USB: musb_hdrc: another davinci buildfix (otg related)
[linux-2.6.git] / drivers / ata / libata-sff.c
blob5a4aad123c4259236677470a202f0d46ca279766
1 /*
2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/libata.h>
38 #include <linux/highmem.h>
40 #include "libata.h"
42 const struct ata_port_operations ata_sff_port_ops = {
43 .inherits = &ata_base_port_ops,
45 .qc_prep = ata_sff_qc_prep,
46 .qc_issue = ata_sff_qc_issue,
47 .qc_fill_rtf = ata_sff_qc_fill_rtf,
49 .freeze = ata_sff_freeze,
50 .thaw = ata_sff_thaw,
51 .prereset = ata_sff_prereset,
52 .softreset = ata_sff_softreset,
53 .hardreset = sata_sff_hardreset,
54 .postreset = ata_sff_postreset,
55 .error_handler = ata_sff_error_handler,
56 .post_internal_cmd = ata_sff_post_internal_cmd,
58 .sff_dev_select = ata_sff_dev_select,
59 .sff_check_status = ata_sff_check_status,
60 .sff_tf_load = ata_sff_tf_load,
61 .sff_tf_read = ata_sff_tf_read,
62 .sff_exec_command = ata_sff_exec_command,
63 .sff_data_xfer = ata_sff_data_xfer,
64 .sff_irq_on = ata_sff_irq_on,
65 .sff_irq_clear = ata_sff_irq_clear,
67 .port_start = ata_sff_port_start,
69 EXPORT_SYMBOL_GPL(ata_sff_port_ops);
71 const struct ata_port_operations ata_bmdma_port_ops = {
72 .inherits = &ata_sff_port_ops,
74 .mode_filter = ata_bmdma_mode_filter,
76 .bmdma_setup = ata_bmdma_setup,
77 .bmdma_start = ata_bmdma_start,
78 .bmdma_stop = ata_bmdma_stop,
79 .bmdma_status = ata_bmdma_status,
81 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
83 const struct ata_port_operations ata_bmdma32_port_ops = {
84 .inherits = &ata_bmdma_port_ops,
86 .sff_data_xfer = ata_sff_data_xfer32,
88 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
90 /**
91 * ata_fill_sg - Fill PCI IDE PRD table
92 * @qc: Metadata associated with taskfile to be transferred
94 * Fill PCI IDE PRD (scatter-gather) table with segments
95 * associated with the current disk command.
97 * LOCKING:
98 * spin_lock_irqsave(host lock)
101 static void ata_fill_sg(struct ata_queued_cmd *qc)
103 struct ata_port *ap = qc->ap;
104 struct scatterlist *sg;
105 unsigned int si, pi;
107 pi = 0;
108 for_each_sg(qc->sg, sg, qc->n_elem, si) {
109 u32 addr, offset;
110 u32 sg_len, len;
112 /* determine if physical DMA addr spans 64K boundary.
113 * Note h/w doesn't support 64-bit, so we unconditionally
114 * truncate dma_addr_t to u32.
116 addr = (u32) sg_dma_address(sg);
117 sg_len = sg_dma_len(sg);
119 while (sg_len) {
120 offset = addr & 0xffff;
121 len = sg_len;
122 if ((offset + sg_len) > 0x10000)
123 len = 0x10000 - offset;
125 ap->prd[pi].addr = cpu_to_le32(addr);
126 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
127 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
129 pi++;
130 sg_len -= len;
131 addr += len;
135 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
139 * ata_fill_sg_dumb - Fill PCI IDE PRD table
140 * @qc: Metadata associated with taskfile to be transferred
142 * Fill PCI IDE PRD (scatter-gather) table with segments
143 * associated with the current disk command. Perform the fill
144 * so that we avoid writing any length 64K records for
145 * controllers that don't follow the spec.
147 * LOCKING:
148 * spin_lock_irqsave(host lock)
151 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
153 struct ata_port *ap = qc->ap;
154 struct scatterlist *sg;
155 unsigned int si, pi;
157 pi = 0;
158 for_each_sg(qc->sg, sg, qc->n_elem, si) {
159 u32 addr, offset;
160 u32 sg_len, len, blen;
162 /* determine if physical DMA addr spans 64K boundary.
163 * Note h/w doesn't support 64-bit, so we unconditionally
164 * truncate dma_addr_t to u32.
166 addr = (u32) sg_dma_address(sg);
167 sg_len = sg_dma_len(sg);
169 while (sg_len) {
170 offset = addr & 0xffff;
171 len = sg_len;
172 if ((offset + sg_len) > 0x10000)
173 len = 0x10000 - offset;
175 blen = len & 0xffff;
176 ap->prd[pi].addr = cpu_to_le32(addr);
177 if (blen == 0) {
178 /* Some PATA chipsets like the CS5530 can't
179 cope with 0x0000 meaning 64K as the spec
180 says */
181 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
182 blen = 0x8000;
183 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
185 ap->prd[pi].flags_len = cpu_to_le32(blen);
186 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
188 pi++;
189 sg_len -= len;
190 addr += len;
194 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
198 * ata_sff_qc_prep - Prepare taskfile for submission
199 * @qc: Metadata associated with taskfile to be prepared
201 * Prepare ATA taskfile for submission.
203 * LOCKING:
204 * spin_lock_irqsave(host lock)
206 void ata_sff_qc_prep(struct ata_queued_cmd *qc)
208 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
209 return;
211 ata_fill_sg(qc);
213 EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
216 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
217 * @qc: Metadata associated with taskfile to be prepared
219 * Prepare ATA taskfile for submission.
221 * LOCKING:
222 * spin_lock_irqsave(host lock)
224 void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
226 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
227 return;
229 ata_fill_sg_dumb(qc);
231 EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
234 * ata_sff_check_status - Read device status reg & clear interrupt
235 * @ap: port where the device is
237 * Reads ATA taskfile status register for currently-selected device
238 * and return its value. This also clears pending interrupts
239 * from this device
241 * LOCKING:
242 * Inherited from caller.
244 u8 ata_sff_check_status(struct ata_port *ap)
246 return ioread8(ap->ioaddr.status_addr);
248 EXPORT_SYMBOL_GPL(ata_sff_check_status);
251 * ata_sff_altstatus - Read device alternate status reg
252 * @ap: port where the device is
254 * Reads ATA taskfile alternate status register for
255 * currently-selected device and return its value.
257 * Note: may NOT be used as the check_altstatus() entry in
258 * ata_port_operations.
260 * LOCKING:
261 * Inherited from caller.
263 static u8 ata_sff_altstatus(struct ata_port *ap)
265 if (ap->ops->sff_check_altstatus)
266 return ap->ops->sff_check_altstatus(ap);
268 return ioread8(ap->ioaddr.altstatus_addr);
272 * ata_sff_irq_status - Check if the device is busy
273 * @ap: port where the device is
275 * Determine if the port is currently busy. Uses altstatus
276 * if available in order to avoid clearing shared IRQ status
277 * when finding an IRQ source. Non ctl capable devices don't
278 * share interrupt lines fortunately for us.
280 * LOCKING:
281 * Inherited from caller.
283 static u8 ata_sff_irq_status(struct ata_port *ap)
285 u8 status;
287 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
288 status = ata_sff_altstatus(ap);
289 /* Not us: We are busy */
290 if (status & ATA_BUSY)
291 return status;
293 /* Clear INTRQ latch */
294 status = ap->ops->sff_check_status(ap);
295 return status;
299 * ata_sff_sync - Flush writes
300 * @ap: Port to wait for.
302 * CAUTION:
303 * If we have an mmio device with no ctl and no altstatus
304 * method this will fail. No such devices are known to exist.
306 * LOCKING:
307 * Inherited from caller.
310 static void ata_sff_sync(struct ata_port *ap)
312 if (ap->ops->sff_check_altstatus)
313 ap->ops->sff_check_altstatus(ap);
314 else if (ap->ioaddr.altstatus_addr)
315 ioread8(ap->ioaddr.altstatus_addr);
319 * ata_sff_pause - Flush writes and wait 400nS
320 * @ap: Port to pause for.
322 * CAUTION:
323 * If we have an mmio device with no ctl and no altstatus
324 * method this will fail. No such devices are known to exist.
326 * LOCKING:
327 * Inherited from caller.
330 void ata_sff_pause(struct ata_port *ap)
332 ata_sff_sync(ap);
333 ndelay(400);
335 EXPORT_SYMBOL_GPL(ata_sff_pause);
338 * ata_sff_dma_pause - Pause before commencing DMA
339 * @ap: Port to pause for.
341 * Perform I/O fencing and ensure sufficient cycle delays occur
342 * for the HDMA1:0 transition
345 void ata_sff_dma_pause(struct ata_port *ap)
347 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
348 /* An altstatus read will cause the needed delay without
349 messing up the IRQ status */
350 ata_sff_altstatus(ap);
351 return;
353 /* There are no DMA controllers without ctl. BUG here to ensure
354 we never violate the HDMA1:0 transition timing and risk
355 corruption. */
356 BUG();
358 EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
361 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
362 * @ap: port containing status register to be polled
363 * @tmout_pat: impatience timeout in msecs
364 * @tmout: overall timeout in msecs
366 * Sleep until ATA Status register bit BSY clears,
367 * or a timeout occurs.
369 * LOCKING:
370 * Kernel thread context (may sleep).
372 * RETURNS:
373 * 0 on success, -errno otherwise.
375 int ata_sff_busy_sleep(struct ata_port *ap,
376 unsigned long tmout_pat, unsigned long tmout)
378 unsigned long timer_start, timeout;
379 u8 status;
381 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
382 timer_start = jiffies;
383 timeout = ata_deadline(timer_start, tmout_pat);
384 while (status != 0xff && (status & ATA_BUSY) &&
385 time_before(jiffies, timeout)) {
386 msleep(50);
387 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
390 if (status != 0xff && (status & ATA_BUSY))
391 ata_port_printk(ap, KERN_WARNING,
392 "port is slow to respond, please be patient "
393 "(Status 0x%x)\n", status);
395 timeout = ata_deadline(timer_start, tmout);
396 while (status != 0xff && (status & ATA_BUSY) &&
397 time_before(jiffies, timeout)) {
398 msleep(50);
399 status = ap->ops->sff_check_status(ap);
402 if (status == 0xff)
403 return -ENODEV;
405 if (status & ATA_BUSY) {
406 ata_port_printk(ap, KERN_ERR, "port failed to respond "
407 "(%lu secs, Status 0x%x)\n",
408 DIV_ROUND_UP(tmout, 1000), status);
409 return -EBUSY;
412 return 0;
414 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
416 static int ata_sff_check_ready(struct ata_link *link)
418 u8 status = link->ap->ops->sff_check_status(link->ap);
420 return ata_check_ready(status);
424 * ata_sff_wait_ready - sleep until BSY clears, or timeout
425 * @link: SFF link to wait ready status for
426 * @deadline: deadline jiffies for the operation
428 * Sleep until ATA Status register bit BSY clears, or timeout
429 * occurs.
431 * LOCKING:
432 * Kernel thread context (may sleep).
434 * RETURNS:
435 * 0 on success, -errno otherwise.
437 int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
439 return ata_wait_ready(link, deadline, ata_sff_check_ready);
441 EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
444 * ata_sff_dev_select - Select device 0/1 on ATA bus
445 * @ap: ATA channel to manipulate
446 * @device: ATA device (numbered from zero) to select
448 * Use the method defined in the ATA specification to
449 * make either device 0, or device 1, active on the
450 * ATA channel. Works with both PIO and MMIO.
452 * May be used as the dev_select() entry in ata_port_operations.
454 * LOCKING:
455 * caller.
457 void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
459 u8 tmp;
461 if (device == 0)
462 tmp = ATA_DEVICE_OBS;
463 else
464 tmp = ATA_DEVICE_OBS | ATA_DEV1;
466 iowrite8(tmp, ap->ioaddr.device_addr);
467 ata_sff_pause(ap); /* needed; also flushes, for mmio */
469 EXPORT_SYMBOL_GPL(ata_sff_dev_select);
472 * ata_dev_select - Select device 0/1 on ATA bus
473 * @ap: ATA channel to manipulate
474 * @device: ATA device (numbered from zero) to select
475 * @wait: non-zero to wait for Status register BSY bit to clear
476 * @can_sleep: non-zero if context allows sleeping
478 * Use the method defined in the ATA specification to
479 * make either device 0, or device 1, active on the
480 * ATA channel.
482 * This is a high-level version of ata_sff_dev_select(), which
483 * additionally provides the services of inserting the proper
484 * pauses and status polling, where needed.
486 * LOCKING:
487 * caller.
489 void ata_dev_select(struct ata_port *ap, unsigned int device,
490 unsigned int wait, unsigned int can_sleep)
492 if (ata_msg_probe(ap))
493 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
494 "device %u, wait %u\n", device, wait);
496 if (wait)
497 ata_wait_idle(ap);
499 ap->ops->sff_dev_select(ap, device);
501 if (wait) {
502 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
503 msleep(150);
504 ata_wait_idle(ap);
509 * ata_sff_irq_on - Enable interrupts on a port.
510 * @ap: Port on which interrupts are enabled.
512 * Enable interrupts on a legacy IDE device using MMIO or PIO,
513 * wait for idle, clear any pending interrupts.
515 * LOCKING:
516 * Inherited from caller.
518 u8 ata_sff_irq_on(struct ata_port *ap)
520 struct ata_ioports *ioaddr = &ap->ioaddr;
521 u8 tmp;
523 ap->ctl &= ~ATA_NIEN;
524 ap->last_ctl = ap->ctl;
526 if (ioaddr->ctl_addr)
527 iowrite8(ap->ctl, ioaddr->ctl_addr);
528 tmp = ata_wait_idle(ap);
530 ap->ops->sff_irq_clear(ap);
532 return tmp;
534 EXPORT_SYMBOL_GPL(ata_sff_irq_on);
537 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
538 * @ap: Port associated with this ATA transaction.
540 * Clear interrupt and error flags in DMA status register.
542 * May be used as the irq_clear() entry in ata_port_operations.
544 * LOCKING:
545 * spin_lock_irqsave(host lock)
547 void ata_sff_irq_clear(struct ata_port *ap)
549 void __iomem *mmio = ap->ioaddr.bmdma_addr;
551 if (!mmio)
552 return;
554 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
556 EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
559 * ata_sff_tf_load - send taskfile registers to host controller
560 * @ap: Port to which output is sent
561 * @tf: ATA taskfile register set
563 * Outputs ATA taskfile to standard ATA host controller.
565 * LOCKING:
566 * Inherited from caller.
568 void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
570 struct ata_ioports *ioaddr = &ap->ioaddr;
571 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
573 if (tf->ctl != ap->last_ctl) {
574 if (ioaddr->ctl_addr)
575 iowrite8(tf->ctl, ioaddr->ctl_addr);
576 ap->last_ctl = tf->ctl;
577 ata_wait_idle(ap);
580 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
581 WARN_ON_ONCE(!ioaddr->ctl_addr);
582 iowrite8(tf->hob_feature, ioaddr->feature_addr);
583 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
584 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
585 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
586 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
587 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
588 tf->hob_feature,
589 tf->hob_nsect,
590 tf->hob_lbal,
591 tf->hob_lbam,
592 tf->hob_lbah);
595 if (is_addr) {
596 iowrite8(tf->feature, ioaddr->feature_addr);
597 iowrite8(tf->nsect, ioaddr->nsect_addr);
598 iowrite8(tf->lbal, ioaddr->lbal_addr);
599 iowrite8(tf->lbam, ioaddr->lbam_addr);
600 iowrite8(tf->lbah, ioaddr->lbah_addr);
601 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
602 tf->feature,
603 tf->nsect,
604 tf->lbal,
605 tf->lbam,
606 tf->lbah);
609 if (tf->flags & ATA_TFLAG_DEVICE) {
610 iowrite8(tf->device, ioaddr->device_addr);
611 VPRINTK("device 0x%X\n", tf->device);
614 ata_wait_idle(ap);
616 EXPORT_SYMBOL_GPL(ata_sff_tf_load);
619 * ata_sff_tf_read - input device's ATA taskfile shadow registers
620 * @ap: Port from which input is read
621 * @tf: ATA taskfile register set for storing input
623 * Reads ATA taskfile registers for currently-selected device
624 * into @tf. Assumes the device has a fully SFF compliant task file
625 * layout and behaviour. If you device does not (eg has a different
626 * status method) then you will need to provide a replacement tf_read
628 * LOCKING:
629 * Inherited from caller.
631 void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
633 struct ata_ioports *ioaddr = &ap->ioaddr;
635 tf->command = ata_sff_check_status(ap);
636 tf->feature = ioread8(ioaddr->error_addr);
637 tf->nsect = ioread8(ioaddr->nsect_addr);
638 tf->lbal = ioread8(ioaddr->lbal_addr);
639 tf->lbam = ioread8(ioaddr->lbam_addr);
640 tf->lbah = ioread8(ioaddr->lbah_addr);
641 tf->device = ioread8(ioaddr->device_addr);
643 if (tf->flags & ATA_TFLAG_LBA48) {
644 if (likely(ioaddr->ctl_addr)) {
645 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
646 tf->hob_feature = ioread8(ioaddr->error_addr);
647 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
648 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
649 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
650 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
651 iowrite8(tf->ctl, ioaddr->ctl_addr);
652 ap->last_ctl = tf->ctl;
653 } else
654 WARN_ON_ONCE(1);
657 EXPORT_SYMBOL_GPL(ata_sff_tf_read);
660 * ata_sff_exec_command - issue ATA command to host controller
661 * @ap: port to which command is being issued
662 * @tf: ATA taskfile register set
664 * Issues ATA command, with proper synchronization with interrupt
665 * handler / other threads.
667 * LOCKING:
668 * spin_lock_irqsave(host lock)
670 void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
672 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
674 iowrite8(tf->command, ap->ioaddr.command_addr);
675 ata_sff_pause(ap);
677 EXPORT_SYMBOL_GPL(ata_sff_exec_command);
680 * ata_tf_to_host - issue ATA taskfile to host controller
681 * @ap: port to which command is being issued
682 * @tf: ATA taskfile register set
684 * Issues ATA taskfile register set to ATA host controller,
685 * with proper synchronization with interrupt handler and
686 * other threads.
688 * LOCKING:
689 * spin_lock_irqsave(host lock)
691 static inline void ata_tf_to_host(struct ata_port *ap,
692 const struct ata_taskfile *tf)
694 ap->ops->sff_tf_load(ap, tf);
695 ap->ops->sff_exec_command(ap, tf);
699 * ata_sff_data_xfer - Transfer data by PIO
700 * @dev: device to target
701 * @buf: data buffer
702 * @buflen: buffer length
703 * @rw: read/write
705 * Transfer data from/to the device data register by PIO.
707 * LOCKING:
708 * Inherited from caller.
710 * RETURNS:
711 * Bytes consumed.
713 unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
714 unsigned int buflen, int rw)
716 struct ata_port *ap = dev->link->ap;
717 void __iomem *data_addr = ap->ioaddr.data_addr;
718 unsigned int words = buflen >> 1;
720 /* Transfer multiple of 2 bytes */
721 if (rw == READ)
722 ioread16_rep(data_addr, buf, words);
723 else
724 iowrite16_rep(data_addr, buf, words);
726 /* Transfer trailing 1 byte, if any. */
727 if (unlikely(buflen & 0x01)) {
728 __le16 align_buf[1] = { 0 };
729 unsigned char *trailing_buf = buf + buflen - 1;
731 if (rw == READ) {
732 align_buf[0] = cpu_to_le16(ioread16(data_addr));
733 memcpy(trailing_buf, align_buf, 1);
734 } else {
735 memcpy(align_buf, trailing_buf, 1);
736 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
738 words++;
741 return words << 1;
743 EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
746 * ata_sff_data_xfer32 - Transfer data by PIO
747 * @dev: device to target
748 * @buf: data buffer
749 * @buflen: buffer length
750 * @rw: read/write
752 * Transfer data from/to the device data register by PIO using 32bit
753 * I/O operations.
755 * LOCKING:
756 * Inherited from caller.
758 * RETURNS:
759 * Bytes consumed.
762 unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
763 unsigned int buflen, int rw)
765 struct ata_port *ap = dev->link->ap;
766 void __iomem *data_addr = ap->ioaddr.data_addr;
767 unsigned int words = buflen >> 2;
768 int slop = buflen & 3;
770 /* Transfer multiple of 4 bytes */
771 if (rw == READ)
772 ioread32_rep(data_addr, buf, words);
773 else
774 iowrite32_rep(data_addr, buf, words);
776 if (unlikely(slop)) {
777 __le32 pad;
778 if (rw == READ) {
779 pad = cpu_to_le32(ioread32(ap->ioaddr.data_addr));
780 memcpy(buf + buflen - slop, &pad, slop);
781 } else {
782 memcpy(&pad, buf + buflen - slop, slop);
783 iowrite32(le32_to_cpu(pad), ap->ioaddr.data_addr);
785 words++;
787 return words << 2;
789 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
792 * ata_sff_data_xfer_noirq - Transfer data by PIO
793 * @dev: device to target
794 * @buf: data buffer
795 * @buflen: buffer length
796 * @rw: read/write
798 * Transfer data from/to the device data register by PIO. Do the
799 * transfer with interrupts disabled.
801 * LOCKING:
802 * Inherited from caller.
804 * RETURNS:
805 * Bytes consumed.
807 unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
808 unsigned int buflen, int rw)
810 unsigned long flags;
811 unsigned int consumed;
813 local_irq_save(flags);
814 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
815 local_irq_restore(flags);
817 return consumed;
819 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
822 * ata_pio_sector - Transfer a sector of data.
823 * @qc: Command on going
825 * Transfer qc->sect_size bytes of data from/to the ATA device.
827 * LOCKING:
828 * Inherited from caller.
830 static void ata_pio_sector(struct ata_queued_cmd *qc)
832 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
833 struct ata_port *ap = qc->ap;
834 struct page *page;
835 unsigned int offset;
836 unsigned char *buf;
838 if (qc->curbytes == qc->nbytes - qc->sect_size)
839 ap->hsm_task_state = HSM_ST_LAST;
841 page = sg_page(qc->cursg);
842 offset = qc->cursg->offset + qc->cursg_ofs;
844 /* get the current page and offset */
845 page = nth_page(page, (offset >> PAGE_SHIFT));
846 offset %= PAGE_SIZE;
848 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
850 if (PageHighMem(page)) {
851 unsigned long flags;
853 /* FIXME: use a bounce buffer */
854 local_irq_save(flags);
855 buf = kmap_atomic(page, KM_IRQ0);
857 /* do the actual data transfer */
858 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
859 do_write);
861 kunmap_atomic(buf, KM_IRQ0);
862 local_irq_restore(flags);
863 } else {
864 buf = page_address(page);
865 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
866 do_write);
869 qc->curbytes += qc->sect_size;
870 qc->cursg_ofs += qc->sect_size;
872 if (qc->cursg_ofs == qc->cursg->length) {
873 qc->cursg = sg_next(qc->cursg);
874 qc->cursg_ofs = 0;
879 * ata_pio_sectors - Transfer one or many sectors.
880 * @qc: Command on going
882 * Transfer one or many sectors of data from/to the
883 * ATA device for the DRQ request.
885 * LOCKING:
886 * Inherited from caller.
888 static void ata_pio_sectors(struct ata_queued_cmd *qc)
890 if (is_multi_taskfile(&qc->tf)) {
891 /* READ/WRITE MULTIPLE */
892 unsigned int nsect;
894 WARN_ON_ONCE(qc->dev->multi_count == 0);
896 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
897 qc->dev->multi_count);
898 while (nsect--)
899 ata_pio_sector(qc);
900 } else
901 ata_pio_sector(qc);
903 ata_sff_sync(qc->ap); /* flush */
907 * atapi_send_cdb - Write CDB bytes to hardware
908 * @ap: Port to which ATAPI device is attached.
909 * @qc: Taskfile currently active
911 * When device has indicated its readiness to accept
912 * a CDB, this function is called. Send the CDB.
914 * LOCKING:
915 * caller.
917 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
919 /* send SCSI cdb */
920 DPRINTK("send cdb\n");
921 WARN_ON_ONCE(qc->dev->cdb_len < 12);
923 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
924 ata_sff_sync(ap);
925 /* FIXME: If the CDB is for DMA do we need to do the transition delay
926 or is bmdma_start guaranteed to do it ? */
927 switch (qc->tf.protocol) {
928 case ATAPI_PROT_PIO:
929 ap->hsm_task_state = HSM_ST;
930 break;
931 case ATAPI_PROT_NODATA:
932 ap->hsm_task_state = HSM_ST_LAST;
933 break;
934 case ATAPI_PROT_DMA:
935 ap->hsm_task_state = HSM_ST_LAST;
936 /* initiate bmdma */
937 ap->ops->bmdma_start(qc);
938 break;
943 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
944 * @qc: Command on going
945 * @bytes: number of bytes
947 * Transfer Transfer data from/to the ATAPI device.
949 * LOCKING:
950 * Inherited from caller.
953 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
955 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
956 struct ata_port *ap = qc->ap;
957 struct ata_device *dev = qc->dev;
958 struct ata_eh_info *ehi = &dev->link->eh_info;
959 struct scatterlist *sg;
960 struct page *page;
961 unsigned char *buf;
962 unsigned int offset, count, consumed;
964 next_sg:
965 sg = qc->cursg;
966 if (unlikely(!sg)) {
967 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
968 "buf=%u cur=%u bytes=%u",
969 qc->nbytes, qc->curbytes, bytes);
970 return -1;
973 page = sg_page(sg);
974 offset = sg->offset + qc->cursg_ofs;
976 /* get the current page and offset */
977 page = nth_page(page, (offset >> PAGE_SHIFT));
978 offset %= PAGE_SIZE;
980 /* don't overrun current sg */
981 count = min(sg->length - qc->cursg_ofs, bytes);
983 /* don't cross page boundaries */
984 count = min(count, (unsigned int)PAGE_SIZE - offset);
986 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
988 if (PageHighMem(page)) {
989 unsigned long flags;
991 /* FIXME: use bounce buffer */
992 local_irq_save(flags);
993 buf = kmap_atomic(page, KM_IRQ0);
995 /* do the actual data transfer */
996 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
997 count, rw);
999 kunmap_atomic(buf, KM_IRQ0);
1000 local_irq_restore(flags);
1001 } else {
1002 buf = page_address(page);
1003 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1004 count, rw);
1007 bytes -= min(bytes, consumed);
1008 qc->curbytes += count;
1009 qc->cursg_ofs += count;
1011 if (qc->cursg_ofs == sg->length) {
1012 qc->cursg = sg_next(qc->cursg);
1013 qc->cursg_ofs = 0;
1017 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
1018 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1019 * check correctly as it doesn't know if it is the last request being
1020 * made. Somebody should implement a proper sanity check.
1022 if (bytes)
1023 goto next_sg;
1024 return 0;
1028 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
1029 * @qc: Command on going
1031 * Transfer Transfer data from/to the ATAPI device.
1033 * LOCKING:
1034 * Inherited from caller.
1036 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1038 struct ata_port *ap = qc->ap;
1039 struct ata_device *dev = qc->dev;
1040 struct ata_eh_info *ehi = &dev->link->eh_info;
1041 unsigned int ireason, bc_lo, bc_hi, bytes;
1042 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1044 /* Abuse qc->result_tf for temp storage of intermediate TF
1045 * here to save some kernel stack usage.
1046 * For normal completion, qc->result_tf is not relevant. For
1047 * error, qc->result_tf is later overwritten by ata_qc_complete().
1048 * So, the correctness of qc->result_tf is not affected.
1050 ap->ops->sff_tf_read(ap, &qc->result_tf);
1051 ireason = qc->result_tf.nsect;
1052 bc_lo = qc->result_tf.lbam;
1053 bc_hi = qc->result_tf.lbah;
1054 bytes = (bc_hi << 8) | bc_lo;
1056 /* shall be cleared to zero, indicating xfer of data */
1057 if (unlikely(ireason & (1 << 0)))
1058 goto atapi_check;
1060 /* make sure transfer direction matches expected */
1061 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1062 if (unlikely(do_write != i_write))
1063 goto atapi_check;
1065 if (unlikely(!bytes))
1066 goto atapi_check;
1068 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1070 if (unlikely(__atapi_pio_bytes(qc, bytes)))
1071 goto err_out;
1072 ata_sff_sync(ap); /* flush */
1074 return;
1076 atapi_check:
1077 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1078 ireason, bytes);
1079 err_out:
1080 qc->err_mask |= AC_ERR_HSM;
1081 ap->hsm_task_state = HSM_ST_ERR;
1085 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1086 * @ap: the target ata_port
1087 * @qc: qc on going
1089 * RETURNS:
1090 * 1 if ok in workqueue, 0 otherwise.
1092 static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1093 struct ata_queued_cmd *qc)
1095 if (qc->tf.flags & ATA_TFLAG_POLLING)
1096 return 1;
1098 if (ap->hsm_task_state == HSM_ST_FIRST) {
1099 if (qc->tf.protocol == ATA_PROT_PIO &&
1100 (qc->tf.flags & ATA_TFLAG_WRITE))
1101 return 1;
1103 if (ata_is_atapi(qc->tf.protocol) &&
1104 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1105 return 1;
1108 return 0;
1112 * ata_hsm_qc_complete - finish a qc running on standard HSM
1113 * @qc: Command to complete
1114 * @in_wq: 1 if called from workqueue, 0 otherwise
1116 * Finish @qc which is running on standard HSM.
1118 * LOCKING:
1119 * If @in_wq is zero, spin_lock_irqsave(host lock).
1120 * Otherwise, none on entry and grabs host lock.
1122 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1124 struct ata_port *ap = qc->ap;
1125 unsigned long flags;
1127 if (ap->ops->error_handler) {
1128 if (in_wq) {
1129 spin_lock_irqsave(ap->lock, flags);
1131 /* EH might have kicked in while host lock is
1132 * released.
1134 qc = ata_qc_from_tag(ap, qc->tag);
1135 if (qc) {
1136 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1137 ap->ops->sff_irq_on(ap);
1138 ata_qc_complete(qc);
1139 } else
1140 ata_port_freeze(ap);
1143 spin_unlock_irqrestore(ap->lock, flags);
1144 } else {
1145 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1146 ata_qc_complete(qc);
1147 else
1148 ata_port_freeze(ap);
1150 } else {
1151 if (in_wq) {
1152 spin_lock_irqsave(ap->lock, flags);
1153 ap->ops->sff_irq_on(ap);
1154 ata_qc_complete(qc);
1155 spin_unlock_irqrestore(ap->lock, flags);
1156 } else
1157 ata_qc_complete(qc);
1162 * ata_sff_hsm_move - move the HSM to the next state.
1163 * @ap: the target ata_port
1164 * @qc: qc on going
1165 * @status: current device status
1166 * @in_wq: 1 if called from workqueue, 0 otherwise
1168 * RETURNS:
1169 * 1 when poll next status needed, 0 otherwise.
1171 int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1172 u8 status, int in_wq)
1174 struct ata_eh_info *ehi = &ap->link.eh_info;
1175 unsigned long flags = 0;
1176 int poll_next;
1178 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1180 /* Make sure ata_sff_qc_issue() does not throw things
1181 * like DMA polling into the workqueue. Notice that
1182 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1184 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1186 fsm_start:
1187 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1188 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1190 switch (ap->hsm_task_state) {
1191 case HSM_ST_FIRST:
1192 /* Send first data block or PACKET CDB */
1194 /* If polling, we will stay in the work queue after
1195 * sending the data. Otherwise, interrupt handler
1196 * takes over after sending the data.
1198 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1200 /* check device status */
1201 if (unlikely((status & ATA_DRQ) == 0)) {
1202 /* handle BSY=0, DRQ=0 as error */
1203 if (likely(status & (ATA_ERR | ATA_DF)))
1204 /* device stops HSM for abort/error */
1205 qc->err_mask |= AC_ERR_DEV;
1206 else {
1207 /* HSM violation. Let EH handle this */
1208 ata_ehi_push_desc(ehi,
1209 "ST_FIRST: !(DRQ|ERR|DF)");
1210 qc->err_mask |= AC_ERR_HSM;
1213 ap->hsm_task_state = HSM_ST_ERR;
1214 goto fsm_start;
1217 /* Device should not ask for data transfer (DRQ=1)
1218 * when it finds something wrong.
1219 * We ignore DRQ here and stop the HSM by
1220 * changing hsm_task_state to HSM_ST_ERR and
1221 * let the EH abort the command or reset the device.
1223 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1224 /* Some ATAPI tape drives forget to clear the ERR bit
1225 * when doing the next command (mostly request sense).
1226 * We ignore ERR here to workaround and proceed sending
1227 * the CDB.
1229 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1230 ata_ehi_push_desc(ehi, "ST_FIRST: "
1231 "DRQ=1 with device error, "
1232 "dev_stat 0x%X", status);
1233 qc->err_mask |= AC_ERR_HSM;
1234 ap->hsm_task_state = HSM_ST_ERR;
1235 goto fsm_start;
1239 /* Send the CDB (atapi) or the first data block (ata pio out).
1240 * During the state transition, interrupt handler shouldn't
1241 * be invoked before the data transfer is complete and
1242 * hsm_task_state is changed. Hence, the following locking.
1244 if (in_wq)
1245 spin_lock_irqsave(ap->lock, flags);
1247 if (qc->tf.protocol == ATA_PROT_PIO) {
1248 /* PIO data out protocol.
1249 * send first data block.
1252 /* ata_pio_sectors() might change the state
1253 * to HSM_ST_LAST. so, the state is changed here
1254 * before ata_pio_sectors().
1256 ap->hsm_task_state = HSM_ST;
1257 ata_pio_sectors(qc);
1258 } else
1259 /* send CDB */
1260 atapi_send_cdb(ap, qc);
1262 if (in_wq)
1263 spin_unlock_irqrestore(ap->lock, flags);
1265 /* if polling, ata_pio_task() handles the rest.
1266 * otherwise, interrupt handler takes over from here.
1268 break;
1270 case HSM_ST:
1271 /* complete command or read/write the data register */
1272 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1273 /* ATAPI PIO protocol */
1274 if ((status & ATA_DRQ) == 0) {
1275 /* No more data to transfer or device error.
1276 * Device error will be tagged in HSM_ST_LAST.
1278 ap->hsm_task_state = HSM_ST_LAST;
1279 goto fsm_start;
1282 /* Device should not ask for data transfer (DRQ=1)
1283 * when it finds something wrong.
1284 * We ignore DRQ here and stop the HSM by
1285 * changing hsm_task_state to HSM_ST_ERR and
1286 * let the EH abort the command or reset the device.
1288 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1289 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1290 "DRQ=1 with device error, "
1291 "dev_stat 0x%X", status);
1292 qc->err_mask |= AC_ERR_HSM;
1293 ap->hsm_task_state = HSM_ST_ERR;
1294 goto fsm_start;
1297 atapi_pio_bytes(qc);
1299 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1300 /* bad ireason reported by device */
1301 goto fsm_start;
1303 } else {
1304 /* ATA PIO protocol */
1305 if (unlikely((status & ATA_DRQ) == 0)) {
1306 /* handle BSY=0, DRQ=0 as error */
1307 if (likely(status & (ATA_ERR | ATA_DF))) {
1308 /* device stops HSM for abort/error */
1309 qc->err_mask |= AC_ERR_DEV;
1311 /* If diagnostic failed and this is
1312 * IDENTIFY, it's likely a phantom
1313 * device. Mark hint.
1315 if (qc->dev->horkage &
1316 ATA_HORKAGE_DIAGNOSTIC)
1317 qc->err_mask |=
1318 AC_ERR_NODEV_HINT;
1319 } else {
1320 /* HSM violation. Let EH handle this.
1321 * Phantom devices also trigger this
1322 * condition. Mark hint.
1324 ata_ehi_push_desc(ehi, "ST-ATA: "
1325 "DRQ=1 with device error, "
1326 "dev_stat 0x%X", status);
1327 qc->err_mask |= AC_ERR_HSM |
1328 AC_ERR_NODEV_HINT;
1331 ap->hsm_task_state = HSM_ST_ERR;
1332 goto fsm_start;
1335 /* For PIO reads, some devices may ask for
1336 * data transfer (DRQ=1) alone with ERR=1.
1337 * We respect DRQ here and transfer one
1338 * block of junk data before changing the
1339 * hsm_task_state to HSM_ST_ERR.
1341 * For PIO writes, ERR=1 DRQ=1 doesn't make
1342 * sense since the data block has been
1343 * transferred to the device.
1345 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1346 /* data might be corrputed */
1347 qc->err_mask |= AC_ERR_DEV;
1349 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1350 ata_pio_sectors(qc);
1351 status = ata_wait_idle(ap);
1354 if (status & (ATA_BUSY | ATA_DRQ)) {
1355 ata_ehi_push_desc(ehi, "ST-ATA: "
1356 "BUSY|DRQ persists on ERR|DF, "
1357 "dev_stat 0x%X", status);
1358 qc->err_mask |= AC_ERR_HSM;
1361 /* ata_pio_sectors() might change the
1362 * state to HSM_ST_LAST. so, the state
1363 * is changed after ata_pio_sectors().
1365 ap->hsm_task_state = HSM_ST_ERR;
1366 goto fsm_start;
1369 ata_pio_sectors(qc);
1371 if (ap->hsm_task_state == HSM_ST_LAST &&
1372 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1373 /* all data read */
1374 status = ata_wait_idle(ap);
1375 goto fsm_start;
1379 poll_next = 1;
1380 break;
1382 case HSM_ST_LAST:
1383 if (unlikely(!ata_ok(status))) {
1384 qc->err_mask |= __ac_err_mask(status);
1385 ap->hsm_task_state = HSM_ST_ERR;
1386 goto fsm_start;
1389 /* no more data to transfer */
1390 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1391 ap->print_id, qc->dev->devno, status);
1393 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1395 ap->hsm_task_state = HSM_ST_IDLE;
1397 /* complete taskfile transaction */
1398 ata_hsm_qc_complete(qc, in_wq);
1400 poll_next = 0;
1401 break;
1403 case HSM_ST_ERR:
1404 ap->hsm_task_state = HSM_ST_IDLE;
1406 /* complete taskfile transaction */
1407 ata_hsm_qc_complete(qc, in_wq);
1409 poll_next = 0;
1410 break;
1411 default:
1412 poll_next = 0;
1413 BUG();
1416 return poll_next;
1418 EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1420 void ata_pio_task(struct work_struct *work)
1422 struct ata_port *ap =
1423 container_of(work, struct ata_port, port_task.work);
1424 struct ata_queued_cmd *qc = ap->port_task_data;
1425 u8 status;
1426 int poll_next;
1428 fsm_start:
1429 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1432 * This is purely heuristic. This is a fast path.
1433 * Sometimes when we enter, BSY will be cleared in
1434 * a chk-status or two. If not, the drive is probably seeking
1435 * or something. Snooze for a couple msecs, then
1436 * chk-status again. If still busy, queue delayed work.
1438 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1439 if (status & ATA_BUSY) {
1440 msleep(2);
1441 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1442 if (status & ATA_BUSY) {
1443 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1444 return;
1448 /* move the HSM */
1449 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1451 /* another command or interrupt handler
1452 * may be running at this point.
1454 if (poll_next)
1455 goto fsm_start;
1459 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
1460 * @qc: command to issue to device
1462 * Using various libata functions and hooks, this function
1463 * starts an ATA command. ATA commands are grouped into
1464 * classes called "protocols", and issuing each type of protocol
1465 * is slightly different.
1467 * May be used as the qc_issue() entry in ata_port_operations.
1469 * LOCKING:
1470 * spin_lock_irqsave(host lock)
1472 * RETURNS:
1473 * Zero on success, AC_ERR_* mask on failure
1475 unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1477 struct ata_port *ap = qc->ap;
1479 /* Use polling pio if the LLD doesn't handle
1480 * interrupt driven pio and atapi CDB interrupt.
1482 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1483 switch (qc->tf.protocol) {
1484 case ATA_PROT_PIO:
1485 case ATA_PROT_NODATA:
1486 case ATAPI_PROT_PIO:
1487 case ATAPI_PROT_NODATA:
1488 qc->tf.flags |= ATA_TFLAG_POLLING;
1489 break;
1490 case ATAPI_PROT_DMA:
1491 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1492 /* see ata_dma_blacklisted() */
1493 BUG();
1494 break;
1495 default:
1496 break;
1500 /* select the device */
1501 ata_dev_select(ap, qc->dev->devno, 1, 0);
1503 /* start the command */
1504 switch (qc->tf.protocol) {
1505 case ATA_PROT_NODATA:
1506 if (qc->tf.flags & ATA_TFLAG_POLLING)
1507 ata_qc_set_polling(qc);
1509 ata_tf_to_host(ap, &qc->tf);
1510 ap->hsm_task_state = HSM_ST_LAST;
1512 if (qc->tf.flags & ATA_TFLAG_POLLING)
1513 ata_pio_queue_task(ap, qc, 0);
1515 break;
1517 case ATA_PROT_DMA:
1518 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1520 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1521 ap->ops->bmdma_setup(qc); /* set up bmdma */
1522 ap->ops->bmdma_start(qc); /* initiate bmdma */
1523 ap->hsm_task_state = HSM_ST_LAST;
1524 break;
1526 case ATA_PROT_PIO:
1527 if (qc->tf.flags & ATA_TFLAG_POLLING)
1528 ata_qc_set_polling(qc);
1530 ata_tf_to_host(ap, &qc->tf);
1532 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1533 /* PIO data out protocol */
1534 ap->hsm_task_state = HSM_ST_FIRST;
1535 ata_pio_queue_task(ap, qc, 0);
1537 /* always send first data block using
1538 * the ata_pio_task() codepath.
1540 } else {
1541 /* PIO data in protocol */
1542 ap->hsm_task_state = HSM_ST;
1544 if (qc->tf.flags & ATA_TFLAG_POLLING)
1545 ata_pio_queue_task(ap, qc, 0);
1547 /* if polling, ata_pio_task() handles the rest.
1548 * otherwise, interrupt handler takes over from here.
1552 break;
1554 case ATAPI_PROT_PIO:
1555 case ATAPI_PROT_NODATA:
1556 if (qc->tf.flags & ATA_TFLAG_POLLING)
1557 ata_qc_set_polling(qc);
1559 ata_tf_to_host(ap, &qc->tf);
1561 ap->hsm_task_state = HSM_ST_FIRST;
1563 /* send cdb by polling if no cdb interrupt */
1564 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1565 (qc->tf.flags & ATA_TFLAG_POLLING))
1566 ata_pio_queue_task(ap, qc, 0);
1567 break;
1569 case ATAPI_PROT_DMA:
1570 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
1572 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
1573 ap->ops->bmdma_setup(qc); /* set up bmdma */
1574 ap->hsm_task_state = HSM_ST_FIRST;
1576 /* send cdb by polling if no cdb interrupt */
1577 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1578 ata_pio_queue_task(ap, qc, 0);
1579 break;
1581 default:
1582 WARN_ON_ONCE(1);
1583 return AC_ERR_SYSTEM;
1586 return 0;
1588 EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1591 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1592 * @qc: qc to fill result TF for
1594 * @qc is finished and result TF needs to be filled. Fill it
1595 * using ->sff_tf_read.
1597 * LOCKING:
1598 * spin_lock_irqsave(host lock)
1600 * RETURNS:
1601 * true indicating that result TF is successfully filled.
1603 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1605 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1606 return true;
1608 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1611 * ata_sff_host_intr - Handle host interrupt for given (port, task)
1612 * @ap: Port on which interrupt arrived (possibly...)
1613 * @qc: Taskfile currently active in engine
1615 * Handle host interrupt for given queued command. Currently,
1616 * only DMA interrupts are handled. All other commands are
1617 * handled via polling with interrupts disabled (nIEN bit).
1619 * LOCKING:
1620 * spin_lock_irqsave(host lock)
1622 * RETURNS:
1623 * One if interrupt was handled, zero if not (shared irq).
1625 inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1626 struct ata_queued_cmd *qc)
1628 struct ata_eh_info *ehi = &ap->link.eh_info;
1629 u8 status, host_stat = 0;
1631 VPRINTK("ata%u: protocol %d task_state %d\n",
1632 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1634 /* Check whether we are expecting interrupt in this state */
1635 switch (ap->hsm_task_state) {
1636 case HSM_ST_FIRST:
1637 /* Some pre-ATAPI-4 devices assert INTRQ
1638 * at this state when ready to receive CDB.
1641 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1642 * The flag was turned on only for atapi devices. No
1643 * need to check ata_is_atapi(qc->tf.protocol) again.
1645 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1646 goto idle_irq;
1647 break;
1648 case HSM_ST_LAST:
1649 if (qc->tf.protocol == ATA_PROT_DMA ||
1650 qc->tf.protocol == ATAPI_PROT_DMA) {
1651 /* check status of DMA engine */
1652 host_stat = ap->ops->bmdma_status(ap);
1653 VPRINTK("ata%u: host_stat 0x%X\n",
1654 ap->print_id, host_stat);
1656 /* if it's not our irq... */
1657 if (!(host_stat & ATA_DMA_INTR))
1658 goto idle_irq;
1660 /* before we do anything else, clear DMA-Start bit */
1661 ap->ops->bmdma_stop(qc);
1663 if (unlikely(host_stat & ATA_DMA_ERR)) {
1664 /* error when transfering data to/from memory */
1665 qc->err_mask |= AC_ERR_HOST_BUS;
1666 ap->hsm_task_state = HSM_ST_ERR;
1669 break;
1670 case HSM_ST:
1671 break;
1672 default:
1673 goto idle_irq;
1677 /* check main status, clearing INTRQ if needed */
1678 status = ata_sff_irq_status(ap);
1679 if (status & ATA_BUSY)
1680 goto idle_irq;
1682 /* ack bmdma irq events */
1683 ap->ops->sff_irq_clear(ap);
1685 ata_sff_hsm_move(ap, qc, status, 0);
1687 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1688 qc->tf.protocol == ATAPI_PROT_DMA))
1689 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1691 return 1; /* irq handled */
1693 idle_irq:
1694 ap->stats.idle_irq++;
1696 #ifdef ATA_IRQ_TRAP
1697 if ((ap->stats.idle_irq % 1000) == 0) {
1698 ap->ops->sff_check_status(ap);
1699 ap->ops->sff_irq_clear(ap);
1700 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1701 return 1;
1703 #endif
1704 return 0; /* irq not handled */
1706 EXPORT_SYMBOL_GPL(ata_sff_host_intr);
1709 * ata_sff_interrupt - Default ATA host interrupt handler
1710 * @irq: irq line (unused)
1711 * @dev_instance: pointer to our ata_host information structure
1713 * Default interrupt handler for PCI IDE devices. Calls
1714 * ata_sff_host_intr() for each port that is not disabled.
1716 * LOCKING:
1717 * Obtains host lock during operation.
1719 * RETURNS:
1720 * IRQ_NONE or IRQ_HANDLED.
1722 irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1724 struct ata_host *host = dev_instance;
1725 unsigned int i;
1726 unsigned int handled = 0;
1727 unsigned long flags;
1729 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1730 spin_lock_irqsave(&host->lock, flags);
1732 for (i = 0; i < host->n_ports; i++) {
1733 struct ata_port *ap;
1735 ap = host->ports[i];
1736 if (ap &&
1737 !(ap->flags & ATA_FLAG_DISABLED)) {
1738 struct ata_queued_cmd *qc;
1740 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1741 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1742 (qc->flags & ATA_QCFLAG_ACTIVE))
1743 handled |= ata_sff_host_intr(ap, qc);
1747 spin_unlock_irqrestore(&host->lock, flags);
1749 return IRQ_RETVAL(handled);
1751 EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1754 * ata_sff_freeze - Freeze SFF controller port
1755 * @ap: port to freeze
1757 * Freeze BMDMA controller port.
1759 * LOCKING:
1760 * Inherited from caller.
1762 void ata_sff_freeze(struct ata_port *ap)
1764 struct ata_ioports *ioaddr = &ap->ioaddr;
1766 ap->ctl |= ATA_NIEN;
1767 ap->last_ctl = ap->ctl;
1769 if (ioaddr->ctl_addr)
1770 iowrite8(ap->ctl, ioaddr->ctl_addr);
1772 /* Under certain circumstances, some controllers raise IRQ on
1773 * ATA_NIEN manipulation. Also, many controllers fail to mask
1774 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1776 ap->ops->sff_check_status(ap);
1778 ap->ops->sff_irq_clear(ap);
1780 EXPORT_SYMBOL_GPL(ata_sff_freeze);
1783 * ata_sff_thaw - Thaw SFF controller port
1784 * @ap: port to thaw
1786 * Thaw SFF controller port.
1788 * LOCKING:
1789 * Inherited from caller.
1791 void ata_sff_thaw(struct ata_port *ap)
1793 /* clear & re-enable interrupts */
1794 ap->ops->sff_check_status(ap);
1795 ap->ops->sff_irq_clear(ap);
1796 ap->ops->sff_irq_on(ap);
1798 EXPORT_SYMBOL_GPL(ata_sff_thaw);
1801 * ata_sff_prereset - prepare SFF link for reset
1802 * @link: SFF link to be reset
1803 * @deadline: deadline jiffies for the operation
1805 * SFF link @link is about to be reset. Initialize it. It first
1806 * calls ata_std_prereset() and wait for !BSY if the port is
1807 * being softreset.
1809 * LOCKING:
1810 * Kernel thread context (may sleep)
1812 * RETURNS:
1813 * 0 on success, -errno otherwise.
1815 int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1817 struct ata_eh_context *ehc = &link->eh_context;
1818 int rc;
1820 rc = ata_std_prereset(link, deadline);
1821 if (rc)
1822 return rc;
1824 /* if we're about to do hardreset, nothing more to do */
1825 if (ehc->i.action & ATA_EH_HARDRESET)
1826 return 0;
1828 /* wait for !BSY if we don't know that no device is attached */
1829 if (!ata_link_offline(link)) {
1830 rc = ata_sff_wait_ready(link, deadline);
1831 if (rc && rc != -ENODEV) {
1832 ata_link_printk(link, KERN_WARNING, "device not ready "
1833 "(errno=%d), forcing hardreset\n", rc);
1834 ehc->i.action |= ATA_EH_HARDRESET;
1838 return 0;
1840 EXPORT_SYMBOL_GPL(ata_sff_prereset);
1843 * ata_devchk - PATA device presence detection
1844 * @ap: ATA channel to examine
1845 * @device: Device to examine (starting at zero)
1847 * This technique was originally described in
1848 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1849 * later found its way into the ATA/ATAPI spec.
1851 * Write a pattern to the ATA shadow registers,
1852 * and if a device is present, it will respond by
1853 * correctly storing and echoing back the
1854 * ATA shadow register contents.
1856 * LOCKING:
1857 * caller.
1859 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1861 struct ata_ioports *ioaddr = &ap->ioaddr;
1862 u8 nsect, lbal;
1864 ap->ops->sff_dev_select(ap, device);
1866 iowrite8(0x55, ioaddr->nsect_addr);
1867 iowrite8(0xaa, ioaddr->lbal_addr);
1869 iowrite8(0xaa, ioaddr->nsect_addr);
1870 iowrite8(0x55, ioaddr->lbal_addr);
1872 iowrite8(0x55, ioaddr->nsect_addr);
1873 iowrite8(0xaa, ioaddr->lbal_addr);
1875 nsect = ioread8(ioaddr->nsect_addr);
1876 lbal = ioread8(ioaddr->lbal_addr);
1878 if ((nsect == 0x55) && (lbal == 0xaa))
1879 return 1; /* we found a device */
1881 return 0; /* nothing found */
1885 * ata_sff_dev_classify - Parse returned ATA device signature
1886 * @dev: ATA device to classify (starting at zero)
1887 * @present: device seems present
1888 * @r_err: Value of error register on completion
1890 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1891 * an ATA/ATAPI-defined set of values is placed in the ATA
1892 * shadow registers, indicating the results of device detection
1893 * and diagnostics.
1895 * Select the ATA device, and read the values from the ATA shadow
1896 * registers. Then parse according to the Error register value,
1897 * and the spec-defined values examined by ata_dev_classify().
1899 * LOCKING:
1900 * caller.
1902 * RETURNS:
1903 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1905 unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1906 u8 *r_err)
1908 struct ata_port *ap = dev->link->ap;
1909 struct ata_taskfile tf;
1910 unsigned int class;
1911 u8 err;
1913 ap->ops->sff_dev_select(ap, dev->devno);
1915 memset(&tf, 0, sizeof(tf));
1917 ap->ops->sff_tf_read(ap, &tf);
1918 err = tf.feature;
1919 if (r_err)
1920 *r_err = err;
1922 /* see if device passed diags: continue and warn later */
1923 if (err == 0)
1924 /* diagnostic fail : do nothing _YET_ */
1925 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1926 else if (err == 1)
1927 /* do nothing */ ;
1928 else if ((dev->devno == 0) && (err == 0x81))
1929 /* do nothing */ ;
1930 else
1931 return ATA_DEV_NONE;
1933 /* determine if device is ATA or ATAPI */
1934 class = ata_dev_classify(&tf);
1936 if (class == ATA_DEV_UNKNOWN) {
1937 /* If the device failed diagnostic, it's likely to
1938 * have reported incorrect device signature too.
1939 * Assume ATA device if the device seems present but
1940 * device signature is invalid with diagnostic
1941 * failure.
1943 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1944 class = ATA_DEV_ATA;
1945 else
1946 class = ATA_DEV_NONE;
1947 } else if ((class == ATA_DEV_ATA) &&
1948 (ap->ops->sff_check_status(ap) == 0))
1949 class = ATA_DEV_NONE;
1951 return class;
1953 EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1956 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1957 * @link: SFF link which is just reset
1958 * @devmask: mask of present devices
1959 * @deadline: deadline jiffies for the operation
1961 * Wait devices attached to SFF @link to become ready after
1962 * reset. It contains preceding 150ms wait to avoid accessing TF
1963 * status register too early.
1965 * LOCKING:
1966 * Kernel thread context (may sleep).
1968 * RETURNS:
1969 * 0 on success, -ENODEV if some or all of devices in @devmask
1970 * don't seem to exist. -errno on other errors.
1972 int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1973 unsigned long deadline)
1975 struct ata_port *ap = link->ap;
1976 struct ata_ioports *ioaddr = &ap->ioaddr;
1977 unsigned int dev0 = devmask & (1 << 0);
1978 unsigned int dev1 = devmask & (1 << 1);
1979 int rc, ret = 0;
1981 msleep(ATA_WAIT_AFTER_RESET);
1983 /* always check readiness of the master device */
1984 rc = ata_sff_wait_ready(link, deadline);
1985 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1986 * and TF status is 0xff, bail out on it too.
1988 if (rc)
1989 return rc;
1991 /* if device 1 was found in ata_devchk, wait for register
1992 * access briefly, then wait for BSY to clear.
1994 if (dev1) {
1995 int i;
1997 ap->ops->sff_dev_select(ap, 1);
1999 /* Wait for register access. Some ATAPI devices fail
2000 * to set nsect/lbal after reset, so don't waste too
2001 * much time on it. We're gonna wait for !BSY anyway.
2003 for (i = 0; i < 2; i++) {
2004 u8 nsect, lbal;
2006 nsect = ioread8(ioaddr->nsect_addr);
2007 lbal = ioread8(ioaddr->lbal_addr);
2008 if ((nsect == 1) && (lbal == 1))
2009 break;
2010 msleep(50); /* give drive a breather */
2013 rc = ata_sff_wait_ready(link, deadline);
2014 if (rc) {
2015 if (rc != -ENODEV)
2016 return rc;
2017 ret = rc;
2021 /* is all this really necessary? */
2022 ap->ops->sff_dev_select(ap, 0);
2023 if (dev1)
2024 ap->ops->sff_dev_select(ap, 1);
2025 if (dev0)
2026 ap->ops->sff_dev_select(ap, 0);
2028 return ret;
2030 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2032 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2033 unsigned long deadline)
2035 struct ata_ioports *ioaddr = &ap->ioaddr;
2037 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2039 /* software reset. causes dev0 to be selected */
2040 iowrite8(ap->ctl, ioaddr->ctl_addr);
2041 udelay(20); /* FIXME: flush */
2042 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2043 udelay(20); /* FIXME: flush */
2044 iowrite8(ap->ctl, ioaddr->ctl_addr);
2046 /* wait the port to become ready */
2047 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2051 * ata_sff_softreset - reset host port via ATA SRST
2052 * @link: ATA link to reset
2053 * @classes: resulting classes of attached devices
2054 * @deadline: deadline jiffies for the operation
2056 * Reset host port using ATA SRST.
2058 * LOCKING:
2059 * Kernel thread context (may sleep)
2061 * RETURNS:
2062 * 0 on success, -errno otherwise.
2064 int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2065 unsigned long deadline)
2067 struct ata_port *ap = link->ap;
2068 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2069 unsigned int devmask = 0;
2070 int rc;
2071 u8 err;
2073 DPRINTK("ENTER\n");
2075 /* determine if device 0/1 are present */
2076 if (ata_devchk(ap, 0))
2077 devmask |= (1 << 0);
2078 if (slave_possible && ata_devchk(ap, 1))
2079 devmask |= (1 << 1);
2081 /* select device 0 again */
2082 ap->ops->sff_dev_select(ap, 0);
2084 /* issue bus reset */
2085 DPRINTK("about to softreset, devmask=%x\n", devmask);
2086 rc = ata_bus_softreset(ap, devmask, deadline);
2087 /* if link is occupied, -ENODEV too is an error */
2088 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2089 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2090 return rc;
2093 /* determine by signature whether we have ATA or ATAPI devices */
2094 classes[0] = ata_sff_dev_classify(&link->device[0],
2095 devmask & (1 << 0), &err);
2096 if (slave_possible && err != 0x81)
2097 classes[1] = ata_sff_dev_classify(&link->device[1],
2098 devmask & (1 << 1), &err);
2100 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2101 return 0;
2103 EXPORT_SYMBOL_GPL(ata_sff_softreset);
2106 * sata_sff_hardreset - reset host port via SATA phy reset
2107 * @link: link to reset
2108 * @class: resulting class of attached device
2109 * @deadline: deadline jiffies for the operation
2111 * SATA phy-reset host port using DET bits of SControl register,
2112 * wait for !BSY and classify the attached device.
2114 * LOCKING:
2115 * Kernel thread context (may sleep)
2117 * RETURNS:
2118 * 0 on success, -errno otherwise.
2120 int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2121 unsigned long deadline)
2123 struct ata_eh_context *ehc = &link->eh_context;
2124 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2125 bool online;
2126 int rc;
2128 rc = sata_link_hardreset(link, timing, deadline, &online,
2129 ata_sff_check_ready);
2130 if (online)
2131 *class = ata_sff_dev_classify(link->device, 1, NULL);
2133 DPRINTK("EXIT, class=%u\n", *class);
2134 return rc;
2136 EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2139 * ata_sff_postreset - SFF postreset callback
2140 * @link: the target SFF ata_link
2141 * @classes: classes of attached devices
2143 * This function is invoked after a successful reset. It first
2144 * calls ata_std_postreset() and performs SFF specific postreset
2145 * processing.
2147 * LOCKING:
2148 * Kernel thread context (may sleep)
2150 void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2152 struct ata_port *ap = link->ap;
2154 ata_std_postreset(link, classes);
2156 /* is double-select really necessary? */
2157 if (classes[0] != ATA_DEV_NONE)
2158 ap->ops->sff_dev_select(ap, 1);
2159 if (classes[1] != ATA_DEV_NONE)
2160 ap->ops->sff_dev_select(ap, 0);
2162 /* bail out if no device is present */
2163 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2164 DPRINTK("EXIT, no device\n");
2165 return;
2168 /* set up device control */
2169 if (ap->ioaddr.ctl_addr)
2170 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2172 EXPORT_SYMBOL_GPL(ata_sff_postreset);
2175 * ata_sff_error_handler - Stock error handler for BMDMA controller
2176 * @ap: port to handle error for
2178 * Stock error handler for SFF controller. It can handle both
2179 * PATA and SATA controllers. Many controllers should be able to
2180 * use this EH as-is or with some added handling before and
2181 * after.
2183 * LOCKING:
2184 * Kernel thread context (may sleep)
2186 void ata_sff_error_handler(struct ata_port *ap)
2188 ata_reset_fn_t softreset = ap->ops->softreset;
2189 ata_reset_fn_t hardreset = ap->ops->hardreset;
2190 struct ata_queued_cmd *qc;
2191 unsigned long flags;
2192 int thaw = 0;
2194 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2195 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2196 qc = NULL;
2198 /* reset PIO HSM and stop DMA engine */
2199 spin_lock_irqsave(ap->lock, flags);
2201 ap->hsm_task_state = HSM_ST_IDLE;
2203 if (ap->ioaddr.bmdma_addr &&
2204 qc && (qc->tf.protocol == ATA_PROT_DMA ||
2205 qc->tf.protocol == ATAPI_PROT_DMA)) {
2206 u8 host_stat;
2208 host_stat = ap->ops->bmdma_status(ap);
2210 /* BMDMA controllers indicate host bus error by
2211 * setting DMA_ERR bit and timing out. As it wasn't
2212 * really a timeout event, adjust error mask and
2213 * cancel frozen state.
2215 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2216 qc->err_mask = AC_ERR_HOST_BUS;
2217 thaw = 1;
2220 ap->ops->bmdma_stop(qc);
2223 ata_sff_sync(ap); /* FIXME: We don't need this */
2224 ap->ops->sff_check_status(ap);
2225 ap->ops->sff_irq_clear(ap);
2227 spin_unlock_irqrestore(ap->lock, flags);
2229 if (thaw)
2230 ata_eh_thaw_port(ap);
2232 /* PIO and DMA engines have been stopped, perform recovery */
2234 /* Ignore ata_sff_softreset if ctl isn't accessible and
2235 * built-in hardresets if SCR access isn't available.
2237 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
2238 softreset = NULL;
2239 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
2240 hardreset = NULL;
2242 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2243 ap->ops->postreset);
2245 EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2248 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
2249 * @qc: internal command to clean up
2251 * LOCKING:
2252 * Kernel thread context (may sleep)
2254 void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
2256 struct ata_port *ap = qc->ap;
2257 unsigned long flags;
2259 spin_lock_irqsave(ap->lock, flags);
2261 ap->hsm_task_state = HSM_ST_IDLE;
2263 if (ap->ioaddr.bmdma_addr)
2264 ata_bmdma_stop(qc);
2266 spin_unlock_irqrestore(ap->lock, flags);
2268 EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
2271 * ata_sff_port_start - Set port up for dma.
2272 * @ap: Port to initialize
2274 * Called just after data structures for each port are
2275 * initialized. Allocates space for PRD table if the device
2276 * is DMA capable SFF.
2278 * May be used as the port_start() entry in ata_port_operations.
2280 * LOCKING:
2281 * Inherited from caller.
2283 int ata_sff_port_start(struct ata_port *ap)
2285 if (ap->ioaddr.bmdma_addr)
2286 return ata_port_start(ap);
2287 return 0;
2289 EXPORT_SYMBOL_GPL(ata_sff_port_start);
2292 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2293 * @ioaddr: IO address structure to be initialized
2295 * Utility function which initializes data_addr, error_addr,
2296 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2297 * device_addr, status_addr, and command_addr to standard offsets
2298 * relative to cmd_addr.
2300 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2302 void ata_sff_std_ports(struct ata_ioports *ioaddr)
2304 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2305 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2306 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2307 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2308 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2309 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2310 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2311 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2312 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2313 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2315 EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2317 unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2318 unsigned long xfer_mask)
2320 /* Filter out DMA modes if the device has been configured by
2321 the BIOS as PIO only */
2323 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2324 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2325 return xfer_mask;
2327 EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
2330 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2331 * @qc: Info associated with this ATA transaction.
2333 * LOCKING:
2334 * spin_lock_irqsave(host lock)
2336 void ata_bmdma_setup(struct ata_queued_cmd *qc)
2338 struct ata_port *ap = qc->ap;
2339 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2340 u8 dmactl;
2342 /* load PRD table addr. */
2343 mb(); /* make sure PRD table writes are visible to controller */
2344 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2346 /* specify data direction, triple-check start bit is clear */
2347 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2348 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2349 if (!rw)
2350 dmactl |= ATA_DMA_WR;
2351 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2353 /* issue r/w command */
2354 ap->ops->sff_exec_command(ap, &qc->tf);
2356 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2359 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2360 * @qc: Info associated with this ATA transaction.
2362 * LOCKING:
2363 * spin_lock_irqsave(host lock)
2365 void ata_bmdma_start(struct ata_queued_cmd *qc)
2367 struct ata_port *ap = qc->ap;
2368 u8 dmactl;
2370 /* start host DMA transaction */
2371 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2372 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2374 /* Strictly, one may wish to issue an ioread8() here, to
2375 * flush the mmio write. However, control also passes
2376 * to the hardware at this point, and it will interrupt
2377 * us when we are to resume control. So, in effect,
2378 * we don't care when the mmio write flushes.
2379 * Further, a read of the DMA status register _immediately_
2380 * following the write may not be what certain flaky hardware
2381 * is expected, so I think it is best to not add a readb()
2382 * without first all the MMIO ATA cards/mobos.
2383 * Or maybe I'm just being paranoid.
2385 * FIXME: The posting of this write means I/O starts are
2386 * unneccessarily delayed for MMIO
2389 EXPORT_SYMBOL_GPL(ata_bmdma_start);
2392 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2393 * @qc: Command we are ending DMA for
2395 * Clears the ATA_DMA_START flag in the dma control register
2397 * May be used as the bmdma_stop() entry in ata_port_operations.
2399 * LOCKING:
2400 * spin_lock_irqsave(host lock)
2402 void ata_bmdma_stop(struct ata_queued_cmd *qc)
2404 struct ata_port *ap = qc->ap;
2405 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2407 /* clear start/stop bit */
2408 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2409 mmio + ATA_DMA_CMD);
2411 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2412 ata_sff_dma_pause(ap);
2414 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2417 * ata_bmdma_status - Read PCI IDE BMDMA status
2418 * @ap: Port associated with this ATA transaction.
2420 * Read and return BMDMA status register.
2422 * May be used as the bmdma_status() entry in ata_port_operations.
2424 * LOCKING:
2425 * spin_lock_irqsave(host lock)
2427 u8 ata_bmdma_status(struct ata_port *ap)
2429 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2431 EXPORT_SYMBOL_GPL(ata_bmdma_status);
2434 * ata_bus_reset - reset host port and associated ATA channel
2435 * @ap: port to reset
2437 * This is typically the first time we actually start issuing
2438 * commands to the ATA channel. We wait for BSY to clear, then
2439 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2440 * result. Determine what devices, if any, are on the channel
2441 * by looking at the device 0/1 error register. Look at the signature
2442 * stored in each device's taskfile registers, to determine if
2443 * the device is ATA or ATAPI.
2445 * LOCKING:
2446 * PCI/etc. bus probe sem.
2447 * Obtains host lock.
2449 * SIDE EFFECTS:
2450 * Sets ATA_FLAG_DISABLED if bus reset fails.
2452 * DEPRECATED:
2453 * This function is only for drivers which still use old EH and
2454 * will be removed soon.
2456 void ata_bus_reset(struct ata_port *ap)
2458 struct ata_device *device = ap->link.device;
2459 struct ata_ioports *ioaddr = &ap->ioaddr;
2460 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2461 u8 err;
2462 unsigned int dev0, dev1 = 0, devmask = 0;
2463 int rc;
2465 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2467 /* determine if device 0/1 are present */
2468 if (ap->flags & ATA_FLAG_SATA_RESET)
2469 dev0 = 1;
2470 else {
2471 dev0 = ata_devchk(ap, 0);
2472 if (slave_possible)
2473 dev1 = ata_devchk(ap, 1);
2476 if (dev0)
2477 devmask |= (1 << 0);
2478 if (dev1)
2479 devmask |= (1 << 1);
2481 /* select device 0 again */
2482 ap->ops->sff_dev_select(ap, 0);
2484 /* issue bus reset */
2485 if (ap->flags & ATA_FLAG_SRST) {
2486 rc = ata_bus_softreset(ap, devmask,
2487 ata_deadline(jiffies, 40000));
2488 if (rc && rc != -ENODEV)
2489 goto err_out;
2493 * determine by signature whether we have ATA or ATAPI devices
2495 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
2496 if ((slave_possible) && (err != 0x81))
2497 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
2499 /* is double-select really necessary? */
2500 if (device[1].class != ATA_DEV_NONE)
2501 ap->ops->sff_dev_select(ap, 1);
2502 if (device[0].class != ATA_DEV_NONE)
2503 ap->ops->sff_dev_select(ap, 0);
2505 /* if no devices were detected, disable this port */
2506 if ((device[0].class == ATA_DEV_NONE) &&
2507 (device[1].class == ATA_DEV_NONE))
2508 goto err_out;
2510 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2511 /* set up device control for ATA_FLAG_SATA_RESET */
2512 iowrite8(ap->ctl, ioaddr->ctl_addr);
2515 DPRINTK("EXIT\n");
2516 return;
2518 err_out:
2519 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2520 ata_port_disable(ap);
2522 DPRINTK("EXIT\n");
2524 EXPORT_SYMBOL_GPL(ata_bus_reset);
2526 #ifdef CONFIG_PCI
2529 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
2530 * @pdev: PCI device
2532 * Some PCI ATA devices report simplex mode but in fact can be told to
2533 * enter non simplex mode. This implements the necessary logic to
2534 * perform the task on such devices. Calling it on other devices will
2535 * have -undefined- behaviour.
2537 int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
2539 unsigned long bmdma = pci_resource_start(pdev, 4);
2540 u8 simplex;
2542 if (bmdma == 0)
2543 return -ENOENT;
2545 simplex = inb(bmdma + 0x02);
2546 outb(simplex & 0x60, bmdma + 0x02);
2547 simplex = inb(bmdma + 0x02);
2548 if (simplex & 0x80)
2549 return -EOPNOTSUPP;
2550 return 0;
2552 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2555 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
2556 * @host: target ATA host
2558 * Acquire PCI BMDMA resources and initialize @host accordingly.
2560 * LOCKING:
2561 * Inherited from calling layer (may sleep).
2563 * RETURNS:
2564 * 0 on success, -errno otherwise.
2566 int ata_pci_bmdma_init(struct ata_host *host)
2568 struct device *gdev = host->dev;
2569 struct pci_dev *pdev = to_pci_dev(gdev);
2570 int i, rc;
2572 /* No BAR4 allocation: No DMA */
2573 if (pci_resource_start(pdev, 4) == 0)
2574 return 0;
2576 /* TODO: If we get no DMA mask we should fall back to PIO */
2577 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2578 if (rc)
2579 return rc;
2580 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2581 if (rc)
2582 return rc;
2584 /* request and iomap DMA region */
2585 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
2586 if (rc) {
2587 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2588 return -ENOMEM;
2590 host->iomap = pcim_iomap_table(pdev);
2592 for (i = 0; i < 2; i++) {
2593 struct ata_port *ap = host->ports[i];
2594 void __iomem *bmdma = host->iomap[4] + 8 * i;
2596 if (ata_port_is_dummy(ap))
2597 continue;
2599 ap->ioaddr.bmdma_addr = bmdma;
2600 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2601 (ioread8(bmdma + 2) & 0x80))
2602 host->flags |= ATA_HOST_SIMPLEX;
2604 ata_port_desc(ap, "bmdma 0x%llx",
2605 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
2608 return 0;
2610 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2612 static int ata_resources_present(struct pci_dev *pdev, int port)
2614 int i;
2616 /* Check the PCI resources for this channel are enabled */
2617 port = port * 2;
2618 for (i = 0; i < 2; i++) {
2619 if (pci_resource_start(pdev, port + i) == 0 ||
2620 pci_resource_len(pdev, port + i) == 0)
2621 return 0;
2623 return 1;
2627 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2628 * @host: target ATA host
2630 * Acquire native PCI ATA resources for @host and initialize the
2631 * first two ports of @host accordingly. Ports marked dummy are
2632 * skipped and allocation failure makes the port dummy.
2634 * Note that native PCI resources are valid even for legacy hosts
2635 * as we fix up pdev resources array early in boot, so this
2636 * function can be used for both native and legacy SFF hosts.
2638 * LOCKING:
2639 * Inherited from calling layer (may sleep).
2641 * RETURNS:
2642 * 0 if at least one port is initialized, -ENODEV if no port is
2643 * available.
2645 int ata_pci_sff_init_host(struct ata_host *host)
2647 struct device *gdev = host->dev;
2648 struct pci_dev *pdev = to_pci_dev(gdev);
2649 unsigned int mask = 0;
2650 int i, rc;
2652 /* request, iomap BARs and init port addresses accordingly */
2653 for (i = 0; i < 2; i++) {
2654 struct ata_port *ap = host->ports[i];
2655 int base = i * 2;
2656 void __iomem * const *iomap;
2658 if (ata_port_is_dummy(ap))
2659 continue;
2661 /* Discard disabled ports. Some controllers show
2662 * their unused channels this way. Disabled ports are
2663 * made dummy.
2665 if (!ata_resources_present(pdev, i)) {
2666 ap->ops = &ata_dummy_port_ops;
2667 continue;
2670 rc = pcim_iomap_regions(pdev, 0x3 << base,
2671 dev_driver_string(gdev));
2672 if (rc) {
2673 dev_printk(KERN_WARNING, gdev,
2674 "failed to request/iomap BARs for port %d "
2675 "(errno=%d)\n", i, rc);
2676 if (rc == -EBUSY)
2677 pcim_pin_device(pdev);
2678 ap->ops = &ata_dummy_port_ops;
2679 continue;
2681 host->iomap = iomap = pcim_iomap_table(pdev);
2683 ap->ioaddr.cmd_addr = iomap[base];
2684 ap->ioaddr.altstatus_addr =
2685 ap->ioaddr.ctl_addr = (void __iomem *)
2686 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2687 ata_sff_std_ports(&ap->ioaddr);
2689 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2690 (unsigned long long)pci_resource_start(pdev, base),
2691 (unsigned long long)pci_resource_start(pdev, base + 1));
2693 mask |= 1 << i;
2696 if (!mask) {
2697 dev_printk(KERN_ERR, gdev, "no available native port\n");
2698 return -ENODEV;
2701 return 0;
2703 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2706 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
2707 * @pdev: target PCI device
2708 * @ppi: array of port_info, must be enough for two ports
2709 * @r_host: out argument for the initialized ATA host
2711 * Helper to allocate ATA host for @pdev, acquire all native PCI
2712 * resources and initialize it accordingly in one go.
2714 * LOCKING:
2715 * Inherited from calling layer (may sleep).
2717 * RETURNS:
2718 * 0 on success, -errno otherwise.
2720 int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2721 const struct ata_port_info * const *ppi,
2722 struct ata_host **r_host)
2724 struct ata_host *host;
2725 int rc;
2727 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2728 return -ENOMEM;
2730 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2731 if (!host) {
2732 dev_printk(KERN_ERR, &pdev->dev,
2733 "failed to allocate ATA host\n");
2734 rc = -ENOMEM;
2735 goto err_out;
2738 rc = ata_pci_sff_init_host(host);
2739 if (rc)
2740 goto err_out;
2742 /* init DMA related stuff */
2743 rc = ata_pci_bmdma_init(host);
2744 if (rc)
2745 goto err_bmdma;
2747 devres_remove_group(&pdev->dev, NULL);
2748 *r_host = host;
2749 return 0;
2751 err_bmdma:
2752 /* This is necessary because PCI and iomap resources are
2753 * merged and releasing the top group won't release the
2754 * acquired resources if some of those have been acquired
2755 * before entering this function.
2757 pcim_iounmap_regions(pdev, 0xf);
2758 err_out:
2759 devres_release_group(&pdev->dev, NULL);
2760 return rc;
2762 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2765 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2766 * @host: target SFF ATA host
2767 * @irq_handler: irq_handler used when requesting IRQ(s)
2768 * @sht: scsi_host_template to use when registering the host
2770 * This is the counterpart of ata_host_activate() for SFF ATA
2771 * hosts. This separate helper is necessary because SFF hosts
2772 * use two separate interrupts in legacy mode.
2774 * LOCKING:
2775 * Inherited from calling layer (may sleep).
2777 * RETURNS:
2778 * 0 on success, -errno otherwise.
2780 int ata_pci_sff_activate_host(struct ata_host *host,
2781 irq_handler_t irq_handler,
2782 struct scsi_host_template *sht)
2784 struct device *dev = host->dev;
2785 struct pci_dev *pdev = to_pci_dev(dev);
2786 const char *drv_name = dev_driver_string(host->dev);
2787 int legacy_mode = 0, rc;
2789 rc = ata_host_start(host);
2790 if (rc)
2791 return rc;
2793 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2794 u8 tmp8, mask;
2796 /* TODO: What if one channel is in native mode ... */
2797 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2798 mask = (1 << 2) | (1 << 0);
2799 if ((tmp8 & mask) != mask)
2800 legacy_mode = 1;
2801 #if defined(CONFIG_NO_ATA_LEGACY)
2802 /* Some platforms with PCI limits cannot address compat
2803 port space. In that case we punt if their firmware has
2804 left a device in compatibility mode */
2805 if (legacy_mode) {
2806 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2807 return -EOPNOTSUPP;
2809 #endif
2812 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2813 return -ENOMEM;
2815 if (!legacy_mode && pdev->irq) {
2816 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2817 IRQF_SHARED, drv_name, host);
2818 if (rc)
2819 goto out;
2821 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2822 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2823 } else if (legacy_mode) {
2824 if (!ata_port_is_dummy(host->ports[0])) {
2825 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2826 irq_handler, IRQF_SHARED,
2827 drv_name, host);
2828 if (rc)
2829 goto out;
2831 ata_port_desc(host->ports[0], "irq %d",
2832 ATA_PRIMARY_IRQ(pdev));
2835 if (!ata_port_is_dummy(host->ports[1])) {
2836 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2837 irq_handler, IRQF_SHARED,
2838 drv_name, host);
2839 if (rc)
2840 goto out;
2842 ata_port_desc(host->ports[1], "irq %d",
2843 ATA_SECONDARY_IRQ(pdev));
2847 rc = ata_host_register(host, sht);
2848 out:
2849 if (rc == 0)
2850 devres_remove_group(dev, NULL);
2851 else
2852 devres_release_group(dev, NULL);
2854 return rc;
2856 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2859 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
2860 * @pdev: Controller to be initialized
2861 * @ppi: array of port_info, must be enough for two ports
2862 * @sht: scsi_host_template to use when registering the host
2863 * @host_priv: host private_data
2865 * This is a helper function which can be called from a driver's
2866 * xxx_init_one() probe function if the hardware uses traditional
2867 * IDE taskfile registers.
2869 * This function calls pci_enable_device(), reserves its register
2870 * regions, sets the dma mask, enables bus master mode, and calls
2871 * ata_device_add()
2873 * ASSUMPTION:
2874 * Nobody makes a single channel controller that appears solely as
2875 * the secondary legacy port on PCI.
2877 * LOCKING:
2878 * Inherited from PCI layer (may sleep).
2880 * RETURNS:
2881 * Zero on success, negative on errno-based value on error.
2883 int ata_pci_sff_init_one(struct pci_dev *pdev,
2884 const struct ata_port_info * const *ppi,
2885 struct scsi_host_template *sht, void *host_priv)
2887 struct device *dev = &pdev->dev;
2888 const struct ata_port_info *pi = NULL;
2889 struct ata_host *host = NULL;
2890 int i, rc;
2892 DPRINTK("ENTER\n");
2894 /* look up the first valid port_info */
2895 for (i = 0; i < 2 && ppi[i]; i++) {
2896 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2897 pi = ppi[i];
2898 break;
2902 if (!pi) {
2903 dev_printk(KERN_ERR, &pdev->dev,
2904 "no valid port_info specified\n");
2905 return -EINVAL;
2908 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2909 return -ENOMEM;
2911 rc = pcim_enable_device(pdev);
2912 if (rc)
2913 goto out;
2915 /* prepare and activate SFF host */
2916 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2917 if (rc)
2918 goto out;
2919 host->private_data = host_priv;
2921 pci_set_master(pdev);
2922 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2923 out:
2924 if (rc == 0)
2925 devres_remove_group(&pdev->dev, NULL);
2926 else
2927 devres_release_group(&pdev->dev, NULL);
2929 return rc;
2931 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2933 #endif /* CONFIG_PCI */