USB: musb_hdrc: another davinci buildfix (otg related)
[linux-2.6.git] / drivers / ata / libata-core.c
blob88c242856dae999861f6864e9d70e064035a82b0
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <scsi/scsi.h>
61 #include <scsi/scsi_cmnd.h>
62 #include <scsi/scsi_host.h>
63 #include <linux/libata.h>
64 #include <asm/byteorder.h>
65 #include <linux/cdrom.h>
67 #include "libata.h"
70 /* debounce timing parameters in msecs { interval, duration, timeout } */
71 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
72 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
73 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
75 const struct ata_port_operations ata_base_port_ops = {
76 .prereset = ata_std_prereset,
77 .postreset = ata_std_postreset,
78 .error_handler = ata_std_error_handler,
81 const struct ata_port_operations sata_port_ops = {
82 .inherits = &ata_base_port_ops,
84 .qc_defer = ata_std_qc_defer,
85 .hardreset = sata_std_hardreset,
88 static unsigned int ata_dev_init_params(struct ata_device *dev,
89 u16 heads, u16 sectors);
90 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
91 static unsigned int ata_dev_set_feature(struct ata_device *dev,
92 u8 enable, u8 feature);
93 static void ata_dev_xfermask(struct ata_device *dev);
94 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96 unsigned int ata_print_id = 1;
97 static struct workqueue_struct *ata_wq;
99 struct workqueue_struct *ata_aux_wq;
101 struct ata_force_param {
102 const char *name;
103 unsigned int cbl;
104 int spd_limit;
105 unsigned long xfer_mask;
106 unsigned int horkage_on;
107 unsigned int horkage_off;
108 unsigned int lflags;
111 struct ata_force_ent {
112 int port;
113 int device;
114 struct ata_force_param param;
117 static struct ata_force_ent *ata_force_tbl;
118 static int ata_force_tbl_size;
120 static char ata_force_param_buf[PAGE_SIZE] __initdata;
121 /* param_buf is thrown away after initialization, disallow read */
122 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
123 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125 static int atapi_enabled = 1;
126 module_param(atapi_enabled, int, 0444);
127 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
129 static int atapi_dmadir = 0;
130 module_param(atapi_dmadir, int, 0444);
131 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133 int atapi_passthru16 = 1;
134 module_param(atapi_passthru16, int, 0444);
135 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137 int libata_fua = 0;
138 module_param_named(fua, libata_fua, int, 0444);
139 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
141 static int ata_ignore_hpa;
142 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
143 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
146 module_param_named(dma, libata_dma_mask, int, 0444);
147 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149 static int ata_probe_timeout;
150 module_param(ata_probe_timeout, int, 0444);
151 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153 int libata_noacpi = 0;
154 module_param_named(noacpi, libata_noacpi, int, 0444);
155 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
157 int libata_allow_tpm = 0;
158 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
159 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
161 MODULE_AUTHOR("Jeff Garzik");
162 MODULE_DESCRIPTION("Library module for ATA devices");
163 MODULE_LICENSE("GPL");
164 MODULE_VERSION(DRV_VERSION);
168 * ata_link_next - link iteration helper
169 * @link: the previous link, NULL to start
170 * @ap: ATA port containing links to iterate
171 * @mode: iteration mode, one of ATA_LITER_*
173 * LOCKING:
174 * Host lock or EH context.
176 * RETURNS:
177 * Pointer to the next link.
179 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
180 enum ata_link_iter_mode mode)
182 BUG_ON(mode != ATA_LITER_EDGE &&
183 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
185 /* NULL link indicates start of iteration */
186 if (!link)
187 switch (mode) {
188 case ATA_LITER_EDGE:
189 case ATA_LITER_PMP_FIRST:
190 if (sata_pmp_attached(ap))
191 return ap->pmp_link;
192 /* fall through */
193 case ATA_LITER_HOST_FIRST:
194 return &ap->link;
197 /* we just iterated over the host link, what's next? */
198 if (link == &ap->link)
199 switch (mode) {
200 case ATA_LITER_HOST_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_PMP_FIRST:
205 if (unlikely(ap->slave_link))
206 return ap->slave_link;
207 /* fall through */
208 case ATA_LITER_EDGE:
209 return NULL;
212 /* slave_link excludes PMP */
213 if (unlikely(link == ap->slave_link))
214 return NULL;
216 /* we were over a PMP link */
217 if (++link < ap->pmp_link + ap->nr_pmp_links)
218 return link;
220 if (mode == ATA_LITER_PMP_FIRST)
221 return &ap->link;
223 return NULL;
227 * ata_dev_next - device iteration helper
228 * @dev: the previous device, NULL to start
229 * @link: ATA link containing devices to iterate
230 * @mode: iteration mode, one of ATA_DITER_*
232 * LOCKING:
233 * Host lock or EH context.
235 * RETURNS:
236 * Pointer to the next device.
238 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
239 enum ata_dev_iter_mode mode)
241 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
242 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
244 /* NULL dev indicates start of iteration */
245 if (!dev)
246 switch (mode) {
247 case ATA_DITER_ENABLED:
248 case ATA_DITER_ALL:
249 dev = link->device;
250 goto check;
251 case ATA_DITER_ENABLED_REVERSE:
252 case ATA_DITER_ALL_REVERSE:
253 dev = link->device + ata_link_max_devices(link) - 1;
254 goto check;
257 next:
258 /* move to the next one */
259 switch (mode) {
260 case ATA_DITER_ENABLED:
261 case ATA_DITER_ALL:
262 if (++dev < link->device + ata_link_max_devices(link))
263 goto check;
264 return NULL;
265 case ATA_DITER_ENABLED_REVERSE:
266 case ATA_DITER_ALL_REVERSE:
267 if (--dev >= link->device)
268 goto check;
269 return NULL;
272 check:
273 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
274 !ata_dev_enabled(dev))
275 goto next;
276 return dev;
280 * ata_dev_phys_link - find physical link for a device
281 * @dev: ATA device to look up physical link for
283 * Look up physical link which @dev is attached to. Note that
284 * this is different from @dev->link only when @dev is on slave
285 * link. For all other cases, it's the same as @dev->link.
287 * LOCKING:
288 * Don't care.
290 * RETURNS:
291 * Pointer to the found physical link.
293 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
295 struct ata_port *ap = dev->link->ap;
297 if (!ap->slave_link)
298 return dev->link;
299 if (!dev->devno)
300 return &ap->link;
301 return ap->slave_link;
305 * ata_force_cbl - force cable type according to libata.force
306 * @ap: ATA port of interest
308 * Force cable type according to libata.force and whine about it.
309 * The last entry which has matching port number is used, so it
310 * can be specified as part of device force parameters. For
311 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
312 * same effect.
314 * LOCKING:
315 * EH context.
317 void ata_force_cbl(struct ata_port *ap)
319 int i;
321 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
322 const struct ata_force_ent *fe = &ata_force_tbl[i];
324 if (fe->port != -1 && fe->port != ap->print_id)
325 continue;
327 if (fe->param.cbl == ATA_CBL_NONE)
328 continue;
330 ap->cbl = fe->param.cbl;
331 ata_port_printk(ap, KERN_NOTICE,
332 "FORCE: cable set to %s\n", fe->param.name);
333 return;
338 * ata_force_link_limits - force link limits according to libata.force
339 * @link: ATA link of interest
341 * Force link flags and SATA spd limit according to libata.force
342 * and whine about it. When only the port part is specified
343 * (e.g. 1:), the limit applies to all links connected to both
344 * the host link and all fan-out ports connected via PMP. If the
345 * device part is specified as 0 (e.g. 1.00:), it specifies the
346 * first fan-out link not the host link. Device number 15 always
347 * points to the host link whether PMP is attached or not. If the
348 * controller has slave link, device number 16 points to it.
350 * LOCKING:
351 * EH context.
353 static void ata_force_link_limits(struct ata_link *link)
355 bool did_spd = false;
356 int linkno = link->pmp;
357 int i;
359 if (ata_is_host_link(link))
360 linkno += 15;
362 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
363 const struct ata_force_ent *fe = &ata_force_tbl[i];
365 if (fe->port != -1 && fe->port != link->ap->print_id)
366 continue;
368 if (fe->device != -1 && fe->device != linkno)
369 continue;
371 /* only honor the first spd limit */
372 if (!did_spd && fe->param.spd_limit) {
373 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
374 ata_link_printk(link, KERN_NOTICE,
375 "FORCE: PHY spd limit set to %s\n",
376 fe->param.name);
377 did_spd = true;
380 /* let lflags stack */
381 if (fe->param.lflags) {
382 link->flags |= fe->param.lflags;
383 ata_link_printk(link, KERN_NOTICE,
384 "FORCE: link flag 0x%x forced -> 0x%x\n",
385 fe->param.lflags, link->flags);
391 * ata_force_xfermask - force xfermask according to libata.force
392 * @dev: ATA device of interest
394 * Force xfer_mask according to libata.force and whine about it.
395 * For consistency with link selection, device number 15 selects
396 * the first device connected to the host link.
398 * LOCKING:
399 * EH context.
401 static void ata_force_xfermask(struct ata_device *dev)
403 int devno = dev->link->pmp + dev->devno;
404 int alt_devno = devno;
405 int i;
407 /* allow n.15/16 for devices attached to host port */
408 if (ata_is_host_link(dev->link))
409 alt_devno += 15;
411 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
412 const struct ata_force_ent *fe = &ata_force_tbl[i];
413 unsigned long pio_mask, mwdma_mask, udma_mask;
415 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
416 continue;
418 if (fe->device != -1 && fe->device != devno &&
419 fe->device != alt_devno)
420 continue;
422 if (!fe->param.xfer_mask)
423 continue;
425 ata_unpack_xfermask(fe->param.xfer_mask,
426 &pio_mask, &mwdma_mask, &udma_mask);
427 if (udma_mask)
428 dev->udma_mask = udma_mask;
429 else if (mwdma_mask) {
430 dev->udma_mask = 0;
431 dev->mwdma_mask = mwdma_mask;
432 } else {
433 dev->udma_mask = 0;
434 dev->mwdma_mask = 0;
435 dev->pio_mask = pio_mask;
438 ata_dev_printk(dev, KERN_NOTICE,
439 "FORCE: xfer_mask set to %s\n", fe->param.name);
440 return;
445 * ata_force_horkage - force horkage according to libata.force
446 * @dev: ATA device of interest
448 * Force horkage according to libata.force and whine about it.
449 * For consistency with link selection, device number 15 selects
450 * the first device connected to the host link.
452 * LOCKING:
453 * EH context.
455 static void ata_force_horkage(struct ata_device *dev)
457 int devno = dev->link->pmp + dev->devno;
458 int alt_devno = devno;
459 int i;
461 /* allow n.15/16 for devices attached to host port */
462 if (ata_is_host_link(dev->link))
463 alt_devno += 15;
465 for (i = 0; i < ata_force_tbl_size; i++) {
466 const struct ata_force_ent *fe = &ata_force_tbl[i];
468 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
469 continue;
471 if (fe->device != -1 && fe->device != devno &&
472 fe->device != alt_devno)
473 continue;
475 if (!(~dev->horkage & fe->param.horkage_on) &&
476 !(dev->horkage & fe->param.horkage_off))
477 continue;
479 dev->horkage |= fe->param.horkage_on;
480 dev->horkage &= ~fe->param.horkage_off;
482 ata_dev_printk(dev, KERN_NOTICE,
483 "FORCE: horkage modified (%s)\n", fe->param.name);
488 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
489 * @opcode: SCSI opcode
491 * Determine ATAPI command type from @opcode.
493 * LOCKING:
494 * None.
496 * RETURNS:
497 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
499 int atapi_cmd_type(u8 opcode)
501 switch (opcode) {
502 case GPCMD_READ_10:
503 case GPCMD_READ_12:
504 return ATAPI_READ;
506 case GPCMD_WRITE_10:
507 case GPCMD_WRITE_12:
508 case GPCMD_WRITE_AND_VERIFY_10:
509 return ATAPI_WRITE;
511 case GPCMD_READ_CD:
512 case GPCMD_READ_CD_MSF:
513 return ATAPI_READ_CD;
515 case ATA_16:
516 case ATA_12:
517 if (atapi_passthru16)
518 return ATAPI_PASS_THRU;
519 /* fall thru */
520 default:
521 return ATAPI_MISC;
526 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
527 * @tf: Taskfile to convert
528 * @pmp: Port multiplier port
529 * @is_cmd: This FIS is for command
530 * @fis: Buffer into which data will output
532 * Converts a standard ATA taskfile to a Serial ATA
533 * FIS structure (Register - Host to Device).
535 * LOCKING:
536 * Inherited from caller.
538 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
540 fis[0] = 0x27; /* Register - Host to Device FIS */
541 fis[1] = pmp & 0xf; /* Port multiplier number*/
542 if (is_cmd)
543 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
545 fis[2] = tf->command;
546 fis[3] = tf->feature;
548 fis[4] = tf->lbal;
549 fis[5] = tf->lbam;
550 fis[6] = tf->lbah;
551 fis[7] = tf->device;
553 fis[8] = tf->hob_lbal;
554 fis[9] = tf->hob_lbam;
555 fis[10] = tf->hob_lbah;
556 fis[11] = tf->hob_feature;
558 fis[12] = tf->nsect;
559 fis[13] = tf->hob_nsect;
560 fis[14] = 0;
561 fis[15] = tf->ctl;
563 fis[16] = 0;
564 fis[17] = 0;
565 fis[18] = 0;
566 fis[19] = 0;
570 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
571 * @fis: Buffer from which data will be input
572 * @tf: Taskfile to output
574 * Converts a serial ATA FIS structure to a standard ATA taskfile.
576 * LOCKING:
577 * Inherited from caller.
580 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
582 tf->command = fis[2]; /* status */
583 tf->feature = fis[3]; /* error */
585 tf->lbal = fis[4];
586 tf->lbam = fis[5];
587 tf->lbah = fis[6];
588 tf->device = fis[7];
590 tf->hob_lbal = fis[8];
591 tf->hob_lbam = fis[9];
592 tf->hob_lbah = fis[10];
594 tf->nsect = fis[12];
595 tf->hob_nsect = fis[13];
598 static const u8 ata_rw_cmds[] = {
599 /* pio multi */
600 ATA_CMD_READ_MULTI,
601 ATA_CMD_WRITE_MULTI,
602 ATA_CMD_READ_MULTI_EXT,
603 ATA_CMD_WRITE_MULTI_EXT,
607 ATA_CMD_WRITE_MULTI_FUA_EXT,
608 /* pio */
609 ATA_CMD_PIO_READ,
610 ATA_CMD_PIO_WRITE,
611 ATA_CMD_PIO_READ_EXT,
612 ATA_CMD_PIO_WRITE_EXT,
617 /* dma */
618 ATA_CMD_READ,
619 ATA_CMD_WRITE,
620 ATA_CMD_READ_EXT,
621 ATA_CMD_WRITE_EXT,
625 ATA_CMD_WRITE_FUA_EXT
629 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
630 * @tf: command to examine and configure
631 * @dev: device tf belongs to
633 * Examine the device configuration and tf->flags to calculate
634 * the proper read/write commands and protocol to use.
636 * LOCKING:
637 * caller.
639 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
641 u8 cmd;
643 int index, fua, lba48, write;
645 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
646 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
647 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
649 if (dev->flags & ATA_DFLAG_PIO) {
650 tf->protocol = ATA_PROT_PIO;
651 index = dev->multi_count ? 0 : 8;
652 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
653 /* Unable to use DMA due to host limitation */
654 tf->protocol = ATA_PROT_PIO;
655 index = dev->multi_count ? 0 : 8;
656 } else {
657 tf->protocol = ATA_PROT_DMA;
658 index = 16;
661 cmd = ata_rw_cmds[index + fua + lba48 + write];
662 if (cmd) {
663 tf->command = cmd;
664 return 0;
666 return -1;
670 * ata_tf_read_block - Read block address from ATA taskfile
671 * @tf: ATA taskfile of interest
672 * @dev: ATA device @tf belongs to
674 * LOCKING:
675 * None.
677 * Read block address from @tf. This function can handle all
678 * three address formats - LBA, LBA48 and CHS. tf->protocol and
679 * flags select the address format to use.
681 * RETURNS:
682 * Block address read from @tf.
684 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
686 u64 block = 0;
688 if (tf->flags & ATA_TFLAG_LBA) {
689 if (tf->flags & ATA_TFLAG_LBA48) {
690 block |= (u64)tf->hob_lbah << 40;
691 block |= (u64)tf->hob_lbam << 32;
692 block |= (u64)tf->hob_lbal << 24;
693 } else
694 block |= (tf->device & 0xf) << 24;
696 block |= tf->lbah << 16;
697 block |= tf->lbam << 8;
698 block |= tf->lbal;
699 } else {
700 u32 cyl, head, sect;
702 cyl = tf->lbam | (tf->lbah << 8);
703 head = tf->device & 0xf;
704 sect = tf->lbal;
706 block = (cyl * dev->heads + head) * dev->sectors + sect;
709 return block;
713 * ata_build_rw_tf - Build ATA taskfile for given read/write request
714 * @tf: Target ATA taskfile
715 * @dev: ATA device @tf belongs to
716 * @block: Block address
717 * @n_block: Number of blocks
718 * @tf_flags: RW/FUA etc...
719 * @tag: tag
721 * LOCKING:
722 * None.
724 * Build ATA taskfile @tf for read/write request described by
725 * @block, @n_block, @tf_flags and @tag on @dev.
727 * RETURNS:
729 * 0 on success, -ERANGE if the request is too large for @dev,
730 * -EINVAL if the request is invalid.
732 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
733 u64 block, u32 n_block, unsigned int tf_flags,
734 unsigned int tag)
736 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
737 tf->flags |= tf_flags;
739 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
740 /* yay, NCQ */
741 if (!lba_48_ok(block, n_block))
742 return -ERANGE;
744 tf->protocol = ATA_PROT_NCQ;
745 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
747 if (tf->flags & ATA_TFLAG_WRITE)
748 tf->command = ATA_CMD_FPDMA_WRITE;
749 else
750 tf->command = ATA_CMD_FPDMA_READ;
752 tf->nsect = tag << 3;
753 tf->hob_feature = (n_block >> 8) & 0xff;
754 tf->feature = n_block & 0xff;
756 tf->hob_lbah = (block >> 40) & 0xff;
757 tf->hob_lbam = (block >> 32) & 0xff;
758 tf->hob_lbal = (block >> 24) & 0xff;
759 tf->lbah = (block >> 16) & 0xff;
760 tf->lbam = (block >> 8) & 0xff;
761 tf->lbal = block & 0xff;
763 tf->device = 1 << 6;
764 if (tf->flags & ATA_TFLAG_FUA)
765 tf->device |= 1 << 7;
766 } else if (dev->flags & ATA_DFLAG_LBA) {
767 tf->flags |= ATA_TFLAG_LBA;
769 if (lba_28_ok(block, n_block)) {
770 /* use LBA28 */
771 tf->device |= (block >> 24) & 0xf;
772 } else if (lba_48_ok(block, n_block)) {
773 if (!(dev->flags & ATA_DFLAG_LBA48))
774 return -ERANGE;
776 /* use LBA48 */
777 tf->flags |= ATA_TFLAG_LBA48;
779 tf->hob_nsect = (n_block >> 8) & 0xff;
781 tf->hob_lbah = (block >> 40) & 0xff;
782 tf->hob_lbam = (block >> 32) & 0xff;
783 tf->hob_lbal = (block >> 24) & 0xff;
784 } else
785 /* request too large even for LBA48 */
786 return -ERANGE;
788 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
789 return -EINVAL;
791 tf->nsect = n_block & 0xff;
793 tf->lbah = (block >> 16) & 0xff;
794 tf->lbam = (block >> 8) & 0xff;
795 tf->lbal = block & 0xff;
797 tf->device |= ATA_LBA;
798 } else {
799 /* CHS */
800 u32 sect, head, cyl, track;
802 /* The request -may- be too large for CHS addressing. */
803 if (!lba_28_ok(block, n_block))
804 return -ERANGE;
806 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
807 return -EINVAL;
809 /* Convert LBA to CHS */
810 track = (u32)block / dev->sectors;
811 cyl = track / dev->heads;
812 head = track % dev->heads;
813 sect = (u32)block % dev->sectors + 1;
815 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
816 (u32)block, track, cyl, head, sect);
818 /* Check whether the converted CHS can fit.
819 Cylinder: 0-65535
820 Head: 0-15
821 Sector: 1-255*/
822 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
823 return -ERANGE;
825 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
826 tf->lbal = sect;
827 tf->lbam = cyl;
828 tf->lbah = cyl >> 8;
829 tf->device |= head;
832 return 0;
836 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
837 * @pio_mask: pio_mask
838 * @mwdma_mask: mwdma_mask
839 * @udma_mask: udma_mask
841 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
842 * unsigned int xfer_mask.
844 * LOCKING:
845 * None.
847 * RETURNS:
848 * Packed xfer_mask.
850 unsigned long ata_pack_xfermask(unsigned long pio_mask,
851 unsigned long mwdma_mask,
852 unsigned long udma_mask)
854 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
855 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
856 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
860 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
861 * @xfer_mask: xfer_mask to unpack
862 * @pio_mask: resulting pio_mask
863 * @mwdma_mask: resulting mwdma_mask
864 * @udma_mask: resulting udma_mask
866 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
867 * Any NULL distination masks will be ignored.
869 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
870 unsigned long *mwdma_mask, unsigned long *udma_mask)
872 if (pio_mask)
873 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
874 if (mwdma_mask)
875 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
876 if (udma_mask)
877 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
880 static const struct ata_xfer_ent {
881 int shift, bits;
882 u8 base;
883 } ata_xfer_tbl[] = {
884 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
885 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
886 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
887 { -1, },
891 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
892 * @xfer_mask: xfer_mask of interest
894 * Return matching XFER_* value for @xfer_mask. Only the highest
895 * bit of @xfer_mask is considered.
897 * LOCKING:
898 * None.
900 * RETURNS:
901 * Matching XFER_* value, 0xff if no match found.
903 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
905 int highbit = fls(xfer_mask) - 1;
906 const struct ata_xfer_ent *ent;
908 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
909 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
910 return ent->base + highbit - ent->shift;
911 return 0xff;
915 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
916 * @xfer_mode: XFER_* of interest
918 * Return matching xfer_mask for @xfer_mode.
920 * LOCKING:
921 * None.
923 * RETURNS:
924 * Matching xfer_mask, 0 if no match found.
926 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
928 const struct ata_xfer_ent *ent;
930 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
931 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
932 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
933 & ~((1 << ent->shift) - 1);
934 return 0;
938 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
939 * @xfer_mode: XFER_* of interest
941 * Return matching xfer_shift for @xfer_mode.
943 * LOCKING:
944 * None.
946 * RETURNS:
947 * Matching xfer_shift, -1 if no match found.
949 int ata_xfer_mode2shift(unsigned long xfer_mode)
951 const struct ata_xfer_ent *ent;
953 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
954 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
955 return ent->shift;
956 return -1;
960 * ata_mode_string - convert xfer_mask to string
961 * @xfer_mask: mask of bits supported; only highest bit counts.
963 * Determine string which represents the highest speed
964 * (highest bit in @modemask).
966 * LOCKING:
967 * None.
969 * RETURNS:
970 * Constant C string representing highest speed listed in
971 * @mode_mask, or the constant C string "<n/a>".
973 const char *ata_mode_string(unsigned long xfer_mask)
975 static const char * const xfer_mode_str[] = {
976 "PIO0",
977 "PIO1",
978 "PIO2",
979 "PIO3",
980 "PIO4",
981 "PIO5",
982 "PIO6",
983 "MWDMA0",
984 "MWDMA1",
985 "MWDMA2",
986 "MWDMA3",
987 "MWDMA4",
988 "UDMA/16",
989 "UDMA/25",
990 "UDMA/33",
991 "UDMA/44",
992 "UDMA/66",
993 "UDMA/100",
994 "UDMA/133",
995 "UDMA7",
997 int highbit;
999 highbit = fls(xfer_mask) - 1;
1000 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1001 return xfer_mode_str[highbit];
1002 return "<n/a>";
1005 static const char *sata_spd_string(unsigned int spd)
1007 static const char * const spd_str[] = {
1008 "1.5 Gbps",
1009 "3.0 Gbps",
1010 "6.0 Gbps",
1013 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1014 return "<unknown>";
1015 return spd_str[spd - 1];
1018 void ata_dev_disable(struct ata_device *dev)
1020 if (ata_dev_enabled(dev)) {
1021 if (ata_msg_drv(dev->link->ap))
1022 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
1023 ata_acpi_on_disable(dev);
1024 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
1025 ATA_DNXFER_QUIET);
1026 dev->class++;
1030 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1032 struct ata_link *link = dev->link;
1033 struct ata_port *ap = link->ap;
1034 u32 scontrol;
1035 unsigned int err_mask;
1036 int rc;
1039 * disallow DIPM for drivers which haven't set
1040 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1041 * phy ready will be set in the interrupt status on
1042 * state changes, which will cause some drivers to
1043 * think there are errors - additionally drivers will
1044 * need to disable hot plug.
1046 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1047 ap->pm_policy = NOT_AVAILABLE;
1048 return -EINVAL;
1052 * For DIPM, we will only enable it for the
1053 * min_power setting.
1055 * Why? Because Disks are too stupid to know that
1056 * If the host rejects a request to go to SLUMBER
1057 * they should retry at PARTIAL, and instead it
1058 * just would give up. So, for medium_power to
1059 * work at all, we need to only allow HIPM.
1061 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1062 if (rc)
1063 return rc;
1065 switch (policy) {
1066 case MIN_POWER:
1067 /* no restrictions on IPM transitions */
1068 scontrol &= ~(0x3 << 8);
1069 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1070 if (rc)
1071 return rc;
1073 /* enable DIPM */
1074 if (dev->flags & ATA_DFLAG_DIPM)
1075 err_mask = ata_dev_set_feature(dev,
1076 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1077 break;
1078 case MEDIUM_POWER:
1079 /* allow IPM to PARTIAL */
1080 scontrol &= ~(0x1 << 8);
1081 scontrol |= (0x2 << 8);
1082 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1083 if (rc)
1084 return rc;
1087 * we don't have to disable DIPM since IPM flags
1088 * disallow transitions to SLUMBER, which effectively
1089 * disable DIPM if it does not support PARTIAL
1091 break;
1092 case NOT_AVAILABLE:
1093 case MAX_PERFORMANCE:
1094 /* disable all IPM transitions */
1095 scontrol |= (0x3 << 8);
1096 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1097 if (rc)
1098 return rc;
1101 * we don't have to disable DIPM since IPM flags
1102 * disallow all transitions which effectively
1103 * disable DIPM anyway.
1105 break;
1108 /* FIXME: handle SET FEATURES failure */
1109 (void) err_mask;
1111 return 0;
1115 * ata_dev_enable_pm - enable SATA interface power management
1116 * @dev: device to enable power management
1117 * @policy: the link power management policy
1119 * Enable SATA Interface power management. This will enable
1120 * Device Interface Power Management (DIPM) for min_power
1121 * policy, and then call driver specific callbacks for
1122 * enabling Host Initiated Power management.
1124 * Locking: Caller.
1125 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1127 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1129 int rc = 0;
1130 struct ata_port *ap = dev->link->ap;
1132 /* set HIPM first, then DIPM */
1133 if (ap->ops->enable_pm)
1134 rc = ap->ops->enable_pm(ap, policy);
1135 if (rc)
1136 goto enable_pm_out;
1137 rc = ata_dev_set_dipm(dev, policy);
1139 enable_pm_out:
1140 if (rc)
1141 ap->pm_policy = MAX_PERFORMANCE;
1142 else
1143 ap->pm_policy = policy;
1144 return /* rc */; /* hopefully we can use 'rc' eventually */
1147 #ifdef CONFIG_PM
1149 * ata_dev_disable_pm - disable SATA interface power management
1150 * @dev: device to disable power management
1152 * Disable SATA Interface power management. This will disable
1153 * Device Interface Power Management (DIPM) without changing
1154 * policy, call driver specific callbacks for disabling Host
1155 * Initiated Power management.
1157 * Locking: Caller.
1158 * Returns: void
1160 static void ata_dev_disable_pm(struct ata_device *dev)
1162 struct ata_port *ap = dev->link->ap;
1164 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1165 if (ap->ops->disable_pm)
1166 ap->ops->disable_pm(ap);
1168 #endif /* CONFIG_PM */
1170 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1172 ap->pm_policy = policy;
1173 ap->link.eh_info.action |= ATA_EH_LPM;
1174 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1175 ata_port_schedule_eh(ap);
1178 #ifdef CONFIG_PM
1179 static void ata_lpm_enable(struct ata_host *host)
1181 struct ata_link *link;
1182 struct ata_port *ap;
1183 struct ata_device *dev;
1184 int i;
1186 for (i = 0; i < host->n_ports; i++) {
1187 ap = host->ports[i];
1188 ata_for_each_link(link, ap, EDGE) {
1189 ata_for_each_dev(dev, link, ALL)
1190 ata_dev_disable_pm(dev);
1195 static void ata_lpm_disable(struct ata_host *host)
1197 int i;
1199 for (i = 0; i < host->n_ports; i++) {
1200 struct ata_port *ap = host->ports[i];
1201 ata_lpm_schedule(ap, ap->pm_policy);
1204 #endif /* CONFIG_PM */
1207 * ata_dev_classify - determine device type based on ATA-spec signature
1208 * @tf: ATA taskfile register set for device to be identified
1210 * Determine from taskfile register contents whether a device is
1211 * ATA or ATAPI, as per "Signature and persistence" section
1212 * of ATA/PI spec (volume 1, sect 5.14).
1214 * LOCKING:
1215 * None.
1217 * RETURNS:
1218 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1219 * %ATA_DEV_UNKNOWN the event of failure.
1221 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1223 /* Apple's open source Darwin code hints that some devices only
1224 * put a proper signature into the LBA mid/high registers,
1225 * So, we only check those. It's sufficient for uniqueness.
1227 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1228 * signatures for ATA and ATAPI devices attached on SerialATA,
1229 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1230 * spec has never mentioned about using different signatures
1231 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1232 * Multiplier specification began to use 0x69/0x96 to identify
1233 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1234 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1235 * 0x69/0x96 shortly and described them as reserved for
1236 * SerialATA.
1238 * We follow the current spec and consider that 0x69/0x96
1239 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1241 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1242 DPRINTK("found ATA device by sig\n");
1243 return ATA_DEV_ATA;
1246 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1247 DPRINTK("found ATAPI device by sig\n");
1248 return ATA_DEV_ATAPI;
1251 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1252 DPRINTK("found PMP device by sig\n");
1253 return ATA_DEV_PMP;
1256 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1257 printk(KERN_INFO "ata: SEMB device ignored\n");
1258 return ATA_DEV_SEMB_UNSUP; /* not yet */
1261 DPRINTK("unknown device\n");
1262 return ATA_DEV_UNKNOWN;
1266 * ata_id_string - Convert IDENTIFY DEVICE page into string
1267 * @id: IDENTIFY DEVICE results we will examine
1268 * @s: string into which data is output
1269 * @ofs: offset into identify device page
1270 * @len: length of string to return. must be an even number.
1272 * The strings in the IDENTIFY DEVICE page are broken up into
1273 * 16-bit chunks. Run through the string, and output each
1274 * 8-bit chunk linearly, regardless of platform.
1276 * LOCKING:
1277 * caller.
1280 void ata_id_string(const u16 *id, unsigned char *s,
1281 unsigned int ofs, unsigned int len)
1283 unsigned int c;
1285 BUG_ON(len & 1);
1287 while (len > 0) {
1288 c = id[ofs] >> 8;
1289 *s = c;
1290 s++;
1292 c = id[ofs] & 0xff;
1293 *s = c;
1294 s++;
1296 ofs++;
1297 len -= 2;
1302 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1303 * @id: IDENTIFY DEVICE results we will examine
1304 * @s: string into which data is output
1305 * @ofs: offset into identify device page
1306 * @len: length of string to return. must be an odd number.
1308 * This function is identical to ata_id_string except that it
1309 * trims trailing spaces and terminates the resulting string with
1310 * null. @len must be actual maximum length (even number) + 1.
1312 * LOCKING:
1313 * caller.
1315 void ata_id_c_string(const u16 *id, unsigned char *s,
1316 unsigned int ofs, unsigned int len)
1318 unsigned char *p;
1320 ata_id_string(id, s, ofs, len - 1);
1322 p = s + strnlen(s, len - 1);
1323 while (p > s && p[-1] == ' ')
1324 p--;
1325 *p = '\0';
1328 static u64 ata_id_n_sectors(const u16 *id)
1330 if (ata_id_has_lba(id)) {
1331 if (ata_id_has_lba48(id))
1332 return ata_id_u64(id, 100);
1333 else
1334 return ata_id_u32(id, 60);
1335 } else {
1336 if (ata_id_current_chs_valid(id))
1337 return ata_id_u32(id, 57);
1338 else
1339 return id[1] * id[3] * id[6];
1343 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1345 u64 sectors = 0;
1347 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1348 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1349 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1350 sectors |= (tf->lbah & 0xff) << 16;
1351 sectors |= (tf->lbam & 0xff) << 8;
1352 sectors |= (tf->lbal & 0xff);
1354 return sectors;
1357 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1359 u64 sectors = 0;
1361 sectors |= (tf->device & 0x0f) << 24;
1362 sectors |= (tf->lbah & 0xff) << 16;
1363 sectors |= (tf->lbam & 0xff) << 8;
1364 sectors |= (tf->lbal & 0xff);
1366 return sectors;
1370 * ata_read_native_max_address - Read native max address
1371 * @dev: target device
1372 * @max_sectors: out parameter for the result native max address
1374 * Perform an LBA48 or LBA28 native size query upon the device in
1375 * question.
1377 * RETURNS:
1378 * 0 on success, -EACCES if command is aborted by the drive.
1379 * -EIO on other errors.
1381 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1383 unsigned int err_mask;
1384 struct ata_taskfile tf;
1385 int lba48 = ata_id_has_lba48(dev->id);
1387 ata_tf_init(dev, &tf);
1389 /* always clear all address registers */
1390 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1392 if (lba48) {
1393 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1394 tf.flags |= ATA_TFLAG_LBA48;
1395 } else
1396 tf.command = ATA_CMD_READ_NATIVE_MAX;
1398 tf.protocol |= ATA_PROT_NODATA;
1399 tf.device |= ATA_LBA;
1401 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1402 if (err_mask) {
1403 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1404 "max address (err_mask=0x%x)\n", err_mask);
1405 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1406 return -EACCES;
1407 return -EIO;
1410 if (lba48)
1411 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1412 else
1413 *max_sectors = ata_tf_to_lba(&tf) + 1;
1414 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1415 (*max_sectors)--;
1416 return 0;
1420 * ata_set_max_sectors - Set max sectors
1421 * @dev: target device
1422 * @new_sectors: new max sectors value to set for the device
1424 * Set max sectors of @dev to @new_sectors.
1426 * RETURNS:
1427 * 0 on success, -EACCES if command is aborted or denied (due to
1428 * previous non-volatile SET_MAX) by the drive. -EIO on other
1429 * errors.
1431 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1433 unsigned int err_mask;
1434 struct ata_taskfile tf;
1435 int lba48 = ata_id_has_lba48(dev->id);
1437 new_sectors--;
1439 ata_tf_init(dev, &tf);
1441 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1443 if (lba48) {
1444 tf.command = ATA_CMD_SET_MAX_EXT;
1445 tf.flags |= ATA_TFLAG_LBA48;
1447 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1448 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1449 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1450 } else {
1451 tf.command = ATA_CMD_SET_MAX;
1453 tf.device |= (new_sectors >> 24) & 0xf;
1456 tf.protocol |= ATA_PROT_NODATA;
1457 tf.device |= ATA_LBA;
1459 tf.lbal = (new_sectors >> 0) & 0xff;
1460 tf.lbam = (new_sectors >> 8) & 0xff;
1461 tf.lbah = (new_sectors >> 16) & 0xff;
1463 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1464 if (err_mask) {
1465 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1466 "max address (err_mask=0x%x)\n", err_mask);
1467 if (err_mask == AC_ERR_DEV &&
1468 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1469 return -EACCES;
1470 return -EIO;
1473 return 0;
1477 * ata_hpa_resize - Resize a device with an HPA set
1478 * @dev: Device to resize
1480 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1481 * it if required to the full size of the media. The caller must check
1482 * the drive has the HPA feature set enabled.
1484 * RETURNS:
1485 * 0 on success, -errno on failure.
1487 static int ata_hpa_resize(struct ata_device *dev)
1489 struct ata_eh_context *ehc = &dev->link->eh_context;
1490 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1491 u64 sectors = ata_id_n_sectors(dev->id);
1492 u64 native_sectors;
1493 int rc;
1495 /* do we need to do it? */
1496 if (dev->class != ATA_DEV_ATA ||
1497 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1498 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1499 return 0;
1501 /* read native max address */
1502 rc = ata_read_native_max_address(dev, &native_sectors);
1503 if (rc) {
1504 /* If device aborted the command or HPA isn't going to
1505 * be unlocked, skip HPA resizing.
1507 if (rc == -EACCES || !ata_ignore_hpa) {
1508 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1509 "broken, skipping HPA handling\n");
1510 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1512 /* we can continue if device aborted the command */
1513 if (rc == -EACCES)
1514 rc = 0;
1517 return rc;
1520 /* nothing to do? */
1521 if (native_sectors <= sectors || !ata_ignore_hpa) {
1522 if (!print_info || native_sectors == sectors)
1523 return 0;
1525 if (native_sectors > sectors)
1526 ata_dev_printk(dev, KERN_INFO,
1527 "HPA detected: current %llu, native %llu\n",
1528 (unsigned long long)sectors,
1529 (unsigned long long)native_sectors);
1530 else if (native_sectors < sectors)
1531 ata_dev_printk(dev, KERN_WARNING,
1532 "native sectors (%llu) is smaller than "
1533 "sectors (%llu)\n",
1534 (unsigned long long)native_sectors,
1535 (unsigned long long)sectors);
1536 return 0;
1539 /* let's unlock HPA */
1540 rc = ata_set_max_sectors(dev, native_sectors);
1541 if (rc == -EACCES) {
1542 /* if device aborted the command, skip HPA resizing */
1543 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1544 "(%llu -> %llu), skipping HPA handling\n",
1545 (unsigned long long)sectors,
1546 (unsigned long long)native_sectors);
1547 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1548 return 0;
1549 } else if (rc)
1550 return rc;
1552 /* re-read IDENTIFY data */
1553 rc = ata_dev_reread_id(dev, 0);
1554 if (rc) {
1555 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1556 "data after HPA resizing\n");
1557 return rc;
1560 if (print_info) {
1561 u64 new_sectors = ata_id_n_sectors(dev->id);
1562 ata_dev_printk(dev, KERN_INFO,
1563 "HPA unlocked: %llu -> %llu, native %llu\n",
1564 (unsigned long long)sectors,
1565 (unsigned long long)new_sectors,
1566 (unsigned long long)native_sectors);
1569 return 0;
1573 * ata_dump_id - IDENTIFY DEVICE info debugging output
1574 * @id: IDENTIFY DEVICE page to dump
1576 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1577 * page.
1579 * LOCKING:
1580 * caller.
1583 static inline void ata_dump_id(const u16 *id)
1585 DPRINTK("49==0x%04x "
1586 "53==0x%04x "
1587 "63==0x%04x "
1588 "64==0x%04x "
1589 "75==0x%04x \n",
1590 id[49],
1591 id[53],
1592 id[63],
1593 id[64],
1594 id[75]);
1595 DPRINTK("80==0x%04x "
1596 "81==0x%04x "
1597 "82==0x%04x "
1598 "83==0x%04x "
1599 "84==0x%04x \n",
1600 id[80],
1601 id[81],
1602 id[82],
1603 id[83],
1604 id[84]);
1605 DPRINTK("88==0x%04x "
1606 "93==0x%04x\n",
1607 id[88],
1608 id[93]);
1612 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1613 * @id: IDENTIFY data to compute xfer mask from
1615 * Compute the xfermask for this device. This is not as trivial
1616 * as it seems if we must consider early devices correctly.
1618 * FIXME: pre IDE drive timing (do we care ?).
1620 * LOCKING:
1621 * None.
1623 * RETURNS:
1624 * Computed xfermask
1626 unsigned long ata_id_xfermask(const u16 *id)
1628 unsigned long pio_mask, mwdma_mask, udma_mask;
1630 /* Usual case. Word 53 indicates word 64 is valid */
1631 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1632 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1633 pio_mask <<= 3;
1634 pio_mask |= 0x7;
1635 } else {
1636 /* If word 64 isn't valid then Word 51 high byte holds
1637 * the PIO timing number for the maximum. Turn it into
1638 * a mask.
1640 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1641 if (mode < 5) /* Valid PIO range */
1642 pio_mask = (2 << mode) - 1;
1643 else
1644 pio_mask = 1;
1646 /* But wait.. there's more. Design your standards by
1647 * committee and you too can get a free iordy field to
1648 * process. However its the speeds not the modes that
1649 * are supported... Note drivers using the timing API
1650 * will get this right anyway
1654 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1656 if (ata_id_is_cfa(id)) {
1658 * Process compact flash extended modes
1660 int pio = id[163] & 0x7;
1661 int dma = (id[163] >> 3) & 7;
1663 if (pio)
1664 pio_mask |= (1 << 5);
1665 if (pio > 1)
1666 pio_mask |= (1 << 6);
1667 if (dma)
1668 mwdma_mask |= (1 << 3);
1669 if (dma > 1)
1670 mwdma_mask |= (1 << 4);
1673 udma_mask = 0;
1674 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1675 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1677 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1681 * ata_pio_queue_task - Queue port_task
1682 * @ap: The ata_port to queue port_task for
1683 * @data: data for @fn to use
1684 * @delay: delay time in msecs for workqueue function
1686 * Schedule @fn(@data) for execution after @delay jiffies using
1687 * port_task. There is one port_task per port and it's the
1688 * user(low level driver)'s responsibility to make sure that only
1689 * one task is active at any given time.
1691 * libata core layer takes care of synchronization between
1692 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1693 * synchronization.
1695 * LOCKING:
1696 * Inherited from caller.
1698 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1700 ap->port_task_data = data;
1702 /* may fail if ata_port_flush_task() in progress */
1703 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1707 * ata_port_flush_task - Flush port_task
1708 * @ap: The ata_port to flush port_task for
1710 * After this function completes, port_task is guranteed not to
1711 * be running or scheduled.
1713 * LOCKING:
1714 * Kernel thread context (may sleep)
1716 void ata_port_flush_task(struct ata_port *ap)
1718 DPRINTK("ENTER\n");
1720 cancel_rearming_delayed_work(&ap->port_task);
1722 if (ata_msg_ctl(ap))
1723 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1726 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1728 struct completion *waiting = qc->private_data;
1730 complete(waiting);
1734 * ata_exec_internal_sg - execute libata internal command
1735 * @dev: Device to which the command is sent
1736 * @tf: Taskfile registers for the command and the result
1737 * @cdb: CDB for packet command
1738 * @dma_dir: Data tranfer direction of the command
1739 * @sgl: sg list for the data buffer of the command
1740 * @n_elem: Number of sg entries
1741 * @timeout: Timeout in msecs (0 for default)
1743 * Executes libata internal command with timeout. @tf contains
1744 * command on entry and result on return. Timeout and error
1745 * conditions are reported via return value. No recovery action
1746 * is taken after a command times out. It's caller's duty to
1747 * clean up after timeout.
1749 * LOCKING:
1750 * None. Should be called with kernel context, might sleep.
1752 * RETURNS:
1753 * Zero on success, AC_ERR_* mask on failure
1755 unsigned ata_exec_internal_sg(struct ata_device *dev,
1756 struct ata_taskfile *tf, const u8 *cdb,
1757 int dma_dir, struct scatterlist *sgl,
1758 unsigned int n_elem, unsigned long timeout)
1760 struct ata_link *link = dev->link;
1761 struct ata_port *ap = link->ap;
1762 u8 command = tf->command;
1763 int auto_timeout = 0;
1764 struct ata_queued_cmd *qc;
1765 unsigned int tag, preempted_tag;
1766 u32 preempted_sactive, preempted_qc_active;
1767 int preempted_nr_active_links;
1768 DECLARE_COMPLETION_ONSTACK(wait);
1769 unsigned long flags;
1770 unsigned int err_mask;
1771 int rc;
1773 spin_lock_irqsave(ap->lock, flags);
1775 /* no internal command while frozen */
1776 if (ap->pflags & ATA_PFLAG_FROZEN) {
1777 spin_unlock_irqrestore(ap->lock, flags);
1778 return AC_ERR_SYSTEM;
1781 /* initialize internal qc */
1783 /* XXX: Tag 0 is used for drivers with legacy EH as some
1784 * drivers choke if any other tag is given. This breaks
1785 * ata_tag_internal() test for those drivers. Don't use new
1786 * EH stuff without converting to it.
1788 if (ap->ops->error_handler)
1789 tag = ATA_TAG_INTERNAL;
1790 else
1791 tag = 0;
1793 if (test_and_set_bit(tag, &ap->qc_allocated))
1794 BUG();
1795 qc = __ata_qc_from_tag(ap, tag);
1797 qc->tag = tag;
1798 qc->scsicmd = NULL;
1799 qc->ap = ap;
1800 qc->dev = dev;
1801 ata_qc_reinit(qc);
1803 preempted_tag = link->active_tag;
1804 preempted_sactive = link->sactive;
1805 preempted_qc_active = ap->qc_active;
1806 preempted_nr_active_links = ap->nr_active_links;
1807 link->active_tag = ATA_TAG_POISON;
1808 link->sactive = 0;
1809 ap->qc_active = 0;
1810 ap->nr_active_links = 0;
1812 /* prepare & issue qc */
1813 qc->tf = *tf;
1814 if (cdb)
1815 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1816 qc->flags |= ATA_QCFLAG_RESULT_TF;
1817 qc->dma_dir = dma_dir;
1818 if (dma_dir != DMA_NONE) {
1819 unsigned int i, buflen = 0;
1820 struct scatterlist *sg;
1822 for_each_sg(sgl, sg, n_elem, i)
1823 buflen += sg->length;
1825 ata_sg_init(qc, sgl, n_elem);
1826 qc->nbytes = buflen;
1829 qc->private_data = &wait;
1830 qc->complete_fn = ata_qc_complete_internal;
1832 ata_qc_issue(qc);
1834 spin_unlock_irqrestore(ap->lock, flags);
1836 if (!timeout) {
1837 if (ata_probe_timeout)
1838 timeout = ata_probe_timeout * 1000;
1839 else {
1840 timeout = ata_internal_cmd_timeout(dev, command);
1841 auto_timeout = 1;
1845 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1847 ata_port_flush_task(ap);
1849 if (!rc) {
1850 spin_lock_irqsave(ap->lock, flags);
1852 /* We're racing with irq here. If we lose, the
1853 * following test prevents us from completing the qc
1854 * twice. If we win, the port is frozen and will be
1855 * cleaned up by ->post_internal_cmd().
1857 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1858 qc->err_mask |= AC_ERR_TIMEOUT;
1860 if (ap->ops->error_handler)
1861 ata_port_freeze(ap);
1862 else
1863 ata_qc_complete(qc);
1865 if (ata_msg_warn(ap))
1866 ata_dev_printk(dev, KERN_WARNING,
1867 "qc timeout (cmd 0x%x)\n", command);
1870 spin_unlock_irqrestore(ap->lock, flags);
1873 /* do post_internal_cmd */
1874 if (ap->ops->post_internal_cmd)
1875 ap->ops->post_internal_cmd(qc);
1877 /* perform minimal error analysis */
1878 if (qc->flags & ATA_QCFLAG_FAILED) {
1879 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1880 qc->err_mask |= AC_ERR_DEV;
1882 if (!qc->err_mask)
1883 qc->err_mask |= AC_ERR_OTHER;
1885 if (qc->err_mask & ~AC_ERR_OTHER)
1886 qc->err_mask &= ~AC_ERR_OTHER;
1889 /* finish up */
1890 spin_lock_irqsave(ap->lock, flags);
1892 *tf = qc->result_tf;
1893 err_mask = qc->err_mask;
1895 ata_qc_free(qc);
1896 link->active_tag = preempted_tag;
1897 link->sactive = preempted_sactive;
1898 ap->qc_active = preempted_qc_active;
1899 ap->nr_active_links = preempted_nr_active_links;
1901 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1902 * Until those drivers are fixed, we detect the condition
1903 * here, fail the command with AC_ERR_SYSTEM and reenable the
1904 * port.
1906 * Note that this doesn't change any behavior as internal
1907 * command failure results in disabling the device in the
1908 * higher layer for LLDDs without new reset/EH callbacks.
1910 * Kill the following code as soon as those drivers are fixed.
1912 if (ap->flags & ATA_FLAG_DISABLED) {
1913 err_mask |= AC_ERR_SYSTEM;
1914 ata_port_probe(ap);
1917 spin_unlock_irqrestore(ap->lock, flags);
1919 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1920 ata_internal_cmd_timed_out(dev, command);
1922 return err_mask;
1926 * ata_exec_internal - execute libata internal command
1927 * @dev: Device to which the command is sent
1928 * @tf: Taskfile registers for the command and the result
1929 * @cdb: CDB for packet command
1930 * @dma_dir: Data tranfer direction of the command
1931 * @buf: Data buffer of the command
1932 * @buflen: Length of data buffer
1933 * @timeout: Timeout in msecs (0 for default)
1935 * Wrapper around ata_exec_internal_sg() which takes simple
1936 * buffer instead of sg list.
1938 * LOCKING:
1939 * None. Should be called with kernel context, might sleep.
1941 * RETURNS:
1942 * Zero on success, AC_ERR_* mask on failure
1944 unsigned ata_exec_internal(struct ata_device *dev,
1945 struct ata_taskfile *tf, const u8 *cdb,
1946 int dma_dir, void *buf, unsigned int buflen,
1947 unsigned long timeout)
1949 struct scatterlist *psg = NULL, sg;
1950 unsigned int n_elem = 0;
1952 if (dma_dir != DMA_NONE) {
1953 WARN_ON(!buf);
1954 sg_init_one(&sg, buf, buflen);
1955 psg = &sg;
1956 n_elem++;
1959 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1960 timeout);
1964 * ata_do_simple_cmd - execute simple internal command
1965 * @dev: Device to which the command is sent
1966 * @cmd: Opcode to execute
1968 * Execute a 'simple' command, that only consists of the opcode
1969 * 'cmd' itself, without filling any other registers
1971 * LOCKING:
1972 * Kernel thread context (may sleep).
1974 * RETURNS:
1975 * Zero on success, AC_ERR_* mask on failure
1977 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1979 struct ata_taskfile tf;
1981 ata_tf_init(dev, &tf);
1983 tf.command = cmd;
1984 tf.flags |= ATA_TFLAG_DEVICE;
1985 tf.protocol = ATA_PROT_NODATA;
1987 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1991 * ata_pio_need_iordy - check if iordy needed
1992 * @adev: ATA device
1994 * Check if the current speed of the device requires IORDY. Used
1995 * by various controllers for chip configuration.
1998 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
2000 /* Controller doesn't support IORDY. Probably a pointless check
2001 as the caller should know this */
2002 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2003 return 0;
2004 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2005 if (ata_id_is_cfa(adev->id)
2006 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2007 return 0;
2008 /* PIO3 and higher it is mandatory */
2009 if (adev->pio_mode > XFER_PIO_2)
2010 return 1;
2011 /* We turn it on when possible */
2012 if (ata_id_has_iordy(adev->id))
2013 return 1;
2014 return 0;
2018 * ata_pio_mask_no_iordy - Return the non IORDY mask
2019 * @adev: ATA device
2021 * Compute the highest mode possible if we are not using iordy. Return
2022 * -1 if no iordy mode is available.
2025 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2027 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2028 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2029 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2030 /* Is the speed faster than the drive allows non IORDY ? */
2031 if (pio) {
2032 /* This is cycle times not frequency - watch the logic! */
2033 if (pio > 240) /* PIO2 is 240nS per cycle */
2034 return 3 << ATA_SHIFT_PIO;
2035 return 7 << ATA_SHIFT_PIO;
2038 return 3 << ATA_SHIFT_PIO;
2042 * ata_do_dev_read_id - default ID read method
2043 * @dev: device
2044 * @tf: proposed taskfile
2045 * @id: data buffer
2047 * Issue the identify taskfile and hand back the buffer containing
2048 * identify data. For some RAID controllers and for pre ATA devices
2049 * this function is wrapped or replaced by the driver
2051 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2052 struct ata_taskfile *tf, u16 *id)
2054 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2055 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2059 * ata_dev_read_id - Read ID data from the specified device
2060 * @dev: target device
2061 * @p_class: pointer to class of the target device (may be changed)
2062 * @flags: ATA_READID_* flags
2063 * @id: buffer to read IDENTIFY data into
2065 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2066 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2067 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2068 * for pre-ATA4 drives.
2070 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2071 * now we abort if we hit that case.
2073 * LOCKING:
2074 * Kernel thread context (may sleep)
2076 * RETURNS:
2077 * 0 on success, -errno otherwise.
2079 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2080 unsigned int flags, u16 *id)
2082 struct ata_port *ap = dev->link->ap;
2083 unsigned int class = *p_class;
2084 struct ata_taskfile tf;
2085 unsigned int err_mask = 0;
2086 const char *reason;
2087 int may_fallback = 1, tried_spinup = 0;
2088 int rc;
2090 if (ata_msg_ctl(ap))
2091 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2093 retry:
2094 ata_tf_init(dev, &tf);
2096 switch (class) {
2097 case ATA_DEV_ATA:
2098 tf.command = ATA_CMD_ID_ATA;
2099 break;
2100 case ATA_DEV_ATAPI:
2101 tf.command = ATA_CMD_ID_ATAPI;
2102 break;
2103 default:
2104 rc = -ENODEV;
2105 reason = "unsupported class";
2106 goto err_out;
2109 tf.protocol = ATA_PROT_PIO;
2111 /* Some devices choke if TF registers contain garbage. Make
2112 * sure those are properly initialized.
2114 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2116 /* Device presence detection is unreliable on some
2117 * controllers. Always poll IDENTIFY if available.
2119 tf.flags |= ATA_TFLAG_POLLING;
2121 if (ap->ops->read_id)
2122 err_mask = ap->ops->read_id(dev, &tf, id);
2123 else
2124 err_mask = ata_do_dev_read_id(dev, &tf, id);
2126 if (err_mask) {
2127 if (err_mask & AC_ERR_NODEV_HINT) {
2128 ata_dev_printk(dev, KERN_DEBUG,
2129 "NODEV after polling detection\n");
2130 return -ENOENT;
2133 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2134 /* Device or controller might have reported
2135 * the wrong device class. Give a shot at the
2136 * other IDENTIFY if the current one is
2137 * aborted by the device.
2139 if (may_fallback) {
2140 may_fallback = 0;
2142 if (class == ATA_DEV_ATA)
2143 class = ATA_DEV_ATAPI;
2144 else
2145 class = ATA_DEV_ATA;
2146 goto retry;
2149 /* Control reaches here iff the device aborted
2150 * both flavors of IDENTIFYs which happens
2151 * sometimes with phantom devices.
2153 ata_dev_printk(dev, KERN_DEBUG,
2154 "both IDENTIFYs aborted, assuming NODEV\n");
2155 return -ENOENT;
2158 rc = -EIO;
2159 reason = "I/O error";
2160 goto err_out;
2163 /* Falling back doesn't make sense if ID data was read
2164 * successfully at least once.
2166 may_fallback = 0;
2168 swap_buf_le16(id, ATA_ID_WORDS);
2170 /* sanity check */
2171 rc = -EINVAL;
2172 reason = "device reports invalid type";
2174 if (class == ATA_DEV_ATA) {
2175 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2176 goto err_out;
2177 } else {
2178 if (ata_id_is_ata(id))
2179 goto err_out;
2182 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2183 tried_spinup = 1;
2185 * Drive powered-up in standby mode, and requires a specific
2186 * SET_FEATURES spin-up subcommand before it will accept
2187 * anything other than the original IDENTIFY command.
2189 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2190 if (err_mask && id[2] != 0x738c) {
2191 rc = -EIO;
2192 reason = "SPINUP failed";
2193 goto err_out;
2196 * If the drive initially returned incomplete IDENTIFY info,
2197 * we now must reissue the IDENTIFY command.
2199 if (id[2] == 0x37c8)
2200 goto retry;
2203 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2205 * The exact sequence expected by certain pre-ATA4 drives is:
2206 * SRST RESET
2207 * IDENTIFY (optional in early ATA)
2208 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2209 * anything else..
2210 * Some drives were very specific about that exact sequence.
2212 * Note that ATA4 says lba is mandatory so the second check
2213 * shoud never trigger.
2215 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2216 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2217 if (err_mask) {
2218 rc = -EIO;
2219 reason = "INIT_DEV_PARAMS failed";
2220 goto err_out;
2223 /* current CHS translation info (id[53-58]) might be
2224 * changed. reread the identify device info.
2226 flags &= ~ATA_READID_POSTRESET;
2227 goto retry;
2231 *p_class = class;
2233 return 0;
2235 err_out:
2236 if (ata_msg_warn(ap))
2237 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2238 "(%s, err_mask=0x%x)\n", reason, err_mask);
2239 return rc;
2242 static inline u8 ata_dev_knobble(struct ata_device *dev)
2244 struct ata_port *ap = dev->link->ap;
2246 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2247 return 0;
2249 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2252 static void ata_dev_config_ncq(struct ata_device *dev,
2253 char *desc, size_t desc_sz)
2255 struct ata_port *ap = dev->link->ap;
2256 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2258 if (!ata_id_has_ncq(dev->id)) {
2259 desc[0] = '\0';
2260 return;
2262 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2263 snprintf(desc, desc_sz, "NCQ (not used)");
2264 return;
2266 if (ap->flags & ATA_FLAG_NCQ) {
2267 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2268 dev->flags |= ATA_DFLAG_NCQ;
2271 if (hdepth >= ddepth)
2272 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2273 else
2274 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2278 * ata_dev_configure - Configure the specified ATA/ATAPI device
2279 * @dev: Target device to configure
2281 * Configure @dev according to @dev->id. Generic and low-level
2282 * driver specific fixups are also applied.
2284 * LOCKING:
2285 * Kernel thread context (may sleep)
2287 * RETURNS:
2288 * 0 on success, -errno otherwise
2290 int ata_dev_configure(struct ata_device *dev)
2292 struct ata_port *ap = dev->link->ap;
2293 struct ata_eh_context *ehc = &dev->link->eh_context;
2294 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2295 const u16 *id = dev->id;
2296 unsigned long xfer_mask;
2297 char revbuf[7]; /* XYZ-99\0 */
2298 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2299 char modelbuf[ATA_ID_PROD_LEN+1];
2300 int rc;
2302 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2303 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2304 __func__);
2305 return 0;
2308 if (ata_msg_probe(ap))
2309 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2311 /* set horkage */
2312 dev->horkage |= ata_dev_blacklisted(dev);
2313 ata_force_horkage(dev);
2315 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2316 ata_dev_printk(dev, KERN_INFO,
2317 "unsupported device, disabling\n");
2318 ata_dev_disable(dev);
2319 return 0;
2322 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2323 dev->class == ATA_DEV_ATAPI) {
2324 ata_dev_printk(dev, KERN_WARNING,
2325 "WARNING: ATAPI is %s, device ignored.\n",
2326 atapi_enabled ? "not supported with this driver"
2327 : "disabled");
2328 ata_dev_disable(dev);
2329 return 0;
2332 /* let ACPI work its magic */
2333 rc = ata_acpi_on_devcfg(dev);
2334 if (rc)
2335 return rc;
2337 /* massage HPA, do it early as it might change IDENTIFY data */
2338 rc = ata_hpa_resize(dev);
2339 if (rc)
2340 return rc;
2342 /* print device capabilities */
2343 if (ata_msg_probe(ap))
2344 ata_dev_printk(dev, KERN_DEBUG,
2345 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2346 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2347 __func__,
2348 id[49], id[82], id[83], id[84],
2349 id[85], id[86], id[87], id[88]);
2351 /* initialize to-be-configured parameters */
2352 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2353 dev->max_sectors = 0;
2354 dev->cdb_len = 0;
2355 dev->n_sectors = 0;
2356 dev->cylinders = 0;
2357 dev->heads = 0;
2358 dev->sectors = 0;
2361 * common ATA, ATAPI feature tests
2364 /* find max transfer mode; for printk only */
2365 xfer_mask = ata_id_xfermask(id);
2367 if (ata_msg_probe(ap))
2368 ata_dump_id(id);
2370 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2371 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2372 sizeof(fwrevbuf));
2374 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2375 sizeof(modelbuf));
2377 /* ATA-specific feature tests */
2378 if (dev->class == ATA_DEV_ATA) {
2379 if (ata_id_is_cfa(id)) {
2380 if (id[162] & 1) /* CPRM may make this media unusable */
2381 ata_dev_printk(dev, KERN_WARNING,
2382 "supports DRM functions and may "
2383 "not be fully accessable.\n");
2384 snprintf(revbuf, 7, "CFA");
2385 } else {
2386 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2387 /* Warn the user if the device has TPM extensions */
2388 if (ata_id_has_tpm(id))
2389 ata_dev_printk(dev, KERN_WARNING,
2390 "supports DRM functions and may "
2391 "not be fully accessable.\n");
2394 dev->n_sectors = ata_id_n_sectors(id);
2396 if (dev->id[59] & 0x100)
2397 dev->multi_count = dev->id[59] & 0xff;
2399 if (ata_id_has_lba(id)) {
2400 const char *lba_desc;
2401 char ncq_desc[20];
2403 lba_desc = "LBA";
2404 dev->flags |= ATA_DFLAG_LBA;
2405 if (ata_id_has_lba48(id)) {
2406 dev->flags |= ATA_DFLAG_LBA48;
2407 lba_desc = "LBA48";
2409 if (dev->n_sectors >= (1UL << 28) &&
2410 ata_id_has_flush_ext(id))
2411 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2414 /* config NCQ */
2415 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2417 /* print device info to dmesg */
2418 if (ata_msg_drv(ap) && print_info) {
2419 ata_dev_printk(dev, KERN_INFO,
2420 "%s: %s, %s, max %s\n",
2421 revbuf, modelbuf, fwrevbuf,
2422 ata_mode_string(xfer_mask));
2423 ata_dev_printk(dev, KERN_INFO,
2424 "%Lu sectors, multi %u: %s %s\n",
2425 (unsigned long long)dev->n_sectors,
2426 dev->multi_count, lba_desc, ncq_desc);
2428 } else {
2429 /* CHS */
2431 /* Default translation */
2432 dev->cylinders = id[1];
2433 dev->heads = id[3];
2434 dev->sectors = id[6];
2436 if (ata_id_current_chs_valid(id)) {
2437 /* Current CHS translation is valid. */
2438 dev->cylinders = id[54];
2439 dev->heads = id[55];
2440 dev->sectors = id[56];
2443 /* print device info to dmesg */
2444 if (ata_msg_drv(ap) && print_info) {
2445 ata_dev_printk(dev, KERN_INFO,
2446 "%s: %s, %s, max %s\n",
2447 revbuf, modelbuf, fwrevbuf,
2448 ata_mode_string(xfer_mask));
2449 ata_dev_printk(dev, KERN_INFO,
2450 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2451 (unsigned long long)dev->n_sectors,
2452 dev->multi_count, dev->cylinders,
2453 dev->heads, dev->sectors);
2457 dev->cdb_len = 16;
2460 /* ATAPI-specific feature tests */
2461 else if (dev->class == ATA_DEV_ATAPI) {
2462 const char *cdb_intr_string = "";
2463 const char *atapi_an_string = "";
2464 const char *dma_dir_string = "";
2465 u32 sntf;
2467 rc = atapi_cdb_len(id);
2468 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2469 if (ata_msg_warn(ap))
2470 ata_dev_printk(dev, KERN_WARNING,
2471 "unsupported CDB len\n");
2472 rc = -EINVAL;
2473 goto err_out_nosup;
2475 dev->cdb_len = (unsigned int) rc;
2477 /* Enable ATAPI AN if both the host and device have
2478 * the support. If PMP is attached, SNTF is required
2479 * to enable ATAPI AN to discern between PHY status
2480 * changed notifications and ATAPI ANs.
2482 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2483 (!sata_pmp_attached(ap) ||
2484 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2485 unsigned int err_mask;
2487 /* issue SET feature command to turn this on */
2488 err_mask = ata_dev_set_feature(dev,
2489 SETFEATURES_SATA_ENABLE, SATA_AN);
2490 if (err_mask)
2491 ata_dev_printk(dev, KERN_ERR,
2492 "failed to enable ATAPI AN "
2493 "(err_mask=0x%x)\n", err_mask);
2494 else {
2495 dev->flags |= ATA_DFLAG_AN;
2496 atapi_an_string = ", ATAPI AN";
2500 if (ata_id_cdb_intr(dev->id)) {
2501 dev->flags |= ATA_DFLAG_CDB_INTR;
2502 cdb_intr_string = ", CDB intr";
2505 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2506 dev->flags |= ATA_DFLAG_DMADIR;
2507 dma_dir_string = ", DMADIR";
2510 /* print device info to dmesg */
2511 if (ata_msg_drv(ap) && print_info)
2512 ata_dev_printk(dev, KERN_INFO,
2513 "ATAPI: %s, %s, max %s%s%s%s\n",
2514 modelbuf, fwrevbuf,
2515 ata_mode_string(xfer_mask),
2516 cdb_intr_string, atapi_an_string,
2517 dma_dir_string);
2520 /* determine max_sectors */
2521 dev->max_sectors = ATA_MAX_SECTORS;
2522 if (dev->flags & ATA_DFLAG_LBA48)
2523 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2525 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2526 if (ata_id_has_hipm(dev->id))
2527 dev->flags |= ATA_DFLAG_HIPM;
2528 if (ata_id_has_dipm(dev->id))
2529 dev->flags |= ATA_DFLAG_DIPM;
2532 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2533 200 sectors */
2534 if (ata_dev_knobble(dev)) {
2535 if (ata_msg_drv(ap) && print_info)
2536 ata_dev_printk(dev, KERN_INFO,
2537 "applying bridge limits\n");
2538 dev->udma_mask &= ATA_UDMA5;
2539 dev->max_sectors = ATA_MAX_SECTORS;
2542 if ((dev->class == ATA_DEV_ATAPI) &&
2543 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2544 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2545 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2548 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2549 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2550 dev->max_sectors);
2552 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2553 dev->horkage |= ATA_HORKAGE_IPM;
2555 /* reset link pm_policy for this port to no pm */
2556 ap->pm_policy = MAX_PERFORMANCE;
2559 if (ap->ops->dev_config)
2560 ap->ops->dev_config(dev);
2562 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2563 /* Let the user know. We don't want to disallow opens for
2564 rescue purposes, or in case the vendor is just a blithering
2565 idiot. Do this after the dev_config call as some controllers
2566 with buggy firmware may want to avoid reporting false device
2567 bugs */
2569 if (print_info) {
2570 ata_dev_printk(dev, KERN_WARNING,
2571 "Drive reports diagnostics failure. This may indicate a drive\n");
2572 ata_dev_printk(dev, KERN_WARNING,
2573 "fault or invalid emulation. Contact drive vendor for information.\n");
2577 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2578 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2579 "firmware update to be fully functional.\n");
2580 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2581 "or visit http://ata.wiki.kernel.org.\n");
2584 return 0;
2586 err_out_nosup:
2587 if (ata_msg_probe(ap))
2588 ata_dev_printk(dev, KERN_DEBUG,
2589 "%s: EXIT, err\n", __func__);
2590 return rc;
2594 * ata_cable_40wire - return 40 wire cable type
2595 * @ap: port
2597 * Helper method for drivers which want to hardwire 40 wire cable
2598 * detection.
2601 int ata_cable_40wire(struct ata_port *ap)
2603 return ATA_CBL_PATA40;
2607 * ata_cable_80wire - return 80 wire cable type
2608 * @ap: port
2610 * Helper method for drivers which want to hardwire 80 wire cable
2611 * detection.
2614 int ata_cable_80wire(struct ata_port *ap)
2616 return ATA_CBL_PATA80;
2620 * ata_cable_unknown - return unknown PATA cable.
2621 * @ap: port
2623 * Helper method for drivers which have no PATA cable detection.
2626 int ata_cable_unknown(struct ata_port *ap)
2628 return ATA_CBL_PATA_UNK;
2632 * ata_cable_ignore - return ignored PATA cable.
2633 * @ap: port
2635 * Helper method for drivers which don't use cable type to limit
2636 * transfer mode.
2638 int ata_cable_ignore(struct ata_port *ap)
2640 return ATA_CBL_PATA_IGN;
2644 * ata_cable_sata - return SATA cable type
2645 * @ap: port
2647 * Helper method for drivers which have SATA cables
2650 int ata_cable_sata(struct ata_port *ap)
2652 return ATA_CBL_SATA;
2656 * ata_bus_probe - Reset and probe ATA bus
2657 * @ap: Bus to probe
2659 * Master ATA bus probing function. Initiates a hardware-dependent
2660 * bus reset, then attempts to identify any devices found on
2661 * the bus.
2663 * LOCKING:
2664 * PCI/etc. bus probe sem.
2666 * RETURNS:
2667 * Zero on success, negative errno otherwise.
2670 int ata_bus_probe(struct ata_port *ap)
2672 unsigned int classes[ATA_MAX_DEVICES];
2673 int tries[ATA_MAX_DEVICES];
2674 int rc;
2675 struct ata_device *dev;
2677 ata_port_probe(ap);
2679 ata_for_each_dev(dev, &ap->link, ALL)
2680 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2682 retry:
2683 ata_for_each_dev(dev, &ap->link, ALL) {
2684 /* If we issue an SRST then an ATA drive (not ATAPI)
2685 * may change configuration and be in PIO0 timing. If
2686 * we do a hard reset (or are coming from power on)
2687 * this is true for ATA or ATAPI. Until we've set a
2688 * suitable controller mode we should not touch the
2689 * bus as we may be talking too fast.
2691 dev->pio_mode = XFER_PIO_0;
2693 /* If the controller has a pio mode setup function
2694 * then use it to set the chipset to rights. Don't
2695 * touch the DMA setup as that will be dealt with when
2696 * configuring devices.
2698 if (ap->ops->set_piomode)
2699 ap->ops->set_piomode(ap, dev);
2702 /* reset and determine device classes */
2703 ap->ops->phy_reset(ap);
2705 ata_for_each_dev(dev, &ap->link, ALL) {
2706 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2707 dev->class != ATA_DEV_UNKNOWN)
2708 classes[dev->devno] = dev->class;
2709 else
2710 classes[dev->devno] = ATA_DEV_NONE;
2712 dev->class = ATA_DEV_UNKNOWN;
2715 ata_port_probe(ap);
2717 /* read IDENTIFY page and configure devices. We have to do the identify
2718 specific sequence bass-ackwards so that PDIAG- is released by
2719 the slave device */
2721 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2722 if (tries[dev->devno])
2723 dev->class = classes[dev->devno];
2725 if (!ata_dev_enabled(dev))
2726 continue;
2728 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2729 dev->id);
2730 if (rc)
2731 goto fail;
2734 /* Now ask for the cable type as PDIAG- should have been released */
2735 if (ap->ops->cable_detect)
2736 ap->cbl = ap->ops->cable_detect(ap);
2738 /* We may have SATA bridge glue hiding here irrespective of
2739 * the reported cable types and sensed types. When SATA
2740 * drives indicate we have a bridge, we don't know which end
2741 * of the link the bridge is which is a problem.
2743 ata_for_each_dev(dev, &ap->link, ENABLED)
2744 if (ata_id_is_sata(dev->id))
2745 ap->cbl = ATA_CBL_SATA;
2747 /* After the identify sequence we can now set up the devices. We do
2748 this in the normal order so that the user doesn't get confused */
2750 ata_for_each_dev(dev, &ap->link, ENABLED) {
2751 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2752 rc = ata_dev_configure(dev);
2753 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2754 if (rc)
2755 goto fail;
2758 /* configure transfer mode */
2759 rc = ata_set_mode(&ap->link, &dev);
2760 if (rc)
2761 goto fail;
2763 ata_for_each_dev(dev, &ap->link, ENABLED)
2764 return 0;
2766 /* no device present, disable port */
2767 ata_port_disable(ap);
2768 return -ENODEV;
2770 fail:
2771 tries[dev->devno]--;
2773 switch (rc) {
2774 case -EINVAL:
2775 /* eeek, something went very wrong, give up */
2776 tries[dev->devno] = 0;
2777 break;
2779 case -ENODEV:
2780 /* give it just one more chance */
2781 tries[dev->devno] = min(tries[dev->devno], 1);
2782 case -EIO:
2783 if (tries[dev->devno] == 1) {
2784 /* This is the last chance, better to slow
2785 * down than lose it.
2787 sata_down_spd_limit(&ap->link);
2788 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2792 if (!tries[dev->devno])
2793 ata_dev_disable(dev);
2795 goto retry;
2799 * ata_port_probe - Mark port as enabled
2800 * @ap: Port for which we indicate enablement
2802 * Modify @ap data structure such that the system
2803 * thinks that the entire port is enabled.
2805 * LOCKING: host lock, or some other form of
2806 * serialization.
2809 void ata_port_probe(struct ata_port *ap)
2811 ap->flags &= ~ATA_FLAG_DISABLED;
2815 * sata_print_link_status - Print SATA link status
2816 * @link: SATA link to printk link status about
2818 * This function prints link speed and status of a SATA link.
2820 * LOCKING:
2821 * None.
2823 static void sata_print_link_status(struct ata_link *link)
2825 u32 sstatus, scontrol, tmp;
2827 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2828 return;
2829 sata_scr_read(link, SCR_CONTROL, &scontrol);
2831 if (ata_phys_link_online(link)) {
2832 tmp = (sstatus >> 4) & 0xf;
2833 ata_link_printk(link, KERN_INFO,
2834 "SATA link up %s (SStatus %X SControl %X)\n",
2835 sata_spd_string(tmp), sstatus, scontrol);
2836 } else {
2837 ata_link_printk(link, KERN_INFO,
2838 "SATA link down (SStatus %X SControl %X)\n",
2839 sstatus, scontrol);
2844 * ata_dev_pair - return other device on cable
2845 * @adev: device
2847 * Obtain the other device on the same cable, or if none is
2848 * present NULL is returned
2851 struct ata_device *ata_dev_pair(struct ata_device *adev)
2853 struct ata_link *link = adev->link;
2854 struct ata_device *pair = &link->device[1 - adev->devno];
2855 if (!ata_dev_enabled(pair))
2856 return NULL;
2857 return pair;
2861 * ata_port_disable - Disable port.
2862 * @ap: Port to be disabled.
2864 * Modify @ap data structure such that the system
2865 * thinks that the entire port is disabled, and should
2866 * never attempt to probe or communicate with devices
2867 * on this port.
2869 * LOCKING: host lock, or some other form of
2870 * serialization.
2873 void ata_port_disable(struct ata_port *ap)
2875 ap->link.device[0].class = ATA_DEV_NONE;
2876 ap->link.device[1].class = ATA_DEV_NONE;
2877 ap->flags |= ATA_FLAG_DISABLED;
2881 * sata_down_spd_limit - adjust SATA spd limit downward
2882 * @link: Link to adjust SATA spd limit for
2884 * Adjust SATA spd limit of @link downward. Note that this
2885 * function only adjusts the limit. The change must be applied
2886 * using sata_set_spd().
2888 * LOCKING:
2889 * Inherited from caller.
2891 * RETURNS:
2892 * 0 on success, negative errno on failure
2894 int sata_down_spd_limit(struct ata_link *link)
2896 u32 sstatus, spd, mask;
2897 int rc, highbit;
2899 if (!sata_scr_valid(link))
2900 return -EOPNOTSUPP;
2902 /* If SCR can be read, use it to determine the current SPD.
2903 * If not, use cached value in link->sata_spd.
2905 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2906 if (rc == 0)
2907 spd = (sstatus >> 4) & 0xf;
2908 else
2909 spd = link->sata_spd;
2911 mask = link->sata_spd_limit;
2912 if (mask <= 1)
2913 return -EINVAL;
2915 /* unconditionally mask off the highest bit */
2916 highbit = fls(mask) - 1;
2917 mask &= ~(1 << highbit);
2919 /* Mask off all speeds higher than or equal to the current
2920 * one. Force 1.5Gbps if current SPD is not available.
2922 if (spd > 1)
2923 mask &= (1 << (spd - 1)) - 1;
2924 else
2925 mask &= 1;
2927 /* were we already at the bottom? */
2928 if (!mask)
2929 return -EINVAL;
2931 link->sata_spd_limit = mask;
2933 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2934 sata_spd_string(fls(mask)));
2936 return 0;
2939 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2941 struct ata_link *host_link = &link->ap->link;
2942 u32 limit, target, spd;
2944 limit = link->sata_spd_limit;
2946 /* Don't configure downstream link faster than upstream link.
2947 * It doesn't speed up anything and some PMPs choke on such
2948 * configuration.
2950 if (!ata_is_host_link(link) && host_link->sata_spd)
2951 limit &= (1 << host_link->sata_spd) - 1;
2953 if (limit == UINT_MAX)
2954 target = 0;
2955 else
2956 target = fls(limit);
2958 spd = (*scontrol >> 4) & 0xf;
2959 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2961 return spd != target;
2965 * sata_set_spd_needed - is SATA spd configuration needed
2966 * @link: Link in question
2968 * Test whether the spd limit in SControl matches
2969 * @link->sata_spd_limit. This function is used to determine
2970 * whether hardreset is necessary to apply SATA spd
2971 * configuration.
2973 * LOCKING:
2974 * Inherited from caller.
2976 * RETURNS:
2977 * 1 if SATA spd configuration is needed, 0 otherwise.
2979 static int sata_set_spd_needed(struct ata_link *link)
2981 u32 scontrol;
2983 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2984 return 1;
2986 return __sata_set_spd_needed(link, &scontrol);
2990 * sata_set_spd - set SATA spd according to spd limit
2991 * @link: Link to set SATA spd for
2993 * Set SATA spd of @link according to sata_spd_limit.
2995 * LOCKING:
2996 * Inherited from caller.
2998 * RETURNS:
2999 * 0 if spd doesn't need to be changed, 1 if spd has been
3000 * changed. Negative errno if SCR registers are inaccessible.
3002 int sata_set_spd(struct ata_link *link)
3004 u32 scontrol;
3005 int rc;
3007 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3008 return rc;
3010 if (!__sata_set_spd_needed(link, &scontrol))
3011 return 0;
3013 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3014 return rc;
3016 return 1;
3020 * This mode timing computation functionality is ported over from
3021 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3024 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3025 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3026 * for UDMA6, which is currently supported only by Maxtor drives.
3028 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3031 static const struct ata_timing ata_timing[] = {
3032 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3033 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3034 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3035 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3036 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3037 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3038 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3039 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3041 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3042 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3043 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3045 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3046 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3047 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3048 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3049 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3051 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3052 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3053 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3054 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3055 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3056 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3057 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3058 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3060 { 0xFF }
3063 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3064 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3066 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3068 q->setup = EZ(t->setup * 1000, T);
3069 q->act8b = EZ(t->act8b * 1000, T);
3070 q->rec8b = EZ(t->rec8b * 1000, T);
3071 q->cyc8b = EZ(t->cyc8b * 1000, T);
3072 q->active = EZ(t->active * 1000, T);
3073 q->recover = EZ(t->recover * 1000, T);
3074 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3075 q->cycle = EZ(t->cycle * 1000, T);
3076 q->udma = EZ(t->udma * 1000, UT);
3079 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3080 struct ata_timing *m, unsigned int what)
3082 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3083 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3084 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3085 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3086 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3087 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3088 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3089 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3090 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3093 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3095 const struct ata_timing *t = ata_timing;
3097 while (xfer_mode > t->mode)
3098 t++;
3100 if (xfer_mode == t->mode)
3101 return t;
3102 return NULL;
3105 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3106 struct ata_timing *t, int T, int UT)
3108 const struct ata_timing *s;
3109 struct ata_timing p;
3112 * Find the mode.
3115 if (!(s = ata_timing_find_mode(speed)))
3116 return -EINVAL;
3118 memcpy(t, s, sizeof(*s));
3121 * If the drive is an EIDE drive, it can tell us it needs extended
3122 * PIO/MW_DMA cycle timing.
3125 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3126 memset(&p, 0, sizeof(p));
3127 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3128 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3129 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3130 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3131 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3133 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3137 * Convert the timing to bus clock counts.
3140 ata_timing_quantize(t, t, T, UT);
3143 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3144 * S.M.A.R.T * and some other commands. We have to ensure that the
3145 * DMA cycle timing is slower/equal than the fastest PIO timing.
3148 if (speed > XFER_PIO_6) {
3149 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3150 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3154 * Lengthen active & recovery time so that cycle time is correct.
3157 if (t->act8b + t->rec8b < t->cyc8b) {
3158 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3159 t->rec8b = t->cyc8b - t->act8b;
3162 if (t->active + t->recover < t->cycle) {
3163 t->active += (t->cycle - (t->active + t->recover)) / 2;
3164 t->recover = t->cycle - t->active;
3167 /* In a few cases quantisation may produce enough errors to
3168 leave t->cycle too low for the sum of active and recovery
3169 if so we must correct this */
3170 if (t->active + t->recover > t->cycle)
3171 t->cycle = t->active + t->recover;
3173 return 0;
3177 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3178 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3179 * @cycle: cycle duration in ns
3181 * Return matching xfer mode for @cycle. The returned mode is of
3182 * the transfer type specified by @xfer_shift. If @cycle is too
3183 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3184 * than the fastest known mode, the fasted mode is returned.
3186 * LOCKING:
3187 * None.
3189 * RETURNS:
3190 * Matching xfer_mode, 0xff if no match found.
3192 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3194 u8 base_mode = 0xff, last_mode = 0xff;
3195 const struct ata_xfer_ent *ent;
3196 const struct ata_timing *t;
3198 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3199 if (ent->shift == xfer_shift)
3200 base_mode = ent->base;
3202 for (t = ata_timing_find_mode(base_mode);
3203 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3204 unsigned short this_cycle;
3206 switch (xfer_shift) {
3207 case ATA_SHIFT_PIO:
3208 case ATA_SHIFT_MWDMA:
3209 this_cycle = t->cycle;
3210 break;
3211 case ATA_SHIFT_UDMA:
3212 this_cycle = t->udma;
3213 break;
3214 default:
3215 return 0xff;
3218 if (cycle > this_cycle)
3219 break;
3221 last_mode = t->mode;
3224 return last_mode;
3228 * ata_down_xfermask_limit - adjust dev xfer masks downward
3229 * @dev: Device to adjust xfer masks
3230 * @sel: ATA_DNXFER_* selector
3232 * Adjust xfer masks of @dev downward. Note that this function
3233 * does not apply the change. Invoking ata_set_mode() afterwards
3234 * will apply the limit.
3236 * LOCKING:
3237 * Inherited from caller.
3239 * RETURNS:
3240 * 0 on success, negative errno on failure
3242 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3244 char buf[32];
3245 unsigned long orig_mask, xfer_mask;
3246 unsigned long pio_mask, mwdma_mask, udma_mask;
3247 int quiet, highbit;
3249 quiet = !!(sel & ATA_DNXFER_QUIET);
3250 sel &= ~ATA_DNXFER_QUIET;
3252 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3253 dev->mwdma_mask,
3254 dev->udma_mask);
3255 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3257 switch (sel) {
3258 case ATA_DNXFER_PIO:
3259 highbit = fls(pio_mask) - 1;
3260 pio_mask &= ~(1 << highbit);
3261 break;
3263 case ATA_DNXFER_DMA:
3264 if (udma_mask) {
3265 highbit = fls(udma_mask) - 1;
3266 udma_mask &= ~(1 << highbit);
3267 if (!udma_mask)
3268 return -ENOENT;
3269 } else if (mwdma_mask) {
3270 highbit = fls(mwdma_mask) - 1;
3271 mwdma_mask &= ~(1 << highbit);
3272 if (!mwdma_mask)
3273 return -ENOENT;
3275 break;
3277 case ATA_DNXFER_40C:
3278 udma_mask &= ATA_UDMA_MASK_40C;
3279 break;
3281 case ATA_DNXFER_FORCE_PIO0:
3282 pio_mask &= 1;
3283 case ATA_DNXFER_FORCE_PIO:
3284 mwdma_mask = 0;
3285 udma_mask = 0;
3286 break;
3288 default:
3289 BUG();
3292 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3294 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3295 return -ENOENT;
3297 if (!quiet) {
3298 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3299 snprintf(buf, sizeof(buf), "%s:%s",
3300 ata_mode_string(xfer_mask),
3301 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3302 else
3303 snprintf(buf, sizeof(buf), "%s",
3304 ata_mode_string(xfer_mask));
3306 ata_dev_printk(dev, KERN_WARNING,
3307 "limiting speed to %s\n", buf);
3310 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3311 &dev->udma_mask);
3313 return 0;
3316 static int ata_dev_set_mode(struct ata_device *dev)
3318 struct ata_eh_context *ehc = &dev->link->eh_context;
3319 const char *dev_err_whine = "";
3320 int ign_dev_err = 0;
3321 unsigned int err_mask;
3322 int rc;
3324 dev->flags &= ~ATA_DFLAG_PIO;
3325 if (dev->xfer_shift == ATA_SHIFT_PIO)
3326 dev->flags |= ATA_DFLAG_PIO;
3328 err_mask = ata_dev_set_xfermode(dev);
3330 if (err_mask & ~AC_ERR_DEV)
3331 goto fail;
3333 /* revalidate */
3334 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3335 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3336 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3337 if (rc)
3338 return rc;
3340 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3341 /* Old CFA may refuse this command, which is just fine */
3342 if (ata_id_is_cfa(dev->id))
3343 ign_dev_err = 1;
3344 /* Catch several broken garbage emulations plus some pre
3345 ATA devices */
3346 if (ata_id_major_version(dev->id) == 0 &&
3347 dev->pio_mode <= XFER_PIO_2)
3348 ign_dev_err = 1;
3349 /* Some very old devices and some bad newer ones fail
3350 any kind of SET_XFERMODE request but support PIO0-2
3351 timings and no IORDY */
3352 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3353 ign_dev_err = 1;
3355 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3356 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3357 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3358 dev->dma_mode == XFER_MW_DMA_0 &&
3359 (dev->id[63] >> 8) & 1)
3360 ign_dev_err = 1;
3362 /* if the device is actually configured correctly, ignore dev err */
3363 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3364 ign_dev_err = 1;
3366 if (err_mask & AC_ERR_DEV) {
3367 if (!ign_dev_err)
3368 goto fail;
3369 else
3370 dev_err_whine = " (device error ignored)";
3373 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3374 dev->xfer_shift, (int)dev->xfer_mode);
3376 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3377 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3378 dev_err_whine);
3380 return 0;
3382 fail:
3383 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3384 "(err_mask=0x%x)\n", err_mask);
3385 return -EIO;
3389 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3390 * @link: link on which timings will be programmed
3391 * @r_failed_dev: out parameter for failed device
3393 * Standard implementation of the function used to tune and set
3394 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3395 * ata_dev_set_mode() fails, pointer to the failing device is
3396 * returned in @r_failed_dev.
3398 * LOCKING:
3399 * PCI/etc. bus probe sem.
3401 * RETURNS:
3402 * 0 on success, negative errno otherwise
3405 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3407 struct ata_port *ap = link->ap;
3408 struct ata_device *dev;
3409 int rc = 0, used_dma = 0, found = 0;
3411 /* step 1: calculate xfer_mask */
3412 ata_for_each_dev(dev, link, ENABLED) {
3413 unsigned long pio_mask, dma_mask;
3414 unsigned int mode_mask;
3416 mode_mask = ATA_DMA_MASK_ATA;
3417 if (dev->class == ATA_DEV_ATAPI)
3418 mode_mask = ATA_DMA_MASK_ATAPI;
3419 else if (ata_id_is_cfa(dev->id))
3420 mode_mask = ATA_DMA_MASK_CFA;
3422 ata_dev_xfermask(dev);
3423 ata_force_xfermask(dev);
3425 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3426 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3428 if (libata_dma_mask & mode_mask)
3429 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3430 else
3431 dma_mask = 0;
3433 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3434 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3436 found = 1;
3437 if (ata_dma_enabled(dev))
3438 used_dma = 1;
3440 if (!found)
3441 goto out;
3443 /* step 2: always set host PIO timings */
3444 ata_for_each_dev(dev, link, ENABLED) {
3445 if (dev->pio_mode == 0xff) {
3446 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3447 rc = -EINVAL;
3448 goto out;
3451 dev->xfer_mode = dev->pio_mode;
3452 dev->xfer_shift = ATA_SHIFT_PIO;
3453 if (ap->ops->set_piomode)
3454 ap->ops->set_piomode(ap, dev);
3457 /* step 3: set host DMA timings */
3458 ata_for_each_dev(dev, link, ENABLED) {
3459 if (!ata_dma_enabled(dev))
3460 continue;
3462 dev->xfer_mode = dev->dma_mode;
3463 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3464 if (ap->ops->set_dmamode)
3465 ap->ops->set_dmamode(ap, dev);
3468 /* step 4: update devices' xfer mode */
3469 ata_for_each_dev(dev, link, ENABLED) {
3470 rc = ata_dev_set_mode(dev);
3471 if (rc)
3472 goto out;
3475 /* Record simplex status. If we selected DMA then the other
3476 * host channels are not permitted to do so.
3478 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3479 ap->host->simplex_claimed = ap;
3481 out:
3482 if (rc)
3483 *r_failed_dev = dev;
3484 return rc;
3488 * ata_wait_ready - wait for link to become ready
3489 * @link: link to be waited on
3490 * @deadline: deadline jiffies for the operation
3491 * @check_ready: callback to check link readiness
3493 * Wait for @link to become ready. @check_ready should return
3494 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3495 * link doesn't seem to be occupied, other errno for other error
3496 * conditions.
3498 * Transient -ENODEV conditions are allowed for
3499 * ATA_TMOUT_FF_WAIT.
3501 * LOCKING:
3502 * EH context.
3504 * RETURNS:
3505 * 0 if @linke is ready before @deadline; otherwise, -errno.
3507 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3508 int (*check_ready)(struct ata_link *link))
3510 unsigned long start = jiffies;
3511 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3512 int warned = 0;
3514 /* Slave readiness can't be tested separately from master. On
3515 * M/S emulation configuration, this function should be called
3516 * only on the master and it will handle both master and slave.
3518 WARN_ON(link == link->ap->slave_link);
3520 if (time_after(nodev_deadline, deadline))
3521 nodev_deadline = deadline;
3523 while (1) {
3524 unsigned long now = jiffies;
3525 int ready, tmp;
3527 ready = tmp = check_ready(link);
3528 if (ready > 0)
3529 return 0;
3531 /* -ENODEV could be transient. Ignore -ENODEV if link
3532 * is online. Also, some SATA devices take a long
3533 * time to clear 0xff after reset. For example,
3534 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3535 * GoVault needs even more than that. Wait for
3536 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3538 * Note that some PATA controllers (pata_ali) explode
3539 * if status register is read more than once when
3540 * there's no device attached.
3542 if (ready == -ENODEV) {
3543 if (ata_link_online(link))
3544 ready = 0;
3545 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3546 !ata_link_offline(link) &&
3547 time_before(now, nodev_deadline))
3548 ready = 0;
3551 if (ready)
3552 return ready;
3553 if (time_after(now, deadline))
3554 return -EBUSY;
3556 if (!warned && time_after(now, start + 5 * HZ) &&
3557 (deadline - now > 3 * HZ)) {
3558 ata_link_printk(link, KERN_WARNING,
3559 "link is slow to respond, please be patient "
3560 "(ready=%d)\n", tmp);
3561 warned = 1;
3564 msleep(50);
3569 * ata_wait_after_reset - wait for link to become ready after reset
3570 * @link: link to be waited on
3571 * @deadline: deadline jiffies for the operation
3572 * @check_ready: callback to check link readiness
3574 * Wait for @link to become ready after reset.
3576 * LOCKING:
3577 * EH context.
3579 * RETURNS:
3580 * 0 if @linke is ready before @deadline; otherwise, -errno.
3582 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3583 int (*check_ready)(struct ata_link *link))
3585 msleep(ATA_WAIT_AFTER_RESET);
3587 return ata_wait_ready(link, deadline, check_ready);
3591 * sata_link_debounce - debounce SATA phy status
3592 * @link: ATA link to debounce SATA phy status for
3593 * @params: timing parameters { interval, duratinon, timeout } in msec
3594 * @deadline: deadline jiffies for the operation
3596 * Make sure SStatus of @link reaches stable state, determined by
3597 * holding the same value where DET is not 1 for @duration polled
3598 * every @interval, before @timeout. Timeout constraints the
3599 * beginning of the stable state. Because DET gets stuck at 1 on
3600 * some controllers after hot unplugging, this functions waits
3601 * until timeout then returns 0 if DET is stable at 1.
3603 * @timeout is further limited by @deadline. The sooner of the
3604 * two is used.
3606 * LOCKING:
3607 * Kernel thread context (may sleep)
3609 * RETURNS:
3610 * 0 on success, -errno on failure.
3612 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3613 unsigned long deadline)
3615 unsigned long interval = params[0];
3616 unsigned long duration = params[1];
3617 unsigned long last_jiffies, t;
3618 u32 last, cur;
3619 int rc;
3621 t = ata_deadline(jiffies, params[2]);
3622 if (time_before(t, deadline))
3623 deadline = t;
3625 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3626 return rc;
3627 cur &= 0xf;
3629 last = cur;
3630 last_jiffies = jiffies;
3632 while (1) {
3633 msleep(interval);
3634 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3635 return rc;
3636 cur &= 0xf;
3638 /* DET stable? */
3639 if (cur == last) {
3640 if (cur == 1 && time_before(jiffies, deadline))
3641 continue;
3642 if (time_after(jiffies,
3643 ata_deadline(last_jiffies, duration)))
3644 return 0;
3645 continue;
3648 /* unstable, start over */
3649 last = cur;
3650 last_jiffies = jiffies;
3652 /* Check deadline. If debouncing failed, return
3653 * -EPIPE to tell upper layer to lower link speed.
3655 if (time_after(jiffies, deadline))
3656 return -EPIPE;
3661 * sata_link_resume - resume SATA link
3662 * @link: ATA link to resume SATA
3663 * @params: timing parameters { interval, duratinon, timeout } in msec
3664 * @deadline: deadline jiffies for the operation
3666 * Resume SATA phy @link and debounce it.
3668 * LOCKING:
3669 * Kernel thread context (may sleep)
3671 * RETURNS:
3672 * 0 on success, -errno on failure.
3674 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3675 unsigned long deadline)
3677 u32 scontrol, serror;
3678 int rc;
3680 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3681 return rc;
3683 scontrol = (scontrol & 0x0f0) | 0x300;
3685 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3686 return rc;
3688 /* Some PHYs react badly if SStatus is pounded immediately
3689 * after resuming. Delay 200ms before debouncing.
3691 msleep(200);
3693 if ((rc = sata_link_debounce(link, params, deadline)))
3694 return rc;
3696 /* clear SError, some PHYs require this even for SRST to work */
3697 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3698 rc = sata_scr_write(link, SCR_ERROR, serror);
3700 return rc != -EINVAL ? rc : 0;
3704 * ata_std_prereset - prepare for reset
3705 * @link: ATA link to be reset
3706 * @deadline: deadline jiffies for the operation
3708 * @link is about to be reset. Initialize it. Failure from
3709 * prereset makes libata abort whole reset sequence and give up
3710 * that port, so prereset should be best-effort. It does its
3711 * best to prepare for reset sequence but if things go wrong, it
3712 * should just whine, not fail.
3714 * LOCKING:
3715 * Kernel thread context (may sleep)
3717 * RETURNS:
3718 * 0 on success, -errno otherwise.
3720 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3722 struct ata_port *ap = link->ap;
3723 struct ata_eh_context *ehc = &link->eh_context;
3724 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3725 int rc;
3727 /* if we're about to do hardreset, nothing more to do */
3728 if (ehc->i.action & ATA_EH_HARDRESET)
3729 return 0;
3731 /* if SATA, resume link */
3732 if (ap->flags & ATA_FLAG_SATA) {
3733 rc = sata_link_resume(link, timing, deadline);
3734 /* whine about phy resume failure but proceed */
3735 if (rc && rc != -EOPNOTSUPP)
3736 ata_link_printk(link, KERN_WARNING, "failed to resume "
3737 "link for reset (errno=%d)\n", rc);
3740 /* no point in trying softreset on offline link */
3741 if (ata_phys_link_offline(link))
3742 ehc->i.action &= ~ATA_EH_SOFTRESET;
3744 return 0;
3748 * sata_link_hardreset - reset link via SATA phy reset
3749 * @link: link to reset
3750 * @timing: timing parameters { interval, duratinon, timeout } in msec
3751 * @deadline: deadline jiffies for the operation
3752 * @online: optional out parameter indicating link onlineness
3753 * @check_ready: optional callback to check link readiness
3755 * SATA phy-reset @link using DET bits of SControl register.
3756 * After hardreset, link readiness is waited upon using
3757 * ata_wait_ready() if @check_ready is specified. LLDs are
3758 * allowed to not specify @check_ready and wait itself after this
3759 * function returns. Device classification is LLD's
3760 * responsibility.
3762 * *@online is set to one iff reset succeeded and @link is online
3763 * after reset.
3765 * LOCKING:
3766 * Kernel thread context (may sleep)
3768 * RETURNS:
3769 * 0 on success, -errno otherwise.
3771 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3772 unsigned long deadline,
3773 bool *online, int (*check_ready)(struct ata_link *))
3775 u32 scontrol;
3776 int rc;
3778 DPRINTK("ENTER\n");
3780 if (online)
3781 *online = false;
3783 if (sata_set_spd_needed(link)) {
3784 /* SATA spec says nothing about how to reconfigure
3785 * spd. To be on the safe side, turn off phy during
3786 * reconfiguration. This works for at least ICH7 AHCI
3787 * and Sil3124.
3789 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3790 goto out;
3792 scontrol = (scontrol & 0x0f0) | 0x304;
3794 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3795 goto out;
3797 sata_set_spd(link);
3800 /* issue phy wake/reset */
3801 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3802 goto out;
3804 scontrol = (scontrol & 0x0f0) | 0x301;
3806 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3807 goto out;
3809 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3810 * 10.4.2 says at least 1 ms.
3812 msleep(1);
3814 /* bring link back */
3815 rc = sata_link_resume(link, timing, deadline);
3816 if (rc)
3817 goto out;
3818 /* if link is offline nothing more to do */
3819 if (ata_phys_link_offline(link))
3820 goto out;
3822 /* Link is online. From this point, -ENODEV too is an error. */
3823 if (online)
3824 *online = true;
3826 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3827 /* If PMP is supported, we have to do follow-up SRST.
3828 * Some PMPs don't send D2H Reg FIS after hardreset if
3829 * the first port is empty. Wait only for
3830 * ATA_TMOUT_PMP_SRST_WAIT.
3832 if (check_ready) {
3833 unsigned long pmp_deadline;
3835 pmp_deadline = ata_deadline(jiffies,
3836 ATA_TMOUT_PMP_SRST_WAIT);
3837 if (time_after(pmp_deadline, deadline))
3838 pmp_deadline = deadline;
3839 ata_wait_ready(link, pmp_deadline, check_ready);
3841 rc = -EAGAIN;
3842 goto out;
3845 rc = 0;
3846 if (check_ready)
3847 rc = ata_wait_ready(link, deadline, check_ready);
3848 out:
3849 if (rc && rc != -EAGAIN) {
3850 /* online is set iff link is online && reset succeeded */
3851 if (online)
3852 *online = false;
3853 ata_link_printk(link, KERN_ERR,
3854 "COMRESET failed (errno=%d)\n", rc);
3856 DPRINTK("EXIT, rc=%d\n", rc);
3857 return rc;
3861 * sata_std_hardreset - COMRESET w/o waiting or classification
3862 * @link: link to reset
3863 * @class: resulting class of attached device
3864 * @deadline: deadline jiffies for the operation
3866 * Standard SATA COMRESET w/o waiting or classification.
3868 * LOCKING:
3869 * Kernel thread context (may sleep)
3871 * RETURNS:
3872 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3874 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3875 unsigned long deadline)
3877 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3878 bool online;
3879 int rc;
3881 /* do hardreset */
3882 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3883 return online ? -EAGAIN : rc;
3887 * ata_std_postreset - standard postreset callback
3888 * @link: the target ata_link
3889 * @classes: classes of attached devices
3891 * This function is invoked after a successful reset. Note that
3892 * the device might have been reset more than once using
3893 * different reset methods before postreset is invoked.
3895 * LOCKING:
3896 * Kernel thread context (may sleep)
3898 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3900 u32 serror;
3902 DPRINTK("ENTER\n");
3904 /* reset complete, clear SError */
3905 if (!sata_scr_read(link, SCR_ERROR, &serror))
3906 sata_scr_write(link, SCR_ERROR, serror);
3908 /* print link status */
3909 sata_print_link_status(link);
3911 DPRINTK("EXIT\n");
3915 * ata_dev_same_device - Determine whether new ID matches configured device
3916 * @dev: device to compare against
3917 * @new_class: class of the new device
3918 * @new_id: IDENTIFY page of the new device
3920 * Compare @new_class and @new_id against @dev and determine
3921 * whether @dev is the device indicated by @new_class and
3922 * @new_id.
3924 * LOCKING:
3925 * None.
3927 * RETURNS:
3928 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3930 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3931 const u16 *new_id)
3933 const u16 *old_id = dev->id;
3934 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3935 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3937 if (dev->class != new_class) {
3938 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3939 dev->class, new_class);
3940 return 0;
3943 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3944 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3945 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3946 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3948 if (strcmp(model[0], model[1])) {
3949 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3950 "'%s' != '%s'\n", model[0], model[1]);
3951 return 0;
3954 if (strcmp(serial[0], serial[1])) {
3955 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3956 "'%s' != '%s'\n", serial[0], serial[1]);
3957 return 0;
3960 return 1;
3964 * ata_dev_reread_id - Re-read IDENTIFY data
3965 * @dev: target ATA device
3966 * @readid_flags: read ID flags
3968 * Re-read IDENTIFY page and make sure @dev is still attached to
3969 * the port.
3971 * LOCKING:
3972 * Kernel thread context (may sleep)
3974 * RETURNS:
3975 * 0 on success, negative errno otherwise
3977 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3979 unsigned int class = dev->class;
3980 u16 *id = (void *)dev->link->ap->sector_buf;
3981 int rc;
3983 /* read ID data */
3984 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3985 if (rc)
3986 return rc;
3988 /* is the device still there? */
3989 if (!ata_dev_same_device(dev, class, id))
3990 return -ENODEV;
3992 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3993 return 0;
3997 * ata_dev_revalidate - Revalidate ATA device
3998 * @dev: device to revalidate
3999 * @new_class: new class code
4000 * @readid_flags: read ID flags
4002 * Re-read IDENTIFY page, make sure @dev is still attached to the
4003 * port and reconfigure it according to the new IDENTIFY page.
4005 * LOCKING:
4006 * Kernel thread context (may sleep)
4008 * RETURNS:
4009 * 0 on success, negative errno otherwise
4011 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4012 unsigned int readid_flags)
4014 u64 n_sectors = dev->n_sectors;
4015 int rc;
4017 if (!ata_dev_enabled(dev))
4018 return -ENODEV;
4020 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4021 if (ata_class_enabled(new_class) &&
4022 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4023 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4024 dev->class, new_class);
4025 rc = -ENODEV;
4026 goto fail;
4029 /* re-read ID */
4030 rc = ata_dev_reread_id(dev, readid_flags);
4031 if (rc)
4032 goto fail;
4034 /* configure device according to the new ID */
4035 rc = ata_dev_configure(dev);
4036 if (rc)
4037 goto fail;
4039 /* verify n_sectors hasn't changed */
4040 if (dev->class == ATA_DEV_ATA && n_sectors &&
4041 dev->n_sectors != n_sectors) {
4042 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4043 "%llu != %llu\n",
4044 (unsigned long long)n_sectors,
4045 (unsigned long long)dev->n_sectors);
4047 /* restore original n_sectors */
4048 dev->n_sectors = n_sectors;
4050 rc = -ENODEV;
4051 goto fail;
4054 return 0;
4056 fail:
4057 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4058 return rc;
4061 struct ata_blacklist_entry {
4062 const char *model_num;
4063 const char *model_rev;
4064 unsigned long horkage;
4067 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4068 /* Devices with DMA related problems under Linux */
4069 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4070 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4071 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4072 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4073 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4074 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4075 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4076 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4077 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4078 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4079 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4080 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4081 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4082 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4083 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4084 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4085 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4086 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4087 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4088 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4089 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4090 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4091 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4092 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4093 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4094 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4095 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4096 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4097 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4098 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4099 /* Odd clown on sil3726/4726 PMPs */
4100 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4102 /* Weird ATAPI devices */
4103 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4104 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4106 /* Devices we expect to fail diagnostics */
4108 /* Devices where NCQ should be avoided */
4109 /* NCQ is slow */
4110 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4111 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4112 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4113 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4114 /* NCQ is broken */
4115 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4116 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4117 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4118 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4119 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4121 /* Seagate NCQ + FLUSH CACHE firmware bug */
4122 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4123 ATA_HORKAGE_FIRMWARE_WARN },
4124 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4125 ATA_HORKAGE_FIRMWARE_WARN },
4126 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4127 ATA_HORKAGE_FIRMWARE_WARN },
4128 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4129 ATA_HORKAGE_FIRMWARE_WARN },
4130 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4131 ATA_HORKAGE_FIRMWARE_WARN },
4133 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4134 ATA_HORKAGE_FIRMWARE_WARN },
4135 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4136 ATA_HORKAGE_FIRMWARE_WARN },
4137 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4138 ATA_HORKAGE_FIRMWARE_WARN },
4139 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4140 ATA_HORKAGE_FIRMWARE_WARN },
4141 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4142 ATA_HORKAGE_FIRMWARE_WARN },
4144 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4145 ATA_HORKAGE_FIRMWARE_WARN },
4146 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4147 ATA_HORKAGE_FIRMWARE_WARN },
4148 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4149 ATA_HORKAGE_FIRMWARE_WARN },
4150 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4151 ATA_HORKAGE_FIRMWARE_WARN },
4152 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4153 ATA_HORKAGE_FIRMWARE_WARN },
4155 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4156 ATA_HORKAGE_FIRMWARE_WARN },
4157 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4158 ATA_HORKAGE_FIRMWARE_WARN },
4159 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4160 ATA_HORKAGE_FIRMWARE_WARN },
4161 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4162 ATA_HORKAGE_FIRMWARE_WARN },
4163 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4164 ATA_HORKAGE_FIRMWARE_WARN },
4166 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4167 ATA_HORKAGE_FIRMWARE_WARN },
4168 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4169 ATA_HORKAGE_FIRMWARE_WARN },
4170 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4171 ATA_HORKAGE_FIRMWARE_WARN },
4172 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4173 ATA_HORKAGE_FIRMWARE_WARN },
4174 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4175 ATA_HORKAGE_FIRMWARE_WARN },
4177 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4178 ATA_HORKAGE_FIRMWARE_WARN },
4179 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4180 ATA_HORKAGE_FIRMWARE_WARN },
4181 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4182 ATA_HORKAGE_FIRMWARE_WARN },
4183 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4184 ATA_HORKAGE_FIRMWARE_WARN },
4185 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4186 ATA_HORKAGE_FIRMWARE_WARN },
4188 /* Blacklist entries taken from Silicon Image 3124/3132
4189 Windows driver .inf file - also several Linux problem reports */
4190 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4191 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4192 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4194 /* devices which puke on READ_NATIVE_MAX */
4195 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4196 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4197 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4198 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4200 /* Devices which report 1 sector over size HPA */
4201 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4202 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4203 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4205 /* Devices which get the IVB wrong */
4206 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4207 /* Maybe we should just blacklist TSSTcorp... */
4208 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4209 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4210 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4211 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4212 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4213 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4215 /* Devices that do not need bridging limits applied */
4216 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4218 /* End Marker */
4222 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4224 const char *p;
4225 int len;
4228 * check for trailing wildcard: *\0
4230 p = strchr(patt, wildchar);
4231 if (p && ((*(p + 1)) == 0))
4232 len = p - patt;
4233 else {
4234 len = strlen(name);
4235 if (!len) {
4236 if (!*patt)
4237 return 0;
4238 return -1;
4242 return strncmp(patt, name, len);
4245 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4247 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4248 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4249 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4251 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4252 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4254 while (ad->model_num) {
4255 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4256 if (ad->model_rev == NULL)
4257 return ad->horkage;
4258 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4259 return ad->horkage;
4261 ad++;
4263 return 0;
4266 static int ata_dma_blacklisted(const struct ata_device *dev)
4268 /* We don't support polling DMA.
4269 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4270 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4272 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4273 (dev->flags & ATA_DFLAG_CDB_INTR))
4274 return 1;
4275 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4279 * ata_is_40wire - check drive side detection
4280 * @dev: device
4282 * Perform drive side detection decoding, allowing for device vendors
4283 * who can't follow the documentation.
4286 static int ata_is_40wire(struct ata_device *dev)
4288 if (dev->horkage & ATA_HORKAGE_IVB)
4289 return ata_drive_40wire_relaxed(dev->id);
4290 return ata_drive_40wire(dev->id);
4294 * cable_is_40wire - 40/80/SATA decider
4295 * @ap: port to consider
4297 * This function encapsulates the policy for speed management
4298 * in one place. At the moment we don't cache the result but
4299 * there is a good case for setting ap->cbl to the result when
4300 * we are called with unknown cables (and figuring out if it
4301 * impacts hotplug at all).
4303 * Return 1 if the cable appears to be 40 wire.
4306 static int cable_is_40wire(struct ata_port *ap)
4308 struct ata_link *link;
4309 struct ata_device *dev;
4311 /* If the controller thinks we are 40 wire, we are. */
4312 if (ap->cbl == ATA_CBL_PATA40)
4313 return 1;
4315 /* If the controller thinks we are 80 wire, we are. */
4316 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4317 return 0;
4319 /* If the system is known to be 40 wire short cable (eg
4320 * laptop), then we allow 80 wire modes even if the drive
4321 * isn't sure.
4323 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4324 return 0;
4326 /* If the controller doesn't know, we scan.
4328 * Note: We look for all 40 wire detects at this point. Any
4329 * 80 wire detect is taken to be 80 wire cable because
4330 * - in many setups only the one drive (slave if present) will
4331 * give a valid detect
4332 * - if you have a non detect capable drive you don't want it
4333 * to colour the choice
4335 ata_for_each_link(link, ap, EDGE) {
4336 ata_for_each_dev(dev, link, ENABLED) {
4337 if (!ata_is_40wire(dev))
4338 return 0;
4341 return 1;
4345 * ata_dev_xfermask - Compute supported xfermask of the given device
4346 * @dev: Device to compute xfermask for
4348 * Compute supported xfermask of @dev and store it in
4349 * dev->*_mask. This function is responsible for applying all
4350 * known limits including host controller limits, device
4351 * blacklist, etc...
4353 * LOCKING:
4354 * None.
4356 static void ata_dev_xfermask(struct ata_device *dev)
4358 struct ata_link *link = dev->link;
4359 struct ata_port *ap = link->ap;
4360 struct ata_host *host = ap->host;
4361 unsigned long xfer_mask;
4363 /* controller modes available */
4364 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4365 ap->mwdma_mask, ap->udma_mask);
4367 /* drive modes available */
4368 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4369 dev->mwdma_mask, dev->udma_mask);
4370 xfer_mask &= ata_id_xfermask(dev->id);
4373 * CFA Advanced TrueIDE timings are not allowed on a shared
4374 * cable
4376 if (ata_dev_pair(dev)) {
4377 /* No PIO5 or PIO6 */
4378 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4379 /* No MWDMA3 or MWDMA 4 */
4380 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4383 if (ata_dma_blacklisted(dev)) {
4384 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4385 ata_dev_printk(dev, KERN_WARNING,
4386 "device is on DMA blacklist, disabling DMA\n");
4389 if ((host->flags & ATA_HOST_SIMPLEX) &&
4390 host->simplex_claimed && host->simplex_claimed != ap) {
4391 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4392 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4393 "other device, disabling DMA\n");
4396 if (ap->flags & ATA_FLAG_NO_IORDY)
4397 xfer_mask &= ata_pio_mask_no_iordy(dev);
4399 if (ap->ops->mode_filter)
4400 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4402 /* Apply cable rule here. Don't apply it early because when
4403 * we handle hot plug the cable type can itself change.
4404 * Check this last so that we know if the transfer rate was
4405 * solely limited by the cable.
4406 * Unknown or 80 wire cables reported host side are checked
4407 * drive side as well. Cases where we know a 40wire cable
4408 * is used safely for 80 are not checked here.
4410 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4411 /* UDMA/44 or higher would be available */
4412 if (cable_is_40wire(ap)) {
4413 ata_dev_printk(dev, KERN_WARNING,
4414 "limited to UDMA/33 due to 40-wire cable\n");
4415 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4418 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4419 &dev->mwdma_mask, &dev->udma_mask);
4423 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4424 * @dev: Device to which command will be sent
4426 * Issue SET FEATURES - XFER MODE command to device @dev
4427 * on port @ap.
4429 * LOCKING:
4430 * PCI/etc. bus probe sem.
4432 * RETURNS:
4433 * 0 on success, AC_ERR_* mask otherwise.
4436 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4438 struct ata_taskfile tf;
4439 unsigned int err_mask;
4441 /* set up set-features taskfile */
4442 DPRINTK("set features - xfer mode\n");
4444 /* Some controllers and ATAPI devices show flaky interrupt
4445 * behavior after setting xfer mode. Use polling instead.
4447 ata_tf_init(dev, &tf);
4448 tf.command = ATA_CMD_SET_FEATURES;
4449 tf.feature = SETFEATURES_XFER;
4450 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4451 tf.protocol = ATA_PROT_NODATA;
4452 /* If we are using IORDY we must send the mode setting command */
4453 if (ata_pio_need_iordy(dev))
4454 tf.nsect = dev->xfer_mode;
4455 /* If the device has IORDY and the controller does not - turn it off */
4456 else if (ata_id_has_iordy(dev->id))
4457 tf.nsect = 0x01;
4458 else /* In the ancient relic department - skip all of this */
4459 return 0;
4461 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4463 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4464 return err_mask;
4467 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4468 * @dev: Device to which command will be sent
4469 * @enable: Whether to enable or disable the feature
4470 * @feature: The sector count represents the feature to set
4472 * Issue SET FEATURES - SATA FEATURES command to device @dev
4473 * on port @ap with sector count
4475 * LOCKING:
4476 * PCI/etc. bus probe sem.
4478 * RETURNS:
4479 * 0 on success, AC_ERR_* mask otherwise.
4481 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4482 u8 feature)
4484 struct ata_taskfile tf;
4485 unsigned int err_mask;
4487 /* set up set-features taskfile */
4488 DPRINTK("set features - SATA features\n");
4490 ata_tf_init(dev, &tf);
4491 tf.command = ATA_CMD_SET_FEATURES;
4492 tf.feature = enable;
4493 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4494 tf.protocol = ATA_PROT_NODATA;
4495 tf.nsect = feature;
4497 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4499 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4500 return err_mask;
4504 * ata_dev_init_params - Issue INIT DEV PARAMS command
4505 * @dev: Device to which command will be sent
4506 * @heads: Number of heads (taskfile parameter)
4507 * @sectors: Number of sectors (taskfile parameter)
4509 * LOCKING:
4510 * Kernel thread context (may sleep)
4512 * RETURNS:
4513 * 0 on success, AC_ERR_* mask otherwise.
4515 static unsigned int ata_dev_init_params(struct ata_device *dev,
4516 u16 heads, u16 sectors)
4518 struct ata_taskfile tf;
4519 unsigned int err_mask;
4521 /* Number of sectors per track 1-255. Number of heads 1-16 */
4522 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4523 return AC_ERR_INVALID;
4525 /* set up init dev params taskfile */
4526 DPRINTK("init dev params \n");
4528 ata_tf_init(dev, &tf);
4529 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4530 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4531 tf.protocol = ATA_PROT_NODATA;
4532 tf.nsect = sectors;
4533 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4535 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4536 /* A clean abort indicates an original or just out of spec drive
4537 and we should continue as we issue the setup based on the
4538 drive reported working geometry */
4539 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4540 err_mask = 0;
4542 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4543 return err_mask;
4547 * ata_sg_clean - Unmap DMA memory associated with command
4548 * @qc: Command containing DMA memory to be released
4550 * Unmap all mapped DMA memory associated with this command.
4552 * LOCKING:
4553 * spin_lock_irqsave(host lock)
4555 void ata_sg_clean(struct ata_queued_cmd *qc)
4557 struct ata_port *ap = qc->ap;
4558 struct scatterlist *sg = qc->sg;
4559 int dir = qc->dma_dir;
4561 WARN_ON_ONCE(sg == NULL);
4563 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4565 if (qc->n_elem)
4566 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4568 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4569 qc->sg = NULL;
4573 * atapi_check_dma - Check whether ATAPI DMA can be supported
4574 * @qc: Metadata associated with taskfile to check
4576 * Allow low-level driver to filter ATA PACKET commands, returning
4577 * a status indicating whether or not it is OK to use DMA for the
4578 * supplied PACKET command.
4580 * LOCKING:
4581 * spin_lock_irqsave(host lock)
4583 * RETURNS: 0 when ATAPI DMA can be used
4584 * nonzero otherwise
4586 int atapi_check_dma(struct ata_queued_cmd *qc)
4588 struct ata_port *ap = qc->ap;
4590 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4591 * few ATAPI devices choke on such DMA requests.
4593 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4594 unlikely(qc->nbytes & 15))
4595 return 1;
4597 if (ap->ops->check_atapi_dma)
4598 return ap->ops->check_atapi_dma(qc);
4600 return 0;
4604 * ata_std_qc_defer - Check whether a qc needs to be deferred
4605 * @qc: ATA command in question
4607 * Non-NCQ commands cannot run with any other command, NCQ or
4608 * not. As upper layer only knows the queue depth, we are
4609 * responsible for maintaining exclusion. This function checks
4610 * whether a new command @qc can be issued.
4612 * LOCKING:
4613 * spin_lock_irqsave(host lock)
4615 * RETURNS:
4616 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4618 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4620 struct ata_link *link = qc->dev->link;
4622 if (qc->tf.protocol == ATA_PROT_NCQ) {
4623 if (!ata_tag_valid(link->active_tag))
4624 return 0;
4625 } else {
4626 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4627 return 0;
4630 return ATA_DEFER_LINK;
4633 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4636 * ata_sg_init - Associate command with scatter-gather table.
4637 * @qc: Command to be associated
4638 * @sg: Scatter-gather table.
4639 * @n_elem: Number of elements in s/g table.
4641 * Initialize the data-related elements of queued_cmd @qc
4642 * to point to a scatter-gather table @sg, containing @n_elem
4643 * elements.
4645 * LOCKING:
4646 * spin_lock_irqsave(host lock)
4648 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4649 unsigned int n_elem)
4651 qc->sg = sg;
4652 qc->n_elem = n_elem;
4653 qc->cursg = qc->sg;
4657 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4658 * @qc: Command with scatter-gather table to be mapped.
4660 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4662 * LOCKING:
4663 * spin_lock_irqsave(host lock)
4665 * RETURNS:
4666 * Zero on success, negative on error.
4669 static int ata_sg_setup(struct ata_queued_cmd *qc)
4671 struct ata_port *ap = qc->ap;
4672 unsigned int n_elem;
4674 VPRINTK("ENTER, ata%u\n", ap->print_id);
4676 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4677 if (n_elem < 1)
4678 return -1;
4680 DPRINTK("%d sg elements mapped\n", n_elem);
4682 qc->n_elem = n_elem;
4683 qc->flags |= ATA_QCFLAG_DMAMAP;
4685 return 0;
4689 * swap_buf_le16 - swap halves of 16-bit words in place
4690 * @buf: Buffer to swap
4691 * @buf_words: Number of 16-bit words in buffer.
4693 * Swap halves of 16-bit words if needed to convert from
4694 * little-endian byte order to native cpu byte order, or
4695 * vice-versa.
4697 * LOCKING:
4698 * Inherited from caller.
4700 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4702 #ifdef __BIG_ENDIAN
4703 unsigned int i;
4705 for (i = 0; i < buf_words; i++)
4706 buf[i] = le16_to_cpu(buf[i]);
4707 #endif /* __BIG_ENDIAN */
4711 * ata_qc_new - Request an available ATA command, for queueing
4712 * @ap: Port associated with device @dev
4713 * @dev: Device from whom we request an available command structure
4715 * LOCKING:
4716 * None.
4719 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4721 struct ata_queued_cmd *qc = NULL;
4722 unsigned int i;
4724 /* no command while frozen */
4725 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4726 return NULL;
4728 /* the last tag is reserved for internal command. */
4729 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4730 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4731 qc = __ata_qc_from_tag(ap, i);
4732 break;
4735 if (qc)
4736 qc->tag = i;
4738 return qc;
4742 * ata_qc_new_init - Request an available ATA command, and initialize it
4743 * @dev: Device from whom we request an available command structure
4745 * LOCKING:
4746 * None.
4749 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4751 struct ata_port *ap = dev->link->ap;
4752 struct ata_queued_cmd *qc;
4754 qc = ata_qc_new(ap);
4755 if (qc) {
4756 qc->scsicmd = NULL;
4757 qc->ap = ap;
4758 qc->dev = dev;
4760 ata_qc_reinit(qc);
4763 return qc;
4767 * ata_qc_free - free unused ata_queued_cmd
4768 * @qc: Command to complete
4770 * Designed to free unused ata_queued_cmd object
4771 * in case something prevents using it.
4773 * LOCKING:
4774 * spin_lock_irqsave(host lock)
4776 void ata_qc_free(struct ata_queued_cmd *qc)
4778 struct ata_port *ap = qc->ap;
4779 unsigned int tag;
4781 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4783 qc->flags = 0;
4784 tag = qc->tag;
4785 if (likely(ata_tag_valid(tag))) {
4786 qc->tag = ATA_TAG_POISON;
4787 clear_bit(tag, &ap->qc_allocated);
4791 void __ata_qc_complete(struct ata_queued_cmd *qc)
4793 struct ata_port *ap = qc->ap;
4794 struct ata_link *link = qc->dev->link;
4796 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4797 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4799 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4800 ata_sg_clean(qc);
4802 /* command should be marked inactive atomically with qc completion */
4803 if (qc->tf.protocol == ATA_PROT_NCQ) {
4804 link->sactive &= ~(1 << qc->tag);
4805 if (!link->sactive)
4806 ap->nr_active_links--;
4807 } else {
4808 link->active_tag = ATA_TAG_POISON;
4809 ap->nr_active_links--;
4812 /* clear exclusive status */
4813 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4814 ap->excl_link == link))
4815 ap->excl_link = NULL;
4817 /* atapi: mark qc as inactive to prevent the interrupt handler
4818 * from completing the command twice later, before the error handler
4819 * is called. (when rc != 0 and atapi request sense is needed)
4821 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4822 ap->qc_active &= ~(1 << qc->tag);
4824 /* call completion callback */
4825 qc->complete_fn(qc);
4828 static void fill_result_tf(struct ata_queued_cmd *qc)
4830 struct ata_port *ap = qc->ap;
4832 qc->result_tf.flags = qc->tf.flags;
4833 ap->ops->qc_fill_rtf(qc);
4836 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4838 struct ata_device *dev = qc->dev;
4840 if (ata_tag_internal(qc->tag))
4841 return;
4843 if (ata_is_nodata(qc->tf.protocol))
4844 return;
4846 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4847 return;
4849 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4853 * ata_qc_complete - Complete an active ATA command
4854 * @qc: Command to complete
4856 * Indicate to the mid and upper layers that an ATA
4857 * command has completed, with either an ok or not-ok status.
4859 * LOCKING:
4860 * spin_lock_irqsave(host lock)
4862 void ata_qc_complete(struct ata_queued_cmd *qc)
4864 struct ata_port *ap = qc->ap;
4866 /* XXX: New EH and old EH use different mechanisms to
4867 * synchronize EH with regular execution path.
4869 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4870 * Normal execution path is responsible for not accessing a
4871 * failed qc. libata core enforces the rule by returning NULL
4872 * from ata_qc_from_tag() for failed qcs.
4874 * Old EH depends on ata_qc_complete() nullifying completion
4875 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4876 * not synchronize with interrupt handler. Only PIO task is
4877 * taken care of.
4879 if (ap->ops->error_handler) {
4880 struct ata_device *dev = qc->dev;
4881 struct ata_eh_info *ehi = &dev->link->eh_info;
4883 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4885 if (unlikely(qc->err_mask))
4886 qc->flags |= ATA_QCFLAG_FAILED;
4888 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4889 if (!ata_tag_internal(qc->tag)) {
4890 /* always fill result TF for failed qc */
4891 fill_result_tf(qc);
4892 ata_qc_schedule_eh(qc);
4893 return;
4897 /* read result TF if requested */
4898 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4899 fill_result_tf(qc);
4901 /* Some commands need post-processing after successful
4902 * completion.
4904 switch (qc->tf.command) {
4905 case ATA_CMD_SET_FEATURES:
4906 if (qc->tf.feature != SETFEATURES_WC_ON &&
4907 qc->tf.feature != SETFEATURES_WC_OFF)
4908 break;
4909 /* fall through */
4910 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4911 case ATA_CMD_SET_MULTI: /* multi_count changed */
4912 /* revalidate device */
4913 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4914 ata_port_schedule_eh(ap);
4915 break;
4917 case ATA_CMD_SLEEP:
4918 dev->flags |= ATA_DFLAG_SLEEPING;
4919 break;
4922 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4923 ata_verify_xfer(qc);
4925 __ata_qc_complete(qc);
4926 } else {
4927 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4928 return;
4930 /* read result TF if failed or requested */
4931 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4932 fill_result_tf(qc);
4934 __ata_qc_complete(qc);
4939 * ata_qc_complete_multiple - Complete multiple qcs successfully
4940 * @ap: port in question
4941 * @qc_active: new qc_active mask
4943 * Complete in-flight commands. This functions is meant to be
4944 * called from low-level driver's interrupt routine to complete
4945 * requests normally. ap->qc_active and @qc_active is compared
4946 * and commands are completed accordingly.
4948 * LOCKING:
4949 * spin_lock_irqsave(host lock)
4951 * RETURNS:
4952 * Number of completed commands on success, -errno otherwise.
4954 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4956 int nr_done = 0;
4957 u32 done_mask;
4958 int i;
4960 done_mask = ap->qc_active ^ qc_active;
4962 if (unlikely(done_mask & qc_active)) {
4963 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4964 "(%08x->%08x)\n", ap->qc_active, qc_active);
4965 return -EINVAL;
4968 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4969 struct ata_queued_cmd *qc;
4971 if (!(done_mask & (1 << i)))
4972 continue;
4974 if ((qc = ata_qc_from_tag(ap, i))) {
4975 ata_qc_complete(qc);
4976 nr_done++;
4980 return nr_done;
4984 * ata_qc_issue - issue taskfile to device
4985 * @qc: command to issue to device
4987 * Prepare an ATA command to submission to device.
4988 * This includes mapping the data into a DMA-able
4989 * area, filling in the S/G table, and finally
4990 * writing the taskfile to hardware, starting the command.
4992 * LOCKING:
4993 * spin_lock_irqsave(host lock)
4995 void ata_qc_issue(struct ata_queued_cmd *qc)
4997 struct ata_port *ap = qc->ap;
4998 struct ata_link *link = qc->dev->link;
4999 u8 prot = qc->tf.protocol;
5001 /* Make sure only one non-NCQ command is outstanding. The
5002 * check is skipped for old EH because it reuses active qc to
5003 * request ATAPI sense.
5005 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5007 if (ata_is_ncq(prot)) {
5008 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5010 if (!link->sactive)
5011 ap->nr_active_links++;
5012 link->sactive |= 1 << qc->tag;
5013 } else {
5014 WARN_ON_ONCE(link->sactive);
5016 ap->nr_active_links++;
5017 link->active_tag = qc->tag;
5020 qc->flags |= ATA_QCFLAG_ACTIVE;
5021 ap->qc_active |= 1 << qc->tag;
5023 /* We guarantee to LLDs that they will have at least one
5024 * non-zero sg if the command is a data command.
5026 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5028 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5029 (ap->flags & ATA_FLAG_PIO_DMA)))
5030 if (ata_sg_setup(qc))
5031 goto sg_err;
5033 /* if device is sleeping, schedule reset and abort the link */
5034 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5035 link->eh_info.action |= ATA_EH_RESET;
5036 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5037 ata_link_abort(link);
5038 return;
5041 ap->ops->qc_prep(qc);
5043 qc->err_mask |= ap->ops->qc_issue(qc);
5044 if (unlikely(qc->err_mask))
5045 goto err;
5046 return;
5048 sg_err:
5049 qc->err_mask |= AC_ERR_SYSTEM;
5050 err:
5051 ata_qc_complete(qc);
5055 * sata_scr_valid - test whether SCRs are accessible
5056 * @link: ATA link to test SCR accessibility for
5058 * Test whether SCRs are accessible for @link.
5060 * LOCKING:
5061 * None.
5063 * RETURNS:
5064 * 1 if SCRs are accessible, 0 otherwise.
5066 int sata_scr_valid(struct ata_link *link)
5068 struct ata_port *ap = link->ap;
5070 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5074 * sata_scr_read - read SCR register of the specified port
5075 * @link: ATA link to read SCR for
5076 * @reg: SCR to read
5077 * @val: Place to store read value
5079 * Read SCR register @reg of @link into *@val. This function is
5080 * guaranteed to succeed if @link is ap->link, the cable type of
5081 * the port is SATA and the port implements ->scr_read.
5083 * LOCKING:
5084 * None if @link is ap->link. Kernel thread context otherwise.
5086 * RETURNS:
5087 * 0 on success, negative errno on failure.
5089 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5091 if (ata_is_host_link(link)) {
5092 if (sata_scr_valid(link))
5093 return link->ap->ops->scr_read(link, reg, val);
5094 return -EOPNOTSUPP;
5097 return sata_pmp_scr_read(link, reg, val);
5101 * sata_scr_write - write SCR register of the specified port
5102 * @link: ATA link to write SCR for
5103 * @reg: SCR to write
5104 * @val: value to write
5106 * Write @val to SCR register @reg of @link. This function is
5107 * guaranteed to succeed if @link is ap->link, the cable type of
5108 * the port is SATA and the port implements ->scr_read.
5110 * LOCKING:
5111 * None if @link is ap->link. Kernel thread context otherwise.
5113 * RETURNS:
5114 * 0 on success, negative errno on failure.
5116 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5118 if (ata_is_host_link(link)) {
5119 if (sata_scr_valid(link))
5120 return link->ap->ops->scr_write(link, reg, val);
5121 return -EOPNOTSUPP;
5124 return sata_pmp_scr_write(link, reg, val);
5128 * sata_scr_write_flush - write SCR register of the specified port and flush
5129 * @link: ATA link to write SCR for
5130 * @reg: SCR to write
5131 * @val: value to write
5133 * This function is identical to sata_scr_write() except that this
5134 * function performs flush after writing to the register.
5136 * LOCKING:
5137 * None if @link is ap->link. Kernel thread context otherwise.
5139 * RETURNS:
5140 * 0 on success, negative errno on failure.
5142 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5144 if (ata_is_host_link(link)) {
5145 int rc;
5147 if (sata_scr_valid(link)) {
5148 rc = link->ap->ops->scr_write(link, reg, val);
5149 if (rc == 0)
5150 rc = link->ap->ops->scr_read(link, reg, &val);
5151 return rc;
5153 return -EOPNOTSUPP;
5156 return sata_pmp_scr_write(link, reg, val);
5160 * ata_phys_link_online - test whether the given link is online
5161 * @link: ATA link to test
5163 * Test whether @link is online. Note that this function returns
5164 * 0 if online status of @link cannot be obtained, so
5165 * ata_link_online(link) != !ata_link_offline(link).
5167 * LOCKING:
5168 * None.
5170 * RETURNS:
5171 * True if the port online status is available and online.
5173 bool ata_phys_link_online(struct ata_link *link)
5175 u32 sstatus;
5177 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5178 (sstatus & 0xf) == 0x3)
5179 return true;
5180 return false;
5184 * ata_phys_link_offline - test whether the given link is offline
5185 * @link: ATA link to test
5187 * Test whether @link is offline. Note that this function
5188 * returns 0 if offline status of @link cannot be obtained, so
5189 * ata_link_online(link) != !ata_link_offline(link).
5191 * LOCKING:
5192 * None.
5194 * RETURNS:
5195 * True if the port offline status is available and offline.
5197 bool ata_phys_link_offline(struct ata_link *link)
5199 u32 sstatus;
5201 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5202 (sstatus & 0xf) != 0x3)
5203 return true;
5204 return false;
5208 * ata_link_online - test whether the given link is online
5209 * @link: ATA link to test
5211 * Test whether @link is online. This is identical to
5212 * ata_phys_link_online() when there's no slave link. When
5213 * there's a slave link, this function should only be called on
5214 * the master link and will return true if any of M/S links is
5215 * online.
5217 * LOCKING:
5218 * None.
5220 * RETURNS:
5221 * True if the port online status is available and online.
5223 bool ata_link_online(struct ata_link *link)
5225 struct ata_link *slave = link->ap->slave_link;
5227 WARN_ON(link == slave); /* shouldn't be called on slave link */
5229 return ata_phys_link_online(link) ||
5230 (slave && ata_phys_link_online(slave));
5234 * ata_link_offline - test whether the given link is offline
5235 * @link: ATA link to test
5237 * Test whether @link is offline. This is identical to
5238 * ata_phys_link_offline() when there's no slave link. When
5239 * there's a slave link, this function should only be called on
5240 * the master link and will return true if both M/S links are
5241 * offline.
5243 * LOCKING:
5244 * None.
5246 * RETURNS:
5247 * True if the port offline status is available and offline.
5249 bool ata_link_offline(struct ata_link *link)
5251 struct ata_link *slave = link->ap->slave_link;
5253 WARN_ON(link == slave); /* shouldn't be called on slave link */
5255 return ata_phys_link_offline(link) &&
5256 (!slave || ata_phys_link_offline(slave));
5259 #ifdef CONFIG_PM
5260 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5261 unsigned int action, unsigned int ehi_flags,
5262 int wait)
5264 unsigned long flags;
5265 int i, rc;
5267 for (i = 0; i < host->n_ports; i++) {
5268 struct ata_port *ap = host->ports[i];
5269 struct ata_link *link;
5271 /* Previous resume operation might still be in
5272 * progress. Wait for PM_PENDING to clear.
5274 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5275 ata_port_wait_eh(ap);
5276 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5279 /* request PM ops to EH */
5280 spin_lock_irqsave(ap->lock, flags);
5282 ap->pm_mesg = mesg;
5283 if (wait) {
5284 rc = 0;
5285 ap->pm_result = &rc;
5288 ap->pflags |= ATA_PFLAG_PM_PENDING;
5289 ata_for_each_link(link, ap, HOST_FIRST) {
5290 link->eh_info.action |= action;
5291 link->eh_info.flags |= ehi_flags;
5294 ata_port_schedule_eh(ap);
5296 spin_unlock_irqrestore(ap->lock, flags);
5298 /* wait and check result */
5299 if (wait) {
5300 ata_port_wait_eh(ap);
5301 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5302 if (rc)
5303 return rc;
5307 return 0;
5311 * ata_host_suspend - suspend host
5312 * @host: host to suspend
5313 * @mesg: PM message
5315 * Suspend @host. Actual operation is performed by EH. This
5316 * function requests EH to perform PM operations and waits for EH
5317 * to finish.
5319 * LOCKING:
5320 * Kernel thread context (may sleep).
5322 * RETURNS:
5323 * 0 on success, -errno on failure.
5325 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5327 int rc;
5330 * disable link pm on all ports before requesting
5331 * any pm activity
5333 ata_lpm_enable(host);
5335 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5336 if (rc == 0)
5337 host->dev->power.power_state = mesg;
5338 return rc;
5342 * ata_host_resume - resume host
5343 * @host: host to resume
5345 * Resume @host. Actual operation is performed by EH. This
5346 * function requests EH to perform PM operations and returns.
5347 * Note that all resume operations are performed parallely.
5349 * LOCKING:
5350 * Kernel thread context (may sleep).
5352 void ata_host_resume(struct ata_host *host)
5354 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5355 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5356 host->dev->power.power_state = PMSG_ON;
5358 /* reenable link pm */
5359 ata_lpm_disable(host);
5361 #endif
5364 * ata_port_start - Set port up for dma.
5365 * @ap: Port to initialize
5367 * Called just after data structures for each port are
5368 * initialized. Allocates space for PRD table.
5370 * May be used as the port_start() entry in ata_port_operations.
5372 * LOCKING:
5373 * Inherited from caller.
5375 int ata_port_start(struct ata_port *ap)
5377 struct device *dev = ap->dev;
5379 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5380 GFP_KERNEL);
5381 if (!ap->prd)
5382 return -ENOMEM;
5384 return 0;
5388 * ata_dev_init - Initialize an ata_device structure
5389 * @dev: Device structure to initialize
5391 * Initialize @dev in preparation for probing.
5393 * LOCKING:
5394 * Inherited from caller.
5396 void ata_dev_init(struct ata_device *dev)
5398 struct ata_link *link = ata_dev_phys_link(dev);
5399 struct ata_port *ap = link->ap;
5400 unsigned long flags;
5402 /* SATA spd limit is bound to the attached device, reset together */
5403 link->sata_spd_limit = link->hw_sata_spd_limit;
5404 link->sata_spd = 0;
5406 /* High bits of dev->flags are used to record warm plug
5407 * requests which occur asynchronously. Synchronize using
5408 * host lock.
5410 spin_lock_irqsave(ap->lock, flags);
5411 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5412 dev->horkage = 0;
5413 spin_unlock_irqrestore(ap->lock, flags);
5415 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5416 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5417 dev->pio_mask = UINT_MAX;
5418 dev->mwdma_mask = UINT_MAX;
5419 dev->udma_mask = UINT_MAX;
5423 * ata_link_init - Initialize an ata_link structure
5424 * @ap: ATA port link is attached to
5425 * @link: Link structure to initialize
5426 * @pmp: Port multiplier port number
5428 * Initialize @link.
5430 * LOCKING:
5431 * Kernel thread context (may sleep)
5433 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5435 int i;
5437 /* clear everything except for devices */
5438 memset(link, 0, offsetof(struct ata_link, device[0]));
5440 link->ap = ap;
5441 link->pmp = pmp;
5442 link->active_tag = ATA_TAG_POISON;
5443 link->hw_sata_spd_limit = UINT_MAX;
5445 /* can't use iterator, ap isn't initialized yet */
5446 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5447 struct ata_device *dev = &link->device[i];
5449 dev->link = link;
5450 dev->devno = dev - link->device;
5451 ata_dev_init(dev);
5456 * sata_link_init_spd - Initialize link->sata_spd_limit
5457 * @link: Link to configure sata_spd_limit for
5459 * Initialize @link->[hw_]sata_spd_limit to the currently
5460 * configured value.
5462 * LOCKING:
5463 * Kernel thread context (may sleep).
5465 * RETURNS:
5466 * 0 on success, -errno on failure.
5468 int sata_link_init_spd(struct ata_link *link)
5470 u8 spd;
5471 int rc;
5473 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5474 if (rc)
5475 return rc;
5477 spd = (link->saved_scontrol >> 4) & 0xf;
5478 if (spd)
5479 link->hw_sata_spd_limit &= (1 << spd) - 1;
5481 ata_force_link_limits(link);
5483 link->sata_spd_limit = link->hw_sata_spd_limit;
5485 return 0;
5489 * ata_port_alloc - allocate and initialize basic ATA port resources
5490 * @host: ATA host this allocated port belongs to
5492 * Allocate and initialize basic ATA port resources.
5494 * RETURNS:
5495 * Allocate ATA port on success, NULL on failure.
5497 * LOCKING:
5498 * Inherited from calling layer (may sleep).
5500 struct ata_port *ata_port_alloc(struct ata_host *host)
5502 struct ata_port *ap;
5504 DPRINTK("ENTER\n");
5506 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5507 if (!ap)
5508 return NULL;
5510 ap->pflags |= ATA_PFLAG_INITIALIZING;
5511 ap->lock = &host->lock;
5512 ap->flags = ATA_FLAG_DISABLED;
5513 ap->print_id = -1;
5514 ap->ctl = ATA_DEVCTL_OBS;
5515 ap->host = host;
5516 ap->dev = host->dev;
5517 ap->last_ctl = 0xFF;
5519 #if defined(ATA_VERBOSE_DEBUG)
5520 /* turn on all debugging levels */
5521 ap->msg_enable = 0x00FF;
5522 #elif defined(ATA_DEBUG)
5523 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5524 #else
5525 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5526 #endif
5528 #ifdef CONFIG_ATA_SFF
5529 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5530 #else
5531 INIT_DELAYED_WORK(&ap->port_task, NULL);
5532 #endif
5533 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5534 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5535 INIT_LIST_HEAD(&ap->eh_done_q);
5536 init_waitqueue_head(&ap->eh_wait_q);
5537 init_completion(&ap->park_req_pending);
5538 init_timer_deferrable(&ap->fastdrain_timer);
5539 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5540 ap->fastdrain_timer.data = (unsigned long)ap;
5542 ap->cbl = ATA_CBL_NONE;
5544 ata_link_init(ap, &ap->link, 0);
5546 #ifdef ATA_IRQ_TRAP
5547 ap->stats.unhandled_irq = 1;
5548 ap->stats.idle_irq = 1;
5549 #endif
5550 return ap;
5553 static void ata_host_release(struct device *gendev, void *res)
5555 struct ata_host *host = dev_get_drvdata(gendev);
5556 int i;
5558 for (i = 0; i < host->n_ports; i++) {
5559 struct ata_port *ap = host->ports[i];
5561 if (!ap)
5562 continue;
5564 if (ap->scsi_host)
5565 scsi_host_put(ap->scsi_host);
5567 kfree(ap->pmp_link);
5568 kfree(ap->slave_link);
5569 kfree(ap);
5570 host->ports[i] = NULL;
5573 dev_set_drvdata(gendev, NULL);
5577 * ata_host_alloc - allocate and init basic ATA host resources
5578 * @dev: generic device this host is associated with
5579 * @max_ports: maximum number of ATA ports associated with this host
5581 * Allocate and initialize basic ATA host resources. LLD calls
5582 * this function to allocate a host, initializes it fully and
5583 * attaches it using ata_host_register().
5585 * @max_ports ports are allocated and host->n_ports is
5586 * initialized to @max_ports. The caller is allowed to decrease
5587 * host->n_ports before calling ata_host_register(). The unused
5588 * ports will be automatically freed on registration.
5590 * RETURNS:
5591 * Allocate ATA host on success, NULL on failure.
5593 * LOCKING:
5594 * Inherited from calling layer (may sleep).
5596 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5598 struct ata_host *host;
5599 size_t sz;
5600 int i;
5602 DPRINTK("ENTER\n");
5604 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5605 return NULL;
5607 /* alloc a container for our list of ATA ports (buses) */
5608 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5609 /* alloc a container for our list of ATA ports (buses) */
5610 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5611 if (!host)
5612 goto err_out;
5614 devres_add(dev, host);
5615 dev_set_drvdata(dev, host);
5617 spin_lock_init(&host->lock);
5618 host->dev = dev;
5619 host->n_ports = max_ports;
5621 /* allocate ports bound to this host */
5622 for (i = 0; i < max_ports; i++) {
5623 struct ata_port *ap;
5625 ap = ata_port_alloc(host);
5626 if (!ap)
5627 goto err_out;
5629 ap->port_no = i;
5630 host->ports[i] = ap;
5633 devres_remove_group(dev, NULL);
5634 return host;
5636 err_out:
5637 devres_release_group(dev, NULL);
5638 return NULL;
5642 * ata_host_alloc_pinfo - alloc host and init with port_info array
5643 * @dev: generic device this host is associated with
5644 * @ppi: array of ATA port_info to initialize host with
5645 * @n_ports: number of ATA ports attached to this host
5647 * Allocate ATA host and initialize with info from @ppi. If NULL
5648 * terminated, @ppi may contain fewer entries than @n_ports. The
5649 * last entry will be used for the remaining ports.
5651 * RETURNS:
5652 * Allocate ATA host on success, NULL on failure.
5654 * LOCKING:
5655 * Inherited from calling layer (may sleep).
5657 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5658 const struct ata_port_info * const * ppi,
5659 int n_ports)
5661 const struct ata_port_info *pi;
5662 struct ata_host *host;
5663 int i, j;
5665 host = ata_host_alloc(dev, n_ports);
5666 if (!host)
5667 return NULL;
5669 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5670 struct ata_port *ap = host->ports[i];
5672 if (ppi[j])
5673 pi = ppi[j++];
5675 ap->pio_mask = pi->pio_mask;
5676 ap->mwdma_mask = pi->mwdma_mask;
5677 ap->udma_mask = pi->udma_mask;
5678 ap->flags |= pi->flags;
5679 ap->link.flags |= pi->link_flags;
5680 ap->ops = pi->port_ops;
5682 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5683 host->ops = pi->port_ops;
5686 return host;
5690 * ata_slave_link_init - initialize slave link
5691 * @ap: port to initialize slave link for
5693 * Create and initialize slave link for @ap. This enables slave
5694 * link handling on the port.
5696 * In libata, a port contains links and a link contains devices.
5697 * There is single host link but if a PMP is attached to it,
5698 * there can be multiple fan-out links. On SATA, there's usually
5699 * a single device connected to a link but PATA and SATA
5700 * controllers emulating TF based interface can have two - master
5701 * and slave.
5703 * However, there are a few controllers which don't fit into this
5704 * abstraction too well - SATA controllers which emulate TF
5705 * interface with both master and slave devices but also have
5706 * separate SCR register sets for each device. These controllers
5707 * need separate links for physical link handling
5708 * (e.g. onlineness, link speed) but should be treated like a
5709 * traditional M/S controller for everything else (e.g. command
5710 * issue, softreset).
5712 * slave_link is libata's way of handling this class of
5713 * controllers without impacting core layer too much. For
5714 * anything other than physical link handling, the default host
5715 * link is used for both master and slave. For physical link
5716 * handling, separate @ap->slave_link is used. All dirty details
5717 * are implemented inside libata core layer. From LLD's POV, the
5718 * only difference is that prereset, hardreset and postreset are
5719 * called once more for the slave link, so the reset sequence
5720 * looks like the following.
5722 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5723 * softreset(M) -> postreset(M) -> postreset(S)
5725 * Note that softreset is called only for the master. Softreset
5726 * resets both M/S by definition, so SRST on master should handle
5727 * both (the standard method will work just fine).
5729 * LOCKING:
5730 * Should be called before host is registered.
5732 * RETURNS:
5733 * 0 on success, -errno on failure.
5735 int ata_slave_link_init(struct ata_port *ap)
5737 struct ata_link *link;
5739 WARN_ON(ap->slave_link);
5740 WARN_ON(ap->flags & ATA_FLAG_PMP);
5742 link = kzalloc(sizeof(*link), GFP_KERNEL);
5743 if (!link)
5744 return -ENOMEM;
5746 ata_link_init(ap, link, 1);
5747 ap->slave_link = link;
5748 return 0;
5751 static void ata_host_stop(struct device *gendev, void *res)
5753 struct ata_host *host = dev_get_drvdata(gendev);
5754 int i;
5756 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5758 for (i = 0; i < host->n_ports; i++) {
5759 struct ata_port *ap = host->ports[i];
5761 if (ap->ops->port_stop)
5762 ap->ops->port_stop(ap);
5765 if (host->ops->host_stop)
5766 host->ops->host_stop(host);
5770 * ata_finalize_port_ops - finalize ata_port_operations
5771 * @ops: ata_port_operations to finalize
5773 * An ata_port_operations can inherit from another ops and that
5774 * ops can again inherit from another. This can go on as many
5775 * times as necessary as long as there is no loop in the
5776 * inheritance chain.
5778 * Ops tables are finalized when the host is started. NULL or
5779 * unspecified entries are inherited from the closet ancestor
5780 * which has the method and the entry is populated with it.
5781 * After finalization, the ops table directly points to all the
5782 * methods and ->inherits is no longer necessary and cleared.
5784 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5786 * LOCKING:
5787 * None.
5789 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5791 static DEFINE_SPINLOCK(lock);
5792 const struct ata_port_operations *cur;
5793 void **begin = (void **)ops;
5794 void **end = (void **)&ops->inherits;
5795 void **pp;
5797 if (!ops || !ops->inherits)
5798 return;
5800 spin_lock(&lock);
5802 for (cur = ops->inherits; cur; cur = cur->inherits) {
5803 void **inherit = (void **)cur;
5805 for (pp = begin; pp < end; pp++, inherit++)
5806 if (!*pp)
5807 *pp = *inherit;
5810 for (pp = begin; pp < end; pp++)
5811 if (IS_ERR(*pp))
5812 *pp = NULL;
5814 ops->inherits = NULL;
5816 spin_unlock(&lock);
5820 * ata_host_start - start and freeze ports of an ATA host
5821 * @host: ATA host to start ports for
5823 * Start and then freeze ports of @host. Started status is
5824 * recorded in host->flags, so this function can be called
5825 * multiple times. Ports are guaranteed to get started only
5826 * once. If host->ops isn't initialized yet, its set to the
5827 * first non-dummy port ops.
5829 * LOCKING:
5830 * Inherited from calling layer (may sleep).
5832 * RETURNS:
5833 * 0 if all ports are started successfully, -errno otherwise.
5835 int ata_host_start(struct ata_host *host)
5837 int have_stop = 0;
5838 void *start_dr = NULL;
5839 int i, rc;
5841 if (host->flags & ATA_HOST_STARTED)
5842 return 0;
5844 ata_finalize_port_ops(host->ops);
5846 for (i = 0; i < host->n_ports; i++) {
5847 struct ata_port *ap = host->ports[i];
5849 ata_finalize_port_ops(ap->ops);
5851 if (!host->ops && !ata_port_is_dummy(ap))
5852 host->ops = ap->ops;
5854 if (ap->ops->port_stop)
5855 have_stop = 1;
5858 if (host->ops->host_stop)
5859 have_stop = 1;
5861 if (have_stop) {
5862 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5863 if (!start_dr)
5864 return -ENOMEM;
5867 for (i = 0; i < host->n_ports; i++) {
5868 struct ata_port *ap = host->ports[i];
5870 if (ap->ops->port_start) {
5871 rc = ap->ops->port_start(ap);
5872 if (rc) {
5873 if (rc != -ENODEV)
5874 dev_printk(KERN_ERR, host->dev,
5875 "failed to start port %d "
5876 "(errno=%d)\n", i, rc);
5877 goto err_out;
5880 ata_eh_freeze_port(ap);
5883 if (start_dr)
5884 devres_add(host->dev, start_dr);
5885 host->flags |= ATA_HOST_STARTED;
5886 return 0;
5888 err_out:
5889 while (--i >= 0) {
5890 struct ata_port *ap = host->ports[i];
5892 if (ap->ops->port_stop)
5893 ap->ops->port_stop(ap);
5895 devres_free(start_dr);
5896 return rc;
5900 * ata_sas_host_init - Initialize a host struct
5901 * @host: host to initialize
5902 * @dev: device host is attached to
5903 * @flags: host flags
5904 * @ops: port_ops
5906 * LOCKING:
5907 * PCI/etc. bus probe sem.
5910 /* KILLME - the only user left is ipr */
5911 void ata_host_init(struct ata_host *host, struct device *dev,
5912 unsigned long flags, struct ata_port_operations *ops)
5914 spin_lock_init(&host->lock);
5915 host->dev = dev;
5916 host->flags = flags;
5917 host->ops = ops;
5921 static void async_port_probe(void *data, async_cookie_t cookie)
5923 int rc;
5924 struct ata_port *ap = data;
5927 * If we're not allowed to scan this host in parallel,
5928 * we need to wait until all previous scans have completed
5929 * before going further.
5930 * Jeff Garzik says this is only within a controller, so we
5931 * don't need to wait for port 0, only for later ports.
5933 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5934 async_synchronize_cookie(cookie);
5936 /* probe */
5937 if (ap->ops->error_handler) {
5938 struct ata_eh_info *ehi = &ap->link.eh_info;
5939 unsigned long flags;
5941 ata_port_probe(ap);
5943 /* kick EH for boot probing */
5944 spin_lock_irqsave(ap->lock, flags);
5946 ehi->probe_mask |= ATA_ALL_DEVICES;
5947 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
5948 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5950 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5951 ap->pflags |= ATA_PFLAG_LOADING;
5952 ata_port_schedule_eh(ap);
5954 spin_unlock_irqrestore(ap->lock, flags);
5956 /* wait for EH to finish */
5957 ata_port_wait_eh(ap);
5958 } else {
5959 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5960 rc = ata_bus_probe(ap);
5961 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5963 if (rc) {
5964 /* FIXME: do something useful here?
5965 * Current libata behavior will
5966 * tear down everything when
5967 * the module is removed
5968 * or the h/w is unplugged.
5973 /* in order to keep device order, we need to synchronize at this point */
5974 async_synchronize_cookie(cookie);
5976 ata_scsi_scan_host(ap, 1);
5980 * ata_host_register - register initialized ATA host
5981 * @host: ATA host to register
5982 * @sht: template for SCSI host
5984 * Register initialized ATA host. @host is allocated using
5985 * ata_host_alloc() and fully initialized by LLD. This function
5986 * starts ports, registers @host with ATA and SCSI layers and
5987 * probe registered devices.
5989 * LOCKING:
5990 * Inherited from calling layer (may sleep).
5992 * RETURNS:
5993 * 0 on success, -errno otherwise.
5995 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5997 int i, rc;
5999 /* host must have been started */
6000 if (!(host->flags & ATA_HOST_STARTED)) {
6001 dev_printk(KERN_ERR, host->dev,
6002 "BUG: trying to register unstarted host\n");
6003 WARN_ON(1);
6004 return -EINVAL;
6007 /* Blow away unused ports. This happens when LLD can't
6008 * determine the exact number of ports to allocate at
6009 * allocation time.
6011 for (i = host->n_ports; host->ports[i]; i++)
6012 kfree(host->ports[i]);
6014 /* give ports names and add SCSI hosts */
6015 for (i = 0; i < host->n_ports; i++)
6016 host->ports[i]->print_id = ata_print_id++;
6018 rc = ata_scsi_add_hosts(host, sht);
6019 if (rc)
6020 return rc;
6022 /* associate with ACPI nodes */
6023 ata_acpi_associate(host);
6025 /* set cable, sata_spd_limit and report */
6026 for (i = 0; i < host->n_ports; i++) {
6027 struct ata_port *ap = host->ports[i];
6028 unsigned long xfer_mask;
6030 /* set SATA cable type if still unset */
6031 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6032 ap->cbl = ATA_CBL_SATA;
6034 /* init sata_spd_limit to the current value */
6035 sata_link_init_spd(&ap->link);
6036 if (ap->slave_link)
6037 sata_link_init_spd(ap->slave_link);
6039 /* print per-port info to dmesg */
6040 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6041 ap->udma_mask);
6043 if (!ata_port_is_dummy(ap)) {
6044 ata_port_printk(ap, KERN_INFO,
6045 "%cATA max %s %s\n",
6046 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6047 ata_mode_string(xfer_mask),
6048 ap->link.eh_info.desc);
6049 ata_ehi_clear_desc(&ap->link.eh_info);
6050 } else
6051 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6054 /* perform each probe synchronously */
6055 DPRINTK("probe begin\n");
6056 for (i = 0; i < host->n_ports; i++) {
6057 struct ata_port *ap = host->ports[i];
6058 async_schedule(async_port_probe, ap);
6060 DPRINTK("probe end\n");
6062 return 0;
6066 * ata_host_activate - start host, request IRQ and register it
6067 * @host: target ATA host
6068 * @irq: IRQ to request
6069 * @irq_handler: irq_handler used when requesting IRQ
6070 * @irq_flags: irq_flags used when requesting IRQ
6071 * @sht: scsi_host_template to use when registering the host
6073 * After allocating an ATA host and initializing it, most libata
6074 * LLDs perform three steps to activate the host - start host,
6075 * request IRQ and register it. This helper takes necessasry
6076 * arguments and performs the three steps in one go.
6078 * An invalid IRQ skips the IRQ registration and expects the host to
6079 * have set polling mode on the port. In this case, @irq_handler
6080 * should be NULL.
6082 * LOCKING:
6083 * Inherited from calling layer (may sleep).
6085 * RETURNS:
6086 * 0 on success, -errno otherwise.
6088 int ata_host_activate(struct ata_host *host, int irq,
6089 irq_handler_t irq_handler, unsigned long irq_flags,
6090 struct scsi_host_template *sht)
6092 int i, rc;
6094 rc = ata_host_start(host);
6095 if (rc)
6096 return rc;
6098 /* Special case for polling mode */
6099 if (!irq) {
6100 WARN_ON(irq_handler);
6101 return ata_host_register(host, sht);
6104 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6105 dev_driver_string(host->dev), host);
6106 if (rc)
6107 return rc;
6109 for (i = 0; i < host->n_ports; i++)
6110 ata_port_desc(host->ports[i], "irq %d", irq);
6112 rc = ata_host_register(host, sht);
6113 /* if failed, just free the IRQ and leave ports alone */
6114 if (rc)
6115 devm_free_irq(host->dev, irq, host);
6117 return rc;
6121 * ata_port_detach - Detach ATA port in prepration of device removal
6122 * @ap: ATA port to be detached
6124 * Detach all ATA devices and the associated SCSI devices of @ap;
6125 * then, remove the associated SCSI host. @ap is guaranteed to
6126 * be quiescent on return from this function.
6128 * LOCKING:
6129 * Kernel thread context (may sleep).
6131 static void ata_port_detach(struct ata_port *ap)
6133 unsigned long flags;
6135 if (!ap->ops->error_handler)
6136 goto skip_eh;
6138 /* tell EH we're leaving & flush EH */
6139 spin_lock_irqsave(ap->lock, flags);
6140 ap->pflags |= ATA_PFLAG_UNLOADING;
6141 ata_port_schedule_eh(ap);
6142 spin_unlock_irqrestore(ap->lock, flags);
6144 /* wait till EH commits suicide */
6145 ata_port_wait_eh(ap);
6147 /* it better be dead now */
6148 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6150 cancel_rearming_delayed_work(&ap->hotplug_task);
6152 skip_eh:
6153 /* remove the associated SCSI host */
6154 scsi_remove_host(ap->scsi_host);
6158 * ata_host_detach - Detach all ports of an ATA host
6159 * @host: Host to detach
6161 * Detach all ports of @host.
6163 * LOCKING:
6164 * Kernel thread context (may sleep).
6166 void ata_host_detach(struct ata_host *host)
6168 int i;
6170 for (i = 0; i < host->n_ports; i++)
6171 ata_port_detach(host->ports[i]);
6173 /* the host is dead now, dissociate ACPI */
6174 ata_acpi_dissociate(host);
6177 #ifdef CONFIG_PCI
6180 * ata_pci_remove_one - PCI layer callback for device removal
6181 * @pdev: PCI device that was removed
6183 * PCI layer indicates to libata via this hook that hot-unplug or
6184 * module unload event has occurred. Detach all ports. Resource
6185 * release is handled via devres.
6187 * LOCKING:
6188 * Inherited from PCI layer (may sleep).
6190 void ata_pci_remove_one(struct pci_dev *pdev)
6192 struct device *dev = &pdev->dev;
6193 struct ata_host *host = dev_get_drvdata(dev);
6195 ata_host_detach(host);
6198 /* move to PCI subsystem */
6199 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6201 unsigned long tmp = 0;
6203 switch (bits->width) {
6204 case 1: {
6205 u8 tmp8 = 0;
6206 pci_read_config_byte(pdev, bits->reg, &tmp8);
6207 tmp = tmp8;
6208 break;
6210 case 2: {
6211 u16 tmp16 = 0;
6212 pci_read_config_word(pdev, bits->reg, &tmp16);
6213 tmp = tmp16;
6214 break;
6216 case 4: {
6217 u32 tmp32 = 0;
6218 pci_read_config_dword(pdev, bits->reg, &tmp32);
6219 tmp = tmp32;
6220 break;
6223 default:
6224 return -EINVAL;
6227 tmp &= bits->mask;
6229 return (tmp == bits->val) ? 1 : 0;
6232 #ifdef CONFIG_PM
6233 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6235 pci_save_state(pdev);
6236 pci_disable_device(pdev);
6238 if (mesg.event & PM_EVENT_SLEEP)
6239 pci_set_power_state(pdev, PCI_D3hot);
6242 int ata_pci_device_do_resume(struct pci_dev *pdev)
6244 int rc;
6246 pci_set_power_state(pdev, PCI_D0);
6247 pci_restore_state(pdev);
6249 rc = pcim_enable_device(pdev);
6250 if (rc) {
6251 dev_printk(KERN_ERR, &pdev->dev,
6252 "failed to enable device after resume (%d)\n", rc);
6253 return rc;
6256 pci_set_master(pdev);
6257 return 0;
6260 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6262 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6263 int rc = 0;
6265 rc = ata_host_suspend(host, mesg);
6266 if (rc)
6267 return rc;
6269 ata_pci_device_do_suspend(pdev, mesg);
6271 return 0;
6274 int ata_pci_device_resume(struct pci_dev *pdev)
6276 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6277 int rc;
6279 rc = ata_pci_device_do_resume(pdev);
6280 if (rc == 0)
6281 ata_host_resume(host);
6282 return rc;
6284 #endif /* CONFIG_PM */
6286 #endif /* CONFIG_PCI */
6288 static int __init ata_parse_force_one(char **cur,
6289 struct ata_force_ent *force_ent,
6290 const char **reason)
6292 /* FIXME: Currently, there's no way to tag init const data and
6293 * using __initdata causes build failure on some versions of
6294 * gcc. Once __initdataconst is implemented, add const to the
6295 * following structure.
6297 static struct ata_force_param force_tbl[] __initdata = {
6298 { "40c", .cbl = ATA_CBL_PATA40 },
6299 { "80c", .cbl = ATA_CBL_PATA80 },
6300 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6301 { "unk", .cbl = ATA_CBL_PATA_UNK },
6302 { "ign", .cbl = ATA_CBL_PATA_IGN },
6303 { "sata", .cbl = ATA_CBL_SATA },
6304 { "1.5Gbps", .spd_limit = 1 },
6305 { "3.0Gbps", .spd_limit = 2 },
6306 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6307 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6308 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6309 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6310 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6311 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6312 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6313 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6314 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6315 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6316 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6317 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6318 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6319 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6320 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6321 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6322 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6323 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6324 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6325 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6326 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6327 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6328 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6329 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6330 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6331 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6332 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6333 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6334 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6335 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6336 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6337 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6338 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6339 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6340 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6341 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6342 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6343 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6344 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6346 char *start = *cur, *p = *cur;
6347 char *id, *val, *endp;
6348 const struct ata_force_param *match_fp = NULL;
6349 int nr_matches = 0, i;
6351 /* find where this param ends and update *cur */
6352 while (*p != '\0' && *p != ',')
6353 p++;
6355 if (*p == '\0')
6356 *cur = p;
6357 else
6358 *cur = p + 1;
6360 *p = '\0';
6362 /* parse */
6363 p = strchr(start, ':');
6364 if (!p) {
6365 val = strstrip(start);
6366 goto parse_val;
6368 *p = '\0';
6370 id = strstrip(start);
6371 val = strstrip(p + 1);
6373 /* parse id */
6374 p = strchr(id, '.');
6375 if (p) {
6376 *p++ = '\0';
6377 force_ent->device = simple_strtoul(p, &endp, 10);
6378 if (p == endp || *endp != '\0') {
6379 *reason = "invalid device";
6380 return -EINVAL;
6384 force_ent->port = simple_strtoul(id, &endp, 10);
6385 if (p == endp || *endp != '\0') {
6386 *reason = "invalid port/link";
6387 return -EINVAL;
6390 parse_val:
6391 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6392 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6393 const struct ata_force_param *fp = &force_tbl[i];
6395 if (strncasecmp(val, fp->name, strlen(val)))
6396 continue;
6398 nr_matches++;
6399 match_fp = fp;
6401 if (strcasecmp(val, fp->name) == 0) {
6402 nr_matches = 1;
6403 break;
6407 if (!nr_matches) {
6408 *reason = "unknown value";
6409 return -EINVAL;
6411 if (nr_matches > 1) {
6412 *reason = "ambigious value";
6413 return -EINVAL;
6416 force_ent->param = *match_fp;
6418 return 0;
6421 static void __init ata_parse_force_param(void)
6423 int idx = 0, size = 1;
6424 int last_port = -1, last_device = -1;
6425 char *p, *cur, *next;
6427 /* calculate maximum number of params and allocate force_tbl */
6428 for (p = ata_force_param_buf; *p; p++)
6429 if (*p == ',')
6430 size++;
6432 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6433 if (!ata_force_tbl) {
6434 printk(KERN_WARNING "ata: failed to extend force table, "
6435 "libata.force ignored\n");
6436 return;
6439 /* parse and populate the table */
6440 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6441 const char *reason = "";
6442 struct ata_force_ent te = { .port = -1, .device = -1 };
6444 next = cur;
6445 if (ata_parse_force_one(&next, &te, &reason)) {
6446 printk(KERN_WARNING "ata: failed to parse force "
6447 "parameter \"%s\" (%s)\n",
6448 cur, reason);
6449 continue;
6452 if (te.port == -1) {
6453 te.port = last_port;
6454 te.device = last_device;
6457 ata_force_tbl[idx++] = te;
6459 last_port = te.port;
6460 last_device = te.device;
6463 ata_force_tbl_size = idx;
6466 static int __init ata_init(void)
6468 ata_parse_force_param();
6470 ata_wq = create_workqueue("ata");
6471 if (!ata_wq)
6472 goto free_force_tbl;
6474 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6475 if (!ata_aux_wq)
6476 goto free_wq;
6478 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6479 return 0;
6481 free_wq:
6482 destroy_workqueue(ata_wq);
6483 free_force_tbl:
6484 kfree(ata_force_tbl);
6485 return -ENOMEM;
6488 static void __exit ata_exit(void)
6490 kfree(ata_force_tbl);
6491 destroy_workqueue(ata_wq);
6492 destroy_workqueue(ata_aux_wq);
6495 subsys_initcall(ata_init);
6496 module_exit(ata_exit);
6498 static unsigned long ratelimit_time;
6499 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6501 int ata_ratelimit(void)
6503 int rc;
6504 unsigned long flags;
6506 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6508 if (time_after(jiffies, ratelimit_time)) {
6509 rc = 1;
6510 ratelimit_time = jiffies + (HZ/5);
6511 } else
6512 rc = 0;
6514 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6516 return rc;
6520 * ata_wait_register - wait until register value changes
6521 * @reg: IO-mapped register
6522 * @mask: Mask to apply to read register value
6523 * @val: Wait condition
6524 * @interval: polling interval in milliseconds
6525 * @timeout: timeout in milliseconds
6527 * Waiting for some bits of register to change is a common
6528 * operation for ATA controllers. This function reads 32bit LE
6529 * IO-mapped register @reg and tests for the following condition.
6531 * (*@reg & mask) != val
6533 * If the condition is met, it returns; otherwise, the process is
6534 * repeated after @interval_msec until timeout.
6536 * LOCKING:
6537 * Kernel thread context (may sleep)
6539 * RETURNS:
6540 * The final register value.
6542 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6543 unsigned long interval, unsigned long timeout)
6545 unsigned long deadline;
6546 u32 tmp;
6548 tmp = ioread32(reg);
6550 /* Calculate timeout _after_ the first read to make sure
6551 * preceding writes reach the controller before starting to
6552 * eat away the timeout.
6554 deadline = ata_deadline(jiffies, timeout);
6556 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6557 msleep(interval);
6558 tmp = ioread32(reg);
6561 return tmp;
6565 * Dummy port_ops
6567 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6569 return AC_ERR_SYSTEM;
6572 static void ata_dummy_error_handler(struct ata_port *ap)
6574 /* truly dummy */
6577 struct ata_port_operations ata_dummy_port_ops = {
6578 .qc_prep = ata_noop_qc_prep,
6579 .qc_issue = ata_dummy_qc_issue,
6580 .error_handler = ata_dummy_error_handler,
6583 const struct ata_port_info ata_dummy_port_info = {
6584 .port_ops = &ata_dummy_port_ops,
6588 * libata is essentially a library of internal helper functions for
6589 * low-level ATA host controller drivers. As such, the API/ABI is
6590 * likely to change as new drivers are added and updated.
6591 * Do not depend on ABI/API stability.
6593 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6594 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6595 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6596 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6597 EXPORT_SYMBOL_GPL(sata_port_ops);
6598 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6599 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6600 EXPORT_SYMBOL_GPL(ata_link_next);
6601 EXPORT_SYMBOL_GPL(ata_dev_next);
6602 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6603 EXPORT_SYMBOL_GPL(ata_host_init);
6604 EXPORT_SYMBOL_GPL(ata_host_alloc);
6605 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6606 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6607 EXPORT_SYMBOL_GPL(ata_host_start);
6608 EXPORT_SYMBOL_GPL(ata_host_register);
6609 EXPORT_SYMBOL_GPL(ata_host_activate);
6610 EXPORT_SYMBOL_GPL(ata_host_detach);
6611 EXPORT_SYMBOL_GPL(ata_sg_init);
6612 EXPORT_SYMBOL_GPL(ata_qc_complete);
6613 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6614 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6615 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6616 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6617 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6618 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6619 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6620 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6621 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6622 EXPORT_SYMBOL_GPL(ata_mode_string);
6623 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6624 EXPORT_SYMBOL_GPL(ata_port_start);
6625 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6626 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6627 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6628 EXPORT_SYMBOL_GPL(ata_port_probe);
6629 EXPORT_SYMBOL_GPL(ata_dev_disable);
6630 EXPORT_SYMBOL_GPL(sata_set_spd);
6631 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6632 EXPORT_SYMBOL_GPL(sata_link_debounce);
6633 EXPORT_SYMBOL_GPL(sata_link_resume);
6634 EXPORT_SYMBOL_GPL(ata_std_prereset);
6635 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6636 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6637 EXPORT_SYMBOL_GPL(ata_std_postreset);
6638 EXPORT_SYMBOL_GPL(ata_dev_classify);
6639 EXPORT_SYMBOL_GPL(ata_dev_pair);
6640 EXPORT_SYMBOL_GPL(ata_port_disable);
6641 EXPORT_SYMBOL_GPL(ata_ratelimit);
6642 EXPORT_SYMBOL_GPL(ata_wait_register);
6643 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6644 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6645 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6646 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6647 EXPORT_SYMBOL_GPL(sata_scr_valid);
6648 EXPORT_SYMBOL_GPL(sata_scr_read);
6649 EXPORT_SYMBOL_GPL(sata_scr_write);
6650 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6651 EXPORT_SYMBOL_GPL(ata_link_online);
6652 EXPORT_SYMBOL_GPL(ata_link_offline);
6653 #ifdef CONFIG_PM
6654 EXPORT_SYMBOL_GPL(ata_host_suspend);
6655 EXPORT_SYMBOL_GPL(ata_host_resume);
6656 #endif /* CONFIG_PM */
6657 EXPORT_SYMBOL_GPL(ata_id_string);
6658 EXPORT_SYMBOL_GPL(ata_id_c_string);
6659 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6660 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6662 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6663 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6664 EXPORT_SYMBOL_GPL(ata_timing_compute);
6665 EXPORT_SYMBOL_GPL(ata_timing_merge);
6666 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6668 #ifdef CONFIG_PCI
6669 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6670 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6671 #ifdef CONFIG_PM
6672 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6673 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6674 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6675 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6676 #endif /* CONFIG_PM */
6677 #endif /* CONFIG_PCI */
6679 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6680 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6681 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6682 EXPORT_SYMBOL_GPL(ata_port_desc);
6683 #ifdef CONFIG_PCI
6684 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6685 #endif /* CONFIG_PCI */
6686 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6687 EXPORT_SYMBOL_GPL(ata_link_abort);
6688 EXPORT_SYMBOL_GPL(ata_port_abort);
6689 EXPORT_SYMBOL_GPL(ata_port_freeze);
6690 EXPORT_SYMBOL_GPL(sata_async_notification);
6691 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6692 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6693 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6694 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6695 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6696 EXPORT_SYMBOL_GPL(ata_do_eh);
6697 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6699 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6700 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6701 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6702 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6703 EXPORT_SYMBOL_GPL(ata_cable_sata);