 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1428 #define shmem_initxattrs NULL
1432 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1433 loff_t pos
, unsigned len
, unsigned flags
,
1434 struct page
**pagep
, void **fsdata
)
1436 struct inode
*inode
= mapping
->host
;
1437 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1438 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1442 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1443 loff_t pos
, unsigned len
, unsigned copied
,
1444 struct page
*page
, void *fsdata
)
1446 struct inode
*inode
= mapping
->host
;
1448 if (pos
+ copied
> inode
->i_size
)
1449 i_size_write(inode
, pos
+ copied
);
1451 if (!PageUptodate(page
)) {
1452 if (copied
< PAGE_CACHE_SIZE
) {
1453 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1454 zero_user_segments(page
, 0, from
,
1455 from
+ copied
, PAGE_CACHE_SIZE
);
1457 SetPageUptodate(page
);
1459 set_page_dirty(page
);
1461 page_cache_release(page
);
1466 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1468 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1469 struct address_space
*mapping
= inode
->i_mapping
;
1471 unsigned long offset
;
1472 enum sgp_type sgp
= SGP_READ
;
1475 * Might this read be for a stacking filesystem? Then when reading
1476 * holes of a sparse file, we actually need to allocate those pages,
1477 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1479 if (segment_eq(get_fs(), KERNEL_DS
))
1482 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1483 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1486 struct page
*page
= NULL
;
1488 unsigned long nr
, ret
;
1489 loff_t i_size
= i_size_read(inode
);
1491 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1492 if (index
> end_index
)
1494 if (index
== end_index
) {
1495 nr
= i_size
& ~PAGE_CACHE_MASK
;
1500 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1502 if (desc
->error
== -EINVAL
)
1510 * We must evaluate after, since reads (unlike writes)
1511 * are called without i_mutex protection against truncate
1513 nr
= PAGE_CACHE_SIZE
;
1514 i_size
= i_size_read(inode
);
1515 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1516 if (index
== end_index
) {
1517 nr
= i_size
& ~PAGE_CACHE_MASK
;
1520 page_cache_release(page
);
1528 * If users can be writing to this page using arbitrary
1529 * virtual addresses, take care about potential aliasing
1530 * before reading the page on the kernel side.
1532 if (mapping_writably_mapped(mapping
))
1533 flush_dcache_page(page
);
1535 * Mark the page accessed if we read the beginning.
1538 mark_page_accessed(page
);
1540 page
= ZERO_PAGE(0);
1541 page_cache_get(page
);
1545 * Ok, we have the page, and it's up-to-date, so
1546 * now we can copy it to user space...
1548 * The actor routine returns how many bytes were actually used..
1549 * NOTE! This may not be the same as how much of a user buffer
1550 * we filled up (we may be padding etc), so we can only update
1551 * "pos" here (the actor routine has to update the user buffer
1552 * pointers and the remaining count).
1554 ret
= actor(desc
, page
, offset
, nr
);
1556 index
+= offset
>> PAGE_CACHE_SHIFT
;
1557 offset
&= ~PAGE_CACHE_MASK
;
1559 page_cache_release(page
);
1560 if (ret
!= nr
|| !desc
->count
)
1566 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1567 file_accessed(filp
);
1570 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1571 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1573 struct file
*filp
= iocb
->ki_filp
;
1577 loff_t
*ppos
= &iocb
->ki_pos
;
1579 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1583 for (seg
= 0; seg
< nr_segs
; seg
++) {
1584 read_descriptor_t desc
;
1587 desc
.arg
.buf
= iov
[seg
].iov_base
;
1588 desc
.count
= iov
[seg
].iov_len
;
1589 if (desc
.count
== 0)
1592 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1593 retval
+= desc
.written
;
1595 retval
= retval
?: desc
.error
;
1604 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1605 struct pipe_inode_info
*pipe
, size_t len
,
1608 struct address_space
*mapping
= in
->f_mapping
;
1609 struct inode
*inode
= mapping
->host
;
1610 unsigned int loff
, nr_pages
, req_pages
;
1611 struct page
*pages
[PIPE_DEF_BUFFERS
];
1612 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1614 pgoff_t index
, end_index
;
1617 struct splice_pipe_desc spd
= {
1620 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1622 .ops
= &page_cache_pipe_buf_ops
,
1623 .spd_release
= spd_release_page
,
1626 isize
= i_size_read(inode
);
1627 if (unlikely(*ppos
>= isize
))
1630 left
= isize
- *ppos
;
1631 if (unlikely(left
< len
))
1634 if (splice_grow_spd(pipe
, &spd
))
1637 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1638 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1639 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1640 nr_pages
= min(req_pages
, pipe
->buffers
);
1642 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1643 nr_pages
, spd
.pages
);
1644 index
+= spd
.nr_pages
;
1647 while (spd
.nr_pages
< nr_pages
) {
1648 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1652 spd
.pages
[spd
.nr_pages
++] = page
;
1656 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1657 nr_pages
= spd
.nr_pages
;
1660 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1661 unsigned int this_len
;
1666 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1667 page
= spd
.pages
[page_nr
];
1669 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1670 error
= shmem_getpage(inode
, index
, &page
,
1675 page_cache_release(spd
.pages
[page_nr
]);
1676 spd
.pages
[page_nr
] = page
;
1679 isize
= i_size_read(inode
);
1680 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1681 if (unlikely(!isize
|| index
> end_index
))
1684 if (end_index
== index
) {
1687 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1691 this_len
= min(this_len
, plen
- loff
);
1695 spd
.partial
[page_nr
].offset
= loff
;
1696 spd
.partial
[page_nr
].len
= this_len
;
1703 while (page_nr
< nr_pages
)
1704 page_cache_release(spd
.pages
[page_nr
++]);
1707 error
= splice_to_pipe(pipe
, &spd
);
1709 splice_shrink_spd(&spd
);
1719 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1721 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1722 pgoff_t index
, pgoff_t end
, int whence
)
1725 struct pagevec pvec
;
1726 pgoff_t indices
[PAGEVEC_SIZE
];
1730 pagevec_init(&pvec
, 0);
1731 pvec
.nr
= 1; /* start small: we may be there already */
1733 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
1734 pvec
.nr
, pvec
.pages
, indices
);
1736 if (whence
== SEEK_DATA
)
1740 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1741 if (index
< indices
[i
]) {
1742 if (whence
== SEEK_HOLE
) {
1748 page
= pvec
.pages
[i
];
1749 if (page
&& !radix_tree_exceptional_entry(page
)) {
1750 if (!PageUptodate(page
))
1754 (page
&& whence
== SEEK_DATA
) ||
1755 (!page
&& whence
== SEEK_HOLE
)) {
1760 shmem_deswap_pagevec(&pvec
);
1761 pagevec_release(&pvec
);
1762 pvec
.nr
= PAGEVEC_SIZE
;
1768 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1770 struct address_space
*mapping
= file
->f_mapping
;
1771 struct inode
*inode
= mapping
->host
;
1775 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1776 return generic_file_llseek_size(file
, offset
, whence
,
1777 MAX_LFS_FILESIZE
, i_size_read(inode
));
1778 mutex_lock(&inode
->i_mutex
);
1779 /* We're holding i_mutex so we can access i_size directly */
1783 else if (offset
>= inode
->i_size
)
1786 start
= offset
>> PAGE_CACHE_SHIFT
;
1787 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1788 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1789 new_offset
<<= PAGE_CACHE_SHIFT
;
1790 if (new_offset
> offset
) {
1791 if (new_offset
< inode
->i_size
)
1792 offset
= new_offset
;
1793 else if (whence
== SEEK_DATA
)
1796 offset
= inode
->i_size
;
1800 if (offset
>= 0 && offset
!= file
->f_pos
) {
1801 file
->f_pos
= offset
;
1802 file
->f_version
= 0;
1804 mutex_unlock(&inode
->i_mutex
);
1808 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
1811 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1812 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1813 struct shmem_falloc shmem_falloc
;
1814 pgoff_t start
, index
, end
;
1817 mutex_lock(&inode
->i_mutex
);
1819 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1820 struct address_space
*mapping
= file
->f_mapping
;
1821 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
1822 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
1824 if ((u64
)unmap_end
> (u64
)unmap_start
)
1825 unmap_mapping_range(mapping
, unmap_start
,
1826 1 + unmap_end
- unmap_start
, 0);
1827 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
1828 /* No need to unmap again: hole-punching leaves COWed pages */
1833 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1834 error
= inode_newsize_ok(inode
, offset
+ len
);
1838 start
= offset
>> PAGE_CACHE_SHIFT
;
1839 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1840 /* Try to avoid a swapstorm if len is impossible to satisfy */
1841 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
1846 shmem_falloc
.start
= start
;
1847 shmem_falloc
.next
= start
;
1848 shmem_falloc
.nr_falloced
= 0;
1849 shmem_falloc
.nr_unswapped
= 0;
1850 spin_lock(&inode
->i_lock
);
1851 inode
->i_private
= &shmem_falloc
;
1852 spin_unlock(&inode
->i_lock
);
1854 for (index
= start
; index
< end
; index
++) {
1858 * Good, the fallocate(2) manpage permits EINTR: we may have
1859 * been interrupted because we are using up too much memory.
1861 if (signal_pending(current
))
1863 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
1866 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
1869 /* Remove the !PageUptodate pages we added */
1870 shmem_undo_range(inode
,
1871 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
1872 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
1877 * Inform shmem_writepage() how far we have reached.
1878 * No need for lock or barrier: we have the page lock.
1880 shmem_falloc
.next
++;
1881 if (!PageUptodate(page
))
1882 shmem_falloc
.nr_falloced
++;
1885 * If !PageUptodate, leave it that way so that freeable pages
1886 * can be recognized if we need to rollback on error later.
1887 * But set_page_dirty so that memory pressure will swap rather
1888 * than free the pages we are allocating (and SGP_CACHE pages
1889 * might still be clean: we now need to mark those dirty too).
1891 set_page_dirty(page
);
1893 page_cache_release(page
);
1897 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
1898 i_size_write(inode
, offset
+ len
);
1899 inode
->i_ctime
= CURRENT_TIME
;
1901 spin_lock(&inode
->i_lock
);
1902 inode
->i_private
= NULL
;
1903 spin_unlock(&inode
->i_lock
);
1905 mutex_unlock(&inode
->i_mutex
);
1909 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1911 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1913 buf
->f_type
= TMPFS_MAGIC
;
1914 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1915 buf
->f_namelen
= NAME_MAX
;
1916 if (sbinfo
->max_blocks
) {
1917 buf
->f_blocks
= sbinfo
->max_blocks
;
1919 buf
->f_bfree
= sbinfo
->max_blocks
-
1920 percpu_counter_sum(&sbinfo
->used_blocks
);
1922 if (sbinfo
->max_inodes
) {
1923 buf
->f_files
= sbinfo
->max_inodes
;
1924 buf
->f_ffree
= sbinfo
->free_inodes
;
1926 /* else leave those fields 0 like simple_statfs */
1931 * File creation. Allocate an inode, and we're done..
1934 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
1936 struct inode
*inode
;
1937 int error
= -ENOSPC
;
1939 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1941 error
= security_inode_init_security(inode
, dir
,
1943 shmem_initxattrs
, NULL
);
1945 if (error
!= -EOPNOTSUPP
) {
1950 #ifdef CONFIG_TMPFS_POSIX_ACL
1951 error
= generic_acl_init(inode
, dir
);
1959 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1960 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1961 d_instantiate(dentry
, inode
);
1962 dget(dentry
); /* Extra count - pin the dentry in core */
1967 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1971 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1977 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
1980 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1986 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1988 struct inode
*inode
= old_dentry
->d_inode
;
1992 * No ordinary (disk based) filesystem counts links as inodes;
1993 * but each new link needs a new dentry, pinning lowmem, and
1994 * tmpfs dentries cannot be pruned until they are unlinked.
1996 ret
= shmem_reserve_inode(inode
->i_sb
);
2000 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2001 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2003 ihold(inode
); /* New dentry reference */
2004 dget(dentry
); /* Extra pinning count for the created dentry */
2005 d_instantiate(dentry
, inode
);
2010 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2012 struct inode
*inode
= dentry
->d_inode
;
2014 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2015 shmem_free_inode(inode
->i_sb
);
2017 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2018 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2020 dput(dentry
); /* Undo the count from "create" - this does all the work */
2024 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2026 if (!simple_empty(dentry
))
2029 drop_nlink(dentry
->d_inode
);
2031 return shmem_unlink(dir
, dentry
);
2035 * The VFS layer already does all the dentry stuff for rename,
2036 * we just have to decrement the usage count for the target if
2037 * it exists so that the VFS layer correctly free's it when it
2040 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2042 struct inode
*inode
= old_dentry
->d_inode
;
2043 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2045 if (!simple_empty(new_dentry
))
2048 if (new_dentry
->d_inode
) {
2049 (void) shmem_unlink(new_dir
, new_dentry
);
2051 drop_nlink(old_dir
);
2052 } else if (they_are_dirs
) {
2053 drop_nlink(old_dir
);
2057 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2058 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2059 old_dir
->i_ctime
= old_dir
->i_mtime
=
2060 new_dir
->i_ctime
= new_dir
->i_mtime
=
2061 inode
->i_ctime
= CURRENT_TIME
;
2065 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2069 struct inode
*inode
;
2072 struct shmem_inode_info
*info
;
2074 len
= strlen(symname
) + 1;
2075 if (len
> PAGE_CACHE_SIZE
)
2076 return -ENAMETOOLONG
;
2078 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2082 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2083 shmem_initxattrs
, NULL
);
2085 if (error
!= -EOPNOTSUPP
) {
2092 info
= SHMEM_I(inode
);
2093 inode
->i_size
= len
-1;
2094 if (len
<= SHORT_SYMLINK_LEN
) {
2095 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2096 if (!info
->symlink
) {
2100 inode
->i_op
= &shmem_short_symlink_operations
;
2102 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2107 inode
->i_mapping
->a_ops
= &shmem_aops
;
2108 inode
->i_op
= &shmem_symlink_inode_operations
;
2109 kaddr
= kmap_atomic(page
);
2110 memcpy(kaddr
, symname
, len
);
2111 kunmap_atomic(kaddr
);
2112 SetPageUptodate(page
);
2113 set_page_dirty(page
);
2115 page_cache_release(page
);
2117 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2118 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2119 d_instantiate(dentry
, inode
);
2124 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2126 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->symlink
);
2130 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2132 struct page
*page
= NULL
;
2133 int error
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2134 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2140 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2142 if (!IS_ERR(nd_get_link(nd
))) {
2143 struct page
*page
= cookie
;
2145 mark_page_accessed(page
);
2146 page_cache_release(page
);
2150 #ifdef CONFIG_TMPFS_XATTR
2152 * Superblocks without xattr inode operations may get some security.* xattr
2153 * support from the LSM "for free". As soon as we have any other xattrs
2154 * like ACLs, we also need to implement the security.* handlers at
2155 * filesystem level, though.
2159 * Callback for security_inode_init_security() for acquiring xattrs.
2161 static int shmem_initxattrs(struct inode
*inode
,
2162 const struct xattr
*xattr_array
,
2165 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2166 const struct xattr
*xattr
;
2167 struct simple_xattr
*new_xattr
;
2170 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2171 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2175 len
= strlen(xattr
->name
) + 1;
2176 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2178 if (!new_xattr
->name
) {
2183 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2184 XATTR_SECURITY_PREFIX_LEN
);
2185 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2188 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2194 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2195 #ifdef CONFIG_TMPFS_POSIX_ACL
2196 &generic_acl_access_handler
,
2197 &generic_acl_default_handler
,
2202 static int shmem_xattr_validate(const char *name
)
2204 struct { const char *prefix
; size_t len
; } arr
[] = {
2205 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2206 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2210 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2211 size_t preflen
= arr
[i
].len
;
2212 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2221 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2222 void *buffer
, size_t size
)
2224 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2228 * If this is a request for a synthetic attribute in the system.*
2229 * namespace use the generic infrastructure to resolve a handler
2230 * for it via sb->s_xattr.
2232 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2233 return generic_getxattr(dentry
, name
, buffer
, size
);
2235 err
= shmem_xattr_validate(name
);
2239 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2242 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2243 const void *value
, size_t size
, int flags
)
2245 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2249 * If this is a request for a synthetic attribute in the system.*
2250 * namespace use the generic infrastructure to resolve a handler
2251 * for it via sb->s_xattr.
2253 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2254 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2256 err
= shmem_xattr_validate(name
);
2260 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2263 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2265 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2269 * If this is a request for a synthetic attribute in the system.*
2270 * namespace use the generic infrastructure to resolve a handler
2271 * for it via sb->s_xattr.
2273 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2274 return generic_removexattr(dentry
, name
);
2276 err
= shmem_xattr_validate(name
);
2280 return simple_xattr_remove(&info
->xattrs
, name
);
2283 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2285 struct shmem_inode_info
*info
= SHMEM_I(dentry
->d_inode
);
2286 return simple_xattr_list(&info
->xattrs
, buffer
, size
);
2288 #endif /* CONFIG_TMPFS_XATTR */
2290 static const struct inode_operations shmem_short_symlink_operations
= {
2291 .readlink
= generic_readlink
,
2292 .follow_link
= shmem_follow_short_symlink
,
2293 #ifdef CONFIG_TMPFS_XATTR
2294 .setxattr
= shmem_setxattr
,
2295 .getxattr
= shmem_getxattr
,
2296 .listxattr
= shmem_listxattr
,
2297 .removexattr
= shmem_removexattr
,
2301 static const struct inode_operations shmem_symlink_inode_operations
= {
2302 .readlink
= generic_readlink
,
2303 .follow_link
= shmem_follow_link
,
2304 .put_link
= shmem_put_link
,
2305 #ifdef CONFIG_TMPFS_XATTR
2306 .setxattr
= shmem_setxattr
,
2307 .getxattr
= shmem_getxattr
,
2308 .listxattr
= shmem_listxattr
,
2309 .removexattr
= shmem_removexattr
,
2313 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2315 return ERR_PTR(-ESTALE
);
2318 static int shmem_match(struct inode
*ino
, void *vfh
)
2322 inum
= (inum
<< 32) | fh
[1];
2323 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2326 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2327 struct fid
*fid
, int fh_len
, int fh_type
)
2329 struct inode
*inode
;
2330 struct dentry
*dentry
= NULL
;
2337 inum
= (inum
<< 32) | fid
->raw
[1];
2339 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2340 shmem_match
, fid
->raw
);
2342 dentry
= d_find_alias(inode
);
2349 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2350 struct inode
*parent
)
2357 if (inode_unhashed(inode
)) {
2358 /* Unfortunately insert_inode_hash is not idempotent,
2359 * so as we hash inodes here rather than at creation
2360 * time, we need a lock to ensure we only try
2363 static DEFINE_SPINLOCK(lock
);
2365 if (inode_unhashed(inode
))
2366 __insert_inode_hash(inode
,
2367 inode
->i_ino
+ inode
->i_generation
);
2371 fh
[0] = inode
->i_generation
;
2372 fh
[1] = inode
->i_ino
;
2373 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2379 static const struct export_operations shmem_export_ops
= {
2380 .get_parent
= shmem_get_parent
,
2381 .encode_fh
= shmem_encode_fh
,
2382 .fh_to_dentry
= shmem_fh_to_dentry
,
2385 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2388 char *this_char
, *value
, *rest
;
2392 while (options
!= NULL
) {
2393 this_char
= options
;
2396 * NUL-terminate this option: unfortunately,
2397 * mount options form a comma-separated list,
2398 * but mpol's nodelist may also contain commas.
2400 options
= strchr(options
, ',');
2401 if (options
== NULL
)
2404 if (!isdigit(*options
)) {
2411 if ((value
= strchr(this_char
,'=')) != NULL
) {
2415 "tmpfs: No value for mount option '%s'\n",
2420 if (!strcmp(this_char
,"size")) {
2421 unsigned long long size
;
2422 size
= memparse(value
,&rest
);
2424 size
<<= PAGE_SHIFT
;
2425 size
*= totalram_pages
;
2431 sbinfo
->max_blocks
=
2432 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2433 } else if (!strcmp(this_char
,"nr_blocks")) {
2434 sbinfo
->max_blocks
= memparse(value
, &rest
);
2437 } else if (!strcmp(this_char
,"nr_inodes")) {
2438 sbinfo
->max_inodes
= memparse(value
, &rest
);
2441 } else if (!strcmp(this_char
,"mode")) {
2444 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2447 } else if (!strcmp(this_char
,"uid")) {
2450 uid
= simple_strtoul(value
, &rest
, 0);
2453 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2454 if (!uid_valid(sbinfo
->uid
))
2456 } else if (!strcmp(this_char
,"gid")) {
2459 gid
= simple_strtoul(value
, &rest
, 0);
2462 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2463 if (!gid_valid(sbinfo
->gid
))
2465 } else if (!strcmp(this_char
,"mpol")) {
2466 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2469 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2477 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2483 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2485 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2486 struct shmem_sb_info config
= *sbinfo
;
2487 unsigned long inodes
;
2488 int error
= -EINVAL
;
2490 if (shmem_parse_options(data
, &config
, true))
2493 spin_lock(&sbinfo
->stat_lock
);
2494 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2495 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2497 if (config
.max_inodes
< inodes
)
2500 * Those tests disallow limited->unlimited while any are in use;
2501 * but we must separately disallow unlimited->limited, because
2502 * in that case we have no record of how much is already in use.
2504 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2506 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2510 sbinfo
->max_blocks
= config
.max_blocks
;
2511 sbinfo
->max_inodes
= config
.max_inodes
;
2512 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2514 mpol_put(sbinfo
->mpol
);
2515 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2517 spin_unlock(&sbinfo
->stat_lock
);
2521 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2523 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2525 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2526 seq_printf(seq
, ",size=%luk",
2527 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2528 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2529 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2530 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2531 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2532 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2533 seq_printf(seq
, ",uid=%u",
2534 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2535 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2536 seq_printf(seq
, ",gid=%u",
2537 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2538 shmem_show_mpol(seq
, sbinfo
->mpol
);
2541 #endif /* CONFIG_TMPFS */
2543 static void shmem_put_super(struct super_block
*sb
)
2545 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2547 percpu_counter_destroy(&sbinfo
->used_blocks
);
2549 sb
->s_fs_info
= NULL
;
2552 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2554 struct inode
*inode
;
2555 struct shmem_sb_info
*sbinfo
;
2558 /* Round up to L1_CACHE_BYTES to resist false sharing */
2559 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2560 L1_CACHE_BYTES
), GFP_KERNEL
);
2564 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2565 sbinfo
->uid
= current_fsuid();
2566 sbinfo
->gid
= current_fsgid();
2567 sb
->s_fs_info
= sbinfo
;
2571 * Per default we only allow half of the physical ram per
2572 * tmpfs instance, limiting inodes to one per page of lowmem;
2573 * but the internal instance is left unlimited.
2575 if (!(sb
->s_flags
& MS_NOUSER
)) {
2576 sbinfo
->max_blocks
= shmem_default_max_blocks();
2577 sbinfo
->max_inodes
= shmem_default_max_inodes();
2578 if (shmem_parse_options(data
, sbinfo
, false)) {
2583 sb
->s_export_op
= &shmem_export_ops
;
2584 sb
->s_flags
|= MS_NOSEC
;
2586 sb
->s_flags
|= MS_NOUSER
;
2589 spin_lock_init(&sbinfo
->stat_lock
);
2590 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2592 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2594 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2595 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2596 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2597 sb
->s_magic
= TMPFS_MAGIC
;
2598 sb
->s_op
= &shmem_ops
;
2599 sb
->s_time_gran
= 1;
2600 #ifdef CONFIG_TMPFS_XATTR
2601 sb
->s_xattr
= shmem_xattr_handlers
;
2603 #ifdef CONFIG_TMPFS_POSIX_ACL
2604 sb
->s_flags
|= MS_POSIXACL
;
2607 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2610 inode
->i_uid
= sbinfo
->uid
;
2611 inode
->i_gid
= sbinfo
->gid
;
2612 sb
->s_root
= d_make_root(inode
);
2618 shmem_put_super(sb
);
2622 static struct kmem_cache
*shmem_inode_cachep
;
2624 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2626 struct shmem_inode_info
*info
;
2627 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2630 return &info
->vfs_inode
;
2633 static void shmem_destroy_callback(struct rcu_head
*head
)
2635 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2636 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2639 static void shmem_destroy_inode(struct inode
*inode
)
2641 if (S_ISREG(inode
->i_mode
))
2642 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2643 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
2646 static void shmem_init_inode(void *foo
)
2648 struct shmem_inode_info
*info
= foo
;
2649 inode_init_once(&info
->vfs_inode
);
2652 static int shmem_init_inodecache(void)
2654 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2655 sizeof(struct shmem_inode_info
),
2656 0, SLAB_PANIC
, shmem_init_inode
);
2660 static void shmem_destroy_inodecache(void)
2662 kmem_cache_destroy(shmem_inode_cachep
);
2665 static const struct address_space_operations shmem_aops
= {
2666 .writepage
= shmem_writepage
,
2667 .set_page_dirty
= __set_page_dirty_no_writeback
,
2669 .write_begin
= shmem_write_begin
,
2670 .write_end
= shmem_write_end
,
2672 .migratepage
= migrate_page
,
2673 .error_remove_page
= generic_error_remove_page
,
2676 static const struct file_operations shmem_file_operations
= {
2679 .llseek
= shmem_file_llseek
,
2680 .read
= do_sync_read
,
2681 .write
= do_sync_write
,
2682 .aio_read
= shmem_file_aio_read
,
2683 .aio_write
= generic_file_aio_write
,
2684 .fsync
= noop_fsync
,
2685 .splice_read
= shmem_file_splice_read
,
2686 .splice_write
= generic_file_splice_write
,
2687 .fallocate
= shmem_fallocate
,
2691 static const struct inode_operations shmem_inode_operations
= {
2692 .setattr
= shmem_setattr
,
2693 #ifdef CONFIG_TMPFS_XATTR
2694 .setxattr
= shmem_setxattr
,
2695 .getxattr
= shmem_getxattr
,
2696 .listxattr
= shmem_listxattr
,
2697 .removexattr
= shmem_removexattr
,
2701 static const struct inode_operations shmem_dir_inode_operations
= {
2703 .create
= shmem_create
,
2704 .lookup
= simple_lookup
,
2706 .unlink
= shmem_unlink
,
2707 .symlink
= shmem_symlink
,
2708 .mkdir
= shmem_mkdir
,
2709 .rmdir
= shmem_rmdir
,
2710 .mknod
= shmem_mknod
,
2711 .rename
= shmem_rename
,
2713 #ifdef CONFIG_TMPFS_XATTR
2714 .setxattr
= shmem_setxattr
,
2715 .getxattr
= shmem_getxattr
,
2716 .listxattr
= shmem_listxattr
,
2717 .removexattr
= shmem_removexattr
,
2719 #ifdef CONFIG_TMPFS_POSIX_ACL
2720 .setattr
= shmem_setattr
,
2724 static const struct inode_operations shmem_special_inode_operations
= {
2725 #ifdef CONFIG_TMPFS_XATTR
2726 .setxattr
= shmem_setxattr
,
2727 .getxattr
= shmem_getxattr
,
2728 .listxattr
= shmem_listxattr
,
2729 .removexattr
= shmem_removexattr
,
2731 #ifdef CONFIG_TMPFS_POSIX_ACL
2732 .setattr
= shmem_setattr
,
2736 static const struct super_operations shmem_ops
= {
2737 .alloc_inode
= shmem_alloc_inode
,
2738 .destroy_inode
= shmem_destroy_inode
,
2740 .statfs
= shmem_statfs
,
2741 .remount_fs
= shmem_remount_fs
,
2742 .show_options
= shmem_show_options
,
2744 .evict_inode
= shmem_evict_inode
,
2745 .drop_inode
= generic_delete_inode
,
2746 .put_super
= shmem_put_super
,
2749 static const struct vm_operations_struct shmem_vm_ops
= {
2750 .fault
= shmem_fault
,
2752 .set_policy
= shmem_set_policy
,
2753 .get_policy
= shmem_get_policy
,
2755 .remap_pages
= generic_file_remap_pages
,
2758 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2759 int flags
, const char *dev_name
, void *data
)
2761 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2764 static struct file_system_type shmem_fs_type
= {
2765 .owner
= THIS_MODULE
,
2767 .mount
= shmem_mount
,
2768 .kill_sb
= kill_litter_super
,
2771 int __init
shmem_init(void)
2775 error
= bdi_init(&shmem_backing_dev_info
);
2779 error
= shmem_init_inodecache();
2783 error
= register_filesystem(&shmem_fs_type
);
2785 printk(KERN_ERR
"Could not register tmpfs\n");
2789 shm_mnt
= vfs_kern_mount(&shmem_fs_type
, MS_NOUSER
,
2790 shmem_fs_type
.name
, NULL
);
2791 if (IS_ERR(shm_mnt
)) {
2792 error
= PTR_ERR(shm_mnt
);
2793 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2799 unregister_filesystem(&shmem_fs_type
);
2801 shmem_destroy_inodecache();
2803 bdi_destroy(&shmem_backing_dev_info
);
2805 shm_mnt
= ERR_PTR(error
);
2809 #else /* !CONFIG_SHMEM */
2812 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2814 * This is intended for small system where the benefits of the full
2815 * shmem code (swap-backed and resource-limited) are outweighed by
2816 * their complexity. On systems without swap this code should be
2817 * effectively equivalent, but much lighter weight.
2820 #include <linux/ramfs.h>
2822 static struct file_system_type shmem_fs_type
= {
2824 .mount
= ramfs_mount
,
2825 .kill_sb
= kill_litter_super
,
2828 int __init
shmem_init(void)
2830 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
2832 shm_mnt
= kern_mount(&shmem_fs_type
);
2833 BUG_ON(IS_ERR(shm_mnt
));
2838 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
2843 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2848 void shmem_unlock_mapping(struct address_space
*mapping
)
2852 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
2854 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
2856 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2858 #define shmem_vm_ops generic_file_vm_ops
2859 #define shmem_file_operations ramfs_file_operations
2860 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2861 #define shmem_acct_size(flags, size) 0
2862 #define shmem_unacct_size(flags, size) do {} while (0)
2864 #endif /* CONFIG_SHMEM */
2869 * shmem_file_setup - get an unlinked file living in tmpfs
2870 * @name: name for dentry (to be seen in /proc/<pid>/maps
2871 * @size: size to be set for the file
2872 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2874 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2878 struct inode
*inode
;
2880 struct dentry
*root
;
2883 if (IS_ERR(shm_mnt
))
2884 return (void *)shm_mnt
;
2886 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
2887 return ERR_PTR(-EINVAL
);
2889 if (shmem_acct_size(flags
, size
))
2890 return ERR_PTR(-ENOMEM
);
2894 this.len
= strlen(name
);
2895 this.hash
= 0; /* will go */
2896 root
= shm_mnt
->mnt_root
;
2897 path
.dentry
= d_alloc(root
, &this);
2900 path
.mnt
= mntget(shm_mnt
);
2903 inode
= shmem_get_inode(root
->d_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2907 d_instantiate(path
.dentry
, inode
);
2908 inode
->i_size
= size
;
2909 clear_nlink(inode
); /* It is unlinked */
2911 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2917 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2918 &shmem_file_operations
);
2927 shmem_unacct_size(flags
, size
);
2928 return ERR_PTR(error
);
2930 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2933 * shmem_zero_setup - setup a shared anonymous mapping
2934 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2936 int shmem_zero_setup(struct vm_area_struct
*vma
)
2939 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2941 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2943 return PTR_ERR(file
);
2947 vma
->vm_file
= file
;
2948 vma
->vm_ops
= &shmem_vm_ops
;
2953 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2954 * @mapping: the page's address_space
2955 * @index: the page index
2956 * @gfp: the page allocator flags to use if allocating
2958 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2959 * with any new page allocations done using the specified allocation flags.
2960 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2961 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2962 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2964 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2965 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2967 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
2968 pgoff_t index
, gfp_t gfp
)
2971 struct inode
*inode
= mapping
->host
;
2975 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
2976 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
2978 page
= ERR_PTR(error
);
2984 * The tiny !SHMEM case uses ramfs without swap
2986 return read_cache_page_gfp(mapping
, index
, gfp
);
2989 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);