2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <asm/uaccess.h>
37 #include <asm/param.h>
41 #define user_long_t long
43 #ifndef user_siginfo_t
44 #define user_siginfo_t siginfo_t
47 static int load_elf_binary(struct linux_binprm
*bprm
);
48 static int load_elf_library(struct file
*);
49 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
50 int, int, unsigned long);
53 * If we don't support core dumping, then supply a NULL so we
56 #ifdef CONFIG_ELF_CORE
57 static int elf_core_dump(struct coredump_params
*cprm
);
59 #define elf_core_dump NULL
62 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
63 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
65 #define ELF_MIN_ALIGN PAGE_SIZE
68 #ifndef ELF_CORE_EFLAGS
69 #define ELF_CORE_EFLAGS 0
72 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
73 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
74 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
76 static struct linux_binfmt elf_format
= {
77 .module
= THIS_MODULE
,
78 .load_binary
= load_elf_binary
,
79 .load_shlib
= load_elf_library
,
80 .core_dump
= elf_core_dump
,
81 .min_coredump
= ELF_EXEC_PAGESIZE
,
84 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
86 static int set_brk(unsigned long start
, unsigned long end
)
88 start
= ELF_PAGEALIGN(start
);
89 end
= ELF_PAGEALIGN(end
);
92 addr
= vm_brk(start
, end
- start
);
96 current
->mm
->start_brk
= current
->mm
->brk
= end
;
100 /* We need to explicitly zero any fractional pages
101 after the data section (i.e. bss). This would
102 contain the junk from the file that should not
105 static int padzero(unsigned long elf_bss
)
109 nbyte
= ELF_PAGEOFFSET(elf_bss
);
111 nbyte
= ELF_MIN_ALIGN
- nbyte
;
112 if (clear_user((void __user
*) elf_bss
, nbyte
))
118 /* Let's use some macros to make this stack manipulation a little clearer */
119 #ifdef CONFIG_STACK_GROWSUP
120 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
121 #define STACK_ROUND(sp, items) \
122 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
123 #define STACK_ALLOC(sp, len) ({ \
124 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
127 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
128 #define STACK_ROUND(sp, items) \
129 (((unsigned long) (sp - items)) &~ 15UL)
130 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
133 #ifndef ELF_BASE_PLATFORM
135 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
136 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
137 * will be copied to the user stack in the same manner as AT_PLATFORM.
139 #define ELF_BASE_PLATFORM NULL
143 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
144 unsigned long load_addr
, unsigned long interp_load_addr
)
146 unsigned long p
= bprm
->p
;
147 int argc
= bprm
->argc
;
148 int envc
= bprm
->envc
;
149 elf_addr_t __user
*argv
;
150 elf_addr_t __user
*envp
;
151 elf_addr_t __user
*sp
;
152 elf_addr_t __user
*u_platform
;
153 elf_addr_t __user
*u_base_platform
;
154 elf_addr_t __user
*u_rand_bytes
;
155 const char *k_platform
= ELF_PLATFORM
;
156 const char *k_base_platform
= ELF_BASE_PLATFORM
;
157 unsigned char k_rand_bytes
[16];
159 elf_addr_t
*elf_info
;
161 const struct cred
*cred
= current_cred();
162 struct vm_area_struct
*vma
;
165 * In some cases (e.g. Hyper-Threading), we want to avoid L1
166 * evictions by the processes running on the same package. One
167 * thing we can do is to shuffle the initial stack for them.
170 p
= arch_align_stack(p
);
173 * If this architecture has a platform capability string, copy it
174 * to userspace. In some cases (Sparc), this info is impossible
175 * for userspace to get any other way, in others (i386) it is
180 size_t len
= strlen(k_platform
) + 1;
182 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
183 if (__copy_to_user(u_platform
, k_platform
, len
))
188 * If this architecture has a "base" platform capability
189 * string, copy it to userspace.
191 u_base_platform
= NULL
;
192 if (k_base_platform
) {
193 size_t len
= strlen(k_base_platform
) + 1;
195 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
196 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
201 * Generate 16 random bytes for userspace PRNG seeding.
203 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
204 u_rand_bytes
= (elf_addr_t __user
*)
205 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
206 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
209 /* Create the ELF interpreter info */
210 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
211 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
212 #define NEW_AUX_ENT(id, val) \
214 elf_info[ei_index++] = id; \
215 elf_info[ei_index++] = val; \
220 * ARCH_DLINFO must come first so PPC can do its special alignment of
222 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
223 * ARCH_DLINFO changes
227 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
228 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
229 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
230 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
231 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
232 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
233 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
234 NEW_AUX_ENT(AT_FLAGS
, 0);
235 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
236 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
237 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
238 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
239 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
240 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
241 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
242 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
244 NEW_AUX_ENT(AT_PLATFORM
,
245 (elf_addr_t
)(unsigned long)u_platform
);
247 if (k_base_platform
) {
248 NEW_AUX_ENT(AT_BASE_PLATFORM
,
249 (elf_addr_t
)(unsigned long)u_base_platform
);
251 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
252 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
255 /* AT_NULL is zero; clear the rest too */
256 memset(&elf_info
[ei_index
], 0,
257 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
259 /* And advance past the AT_NULL entry. */
262 sp
= STACK_ADD(p
, ei_index
);
264 items
= (argc
+ 1) + (envc
+ 1) + 1;
265 bprm
->p
= STACK_ROUND(sp
, items
);
267 /* Point sp at the lowest address on the stack */
268 #ifdef CONFIG_STACK_GROWSUP
269 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
270 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
272 sp
= (elf_addr_t __user
*)bprm
->p
;
277 * Grow the stack manually; some architectures have a limit on how
278 * far ahead a user-space access may be in order to grow the stack.
280 vma
= find_extend_vma(current
->mm
, bprm
->p
);
284 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
285 if (__put_user(argc
, sp
++))
288 envp
= argv
+ argc
+ 1;
290 /* Populate argv and envp */
291 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
294 if (__put_user((elf_addr_t
)p
, argv
++))
296 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
297 if (!len
|| len
> MAX_ARG_STRLEN
)
301 if (__put_user(0, argv
))
303 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
306 if (__put_user((elf_addr_t
)p
, envp
++))
308 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
309 if (!len
|| len
> MAX_ARG_STRLEN
)
313 if (__put_user(0, envp
))
315 current
->mm
->env_end
= p
;
317 /* Put the elf_info on the stack in the right place. */
318 sp
= (elf_addr_t __user
*)envp
+ 1;
319 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
324 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
325 struct elf_phdr
*eppnt
, int prot
, int type
,
326 unsigned long total_size
)
328 unsigned long map_addr
;
329 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
330 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
331 addr
= ELF_PAGESTART(addr
);
332 size
= ELF_PAGEALIGN(size
);
334 /* mmap() will return -EINVAL if given a zero size, but a
335 * segment with zero filesize is perfectly valid */
340 * total_size is the size of the ELF (interpreter) image.
341 * The _first_ mmap needs to know the full size, otherwise
342 * randomization might put this image into an overlapping
343 * position with the ELF binary image. (since size < total_size)
344 * So we first map the 'big' image - and unmap the remainder at
345 * the end. (which unmap is needed for ELF images with holes.)
348 total_size
= ELF_PAGEALIGN(total_size
);
349 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
350 if (!BAD_ADDR(map_addr
))
351 vm_munmap(map_addr
+size
, total_size
-size
);
353 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
358 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
360 int i
, first_idx
= -1, last_idx
= -1;
362 for (i
= 0; i
< nr
; i
++) {
363 if (cmds
[i
].p_type
== PT_LOAD
) {
372 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
373 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
377 /* This is much more generalized than the library routine read function,
378 so we keep this separate. Technically the library read function
379 is only provided so that we can read a.out libraries that have
382 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
383 struct file
*interpreter
, unsigned long *interp_map_addr
,
384 unsigned long no_base
)
386 struct elf_phdr
*elf_phdata
;
387 struct elf_phdr
*eppnt
;
388 unsigned long load_addr
= 0;
389 int load_addr_set
= 0;
390 unsigned long last_bss
= 0, elf_bss
= 0;
391 unsigned long error
= ~0UL;
392 unsigned long total_size
;
395 /* First of all, some simple consistency checks */
396 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
397 interp_elf_ex
->e_type
!= ET_DYN
)
399 if (!elf_check_arch(interp_elf_ex
))
401 if (!interpreter
->f_op
|| !interpreter
->f_op
->mmap
)
405 * If the size of this structure has changed, then punt, since
406 * we will be doing the wrong thing.
408 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
410 if (interp_elf_ex
->e_phnum
< 1 ||
411 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
414 /* Now read in all of the header information */
415 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
416 if (size
> ELF_MIN_ALIGN
)
418 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
422 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
423 (char *)elf_phdata
, size
);
425 if (retval
!= size
) {
431 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
438 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
439 if (eppnt
->p_type
== PT_LOAD
) {
440 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
442 unsigned long vaddr
= 0;
443 unsigned long k
, map_addr
;
445 if (eppnt
->p_flags
& PF_R
)
446 elf_prot
= PROT_READ
;
447 if (eppnt
->p_flags
& PF_W
)
448 elf_prot
|= PROT_WRITE
;
449 if (eppnt
->p_flags
& PF_X
)
450 elf_prot
|= PROT_EXEC
;
451 vaddr
= eppnt
->p_vaddr
;
452 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
453 elf_type
|= MAP_FIXED
;
454 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
457 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
458 eppnt
, elf_prot
, elf_type
, total_size
);
460 if (!*interp_map_addr
)
461 *interp_map_addr
= map_addr
;
463 if (BAD_ADDR(map_addr
))
466 if (!load_addr_set
&&
467 interp_elf_ex
->e_type
== ET_DYN
) {
468 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
473 * Check to see if the section's size will overflow the
474 * allowed task size. Note that p_filesz must always be
475 * <= p_memsize so it's only necessary to check p_memsz.
477 k
= load_addr
+ eppnt
->p_vaddr
;
479 eppnt
->p_filesz
> eppnt
->p_memsz
||
480 eppnt
->p_memsz
> TASK_SIZE
||
481 TASK_SIZE
- eppnt
->p_memsz
< k
) {
487 * Find the end of the file mapping for this phdr, and
488 * keep track of the largest address we see for this.
490 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
495 * Do the same thing for the memory mapping - between
496 * elf_bss and last_bss is the bss section.
498 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
504 if (last_bss
> elf_bss
) {
506 * Now fill out the bss section. First pad the last page up
507 * to the page boundary, and then perform a mmap to make sure
508 * that there are zero-mapped pages up to and including the
511 if (padzero(elf_bss
)) {
516 /* What we have mapped so far */
517 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
519 /* Map the last of the bss segment */
520 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
534 * These are the functions used to load ELF style executables and shared
535 * libraries. There is no binary dependent code anywhere else.
538 #define INTERPRETER_NONE 0
539 #define INTERPRETER_ELF 2
541 #ifndef STACK_RND_MASK
542 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
545 static unsigned long randomize_stack_top(unsigned long stack_top
)
547 unsigned int random_variable
= 0;
549 if ((current
->flags
& PF_RANDOMIZE
) &&
550 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
551 random_variable
= get_random_int() & STACK_RND_MASK
;
552 random_variable
<<= PAGE_SHIFT
;
554 #ifdef CONFIG_STACK_GROWSUP
555 return PAGE_ALIGN(stack_top
) + random_variable
;
557 return PAGE_ALIGN(stack_top
) - random_variable
;
561 static int load_elf_binary(struct linux_binprm
*bprm
)
563 struct file
*interpreter
= NULL
; /* to shut gcc up */
564 unsigned long load_addr
= 0, load_bias
= 0;
565 int load_addr_set
= 0;
566 char * elf_interpreter
= NULL
;
568 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
569 unsigned long elf_bss
, elf_brk
;
572 unsigned long elf_entry
;
573 unsigned long interp_load_addr
= 0;
574 unsigned long start_code
, end_code
, start_data
, end_data
;
575 unsigned long reloc_func_desc __maybe_unused
= 0;
576 int executable_stack
= EXSTACK_DEFAULT
;
577 unsigned long def_flags
= 0;
578 struct pt_regs
*regs
= current_pt_regs();
580 struct elfhdr elf_ex
;
581 struct elfhdr interp_elf_ex
;
584 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
590 /* Get the exec-header */
591 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
594 /* First of all, some simple consistency checks */
595 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
598 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
600 if (!elf_check_arch(&loc
->elf_ex
))
602 if (!bprm
->file
->f_op
|| !bprm
->file
->f_op
->mmap
)
605 /* Now read in all of the header information */
606 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
608 if (loc
->elf_ex
.e_phnum
< 1 ||
609 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
611 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
613 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
617 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
618 (char *)elf_phdata
, size
);
619 if (retval
!= size
) {
625 elf_ppnt
= elf_phdata
;
634 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
635 if (elf_ppnt
->p_type
== PT_INTERP
) {
636 /* This is the program interpreter used for
637 * shared libraries - for now assume that this
638 * is an a.out format binary
641 if (elf_ppnt
->p_filesz
> PATH_MAX
||
642 elf_ppnt
->p_filesz
< 2)
646 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
648 if (!elf_interpreter
)
651 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
654 if (retval
!= elf_ppnt
->p_filesz
) {
657 goto out_free_interp
;
659 /* make sure path is NULL terminated */
661 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
662 goto out_free_interp
;
664 interpreter
= open_exec(elf_interpreter
);
665 retval
= PTR_ERR(interpreter
);
666 if (IS_ERR(interpreter
))
667 goto out_free_interp
;
670 * If the binary is not readable then enforce
671 * mm->dumpable = 0 regardless of the interpreter's
674 would_dump(bprm
, interpreter
);
676 retval
= kernel_read(interpreter
, 0, bprm
->buf
,
678 if (retval
!= BINPRM_BUF_SIZE
) {
681 goto out_free_dentry
;
684 /* Get the exec headers */
685 loc
->interp_elf_ex
= *((struct elfhdr
*)bprm
->buf
);
691 elf_ppnt
= elf_phdata
;
692 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
693 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
694 if (elf_ppnt
->p_flags
& PF_X
)
695 executable_stack
= EXSTACK_ENABLE_X
;
697 executable_stack
= EXSTACK_DISABLE_X
;
701 /* Some simple consistency checks for the interpreter */
702 if (elf_interpreter
) {
704 /* Not an ELF interpreter */
705 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
706 goto out_free_dentry
;
707 /* Verify the interpreter has a valid arch */
708 if (!elf_check_arch(&loc
->interp_elf_ex
))
709 goto out_free_dentry
;
712 /* Flush all traces of the currently running executable */
713 retval
= flush_old_exec(bprm
);
715 goto out_free_dentry
;
717 /* OK, This is the point of no return */
718 current
->mm
->def_flags
= def_flags
;
720 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
721 may depend on the personality. */
722 SET_PERSONALITY(loc
->elf_ex
);
723 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
724 current
->personality
|= READ_IMPLIES_EXEC
;
726 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
727 current
->flags
|= PF_RANDOMIZE
;
729 setup_new_exec(bprm
);
731 /* Do this so that we can load the interpreter, if need be. We will
732 change some of these later */
733 current
->mm
->free_area_cache
= current
->mm
->mmap_base
;
734 current
->mm
->cached_hole_size
= 0;
735 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
738 send_sig(SIGKILL
, current
, 0);
739 goto out_free_dentry
;
742 current
->mm
->start_stack
= bprm
->p
;
744 /* Now we do a little grungy work by mmapping the ELF image into
745 the correct location in memory. */
746 for(i
= 0, elf_ppnt
= elf_phdata
;
747 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
748 int elf_prot
= 0, elf_flags
;
749 unsigned long k
, vaddr
;
751 if (elf_ppnt
->p_type
!= PT_LOAD
)
754 if (unlikely (elf_brk
> elf_bss
)) {
757 /* There was a PT_LOAD segment with p_memsz > p_filesz
758 before this one. Map anonymous pages, if needed,
759 and clear the area. */
760 retval
= set_brk(elf_bss
+ load_bias
,
761 elf_brk
+ load_bias
);
763 send_sig(SIGKILL
, current
, 0);
764 goto out_free_dentry
;
766 nbyte
= ELF_PAGEOFFSET(elf_bss
);
768 nbyte
= ELF_MIN_ALIGN
- nbyte
;
769 if (nbyte
> elf_brk
- elf_bss
)
770 nbyte
= elf_brk
- elf_bss
;
771 if (clear_user((void __user
*)elf_bss
+
774 * This bss-zeroing can fail if the ELF
775 * file specifies odd protections. So
776 * we don't check the return value
782 if (elf_ppnt
->p_flags
& PF_R
)
783 elf_prot
|= PROT_READ
;
784 if (elf_ppnt
->p_flags
& PF_W
)
785 elf_prot
|= PROT_WRITE
;
786 if (elf_ppnt
->p_flags
& PF_X
)
787 elf_prot
|= PROT_EXEC
;
789 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
791 vaddr
= elf_ppnt
->p_vaddr
;
792 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
793 elf_flags
|= MAP_FIXED
;
794 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
795 /* Try and get dynamic programs out of the way of the
796 * default mmap base, as well as whatever program they
797 * might try to exec. This is because the brk will
798 * follow the loader, and is not movable. */
799 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
800 /* Memory randomization might have been switched off
801 * in runtime via sysctl.
802 * If that is the case, retain the original non-zero
803 * load_bias value in order to establish proper
804 * non-randomized mappings.
806 if (current
->flags
& PF_RANDOMIZE
)
809 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
811 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
815 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
816 elf_prot
, elf_flags
, 0);
817 if (BAD_ADDR(error
)) {
818 send_sig(SIGKILL
, current
, 0);
819 retval
= IS_ERR((void *)error
) ?
820 PTR_ERR((void*)error
) : -EINVAL
;
821 goto out_free_dentry
;
824 if (!load_addr_set
) {
826 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
827 if (loc
->elf_ex
.e_type
== ET_DYN
) {
829 ELF_PAGESTART(load_bias
+ vaddr
);
830 load_addr
+= load_bias
;
831 reloc_func_desc
= load_bias
;
834 k
= elf_ppnt
->p_vaddr
;
841 * Check to see if the section's size will overflow the
842 * allowed task size. Note that p_filesz must always be
843 * <= p_memsz so it is only necessary to check p_memsz.
845 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
846 elf_ppnt
->p_memsz
> TASK_SIZE
||
847 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
848 /* set_brk can never work. Avoid overflows. */
849 send_sig(SIGKILL
, current
, 0);
851 goto out_free_dentry
;
854 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
858 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
862 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
867 loc
->elf_ex
.e_entry
+= load_bias
;
868 elf_bss
+= load_bias
;
869 elf_brk
+= load_bias
;
870 start_code
+= load_bias
;
871 end_code
+= load_bias
;
872 start_data
+= load_bias
;
873 end_data
+= load_bias
;
875 /* Calling set_brk effectively mmaps the pages that we need
876 * for the bss and break sections. We must do this before
877 * mapping in the interpreter, to make sure it doesn't wind
878 * up getting placed where the bss needs to go.
880 retval
= set_brk(elf_bss
, elf_brk
);
882 send_sig(SIGKILL
, current
, 0);
883 goto out_free_dentry
;
885 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
886 send_sig(SIGSEGV
, current
, 0);
887 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
888 goto out_free_dentry
;
891 if (elf_interpreter
) {
892 unsigned long interp_map_addr
= 0;
894 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
898 if (!IS_ERR((void *)elf_entry
)) {
900 * load_elf_interp() returns relocation
903 interp_load_addr
= elf_entry
;
904 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
906 if (BAD_ADDR(elf_entry
)) {
907 force_sig(SIGSEGV
, current
);
908 retval
= IS_ERR((void *)elf_entry
) ?
909 (int)elf_entry
: -EINVAL
;
910 goto out_free_dentry
;
912 reloc_func_desc
= interp_load_addr
;
914 allow_write_access(interpreter
);
916 kfree(elf_interpreter
);
918 elf_entry
= loc
->elf_ex
.e_entry
;
919 if (BAD_ADDR(elf_entry
)) {
920 force_sig(SIGSEGV
, current
);
922 goto out_free_dentry
;
928 set_binfmt(&elf_format
);
930 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
931 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
933 send_sig(SIGKILL
, current
, 0);
936 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
938 install_exec_creds(bprm
);
939 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
940 load_addr
, interp_load_addr
);
942 send_sig(SIGKILL
, current
, 0);
945 /* N.B. passed_fileno might not be initialized? */
946 current
->mm
->end_code
= end_code
;
947 current
->mm
->start_code
= start_code
;
948 current
->mm
->start_data
= start_data
;
949 current
->mm
->end_data
= end_data
;
950 current
->mm
->start_stack
= bprm
->p
;
952 #ifdef arch_randomize_brk
953 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
954 current
->mm
->brk
= current
->mm
->start_brk
=
955 arch_randomize_brk(current
->mm
);
956 #ifdef CONFIG_COMPAT_BRK
957 current
->brk_randomized
= 1;
962 if (current
->personality
& MMAP_PAGE_ZERO
) {
963 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
964 and some applications "depend" upon this behavior.
965 Since we do not have the power to recompile these, we
966 emulate the SVr4 behavior. Sigh. */
967 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
968 MAP_FIXED
| MAP_PRIVATE
, 0);
973 * The ABI may specify that certain registers be set up in special
974 * ways (on i386 %edx is the address of a DT_FINI function, for
975 * example. In addition, it may also specify (eg, PowerPC64 ELF)
976 * that the e_entry field is the address of the function descriptor
977 * for the startup routine, rather than the address of the startup
978 * routine itself. This macro performs whatever initialization to
979 * the regs structure is required as well as any relocations to the
980 * function descriptor entries when executing dynamically links apps.
982 ELF_PLAT_INIT(regs
, reloc_func_desc
);
985 start_thread(regs
, elf_entry
, bprm
->p
);
994 allow_write_access(interpreter
);
998 kfree(elf_interpreter
);
1004 /* This is really simpleminded and specialized - we are loading an
1005 a.out library that is given an ELF header. */
1006 static int load_elf_library(struct file
*file
)
1008 struct elf_phdr
*elf_phdata
;
1009 struct elf_phdr
*eppnt
;
1010 unsigned long elf_bss
, bss
, len
;
1011 int retval
, error
, i
, j
;
1012 struct elfhdr elf_ex
;
1015 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1016 if (retval
!= sizeof(elf_ex
))
1019 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1022 /* First of all, some simple consistency checks */
1023 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1024 !elf_check_arch(&elf_ex
) || !file
->f_op
|| !file
->f_op
->mmap
)
1027 /* Now read in all of the header information */
1029 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1030 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1033 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1039 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1043 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1044 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1049 while (eppnt
->p_type
!= PT_LOAD
)
1052 /* Now use mmap to map the library into memory. */
1053 error
= vm_mmap(file
,
1054 ELF_PAGESTART(eppnt
->p_vaddr
),
1056 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1057 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1058 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1060 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1061 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1064 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1065 if (padzero(elf_bss
)) {
1070 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1072 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1074 vm_brk(len
, bss
- len
);
1083 #ifdef CONFIG_ELF_CORE
1087 * Modelled on fs/exec.c:aout_core_dump()
1088 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1092 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1093 * that are useful for post-mortem analysis are included in every core dump.
1094 * In that way we ensure that the core dump is fully interpretable later
1095 * without matching up the same kernel and hardware config to see what PC values
1096 * meant. These special mappings include - vDSO, vsyscall, and other
1097 * architecture specific mappings
1099 static bool always_dump_vma(struct vm_area_struct
*vma
)
1101 /* Any vsyscall mappings? */
1102 if (vma
== get_gate_vma(vma
->vm_mm
))
1105 * arch_vma_name() returns non-NULL for special architecture mappings,
1106 * such as vDSO sections.
1108 if (arch_vma_name(vma
))
1115 * Decide what to dump of a segment, part, all or none.
1117 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1118 unsigned long mm_flags
)
1120 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1122 /* always dump the vdso and vsyscall sections */
1123 if (always_dump_vma(vma
))
1126 if (vma
->vm_flags
& VM_DONTDUMP
)
1129 /* Hugetlb memory check */
1130 if (vma
->vm_flags
& VM_HUGETLB
) {
1131 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1133 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1137 /* Do not dump I/O mapped devices or special mappings */
1138 if (vma
->vm_flags
& VM_IO
)
1141 /* By default, dump shared memory if mapped from an anonymous file. */
1142 if (vma
->vm_flags
& VM_SHARED
) {
1143 if (vma
->vm_file
->f_path
.dentry
->d_inode
->i_nlink
== 0 ?
1144 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1149 /* Dump segments that have been written to. */
1150 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1152 if (vma
->vm_file
== NULL
)
1155 if (FILTER(MAPPED_PRIVATE
))
1159 * If this looks like the beginning of a DSO or executable mapping,
1160 * check for an ELF header. If we find one, dump the first page to
1161 * aid in determining what was mapped here.
1163 if (FILTER(ELF_HEADERS
) &&
1164 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1165 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1167 mm_segment_t fs
= get_fs();
1169 * Doing it this way gets the constant folded by GCC.
1173 char elfmag
[SELFMAG
];
1175 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1176 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1177 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1178 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1179 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1181 * Switch to the user "segment" for get_user(),
1182 * then put back what elf_core_dump() had in place.
1185 if (unlikely(get_user(word
, header
)))
1188 if (word
== magic
.cmp
)
1197 return vma
->vm_end
- vma
->vm_start
;
1200 /* An ELF note in memory */
1205 unsigned int datasz
;
1209 static int notesize(struct memelfnote
*en
)
1213 sz
= sizeof(struct elf_note
);
1214 sz
+= roundup(strlen(en
->name
) + 1, 4);
1215 sz
+= roundup(en
->datasz
, 4);
1220 #define DUMP_WRITE(addr, nr, foffset) \
1221 do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0)
1223 static int alignfile(struct file
*file
, loff_t
*foffset
)
1225 static const char buf
[4] = { 0, };
1226 DUMP_WRITE(buf
, roundup(*foffset
, 4) - *foffset
, foffset
);
1230 static int writenote(struct memelfnote
*men
, struct file
*file
,
1234 en
.n_namesz
= strlen(men
->name
) + 1;
1235 en
.n_descsz
= men
->datasz
;
1236 en
.n_type
= men
->type
;
1238 DUMP_WRITE(&en
, sizeof(en
), foffset
);
1239 DUMP_WRITE(men
->name
, en
.n_namesz
, foffset
);
1240 if (!alignfile(file
, foffset
))
1242 DUMP_WRITE(men
->data
, men
->datasz
, foffset
);
1243 if (!alignfile(file
, foffset
))
1250 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1251 u16 machine
, u32 flags
, u8 osabi
)
1253 memset(elf
, 0, sizeof(*elf
));
1255 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1256 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1257 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1258 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1259 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1261 elf
->e_type
= ET_CORE
;
1262 elf
->e_machine
= machine
;
1263 elf
->e_version
= EV_CURRENT
;
1264 elf
->e_phoff
= sizeof(struct elfhdr
);
1265 elf
->e_flags
= flags
;
1266 elf
->e_ehsize
= sizeof(struct elfhdr
);
1267 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1268 elf
->e_phnum
= segs
;
1273 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1275 phdr
->p_type
= PT_NOTE
;
1276 phdr
->p_offset
= offset
;
1279 phdr
->p_filesz
= sz
;
1286 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1287 unsigned int sz
, void *data
)
1297 * fill up all the fields in prstatus from the given task struct, except
1298 * registers which need to be filled up separately.
1300 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1301 struct task_struct
*p
, long signr
)
1303 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1304 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1305 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1307 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1309 prstatus
->pr_pid
= task_pid_vnr(p
);
1310 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1311 prstatus
->pr_sid
= task_session_vnr(p
);
1312 if (thread_group_leader(p
)) {
1313 struct task_cputime cputime
;
1316 * This is the record for the group leader. It shows the
1317 * group-wide total, not its individual thread total.
1319 thread_group_cputime(p
, &cputime
);
1320 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1321 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1323 cputime_to_timeval(p
->utime
, &prstatus
->pr_utime
);
1324 cputime_to_timeval(p
->stime
, &prstatus
->pr_stime
);
1326 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1327 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1330 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1331 struct mm_struct
*mm
)
1333 const struct cred
*cred
;
1334 unsigned int i
, len
;
1336 /* first copy the parameters from user space */
1337 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1339 len
= mm
->arg_end
- mm
->arg_start
;
1340 if (len
>= ELF_PRARGSZ
)
1341 len
= ELF_PRARGSZ
-1;
1342 if (copy_from_user(&psinfo
->pr_psargs
,
1343 (const char __user
*)mm
->arg_start
, len
))
1345 for(i
= 0; i
< len
; i
++)
1346 if (psinfo
->pr_psargs
[i
] == 0)
1347 psinfo
->pr_psargs
[i
] = ' ';
1348 psinfo
->pr_psargs
[len
] = 0;
1351 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1353 psinfo
->pr_pid
= task_pid_vnr(p
);
1354 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1355 psinfo
->pr_sid
= task_session_vnr(p
);
1357 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1358 psinfo
->pr_state
= i
;
1359 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1360 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1361 psinfo
->pr_nice
= task_nice(p
);
1362 psinfo
->pr_flag
= p
->flags
;
1364 cred
= __task_cred(p
);
1365 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1366 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1368 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1373 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1375 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1379 while (auxv
[i
- 2] != AT_NULL
);
1380 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1383 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1386 mm_segment_t old_fs
= get_fs();
1388 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1390 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1393 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1395 * Format of NT_FILE note:
1397 * long count -- how many files are mapped
1398 * long page_size -- units for file_ofs
1399 * array of [COUNT] elements of
1403 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1405 static void fill_files_note(struct memelfnote
*note
)
1407 struct vm_area_struct
*vma
;
1408 unsigned count
, size
, names_ofs
, remaining
, n
;
1410 user_long_t
*start_end_ofs
;
1411 char *name_base
, *name_curpos
;
1413 /* *Estimated* file count and total data size needed */
1414 count
= current
->mm
->map_count
;
1417 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1419 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1421 size
= round_up(size
, PAGE_SIZE
);
1422 data
= vmalloc(size
);
1426 start_end_ofs
= data
+ 2;
1427 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1428 remaining
= size
- names_ofs
;
1430 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1432 const char *filename
;
1434 file
= vma
->vm_file
;
1437 filename
= d_path(&file
->f_path
, name_curpos
, remaining
);
1438 if (IS_ERR(filename
)) {
1439 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1441 size
= size
* 5 / 4;
1447 /* d_path() fills at the end, move name down */
1448 /* n = strlen(filename) + 1: */
1449 n
= (name_curpos
+ remaining
) - filename
;
1450 remaining
= filename
- name_curpos
;
1451 memmove(name_curpos
, filename
, n
);
1454 *start_end_ofs
++ = vma
->vm_start
;
1455 *start_end_ofs
++ = vma
->vm_end
;
1456 *start_end_ofs
++ = vma
->vm_pgoff
;
1460 /* Now we know exact count of files, can store it */
1462 data
[1] = PAGE_SIZE
;
1464 * Count usually is less than current->mm->map_count,
1465 * we need to move filenames down.
1467 n
= current
->mm
->map_count
- count
;
1469 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1470 memmove(name_base
- shift_bytes
, name_base
,
1471 name_curpos
- name_base
);
1472 name_curpos
-= shift_bytes
;
1475 size
= name_curpos
- (char *)data
;
1476 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1480 #ifdef CORE_DUMP_USE_REGSET
1481 #include <linux/regset.h>
1483 struct elf_thread_core_info
{
1484 struct elf_thread_core_info
*next
;
1485 struct task_struct
*task
;
1486 struct elf_prstatus prstatus
;
1487 struct memelfnote notes
[0];
1490 struct elf_note_info
{
1491 struct elf_thread_core_info
*thread
;
1492 struct memelfnote psinfo
;
1493 struct memelfnote signote
;
1494 struct memelfnote auxv
;
1495 struct memelfnote files
;
1496 user_siginfo_t csigdata
;
1502 * When a regset has a writeback hook, we call it on each thread before
1503 * dumping user memory. On register window machines, this makes sure the
1504 * user memory backing the register data is up to date before we read it.
1506 static void do_thread_regset_writeback(struct task_struct
*task
,
1507 const struct user_regset
*regset
)
1509 if (regset
->writeback
)
1510 regset
->writeback(task
, regset
, 1);
1514 #define PR_REG_SIZE(S) sizeof(S)
1517 #ifndef PRSTATUS_SIZE
1518 #define PRSTATUS_SIZE(S) sizeof(S)
1522 #define PR_REG_PTR(S) (&((S)->pr_reg))
1525 #ifndef SET_PR_FPVALID
1526 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1529 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1530 const struct user_regset_view
*view
,
1531 long signr
, size_t *total
)
1536 * NT_PRSTATUS is the one special case, because the regset data
1537 * goes into the pr_reg field inside the note contents, rather
1538 * than being the whole note contents. We fill the reset in here.
1539 * We assume that regset 0 is NT_PRSTATUS.
1541 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1542 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1543 0, PR_REG_SIZE(t
->prstatus
.pr_reg
),
1544 PR_REG_PTR(&t
->prstatus
), NULL
);
1546 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1547 PRSTATUS_SIZE(t
->prstatus
), &t
->prstatus
);
1548 *total
+= notesize(&t
->notes
[0]);
1550 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1553 * Each other regset might generate a note too. For each regset
1554 * that has no core_note_type or is inactive, we leave t->notes[i]
1555 * all zero and we'll know to skip writing it later.
1557 for (i
= 1; i
< view
->n
; ++i
) {
1558 const struct user_regset
*regset
= &view
->regsets
[i
];
1559 do_thread_regset_writeback(t
->task
, regset
);
1560 if (regset
->core_note_type
&& regset
->get
&&
1561 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1563 size_t size
= regset
->n
* regset
->size
;
1564 void *data
= kmalloc(size
, GFP_KERNEL
);
1565 if (unlikely(!data
))
1567 ret
= regset
->get(t
->task
, regset
,
1568 0, size
, data
, NULL
);
1572 if (regset
->core_note_type
!= NT_PRFPREG
)
1573 fill_note(&t
->notes
[i
], "LINUX",
1574 regset
->core_note_type
,
1577 SET_PR_FPVALID(&t
->prstatus
, 1);
1578 fill_note(&t
->notes
[i
], "CORE",
1579 NT_PRFPREG
, size
, data
);
1581 *total
+= notesize(&t
->notes
[i
]);
1589 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1590 struct elf_note_info
*info
,
1591 siginfo_t
*siginfo
, struct pt_regs
*regs
)
1593 struct task_struct
*dump_task
= current
;
1594 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1595 struct elf_thread_core_info
*t
;
1596 struct elf_prpsinfo
*psinfo
;
1597 struct core_thread
*ct
;
1601 info
->thread
= NULL
;
1603 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1604 if (psinfo
== NULL
) {
1605 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1609 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1612 * Figure out how many notes we're going to need for each thread.
1614 info
->thread_notes
= 0;
1615 for (i
= 0; i
< view
->n
; ++i
)
1616 if (view
->regsets
[i
].core_note_type
!= 0)
1617 ++info
->thread_notes
;
1620 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1621 * since it is our one special case.
1623 if (unlikely(info
->thread_notes
== 0) ||
1624 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1630 * Initialize the ELF file header.
1632 fill_elf_header(elf
, phdrs
,
1633 view
->e_machine
, view
->e_flags
, view
->ei_osabi
);
1636 * Allocate a structure for each thread.
1638 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1639 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1640 notes
[info
->thread_notes
]),
1646 if (ct
->task
== dump_task
|| !info
->thread
) {
1647 t
->next
= info
->thread
;
1651 * Make sure to keep the original task at
1652 * the head of the list.
1654 t
->next
= info
->thread
->next
;
1655 info
->thread
->next
= t
;
1660 * Now fill in each thread's information.
1662 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1663 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1667 * Fill in the two process-wide notes.
1669 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1670 info
->size
+= notesize(&info
->psinfo
);
1672 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1673 info
->size
+= notesize(&info
->signote
);
1675 fill_auxv_note(&info
->auxv
, current
->mm
);
1676 info
->size
+= notesize(&info
->auxv
);
1678 fill_files_note(&info
->files
);
1679 info
->size
+= notesize(&info
->files
);
1684 static size_t get_note_info_size(struct elf_note_info
*info
)
1690 * Write all the notes for each thread. When writing the first thread, the
1691 * process-wide notes are interleaved after the first thread-specific note.
1693 static int write_note_info(struct elf_note_info
*info
,
1694 struct file
*file
, loff_t
*foffset
)
1697 struct elf_thread_core_info
*t
= info
->thread
;
1702 if (!writenote(&t
->notes
[0], file
, foffset
))
1705 if (first
&& !writenote(&info
->psinfo
, file
, foffset
))
1707 if (first
&& !writenote(&info
->signote
, file
, foffset
))
1709 if (first
&& !writenote(&info
->auxv
, file
, foffset
))
1711 if (first
&& !writenote(&info
->files
, file
, foffset
))
1714 for (i
= 1; i
< info
->thread_notes
; ++i
)
1715 if (t
->notes
[i
].data
&&
1716 !writenote(&t
->notes
[i
], file
, foffset
))
1726 static void free_note_info(struct elf_note_info
*info
)
1728 struct elf_thread_core_info
*threads
= info
->thread
;
1731 struct elf_thread_core_info
*t
= threads
;
1733 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1734 for (i
= 1; i
< info
->thread_notes
; ++i
)
1735 kfree(t
->notes
[i
].data
);
1738 kfree(info
->psinfo
.data
);
1739 vfree(info
->files
.data
);
1744 /* Here is the structure in which status of each thread is captured. */
1745 struct elf_thread_status
1747 struct list_head list
;
1748 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1749 elf_fpregset_t fpu
; /* NT_PRFPREG */
1750 struct task_struct
*thread
;
1751 #ifdef ELF_CORE_COPY_XFPREGS
1752 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1754 struct memelfnote notes
[3];
1759 * In order to add the specific thread information for the elf file format,
1760 * we need to keep a linked list of every threads pr_status and then create
1761 * a single section for them in the final core file.
1763 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1766 struct task_struct
*p
= t
->thread
;
1769 fill_prstatus(&t
->prstatus
, p
, signr
);
1770 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1772 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1775 sz
+= notesize(&t
->notes
[0]);
1777 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1779 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1782 sz
+= notesize(&t
->notes
[1]);
1785 #ifdef ELF_CORE_COPY_XFPREGS
1786 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1787 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1788 sizeof(t
->xfpu
), &t
->xfpu
);
1790 sz
+= notesize(&t
->notes
[2]);
1796 struct elf_note_info
{
1797 struct memelfnote
*notes
;
1798 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1799 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1800 struct list_head thread_list
;
1801 elf_fpregset_t
*fpu
;
1802 #ifdef ELF_CORE_COPY_XFPREGS
1803 elf_fpxregset_t
*xfpu
;
1805 user_siginfo_t csigdata
;
1806 int thread_status_size
;
1810 static int elf_note_info_init(struct elf_note_info
*info
)
1812 memset(info
, 0, sizeof(*info
));
1813 INIT_LIST_HEAD(&info
->thread_list
);
1815 /* Allocate space for ELF notes */
1816 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1819 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1822 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1823 if (!info
->prstatus
)
1825 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1828 #ifdef ELF_CORE_COPY_XFPREGS
1829 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1836 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1837 struct elf_note_info
*info
,
1838 siginfo_t
*siginfo
, struct pt_regs
*regs
)
1840 struct list_head
*t
;
1842 if (!elf_note_info_init(info
))
1845 if (siginfo
->si_signo
) {
1846 struct core_thread
*ct
;
1847 struct elf_thread_status
*ets
;
1849 for (ct
= current
->mm
->core_state
->dumper
.next
;
1850 ct
; ct
= ct
->next
) {
1851 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1855 ets
->thread
= ct
->task
;
1856 list_add(&ets
->list
, &info
->thread_list
);
1859 list_for_each(t
, &info
->thread_list
) {
1862 ets
= list_entry(t
, struct elf_thread_status
, list
);
1863 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
1864 info
->thread_status_size
+= sz
;
1867 /* now collect the dump for the current */
1868 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1869 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
1870 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1873 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
, ELF_OSABI
);
1876 * Set up the notes in similar form to SVR4 core dumps made
1877 * with info from their /proc.
1880 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1881 sizeof(*info
->prstatus
), info
->prstatus
);
1882 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1883 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1884 sizeof(*info
->psinfo
), info
->psinfo
);
1886 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
1887 fill_auxv_note(info
->notes
+ 3, current
->mm
);
1888 fill_files_note(info
->notes
+ 4);
1892 /* Try to dump the FPU. */
1893 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1895 if (info
->prstatus
->pr_fpvalid
)
1896 fill_note(info
->notes
+ info
->numnote
++,
1897 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1898 #ifdef ELF_CORE_COPY_XFPREGS
1899 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1900 fill_note(info
->notes
+ info
->numnote
++,
1901 "LINUX", ELF_CORE_XFPREG_TYPE
,
1902 sizeof(*info
->xfpu
), info
->xfpu
);
1908 static size_t get_note_info_size(struct elf_note_info
*info
)
1913 for (i
= 0; i
< info
->numnote
; i
++)
1914 sz
+= notesize(info
->notes
+ i
);
1916 sz
+= info
->thread_status_size
;
1921 static int write_note_info(struct elf_note_info
*info
,
1922 struct file
*file
, loff_t
*foffset
)
1925 struct list_head
*t
;
1927 for (i
= 0; i
< info
->numnote
; i
++)
1928 if (!writenote(info
->notes
+ i
, file
, foffset
))
1931 /* write out the thread status notes section */
1932 list_for_each(t
, &info
->thread_list
) {
1933 struct elf_thread_status
*tmp
=
1934 list_entry(t
, struct elf_thread_status
, list
);
1936 for (i
= 0; i
< tmp
->num_notes
; i
++)
1937 if (!writenote(&tmp
->notes
[i
], file
, foffset
))
1944 static void free_note_info(struct elf_note_info
*info
)
1946 while (!list_empty(&info
->thread_list
)) {
1947 struct list_head
*tmp
= info
->thread_list
.next
;
1949 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1952 /* Free data allocated by fill_files_note(): */
1953 vfree(info
->notes
[4].data
);
1955 kfree(info
->prstatus
);
1956 kfree(info
->psinfo
);
1959 #ifdef ELF_CORE_COPY_XFPREGS
1966 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1967 struct vm_area_struct
*gate_vma
)
1969 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1976 * Helper function for iterating across a vma list. It ensures that the caller
1977 * will visit `gate_vma' prior to terminating the search.
1979 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1980 struct vm_area_struct
*gate_vma
)
1982 struct vm_area_struct
*ret
;
1984 ret
= this_vma
->vm_next
;
1987 if (this_vma
== gate_vma
)
1992 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
1993 elf_addr_t e_shoff
, int segs
)
1995 elf
->e_shoff
= e_shoff
;
1996 elf
->e_shentsize
= sizeof(*shdr4extnum
);
1998 elf
->e_shstrndx
= SHN_UNDEF
;
2000 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
2002 shdr4extnum
->sh_type
= SHT_NULL
;
2003 shdr4extnum
->sh_size
= elf
->e_shnum
;
2004 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2005 shdr4extnum
->sh_info
= segs
;
2008 static size_t elf_core_vma_data_size(struct vm_area_struct
*gate_vma
,
2009 unsigned long mm_flags
)
2011 struct vm_area_struct
*vma
;
2014 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2015 vma
= next_vma(vma
, gate_vma
))
2016 size
+= vma_dump_size(vma
, mm_flags
);
2023 * This is a two-pass process; first we find the offsets of the bits,
2024 * and then they are actually written out. If we run out of core limit
2027 static int elf_core_dump(struct coredump_params
*cprm
)
2033 struct vm_area_struct
*vma
, *gate_vma
;
2034 struct elfhdr
*elf
= NULL
;
2035 loff_t offset
= 0, dataoff
, foffset
;
2036 struct elf_note_info info
;
2037 struct elf_phdr
*phdr4note
= NULL
;
2038 struct elf_shdr
*shdr4extnum
= NULL
;
2043 * We no longer stop all VM operations.
2045 * This is because those proceses that could possibly change map_count
2046 * or the mmap / vma pages are now blocked in do_exit on current
2047 * finishing this core dump.
2049 * Only ptrace can touch these memory addresses, but it doesn't change
2050 * the map_count or the pages allocated. So no possibility of crashing
2051 * exists while dumping the mm->vm_next areas to the core file.
2054 /* alloc memory for large data structures: too large to be on stack */
2055 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2059 * The number of segs are recored into ELF header as 16bit value.
2060 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2062 segs
= current
->mm
->map_count
;
2063 segs
+= elf_core_extra_phdrs();
2065 gate_vma
= get_gate_vma(current
->mm
);
2066 if (gate_vma
!= NULL
)
2069 /* for notes section */
2072 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2073 * this, kernel supports extended numbering. Have a look at
2074 * include/linux/elf.h for further information. */
2075 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2078 * Collect all the non-memory information about the process for the
2079 * notes. This also sets up the file header.
2081 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2085 current
->flags
|= PF_DUMPCORE
;
2090 offset
+= sizeof(*elf
); /* Elf header */
2091 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2094 /* Write notes phdr entry */
2096 size_t sz
= get_note_info_size(&info
);
2098 sz
+= elf_coredump_extra_notes_size();
2100 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2104 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2108 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2110 offset
+= elf_core_vma_data_size(gate_vma
, cprm
->mm_flags
);
2111 offset
+= elf_core_extra_data_size();
2114 if (e_phnum
== PN_XNUM
) {
2115 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2118 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2123 size
+= sizeof(*elf
);
2124 if (size
> cprm
->limit
|| !dump_write(cprm
->file
, elf
, sizeof(*elf
)))
2127 size
+= sizeof(*phdr4note
);
2128 if (size
> cprm
->limit
2129 || !dump_write(cprm
->file
, phdr4note
, sizeof(*phdr4note
)))
2132 /* Write program headers for segments dump */
2133 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2134 vma
= next_vma(vma
, gate_vma
)) {
2135 struct elf_phdr phdr
;
2137 phdr
.p_type
= PT_LOAD
;
2138 phdr
.p_offset
= offset
;
2139 phdr
.p_vaddr
= vma
->vm_start
;
2141 phdr
.p_filesz
= vma_dump_size(vma
, cprm
->mm_flags
);
2142 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2143 offset
+= phdr
.p_filesz
;
2144 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2145 if (vma
->vm_flags
& VM_WRITE
)
2146 phdr
.p_flags
|= PF_W
;
2147 if (vma
->vm_flags
& VM_EXEC
)
2148 phdr
.p_flags
|= PF_X
;
2149 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2151 size
+= sizeof(phdr
);
2152 if (size
> cprm
->limit
2153 || !dump_write(cprm
->file
, &phdr
, sizeof(phdr
)))
2157 if (!elf_core_write_extra_phdrs(cprm
->file
, offset
, &size
, cprm
->limit
))
2160 /* write out the notes section */
2161 if (!write_note_info(&info
, cprm
->file
, &foffset
))
2164 if (elf_coredump_extra_notes_write(cprm
->file
, &foffset
))
2168 if (!dump_seek(cprm
->file
, dataoff
- foffset
))
2171 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2172 vma
= next_vma(vma
, gate_vma
)) {
2176 end
= vma
->vm_start
+ vma_dump_size(vma
, cprm
->mm_flags
);
2178 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2182 page
= get_dump_page(addr
);
2184 void *kaddr
= kmap(page
);
2185 stop
= ((size
+= PAGE_SIZE
) > cprm
->limit
) ||
2186 !dump_write(cprm
->file
, kaddr
,
2189 page_cache_release(page
);
2191 stop
= !dump_seek(cprm
->file
, PAGE_SIZE
);
2197 if (!elf_core_write_extra_data(cprm
->file
, &size
, cprm
->limit
))
2200 if (e_phnum
== PN_XNUM
) {
2201 size
+= sizeof(*shdr4extnum
);
2202 if (size
> cprm
->limit
2203 || !dump_write(cprm
->file
, shdr4extnum
,
2204 sizeof(*shdr4extnum
)))
2212 free_note_info(&info
);
2220 #endif /* CONFIG_ELF_CORE */
2222 static int __init
init_elf_binfmt(void)
2224 register_binfmt(&elf_format
);
2228 static void __exit
exit_elf_binfmt(void)
2230 /* Remove the COFF and ELF loaders. */
2231 unregister_binfmt(&elf_format
);
2234 core_initcall(init_elf_binfmt
);
2235 module_exit(exit_elf_binfmt
);
2236 MODULE_LICENSE("GPL");