2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
40 #include <asm/tlbflush.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
48 * migrate_prep() needs to be called before we start compiling a list of pages
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
52 int migrate_prep(void)
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
77 void putback_lru_pages(struct list_head
*l
)
82 list_for_each_entry_safe(page
, page2
, l
, lru
) {
84 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
85 page_is_file_cache(page
));
86 putback_lru_page(page
);
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 void putback_movable_pages(struct list_head
*l
)
102 list_for_each_entry_safe(page
, page2
, l
, lru
) {
103 list_del(&page
->lru
);
104 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
105 page_is_file_cache(page
));
106 if (unlikely(balloon_page_movable(page
)))
107 balloon_page_putback(page
);
109 putback_lru_page(page
);
114 * Restore a potential migration pte to a working pte entry
116 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
117 unsigned long addr
, void *old
)
119 struct mm_struct
*mm
= vma
->vm_mm
;
125 if (unlikely(PageHuge(new))) {
126 ptep
= huge_pte_offset(mm
, addr
);
129 ptl
= &mm
->page_table_lock
;
131 pmd
= mm_find_pmd(mm
, addr
);
134 if (pmd_trans_huge(*pmd
))
137 ptep
= pte_offset_map(pmd
, addr
);
140 * Peek to check is_swap_pte() before taking ptlock? No, we
141 * can race mremap's move_ptes(), which skips anon_vma lock.
144 ptl
= pte_lockptr(mm
, pmd
);
149 if (!is_swap_pte(pte
))
152 entry
= pte_to_swp_entry(pte
);
154 if (!is_migration_entry(entry
) ||
155 migration_entry_to_page(entry
) != old
)
159 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
160 if (is_write_migration_entry(entry
))
161 pte
= pte_mkwrite(pte
);
162 #ifdef CONFIG_HUGETLB_PAGE
164 pte
= pte_mkhuge(pte
);
165 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
168 flush_cache_page(vma
, addr
, pte_pfn(pte
));
169 set_pte_at(mm
, addr
, ptep
, pte
);
173 hugepage_add_anon_rmap(new, vma
, addr
);
176 } else if (PageAnon(new))
177 page_add_anon_rmap(new, vma
, addr
);
179 page_add_file_rmap(new);
181 /* No need to invalidate - it was non-present before */
182 update_mmu_cache(vma
, addr
, ptep
);
184 pte_unmap_unlock(ptep
, ptl
);
190 * Get rid of all migration entries and replace them by
191 * references to the indicated page.
193 static void remove_migration_ptes(struct page
*old
, struct page
*new)
195 rmap_walk(new, remove_migration_pte
, old
);
199 * Something used the pte of a page under migration. We need to
200 * get to the page and wait until migration is finished.
201 * When we return from this function the fault will be retried.
203 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
204 unsigned long address
)
211 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
213 if (!is_swap_pte(pte
))
216 entry
= pte_to_swp_entry(pte
);
217 if (!is_migration_entry(entry
))
220 page
= migration_entry_to_page(entry
);
223 * Once radix-tree replacement of page migration started, page_count
224 * *must* be zero. And, we don't want to call wait_on_page_locked()
225 * against a page without get_page().
226 * So, we use get_page_unless_zero(), here. Even failed, page fault
229 if (!get_page_unless_zero(page
))
231 pte_unmap_unlock(ptep
, ptl
);
232 wait_on_page_locked(page
);
236 pte_unmap_unlock(ptep
, ptl
);
240 /* Returns true if all buffers are successfully locked */
241 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
242 enum migrate_mode mode
)
244 struct buffer_head
*bh
= head
;
246 /* Simple case, sync compaction */
247 if (mode
!= MIGRATE_ASYNC
) {
251 bh
= bh
->b_this_page
;
253 } while (bh
!= head
);
258 /* async case, we cannot block on lock_buffer so use trylock_buffer */
261 if (!trylock_buffer(bh
)) {
263 * We failed to lock the buffer and cannot stall in
264 * async migration. Release the taken locks
266 struct buffer_head
*failed_bh
= bh
;
269 while (bh
!= failed_bh
) {
272 bh
= bh
->b_this_page
;
277 bh
= bh
->b_this_page
;
278 } while (bh
!= head
);
282 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
283 enum migrate_mode mode
)
287 #endif /* CONFIG_BLOCK */
290 * Replace the page in the mapping.
292 * The number of remaining references must be:
293 * 1 for anonymous pages without a mapping
294 * 2 for pages with a mapping
295 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
297 static int migrate_page_move_mapping(struct address_space
*mapping
,
298 struct page
*newpage
, struct page
*page
,
299 struct buffer_head
*head
, enum migrate_mode mode
)
301 int expected_count
= 0;
305 /* Anonymous page without mapping */
306 if (page_count(page
) != 1)
308 return MIGRATEPAGE_SUCCESS
;
311 spin_lock_irq(&mapping
->tree_lock
);
313 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
316 expected_count
= 2 + page_has_private(page
);
317 if (page_count(page
) != expected_count
||
318 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
319 spin_unlock_irq(&mapping
->tree_lock
);
323 if (!page_freeze_refs(page
, expected_count
)) {
324 spin_unlock_irq(&mapping
->tree_lock
);
329 * In the async migration case of moving a page with buffers, lock the
330 * buffers using trylock before the mapping is moved. If the mapping
331 * was moved, we later failed to lock the buffers and could not move
332 * the mapping back due to an elevated page count, we would have to
333 * block waiting on other references to be dropped.
335 if (mode
== MIGRATE_ASYNC
&& head
&&
336 !buffer_migrate_lock_buffers(head
, mode
)) {
337 page_unfreeze_refs(page
, expected_count
);
338 spin_unlock_irq(&mapping
->tree_lock
);
343 * Now we know that no one else is looking at the page.
345 get_page(newpage
); /* add cache reference */
346 if (PageSwapCache(page
)) {
347 SetPageSwapCache(newpage
);
348 set_page_private(newpage
, page_private(page
));
351 radix_tree_replace_slot(pslot
, newpage
);
354 * Drop cache reference from old page by unfreezing
355 * to one less reference.
356 * We know this isn't the last reference.
358 page_unfreeze_refs(page
, expected_count
- 1);
361 * If moved to a different zone then also account
362 * the page for that zone. Other VM counters will be
363 * taken care of when we establish references to the
364 * new page and drop references to the old page.
366 * Note that anonymous pages are accounted for
367 * via NR_FILE_PAGES and NR_ANON_PAGES if they
368 * are mapped to swap space.
370 __dec_zone_page_state(page
, NR_FILE_PAGES
);
371 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
372 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
373 __dec_zone_page_state(page
, NR_SHMEM
);
374 __inc_zone_page_state(newpage
, NR_SHMEM
);
376 spin_unlock_irq(&mapping
->tree_lock
);
378 return MIGRATEPAGE_SUCCESS
;
382 * The expected number of remaining references is the same as that
383 * of migrate_page_move_mapping().
385 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
386 struct page
*newpage
, struct page
*page
)
392 if (page_count(page
) != 1)
394 return MIGRATEPAGE_SUCCESS
;
397 spin_lock_irq(&mapping
->tree_lock
);
399 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
402 expected_count
= 2 + page_has_private(page
);
403 if (page_count(page
) != expected_count
||
404 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
405 spin_unlock_irq(&mapping
->tree_lock
);
409 if (!page_freeze_refs(page
, expected_count
)) {
410 spin_unlock_irq(&mapping
->tree_lock
);
416 radix_tree_replace_slot(pslot
, newpage
);
418 page_unfreeze_refs(page
, expected_count
- 1);
420 spin_unlock_irq(&mapping
->tree_lock
);
421 return MIGRATEPAGE_SUCCESS
;
425 * Copy the page to its new location
427 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
429 if (PageHuge(page
) || PageTransHuge(page
))
430 copy_huge_page(newpage
, page
);
432 copy_highpage(newpage
, page
);
435 SetPageError(newpage
);
436 if (PageReferenced(page
))
437 SetPageReferenced(newpage
);
438 if (PageUptodate(page
))
439 SetPageUptodate(newpage
);
440 if (TestClearPageActive(page
)) {
441 VM_BUG_ON(PageUnevictable(page
));
442 SetPageActive(newpage
);
443 } else if (TestClearPageUnevictable(page
))
444 SetPageUnevictable(newpage
);
445 if (PageChecked(page
))
446 SetPageChecked(newpage
);
447 if (PageMappedToDisk(page
))
448 SetPageMappedToDisk(newpage
);
450 if (PageDirty(page
)) {
451 clear_page_dirty_for_io(page
);
453 * Want to mark the page and the radix tree as dirty, and
454 * redo the accounting that clear_page_dirty_for_io undid,
455 * but we can't use set_page_dirty because that function
456 * is actually a signal that all of the page has become dirty.
457 * Whereas only part of our page may be dirty.
459 if (PageSwapBacked(page
))
460 SetPageDirty(newpage
);
462 __set_page_dirty_nobuffers(newpage
);
465 mlock_migrate_page(newpage
, page
);
466 ksm_migrate_page(newpage
, page
);
468 ClearPageSwapCache(page
);
469 ClearPagePrivate(page
);
470 set_page_private(page
, 0);
473 * If any waiters have accumulated on the new page then
476 if (PageWriteback(newpage
))
477 end_page_writeback(newpage
);
480 /************************************************************
481 * Migration functions
482 ***********************************************************/
484 /* Always fail migration. Used for mappings that are not movable */
485 int fail_migrate_page(struct address_space
*mapping
,
486 struct page
*newpage
, struct page
*page
)
490 EXPORT_SYMBOL(fail_migrate_page
);
493 * Common logic to directly migrate a single page suitable for
494 * pages that do not use PagePrivate/PagePrivate2.
496 * Pages are locked upon entry and exit.
498 int migrate_page(struct address_space
*mapping
,
499 struct page
*newpage
, struct page
*page
,
500 enum migrate_mode mode
)
504 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
506 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
);
508 if (rc
!= MIGRATEPAGE_SUCCESS
)
511 migrate_page_copy(newpage
, page
);
512 return MIGRATEPAGE_SUCCESS
;
514 EXPORT_SYMBOL(migrate_page
);
518 * Migration function for pages with buffers. This function can only be used
519 * if the underlying filesystem guarantees that no other references to "page"
522 int buffer_migrate_page(struct address_space
*mapping
,
523 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
525 struct buffer_head
*bh
, *head
;
528 if (!page_has_buffers(page
))
529 return migrate_page(mapping
, newpage
, page
, mode
);
531 head
= page_buffers(page
);
533 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
);
535 if (rc
!= MIGRATEPAGE_SUCCESS
)
539 * In the async case, migrate_page_move_mapping locked the buffers
540 * with an IRQ-safe spinlock held. In the sync case, the buffers
541 * need to be locked now
543 if (mode
!= MIGRATE_ASYNC
)
544 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
546 ClearPagePrivate(page
);
547 set_page_private(newpage
, page_private(page
));
548 set_page_private(page
, 0);
554 set_bh_page(bh
, newpage
, bh_offset(bh
));
555 bh
= bh
->b_this_page
;
557 } while (bh
!= head
);
559 SetPagePrivate(newpage
);
561 migrate_page_copy(newpage
, page
);
567 bh
= bh
->b_this_page
;
569 } while (bh
!= head
);
571 return MIGRATEPAGE_SUCCESS
;
573 EXPORT_SYMBOL(buffer_migrate_page
);
577 * Writeback a page to clean the dirty state
579 static int writeout(struct address_space
*mapping
, struct page
*page
)
581 struct writeback_control wbc
= {
582 .sync_mode
= WB_SYNC_NONE
,
585 .range_end
= LLONG_MAX
,
590 if (!mapping
->a_ops
->writepage
)
591 /* No write method for the address space */
594 if (!clear_page_dirty_for_io(page
))
595 /* Someone else already triggered a write */
599 * A dirty page may imply that the underlying filesystem has
600 * the page on some queue. So the page must be clean for
601 * migration. Writeout may mean we loose the lock and the
602 * page state is no longer what we checked for earlier.
603 * At this point we know that the migration attempt cannot
606 remove_migration_ptes(page
, page
);
608 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
610 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
611 /* unlocked. Relock */
614 return (rc
< 0) ? -EIO
: -EAGAIN
;
618 * Default handling if a filesystem does not provide a migration function.
620 static int fallback_migrate_page(struct address_space
*mapping
,
621 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
623 if (PageDirty(page
)) {
624 /* Only writeback pages in full synchronous migration */
625 if (mode
!= MIGRATE_SYNC
)
627 return writeout(mapping
, page
);
631 * Buffers may be managed in a filesystem specific way.
632 * We must have no buffers or drop them.
634 if (page_has_private(page
) &&
635 !try_to_release_page(page
, GFP_KERNEL
))
638 return migrate_page(mapping
, newpage
, page
, mode
);
642 * Move a page to a newly allocated page
643 * The page is locked and all ptes have been successfully removed.
645 * The new page will have replaced the old page if this function
650 * MIGRATEPAGE_SUCCESS - success
652 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
653 int remap_swapcache
, enum migrate_mode mode
)
655 struct address_space
*mapping
;
659 * Block others from accessing the page when we get around to
660 * establishing additional references. We are the only one
661 * holding a reference to the new page at this point.
663 if (!trylock_page(newpage
))
666 /* Prepare mapping for the new page.*/
667 newpage
->index
= page
->index
;
668 newpage
->mapping
= page
->mapping
;
669 if (PageSwapBacked(page
))
670 SetPageSwapBacked(newpage
);
672 mapping
= page_mapping(page
);
674 rc
= migrate_page(mapping
, newpage
, page
, mode
);
675 else if (mapping
->a_ops
->migratepage
)
677 * Most pages have a mapping and most filesystems provide a
678 * migratepage callback. Anonymous pages are part of swap
679 * space which also has its own migratepage callback. This
680 * is the most common path for page migration.
682 rc
= mapping
->a_ops
->migratepage(mapping
,
683 newpage
, page
, mode
);
685 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
687 if (rc
!= MIGRATEPAGE_SUCCESS
) {
688 newpage
->mapping
= NULL
;
691 remove_migration_ptes(page
, newpage
);
692 page
->mapping
= NULL
;
695 unlock_page(newpage
);
700 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
701 int force
, bool offlining
, enum migrate_mode mode
)
704 int remap_swapcache
= 1;
705 struct mem_cgroup
*mem
;
706 struct anon_vma
*anon_vma
= NULL
;
708 if (!trylock_page(page
)) {
709 if (!force
|| mode
== MIGRATE_ASYNC
)
713 * It's not safe for direct compaction to call lock_page.
714 * For example, during page readahead pages are added locked
715 * to the LRU. Later, when the IO completes the pages are
716 * marked uptodate and unlocked. However, the queueing
717 * could be merging multiple pages for one bio (e.g.
718 * mpage_readpages). If an allocation happens for the
719 * second or third page, the process can end up locking
720 * the same page twice and deadlocking. Rather than
721 * trying to be clever about what pages can be locked,
722 * avoid the use of lock_page for direct compaction
725 if (current
->flags
& PF_MEMALLOC
)
732 * Only memory hotplug's offline_pages() caller has locked out KSM,
733 * and can safely migrate a KSM page. The other cases have skipped
734 * PageKsm along with PageReserved - but it is only now when we have
735 * the page lock that we can be certain it will not go KSM beneath us
736 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
737 * its pagecount raised, but only here do we take the page lock which
740 if (PageKsm(page
) && !offlining
) {
745 /* charge against new page */
746 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
748 if (PageWriteback(page
)) {
750 * Only in the case of a full syncronous migration is it
751 * necessary to wait for PageWriteback. In the async case,
752 * the retry loop is too short and in the sync-light case,
753 * the overhead of stalling is too much
755 if (mode
!= MIGRATE_SYNC
) {
761 wait_on_page_writeback(page
);
764 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
765 * we cannot notice that anon_vma is freed while we migrates a page.
766 * This get_anon_vma() delays freeing anon_vma pointer until the end
767 * of migration. File cache pages are no problem because of page_lock()
768 * File Caches may use write_page() or lock_page() in migration, then,
769 * just care Anon page here.
771 if (PageAnon(page
)) {
773 * Only page_lock_anon_vma_read() understands the subtleties of
774 * getting a hold on an anon_vma from outside one of its mms.
776 anon_vma
= page_get_anon_vma(page
);
781 } else if (PageSwapCache(page
)) {
783 * We cannot be sure that the anon_vma of an unmapped
784 * swapcache page is safe to use because we don't
785 * know in advance if the VMA that this page belonged
786 * to still exists. If the VMA and others sharing the
787 * data have been freed, then the anon_vma could
788 * already be invalid.
790 * To avoid this possibility, swapcache pages get
791 * migrated but are not remapped when migration
800 if (unlikely(balloon_page_movable(page
))) {
802 * A ballooned page does not need any special attention from
803 * physical to virtual reverse mapping procedures.
804 * Skip any attempt to unmap PTEs or to remap swap cache,
805 * in order to avoid burning cycles at rmap level, and perform
806 * the page migration right away (proteced by page lock).
808 rc
= balloon_page_migrate(newpage
, page
, mode
);
813 * Corner case handling:
814 * 1. When a new swap-cache page is read into, it is added to the LRU
815 * and treated as swapcache but it has no rmap yet.
816 * Calling try_to_unmap() against a page->mapping==NULL page will
817 * trigger a BUG. So handle it here.
818 * 2. An orphaned page (see truncate_complete_page) might have
819 * fs-private metadata. The page can be picked up due to memory
820 * offlining. Everywhere else except page reclaim, the page is
821 * invisible to the vm, so the page can not be migrated. So try to
822 * free the metadata, so the page can be freed.
824 if (!page
->mapping
) {
825 VM_BUG_ON(PageAnon(page
));
826 if (page_has_private(page
)) {
827 try_to_free_buffers(page
);
833 /* Establish migration ptes or remove ptes */
834 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
837 if (!page_mapped(page
))
838 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
840 if (rc
&& remap_swapcache
)
841 remove_migration_ptes(page
, page
);
843 /* Drop an anon_vma reference if we took one */
845 put_anon_vma(anon_vma
);
848 mem_cgroup_end_migration(mem
, page
, newpage
,
849 (rc
== MIGRATEPAGE_SUCCESS
||
850 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
858 * Obtain the lock on page, remove all ptes and migrate the page
859 * to the newly allocated page in newpage.
861 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
862 struct page
*page
, int force
, bool offlining
,
863 enum migrate_mode mode
)
867 struct page
*newpage
= get_new_page(page
, private, &result
);
872 if (page_count(page
) == 1) {
873 /* page was freed from under us. So we are done. */
877 if (unlikely(PageTransHuge(page
)))
878 if (unlikely(split_huge_page(page
)))
881 rc
= __unmap_and_move(page
, newpage
, force
, offlining
, mode
);
883 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
885 * A ballooned page has been migrated already.
886 * Now, it's the time to wrap-up counters,
887 * handle the page back to Buddy and return.
889 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
890 page_is_file_cache(page
));
891 balloon_page_free(page
);
892 return MIGRATEPAGE_SUCCESS
;
897 * A page that has been migrated has all references
898 * removed and will be freed. A page that has not been
899 * migrated will have kepts its references and be
902 list_del(&page
->lru
);
903 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
904 page_is_file_cache(page
));
905 putback_lru_page(page
);
908 * Move the new page to the LRU. If migration was not successful
909 * then this will free the page.
911 putback_lru_page(newpage
);
916 *result
= page_to_nid(newpage
);
922 * Counterpart of unmap_and_move_page() for hugepage migration.
924 * This function doesn't wait the completion of hugepage I/O
925 * because there is no race between I/O and migration for hugepage.
926 * Note that currently hugepage I/O occurs only in direct I/O
927 * where no lock is held and PG_writeback is irrelevant,
928 * and writeback status of all subpages are counted in the reference
929 * count of the head page (i.e. if all subpages of a 2MB hugepage are
930 * under direct I/O, the reference of the head page is 512 and a bit more.)
931 * This means that when we try to migrate hugepage whose subpages are
932 * doing direct I/O, some references remain after try_to_unmap() and
933 * hugepage migration fails without data corruption.
935 * There is also no race when direct I/O is issued on the page under migration,
936 * because then pte is replaced with migration swap entry and direct I/O code
937 * will wait in the page fault for migration to complete.
939 static int unmap_and_move_huge_page(new_page_t get_new_page
,
940 unsigned long private, struct page
*hpage
,
941 int force
, bool offlining
,
942 enum migrate_mode mode
)
946 struct page
*new_hpage
= get_new_page(hpage
, private, &result
);
947 struct anon_vma
*anon_vma
= NULL
;
954 if (!trylock_page(hpage
)) {
955 if (!force
|| mode
!= MIGRATE_SYNC
)
961 anon_vma
= page_get_anon_vma(hpage
);
963 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
965 if (!page_mapped(hpage
))
966 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
969 remove_migration_ptes(hpage
, hpage
);
972 put_anon_vma(anon_vma
);
975 hugetlb_cgroup_migrate(hpage
, new_hpage
);
984 *result
= page_to_nid(new_hpage
);
992 * The function takes one list of pages to migrate and a function
993 * that determines from the page to be migrated and the private data
994 * the target of the move and allocates the page.
996 * The function returns after 10 attempts or if no pages
997 * are movable anymore because to has become empty
998 * or no retryable pages exist anymore.
999 * Caller should call putback_lru_pages to return pages to the LRU
1000 * or free list only if ret != 0.
1002 * Return: Number of pages not migrated or error code.
1004 int migrate_pages(struct list_head
*from
,
1005 new_page_t get_new_page
, unsigned long private, bool offlining
,
1006 enum migrate_mode mode
, int reason
)
1010 int nr_succeeded
= 0;
1014 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1018 current
->flags
|= PF_SWAPWRITE
;
1020 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1023 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1026 rc
= unmap_and_move(get_new_page
, private,
1027 page
, pass
> 2, offlining
,
1036 case MIGRATEPAGE_SUCCESS
:
1040 /* Permanent failure */
1046 rc
= nr_failed
+ retry
;
1049 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1051 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1052 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1055 current
->flags
&= ~PF_SWAPWRITE
;
1060 int migrate_huge_page(struct page
*hpage
, new_page_t get_new_page
,
1061 unsigned long private, bool offlining
,
1062 enum migrate_mode mode
)
1066 for (pass
= 0; pass
< 10; pass
++) {
1067 rc
= unmap_and_move_huge_page(get_new_page
,
1068 private, hpage
, pass
> 2, offlining
,
1077 case MIGRATEPAGE_SUCCESS
:
1090 * Move a list of individual pages
1092 struct page_to_node
{
1099 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1102 struct page_to_node
*pm
= (struct page_to_node
*)private;
1104 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1107 if (pm
->node
== MAX_NUMNODES
)
1110 *result
= &pm
->status
;
1112 return alloc_pages_exact_node(pm
->node
,
1113 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1117 * Move a set of pages as indicated in the pm array. The addr
1118 * field must be set to the virtual address of the page to be moved
1119 * and the node number must contain a valid target node.
1120 * The pm array ends with node = MAX_NUMNODES.
1122 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1123 struct page_to_node
*pm
,
1127 struct page_to_node
*pp
;
1128 LIST_HEAD(pagelist
);
1130 down_read(&mm
->mmap_sem
);
1133 * Build a list of pages to migrate
1135 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1136 struct vm_area_struct
*vma
;
1140 vma
= find_vma(mm
, pp
->addr
);
1141 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1144 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1146 err
= PTR_ERR(page
);
1154 /* Use PageReserved to check for zero page */
1155 if (PageReserved(page
) || PageKsm(page
))
1159 err
= page_to_nid(page
);
1161 if (err
== pp
->node
)
1163 * Node already in the right place
1168 if (page_mapcount(page
) > 1 &&
1172 err
= isolate_lru_page(page
);
1174 list_add_tail(&page
->lru
, &pagelist
);
1175 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1176 page_is_file_cache(page
));
1180 * Either remove the duplicate refcount from
1181 * isolate_lru_page() or drop the page ref if it was
1190 if (!list_empty(&pagelist
)) {
1191 err
= migrate_pages(&pagelist
, new_page_node
,
1192 (unsigned long)pm
, 0, MIGRATE_SYNC
,
1195 putback_lru_pages(&pagelist
);
1198 up_read(&mm
->mmap_sem
);
1203 * Migrate an array of page address onto an array of nodes and fill
1204 * the corresponding array of status.
1206 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1207 unsigned long nr_pages
,
1208 const void __user
* __user
*pages
,
1209 const int __user
*nodes
,
1210 int __user
*status
, int flags
)
1212 struct page_to_node
*pm
;
1213 unsigned long chunk_nr_pages
;
1214 unsigned long chunk_start
;
1218 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1225 * Store a chunk of page_to_node array in a page,
1226 * but keep the last one as a marker
1228 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1230 for (chunk_start
= 0;
1231 chunk_start
< nr_pages
;
1232 chunk_start
+= chunk_nr_pages
) {
1235 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1236 chunk_nr_pages
= nr_pages
- chunk_start
;
1238 /* fill the chunk pm with addrs and nodes from user-space */
1239 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1240 const void __user
*p
;
1244 if (get_user(p
, pages
+ j
+ chunk_start
))
1246 pm
[j
].addr
= (unsigned long) p
;
1248 if (get_user(node
, nodes
+ j
+ chunk_start
))
1252 if (node
< 0 || node
>= MAX_NUMNODES
)
1255 if (!node_state(node
, N_MEMORY
))
1259 if (!node_isset(node
, task_nodes
))
1265 /* End marker for this chunk */
1266 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1268 /* Migrate this chunk */
1269 err
= do_move_page_to_node_array(mm
, pm
,
1270 flags
& MPOL_MF_MOVE_ALL
);
1274 /* Return status information */
1275 for (j
= 0; j
< chunk_nr_pages
; j
++)
1276 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1284 free_page((unsigned long)pm
);
1290 * Determine the nodes of an array of pages and store it in an array of status.
1292 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1293 const void __user
**pages
, int *status
)
1297 down_read(&mm
->mmap_sem
);
1299 for (i
= 0; i
< nr_pages
; i
++) {
1300 unsigned long addr
= (unsigned long)(*pages
);
1301 struct vm_area_struct
*vma
;
1305 vma
= find_vma(mm
, addr
);
1306 if (!vma
|| addr
< vma
->vm_start
)
1309 page
= follow_page(vma
, addr
, 0);
1311 err
= PTR_ERR(page
);
1316 /* Use PageReserved to check for zero page */
1317 if (!page
|| PageReserved(page
) || PageKsm(page
))
1320 err
= page_to_nid(page
);
1328 up_read(&mm
->mmap_sem
);
1332 * Determine the nodes of a user array of pages and store it in
1333 * a user array of status.
1335 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1336 const void __user
* __user
*pages
,
1339 #define DO_PAGES_STAT_CHUNK_NR 16
1340 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1341 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1344 unsigned long chunk_nr
;
1346 chunk_nr
= nr_pages
;
1347 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1348 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1350 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1353 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1355 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1360 nr_pages
-= chunk_nr
;
1362 return nr_pages
? -EFAULT
: 0;
1366 * Move a list of pages in the address space of the currently executing
1369 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1370 const void __user
* __user
*, pages
,
1371 const int __user
*, nodes
,
1372 int __user
*, status
, int, flags
)
1374 const struct cred
*cred
= current_cred(), *tcred
;
1375 struct task_struct
*task
;
1376 struct mm_struct
*mm
;
1378 nodemask_t task_nodes
;
1381 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1384 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1387 /* Find the mm_struct */
1389 task
= pid
? find_task_by_vpid(pid
) : current
;
1394 get_task_struct(task
);
1397 * Check if this process has the right to modify the specified
1398 * process. The right exists if the process has administrative
1399 * capabilities, superuser privileges or the same
1400 * userid as the target process.
1402 tcred
= __task_cred(task
);
1403 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1404 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1405 !capable(CAP_SYS_NICE
)) {
1412 err
= security_task_movememory(task
);
1416 task_nodes
= cpuset_mems_allowed(task
);
1417 mm
= get_task_mm(task
);
1418 put_task_struct(task
);
1424 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1425 nodes
, status
, flags
);
1427 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1433 put_task_struct(task
);
1438 * Call migration functions in the vma_ops that may prepare
1439 * memory in a vm for migration. migration functions may perform
1440 * the migration for vmas that do not have an underlying page struct.
1442 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1443 const nodemask_t
*from
, unsigned long flags
)
1445 struct vm_area_struct
*vma
;
1448 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1449 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1450 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1458 #ifdef CONFIG_NUMA_BALANCING
1460 * Returns true if this is a safe migration target node for misplaced NUMA
1461 * pages. Currently it only checks the watermarks which crude
1463 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1464 int nr_migrate_pages
)
1467 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1468 struct zone
*zone
= pgdat
->node_zones
+ z
;
1470 if (!populated_zone(zone
))
1473 if (zone
->all_unreclaimable
)
1476 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1477 if (!zone_watermark_ok(zone
, 0,
1478 high_wmark_pages(zone
) +
1487 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1491 int nid
= (int) data
;
1492 struct page
*newpage
;
1494 newpage
= alloc_pages_exact_node(nid
,
1495 (GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
|
1496 __GFP_NOMEMALLOC
| __GFP_NORETRY
|
1500 page_xchg_last_nid(newpage
, page_last_nid(page
));
1506 * page migration rate limiting control.
1507 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1508 * window of time. Default here says do not migrate more than 1280M per second.
1509 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1510 * as it is faults that reset the window, pte updates will happen unconditionally
1511 * if there has not been a fault since @pteupdate_interval_millisecs after the
1512 * throttle window closed.
1514 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1515 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1516 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1518 /* Returns true if NUMA migration is currently rate limited */
1519 bool migrate_ratelimited(int node
)
1521 pg_data_t
*pgdat
= NODE_DATA(node
);
1523 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1524 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1527 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1533 /* Returns true if the node is migrate rate-limited after the update */
1534 bool numamigrate_update_ratelimit(pg_data_t
*pgdat
, unsigned long nr_pages
)
1536 bool rate_limited
= false;
1539 * Rate-limit the amount of data that is being migrated to a node.
1540 * Optimal placement is no good if the memory bus is saturated and
1541 * all the time is being spent migrating!
1543 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1544 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1545 pgdat
->numabalancing_migrate_nr_pages
= 0;
1546 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1547 msecs_to_jiffies(migrate_interval_millisecs
);
1549 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
)
1550 rate_limited
= true;
1552 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1553 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1555 return rate_limited
;
1558 int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1562 /* Avoid migrating to a node that is nearly full */
1563 if (migrate_balanced_pgdat(pgdat
, 1)) {
1566 if (isolate_lru_page(page
)) {
1571 /* Page is isolated */
1573 page_lru
= page_is_file_cache(page
);
1574 if (!PageTransHuge(page
))
1575 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ page_lru
);
1577 mod_zone_page_state(page_zone(page
),
1578 NR_ISOLATED_ANON
+ page_lru
,
1583 * Page is either isolated or there is not enough space on the target
1584 * node. If isolated, then it has taken a reference count and the
1585 * callers reference can be safely dropped without the page
1586 * disappearing underneath us during migration. Otherwise the page is
1587 * not to be migrated but the callers reference should still be
1588 * dropped so it does not leak.
1596 * Attempt to migrate a misplaced page to the specified destination
1597 * node. Caller is expected to have an elevated reference count on
1598 * the page that will be dropped by this function before returning.
1600 int migrate_misplaced_page(struct page
*page
, int node
)
1602 pg_data_t
*pgdat
= NODE_DATA(node
);
1605 LIST_HEAD(migratepages
);
1608 * Don't migrate pages that are mapped in multiple processes.
1609 * TODO: Handle false sharing detection instead of this hammer
1611 if (page_mapcount(page
) != 1) {
1617 * Rate-limit the amount of data that is being migrated to a node.
1618 * Optimal placement is no good if the memory bus is saturated and
1619 * all the time is being spent migrating!
1621 if (numamigrate_update_ratelimit(pgdat
, 1)) {
1626 isolated
= numamigrate_isolate_page(pgdat
, page
);
1630 list_add(&page
->lru
, &migratepages
);
1631 nr_remaining
= migrate_pages(&migratepages
,
1632 alloc_misplaced_dst_page
,
1633 node
, false, MIGRATE_ASYNC
,
1636 putback_lru_pages(&migratepages
);
1639 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1640 BUG_ON(!list_empty(&migratepages
));
1644 #endif /* CONFIG_NUMA_BALANCING */
1646 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1647 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1648 struct vm_area_struct
*vma
,
1649 pmd_t
*pmd
, pmd_t entry
,
1650 unsigned long address
,
1651 struct page
*page
, int node
)
1653 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
1654 pg_data_t
*pgdat
= NODE_DATA(node
);
1656 struct page
*new_page
= NULL
;
1657 struct mem_cgroup
*memcg
= NULL
;
1658 int page_lru
= page_is_file_cache(page
);
1661 * Don't migrate pages that are mapped in multiple processes.
1662 * TODO: Handle false sharing detection instead of this hammer
1664 if (page_mapcount(page
) != 1)
1668 * Rate-limit the amount of data that is being migrated to a node.
1669 * Optimal placement is no good if the memory bus is saturated and
1670 * all the time is being spent migrating!
1672 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1675 new_page
= alloc_pages_node(node
,
1676 (GFP_TRANSHUGE
| GFP_THISNODE
) & ~__GFP_WAIT
, HPAGE_PMD_ORDER
);
1678 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1681 page_xchg_last_nid(new_page
, page_last_nid(page
));
1683 isolated
= numamigrate_isolate_page(pgdat
, page
);
1686 * Failing to isolate or a GUP pin prevents migration. The expected
1687 * page count is 2. 1 for anonymous pages without a mapping and 1
1688 * for the callers pin. If the page was isolated, the page will
1689 * need to be put back on the LRU.
1691 if (!isolated
|| page_count(page
) != 2) {
1692 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1695 putback_lru_page(page
);
1699 goto out_keep_locked
;
1702 /* Prepare a page as a migration target */
1703 __set_page_locked(new_page
);
1704 SetPageSwapBacked(new_page
);
1706 /* anon mapping, we can simply copy page->mapping to the new page: */
1707 new_page
->mapping
= page
->mapping
;
1708 new_page
->index
= page
->index
;
1709 migrate_page_copy(new_page
, page
);
1710 WARN_ON(PageLRU(new_page
));
1712 /* Recheck the target PMD */
1713 spin_lock(&mm
->page_table_lock
);
1714 if (unlikely(!pmd_same(*pmd
, entry
))) {
1715 spin_unlock(&mm
->page_table_lock
);
1717 /* Reverse changes made by migrate_page_copy() */
1718 if (TestClearPageActive(new_page
))
1719 SetPageActive(page
);
1720 if (TestClearPageUnevictable(new_page
))
1721 SetPageUnevictable(page
);
1722 mlock_migrate_page(page
, new_page
);
1724 unlock_page(new_page
);
1725 put_page(new_page
); /* Free it */
1728 putback_lru_page(page
);
1730 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1735 * Traditional migration needs to prepare the memcg charge
1736 * transaction early to prevent the old page from being
1737 * uncharged when installing migration entries. Here we can
1738 * save the potential rollback and start the charge transfer
1739 * only when migration is already known to end successfully.
1741 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1743 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1744 entry
= pmd_mknonnuma(entry
);
1745 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1746 entry
= pmd_mkhuge(entry
);
1748 page_add_new_anon_rmap(new_page
, vma
, haddr
);
1750 set_pmd_at(mm
, haddr
, pmd
, entry
);
1751 update_mmu_cache_pmd(vma
, address
, &entry
);
1752 page_remove_rmap(page
);
1754 * Finish the charge transaction under the page table lock to
1755 * prevent split_huge_page() from dividing up the charge
1756 * before it's fully transferred to the new page.
1758 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1759 spin_unlock(&mm
->page_table_lock
);
1761 unlock_page(new_page
);
1763 put_page(page
); /* Drop the rmap reference */
1764 put_page(page
); /* Drop the LRU isolation reference */
1766 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1767 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1770 mod_zone_page_state(page_zone(page
),
1771 NR_ISOLATED_ANON
+ page_lru
,
1780 #endif /* CONFIG_NUMA_BALANCING */
1782 #endif /* CONFIG_NUMA */