ext4: Always use ext4_bio_write_page() for writeout
[linux-2.6.git] / fs / ext4 / inode.c
blob82f934282a1f1832e722a89bf73519c113f5a6ac
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
74 return csum;
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
80 __u32 provided, calculated;
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
96 return provided == calculated;
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
102 __u32 csum;
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
120 trace_ext4_begin_ordered_truncate(inode, new_size);
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140 struct inode *inode, struct page *page, loff_t from,
141 loff_t length, int flags);
144 * Test whether an inode is a fast symlink.
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 (inode->i_sb->s_blocksize >> 9) : 0;
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160 int nblocks)
162 int ret;
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 jbd_debug(2, "restarting handle %p\n", handle);
172 up_write(&EXT4_I(inode)->i_data_sem);
173 ret = ext4_journal_restart(handle, nblocks);
174 down_write(&EXT4_I(inode)->i_data_sem);
175 ext4_discard_preallocations(inode);
177 return ret;
181 * Called at the last iput() if i_nlink is zero.
183 void ext4_evict_inode(struct inode *inode)
185 handle_t *handle;
186 int err;
188 trace_ext4_evict_inode(inode);
190 ext4_ioend_wait(inode);
192 if (inode->i_nlink) {
194 * When journalling data dirty buffers are tracked only in the
195 * journal. So although mm thinks everything is clean and
196 * ready for reaping the inode might still have some pages to
197 * write in the running transaction or waiting to be
198 * checkpointed. Thus calling jbd2_journal_invalidatepage()
199 * (via truncate_inode_pages()) to discard these buffers can
200 * cause data loss. Also even if we did not discard these
201 * buffers, we would have no way to find them after the inode
202 * is reaped and thus user could see stale data if he tries to
203 * read them before the transaction is checkpointed. So be
204 * careful and force everything to disk here... We use
205 * ei->i_datasync_tid to store the newest transaction
206 * containing inode's data.
208 * Note that directories do not have this problem because they
209 * don't use page cache.
211 if (ext4_should_journal_data(inode) &&
212 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
216 jbd2_log_start_commit(journal, commit_tid);
217 jbd2_log_wait_commit(journal, commit_tid);
218 filemap_write_and_wait(&inode->i_data);
220 truncate_inode_pages(&inode->i_data, 0);
221 goto no_delete;
224 if (!is_bad_inode(inode))
225 dquot_initialize(inode);
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages(&inode->i_data, 0);
231 if (is_bad_inode(inode))
232 goto no_delete;
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
249 goto no_delete;
252 if (IS_SYNC(inode))
253 ext4_handle_sync(handle);
254 inode->i_size = 0;
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
257 ext4_warning(inode->i_sb,
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
261 if (inode->i_blocks)
262 ext4_truncate(inode);
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
270 if (!ext4_handle_has_enough_credits(handle, 3)) {
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
275 ext4_warning(inode->i_sb,
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 sb_end_intwrite(inode->i_sb);
281 goto no_delete;
286 * Kill off the orphan record which ext4_truncate created.
287 * AKPM: I think this can be inside the above `if'.
288 * Note that ext4_orphan_del() has to be able to cope with the
289 * deletion of a non-existent orphan - this is because we don't
290 * know if ext4_truncate() actually created an orphan record.
291 * (Well, we could do this if we need to, but heck - it works)
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
303 if (ext4_mark_inode_dirty(handle, inode))
304 /* If that failed, just do the required in-core inode clear. */
305 ext4_clear_inode(inode);
306 else
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
309 sb_end_intwrite(inode->i_sb);
310 return;
311 no_delete:
312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 return &EXT4_I(inode)->i_reserved_quota;
320 #endif
323 * Calculate the number of metadata blocks need to reserve
324 * to allocate a block located at @lblock
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329 return ext4_ext_calc_metadata_amount(inode, lblock);
331 return ext4_ind_calc_metadata_amount(inode, lblock);
335 * Called with i_data_sem down, which is important since we can call
336 * ext4_discard_preallocations() from here.
338 void ext4_da_update_reserve_space(struct inode *inode,
339 int used, int quota_claim)
341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 struct ext4_inode_info *ei = EXT4_I(inode);
344 spin_lock(&ei->i_block_reservation_lock);
345 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346 if (unlikely(used > ei->i_reserved_data_blocks)) {
347 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
348 "with only %d reserved data blocks",
349 __func__, inode->i_ino, used,
350 ei->i_reserved_data_blocks);
351 WARN_ON(1);
352 used = ei->i_reserved_data_blocks;
355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
357 "with only %d reserved metadata blocks\n", __func__,
358 inode->i_ino, ei->i_allocated_meta_blocks,
359 ei->i_reserved_meta_blocks);
360 WARN_ON(1);
361 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 /* Update per-inode reservations */
365 ei->i_reserved_data_blocks -= used;
366 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
367 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
368 used + ei->i_allocated_meta_blocks);
369 ei->i_allocated_meta_blocks = 0;
371 if (ei->i_reserved_data_blocks == 0) {
373 * We can release all of the reserved metadata blocks
374 * only when we have written all of the delayed
375 * allocation blocks.
377 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
378 ei->i_reserved_meta_blocks);
379 ei->i_reserved_meta_blocks = 0;
380 ei->i_da_metadata_calc_len = 0;
382 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384 /* Update quota subsystem for data blocks */
385 if (quota_claim)
386 dquot_claim_block(inode, EXT4_C2B(sbi, used));
387 else {
389 * We did fallocate with an offset that is already delayed
390 * allocated. So on delayed allocated writeback we should
391 * not re-claim the quota for fallocated blocks.
393 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 * If we have done all the pending block allocations and if
398 * there aren't any writers on the inode, we can discard the
399 * inode's preallocations.
401 if ((ei->i_reserved_data_blocks == 0) &&
402 (atomic_read(&inode->i_writecount) == 0))
403 ext4_discard_preallocations(inode);
406 static int __check_block_validity(struct inode *inode, const char *func,
407 unsigned int line,
408 struct ext4_map_blocks *map)
410 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
411 map->m_len)) {
412 ext4_error_inode(inode, func, line, map->m_pblk,
413 "lblock %lu mapped to illegal pblock "
414 "(length %d)", (unsigned long) map->m_lblk,
415 map->m_len);
416 return -EIO;
418 return 0;
421 #define check_block_validity(inode, map) \
422 __check_block_validity((inode), __func__, __LINE__, (map))
425 * Return the number of contiguous dirty pages in a given inode
426 * starting at page frame idx.
428 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
429 unsigned int max_pages)
431 struct address_space *mapping = inode->i_mapping;
432 pgoff_t index;
433 struct pagevec pvec;
434 pgoff_t num = 0;
435 int i, nr_pages, done = 0;
437 if (max_pages == 0)
438 return 0;
439 pagevec_init(&pvec, 0);
440 while (!done) {
441 index = idx;
442 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
443 PAGECACHE_TAG_DIRTY,
444 (pgoff_t)PAGEVEC_SIZE);
445 if (nr_pages == 0)
446 break;
447 for (i = 0; i < nr_pages; i++) {
448 struct page *page = pvec.pages[i];
449 struct buffer_head *bh, *head;
451 lock_page(page);
452 if (unlikely(page->mapping != mapping) ||
453 !PageDirty(page) ||
454 PageWriteback(page) ||
455 page->index != idx) {
456 done = 1;
457 unlock_page(page);
458 break;
460 if (page_has_buffers(page)) {
461 bh = head = page_buffers(page);
462 do {
463 if (!buffer_delay(bh) &&
464 !buffer_unwritten(bh))
465 done = 1;
466 bh = bh->b_this_page;
467 } while (!done && (bh != head));
469 unlock_page(page);
470 if (done)
471 break;
472 idx++;
473 num++;
474 if (num >= max_pages) {
475 done = 1;
476 break;
479 pagevec_release(&pvec);
481 return num;
485 * The ext4_map_blocks() function tries to look up the requested blocks,
486 * and returns if the blocks are already mapped.
488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489 * and store the allocated blocks in the result buffer head and mark it
490 * mapped.
492 * If file type is extents based, it will call ext4_ext_map_blocks(),
493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494 * based files
496 * On success, it returns the number of blocks being mapped or allocate.
497 * if create==0 and the blocks are pre-allocated and uninitialized block,
498 * the result buffer head is unmapped. If the create ==1, it will make sure
499 * the buffer head is mapped.
501 * It returns 0 if plain look up failed (blocks have not been allocated), in
502 * that case, buffer head is unmapped
504 * It returns the error in case of allocation failure.
506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 struct ext4_map_blocks *map, int flags)
509 int retval;
511 map->m_flags = 0;
512 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
513 "logical block %lu\n", inode->i_ino, flags, map->m_len,
514 (unsigned long) map->m_lblk);
516 * Try to see if we can get the block without requesting a new
517 * file system block.
519 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
520 down_read((&EXT4_I(inode)->i_data_sem));
521 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
522 retval = ext4_ext_map_blocks(handle, inode, map, flags &
523 EXT4_GET_BLOCKS_KEEP_SIZE);
524 } else {
525 retval = ext4_ind_map_blocks(handle, inode, map, flags &
526 EXT4_GET_BLOCKS_KEEP_SIZE);
528 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
529 up_read((&EXT4_I(inode)->i_data_sem));
531 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
532 int ret;
533 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
534 /* delayed alloc may be allocated by fallocate and
535 * coverted to initialized by directIO.
536 * we need to handle delayed extent here.
538 down_write((&EXT4_I(inode)->i_data_sem));
539 goto delayed_mapped;
541 ret = check_block_validity(inode, map);
542 if (ret != 0)
543 return ret;
546 /* If it is only a block(s) look up */
547 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
548 return retval;
551 * Returns if the blocks have already allocated
553 * Note that if blocks have been preallocated
554 * ext4_ext_get_block() returns the create = 0
555 * with buffer head unmapped.
557 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
558 return retval;
561 * When we call get_blocks without the create flag, the
562 * BH_Unwritten flag could have gotten set if the blocks
563 * requested were part of a uninitialized extent. We need to
564 * clear this flag now that we are committed to convert all or
565 * part of the uninitialized extent to be an initialized
566 * extent. This is because we need to avoid the combination
567 * of BH_Unwritten and BH_Mapped flags being simultaneously
568 * set on the buffer_head.
570 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
573 * New blocks allocate and/or writing to uninitialized extent
574 * will possibly result in updating i_data, so we take
575 * the write lock of i_data_sem, and call get_blocks()
576 * with create == 1 flag.
578 down_write((&EXT4_I(inode)->i_data_sem));
581 * if the caller is from delayed allocation writeout path
582 * we have already reserved fs blocks for allocation
583 * let the underlying get_block() function know to
584 * avoid double accounting
586 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
587 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
589 * We need to check for EXT4 here because migrate
590 * could have changed the inode type in between
592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 retval = ext4_ext_map_blocks(handle, inode, map, flags);
594 } else {
595 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 * We allocated new blocks which will result in
600 * i_data's format changing. Force the migrate
601 * to fail by clearing migrate flags
603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
607 * Update reserved blocks/metadata blocks after successful
608 * block allocation which had been deferred till now. We don't
609 * support fallocate for non extent files. So we can update
610 * reserve space here.
612 if ((retval > 0) &&
613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 ext4_da_update_reserve_space(inode, retval, 1);
616 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
617 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
619 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
620 int ret;
621 delayed_mapped:
622 /* delayed allocation blocks has been allocated */
623 ret = ext4_es_remove_extent(inode, map->m_lblk,
624 map->m_len);
625 if (ret < 0)
626 retval = ret;
630 up_write((&EXT4_I(inode)->i_data_sem));
631 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
632 int ret = check_block_validity(inode, map);
633 if (ret != 0)
634 return ret;
636 return retval;
639 /* Maximum number of blocks we map for direct IO at once. */
640 #define DIO_MAX_BLOCKS 4096
642 static int _ext4_get_block(struct inode *inode, sector_t iblock,
643 struct buffer_head *bh, int flags)
645 handle_t *handle = ext4_journal_current_handle();
646 struct ext4_map_blocks map;
647 int ret = 0, started = 0;
648 int dio_credits;
650 if (ext4_has_inline_data(inode))
651 return -ERANGE;
653 map.m_lblk = iblock;
654 map.m_len = bh->b_size >> inode->i_blkbits;
656 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
657 /* Direct IO write... */
658 if (map.m_len > DIO_MAX_BLOCKS)
659 map.m_len = DIO_MAX_BLOCKS;
660 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
661 handle = ext4_journal_start(inode, dio_credits);
662 if (IS_ERR(handle)) {
663 ret = PTR_ERR(handle);
664 return ret;
666 started = 1;
669 ret = ext4_map_blocks(handle, inode, &map, flags);
670 if (ret > 0) {
671 map_bh(bh, inode->i_sb, map.m_pblk);
672 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
673 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
674 ret = 0;
676 if (started)
677 ext4_journal_stop(handle);
678 return ret;
681 int ext4_get_block(struct inode *inode, sector_t iblock,
682 struct buffer_head *bh, int create)
684 return _ext4_get_block(inode, iblock, bh,
685 create ? EXT4_GET_BLOCKS_CREATE : 0);
689 * `handle' can be NULL if create is zero
691 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
692 ext4_lblk_t block, int create, int *errp)
694 struct ext4_map_blocks map;
695 struct buffer_head *bh;
696 int fatal = 0, err;
698 J_ASSERT(handle != NULL || create == 0);
700 map.m_lblk = block;
701 map.m_len = 1;
702 err = ext4_map_blocks(handle, inode, &map,
703 create ? EXT4_GET_BLOCKS_CREATE : 0);
705 /* ensure we send some value back into *errp */
706 *errp = 0;
708 if (err < 0)
709 *errp = err;
710 if (err <= 0)
711 return NULL;
713 bh = sb_getblk(inode->i_sb, map.m_pblk);
714 if (unlikely(!bh)) {
715 *errp = -ENOMEM;
716 return NULL;
718 if (map.m_flags & EXT4_MAP_NEW) {
719 J_ASSERT(create != 0);
720 J_ASSERT(handle != NULL);
723 * Now that we do not always journal data, we should
724 * keep in mind whether this should always journal the
725 * new buffer as metadata. For now, regular file
726 * writes use ext4_get_block instead, so it's not a
727 * problem.
729 lock_buffer(bh);
730 BUFFER_TRACE(bh, "call get_create_access");
731 fatal = ext4_journal_get_create_access(handle, bh);
732 if (!fatal && !buffer_uptodate(bh)) {
733 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
734 set_buffer_uptodate(bh);
736 unlock_buffer(bh);
737 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
738 err = ext4_handle_dirty_metadata(handle, inode, bh);
739 if (!fatal)
740 fatal = err;
741 } else {
742 BUFFER_TRACE(bh, "not a new buffer");
744 if (fatal) {
745 *errp = fatal;
746 brelse(bh);
747 bh = NULL;
749 return bh;
752 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
753 ext4_lblk_t block, int create, int *err)
755 struct buffer_head *bh;
757 bh = ext4_getblk(handle, inode, block, create, err);
758 if (!bh)
759 return bh;
760 if (buffer_uptodate(bh))
761 return bh;
762 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
763 wait_on_buffer(bh);
764 if (buffer_uptodate(bh))
765 return bh;
766 put_bh(bh);
767 *err = -EIO;
768 return NULL;
771 int ext4_walk_page_buffers(handle_t *handle,
772 struct buffer_head *head,
773 unsigned from,
774 unsigned to,
775 int *partial,
776 int (*fn)(handle_t *handle,
777 struct buffer_head *bh))
779 struct buffer_head *bh;
780 unsigned block_start, block_end;
781 unsigned blocksize = head->b_size;
782 int err, ret = 0;
783 struct buffer_head *next;
785 for (bh = head, block_start = 0;
786 ret == 0 && (bh != head || !block_start);
787 block_start = block_end, bh = next) {
788 next = bh->b_this_page;
789 block_end = block_start + blocksize;
790 if (block_end <= from || block_start >= to) {
791 if (partial && !buffer_uptodate(bh))
792 *partial = 1;
793 continue;
795 err = (*fn)(handle, bh);
796 if (!ret)
797 ret = err;
799 return ret;
803 * To preserve ordering, it is essential that the hole instantiation and
804 * the data write be encapsulated in a single transaction. We cannot
805 * close off a transaction and start a new one between the ext4_get_block()
806 * and the commit_write(). So doing the jbd2_journal_start at the start of
807 * prepare_write() is the right place.
809 * Also, this function can nest inside ext4_writepage(). In that case, we
810 * *know* that ext4_writepage() has generated enough buffer credits to do the
811 * whole page. So we won't block on the journal in that case, which is good,
812 * because the caller may be PF_MEMALLOC.
814 * By accident, ext4 can be reentered when a transaction is open via
815 * quota file writes. If we were to commit the transaction while thus
816 * reentered, there can be a deadlock - we would be holding a quota
817 * lock, and the commit would never complete if another thread had a
818 * transaction open and was blocking on the quota lock - a ranking
819 * violation.
821 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
822 * will _not_ run commit under these circumstances because handle->h_ref
823 * is elevated. We'll still have enough credits for the tiny quotafile
824 * write.
826 int do_journal_get_write_access(handle_t *handle,
827 struct buffer_head *bh)
829 int dirty = buffer_dirty(bh);
830 int ret;
832 if (!buffer_mapped(bh) || buffer_freed(bh))
833 return 0;
835 * __block_write_begin() could have dirtied some buffers. Clean
836 * the dirty bit as jbd2_journal_get_write_access() could complain
837 * otherwise about fs integrity issues. Setting of the dirty bit
838 * by __block_write_begin() isn't a real problem here as we clear
839 * the bit before releasing a page lock and thus writeback cannot
840 * ever write the buffer.
842 if (dirty)
843 clear_buffer_dirty(bh);
844 ret = ext4_journal_get_write_access(handle, bh);
845 if (!ret && dirty)
846 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
847 return ret;
850 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
851 struct buffer_head *bh_result, int create);
852 static int ext4_write_begin(struct file *file, struct address_space *mapping,
853 loff_t pos, unsigned len, unsigned flags,
854 struct page **pagep, void **fsdata)
856 struct inode *inode = mapping->host;
857 int ret, needed_blocks;
858 handle_t *handle;
859 int retries = 0;
860 struct page *page;
861 pgoff_t index;
862 unsigned from, to;
864 trace_ext4_write_begin(inode, pos, len, flags);
866 * Reserve one block more for addition to orphan list in case
867 * we allocate blocks but write fails for some reason
869 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
870 index = pos >> PAGE_CACHE_SHIFT;
871 from = pos & (PAGE_CACHE_SIZE - 1);
872 to = from + len;
874 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
875 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
876 flags, pagep);
877 if (ret < 0)
878 goto out;
879 if (ret == 1) {
880 ret = 0;
881 goto out;
885 retry:
886 handle = ext4_journal_start(inode, needed_blocks);
887 if (IS_ERR(handle)) {
888 ret = PTR_ERR(handle);
889 goto out;
892 /* We cannot recurse into the filesystem as the transaction is already
893 * started */
894 flags |= AOP_FLAG_NOFS;
896 page = grab_cache_page_write_begin(mapping, index, flags);
897 if (!page) {
898 ext4_journal_stop(handle);
899 ret = -ENOMEM;
900 goto out;
903 *pagep = page;
905 if (ext4_should_dioread_nolock(inode))
906 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
907 else
908 ret = __block_write_begin(page, pos, len, ext4_get_block);
910 if (!ret && ext4_should_journal_data(inode)) {
911 ret = ext4_walk_page_buffers(handle, page_buffers(page),
912 from, to, NULL,
913 do_journal_get_write_access);
916 if (ret) {
917 unlock_page(page);
918 page_cache_release(page);
920 * __block_write_begin may have instantiated a few blocks
921 * outside i_size. Trim these off again. Don't need
922 * i_size_read because we hold i_mutex.
924 * Add inode to orphan list in case we crash before
925 * truncate finishes
927 if (pos + len > inode->i_size && ext4_can_truncate(inode))
928 ext4_orphan_add(handle, inode);
930 ext4_journal_stop(handle);
931 if (pos + len > inode->i_size) {
932 ext4_truncate_failed_write(inode);
934 * If truncate failed early the inode might
935 * still be on the orphan list; we need to
936 * make sure the inode is removed from the
937 * orphan list in that case.
939 if (inode->i_nlink)
940 ext4_orphan_del(NULL, inode);
944 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
945 goto retry;
946 out:
947 return ret;
950 /* For write_end() in data=journal mode */
951 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
953 if (!buffer_mapped(bh) || buffer_freed(bh))
954 return 0;
955 set_buffer_uptodate(bh);
956 return ext4_handle_dirty_metadata(handle, NULL, bh);
959 static int ext4_generic_write_end(struct file *file,
960 struct address_space *mapping,
961 loff_t pos, unsigned len, unsigned copied,
962 struct page *page, void *fsdata)
964 int i_size_changed = 0;
965 struct inode *inode = mapping->host;
966 handle_t *handle = ext4_journal_current_handle();
968 if (ext4_has_inline_data(inode))
969 copied = ext4_write_inline_data_end(inode, pos, len,
970 copied, page);
971 else
972 copied = block_write_end(file, mapping, pos,
973 len, copied, page, fsdata);
976 * No need to use i_size_read() here, the i_size
977 * cannot change under us because we hold i_mutex.
979 * But it's important to update i_size while still holding page lock:
980 * page writeout could otherwise come in and zero beyond i_size.
982 if (pos + copied > inode->i_size) {
983 i_size_write(inode, pos + copied);
984 i_size_changed = 1;
987 if (pos + copied > EXT4_I(inode)->i_disksize) {
988 /* We need to mark inode dirty even if
989 * new_i_size is less that inode->i_size
990 * bu greater than i_disksize.(hint delalloc)
992 ext4_update_i_disksize(inode, (pos + copied));
993 i_size_changed = 1;
995 unlock_page(page);
996 page_cache_release(page);
999 * Don't mark the inode dirty under page lock. First, it unnecessarily
1000 * makes the holding time of page lock longer. Second, it forces lock
1001 * ordering of page lock and transaction start for journaling
1002 * filesystems.
1004 if (i_size_changed)
1005 ext4_mark_inode_dirty(handle, inode);
1007 return copied;
1011 * We need to pick up the new inode size which generic_commit_write gave us
1012 * `file' can be NULL - eg, when called from page_symlink().
1014 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1015 * buffers are managed internally.
1017 static int ext4_ordered_write_end(struct file *file,
1018 struct address_space *mapping,
1019 loff_t pos, unsigned len, unsigned copied,
1020 struct page *page, void *fsdata)
1022 handle_t *handle = ext4_journal_current_handle();
1023 struct inode *inode = mapping->host;
1024 int ret = 0, ret2;
1026 trace_ext4_ordered_write_end(inode, pos, len, copied);
1027 ret = ext4_jbd2_file_inode(handle, inode);
1029 if (ret == 0) {
1030 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1031 page, fsdata);
1032 copied = ret2;
1033 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1034 /* if we have allocated more blocks and copied
1035 * less. We will have blocks allocated outside
1036 * inode->i_size. So truncate them
1038 ext4_orphan_add(handle, inode);
1039 if (ret2 < 0)
1040 ret = ret2;
1041 } else {
1042 unlock_page(page);
1043 page_cache_release(page);
1046 ret2 = ext4_journal_stop(handle);
1047 if (!ret)
1048 ret = ret2;
1050 if (pos + len > inode->i_size) {
1051 ext4_truncate_failed_write(inode);
1053 * If truncate failed early the inode might still be
1054 * on the orphan list; we need to make sure the inode
1055 * is removed from the orphan list in that case.
1057 if (inode->i_nlink)
1058 ext4_orphan_del(NULL, inode);
1062 return ret ? ret : copied;
1065 static int ext4_writeback_write_end(struct file *file,
1066 struct address_space *mapping,
1067 loff_t pos, unsigned len, unsigned copied,
1068 struct page *page, void *fsdata)
1070 handle_t *handle = ext4_journal_current_handle();
1071 struct inode *inode = mapping->host;
1072 int ret = 0, ret2;
1074 trace_ext4_writeback_write_end(inode, pos, len, copied);
1075 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1076 page, fsdata);
1077 copied = ret2;
1078 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1079 /* if we have allocated more blocks and copied
1080 * less. We will have blocks allocated outside
1081 * inode->i_size. So truncate them
1083 ext4_orphan_add(handle, inode);
1085 if (ret2 < 0)
1086 ret = ret2;
1088 ret2 = ext4_journal_stop(handle);
1089 if (!ret)
1090 ret = ret2;
1092 if (pos + len > inode->i_size) {
1093 ext4_truncate_failed_write(inode);
1095 * If truncate failed early the inode might still be
1096 * on the orphan list; we need to make sure the inode
1097 * is removed from the orphan list in that case.
1099 if (inode->i_nlink)
1100 ext4_orphan_del(NULL, inode);
1103 return ret ? ret : copied;
1106 static int ext4_journalled_write_end(struct file *file,
1107 struct address_space *mapping,
1108 loff_t pos, unsigned len, unsigned copied,
1109 struct page *page, void *fsdata)
1111 handle_t *handle = ext4_journal_current_handle();
1112 struct inode *inode = mapping->host;
1113 int ret = 0, ret2;
1114 int partial = 0;
1115 unsigned from, to;
1116 loff_t new_i_size;
1118 trace_ext4_journalled_write_end(inode, pos, len, copied);
1119 from = pos & (PAGE_CACHE_SIZE - 1);
1120 to = from + len;
1122 BUG_ON(!ext4_handle_valid(handle));
1124 if (ext4_has_inline_data(inode))
1125 copied = ext4_write_inline_data_end(inode, pos, len,
1126 copied, page);
1127 else {
1128 if (copied < len) {
1129 if (!PageUptodate(page))
1130 copied = 0;
1131 page_zero_new_buffers(page, from+copied, to);
1134 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1135 to, &partial, write_end_fn);
1136 if (!partial)
1137 SetPageUptodate(page);
1139 new_i_size = pos + copied;
1140 if (new_i_size > inode->i_size)
1141 i_size_write(inode, pos+copied);
1142 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1143 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1144 if (new_i_size > EXT4_I(inode)->i_disksize) {
1145 ext4_update_i_disksize(inode, new_i_size);
1146 ret2 = ext4_mark_inode_dirty(handle, inode);
1147 if (!ret)
1148 ret = ret2;
1151 unlock_page(page);
1152 page_cache_release(page);
1153 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1154 /* if we have allocated more blocks and copied
1155 * less. We will have blocks allocated outside
1156 * inode->i_size. So truncate them
1158 ext4_orphan_add(handle, inode);
1160 ret2 = ext4_journal_stop(handle);
1161 if (!ret)
1162 ret = ret2;
1163 if (pos + len > inode->i_size) {
1164 ext4_truncate_failed_write(inode);
1166 * If truncate failed early the inode might still be
1167 * on the orphan list; we need to make sure the inode
1168 * is removed from the orphan list in that case.
1170 if (inode->i_nlink)
1171 ext4_orphan_del(NULL, inode);
1174 return ret ? ret : copied;
1178 * Reserve a single cluster located at lblock
1180 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1182 int retries = 0;
1183 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1184 struct ext4_inode_info *ei = EXT4_I(inode);
1185 unsigned int md_needed;
1186 int ret;
1187 ext4_lblk_t save_last_lblock;
1188 int save_len;
1191 * We will charge metadata quota at writeout time; this saves
1192 * us from metadata over-estimation, though we may go over by
1193 * a small amount in the end. Here we just reserve for data.
1195 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1196 if (ret)
1197 return ret;
1200 * recalculate the amount of metadata blocks to reserve
1201 * in order to allocate nrblocks
1202 * worse case is one extent per block
1204 repeat:
1205 spin_lock(&ei->i_block_reservation_lock);
1207 * ext4_calc_metadata_amount() has side effects, which we have
1208 * to be prepared undo if we fail to claim space.
1210 save_len = ei->i_da_metadata_calc_len;
1211 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1212 md_needed = EXT4_NUM_B2C(sbi,
1213 ext4_calc_metadata_amount(inode, lblock));
1214 trace_ext4_da_reserve_space(inode, md_needed);
1217 * We do still charge estimated metadata to the sb though;
1218 * we cannot afford to run out of free blocks.
1220 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1221 ei->i_da_metadata_calc_len = save_len;
1222 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1223 spin_unlock(&ei->i_block_reservation_lock);
1224 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1225 yield();
1226 goto repeat;
1228 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1229 return -ENOSPC;
1231 ei->i_reserved_data_blocks++;
1232 ei->i_reserved_meta_blocks += md_needed;
1233 spin_unlock(&ei->i_block_reservation_lock);
1235 return 0; /* success */
1238 static void ext4_da_release_space(struct inode *inode, int to_free)
1240 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1241 struct ext4_inode_info *ei = EXT4_I(inode);
1243 if (!to_free)
1244 return; /* Nothing to release, exit */
1246 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1248 trace_ext4_da_release_space(inode, to_free);
1249 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1251 * if there aren't enough reserved blocks, then the
1252 * counter is messed up somewhere. Since this
1253 * function is called from invalidate page, it's
1254 * harmless to return without any action.
1256 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1257 "ino %lu, to_free %d with only %d reserved "
1258 "data blocks", inode->i_ino, to_free,
1259 ei->i_reserved_data_blocks);
1260 WARN_ON(1);
1261 to_free = ei->i_reserved_data_blocks;
1263 ei->i_reserved_data_blocks -= to_free;
1265 if (ei->i_reserved_data_blocks == 0) {
1267 * We can release all of the reserved metadata blocks
1268 * only when we have written all of the delayed
1269 * allocation blocks.
1270 * Note that in case of bigalloc, i_reserved_meta_blocks,
1271 * i_reserved_data_blocks, etc. refer to number of clusters.
1273 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1274 ei->i_reserved_meta_blocks);
1275 ei->i_reserved_meta_blocks = 0;
1276 ei->i_da_metadata_calc_len = 0;
1279 /* update fs dirty data blocks counter */
1280 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1282 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1284 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1287 static void ext4_da_page_release_reservation(struct page *page,
1288 unsigned long offset)
1290 int to_release = 0;
1291 struct buffer_head *head, *bh;
1292 unsigned int curr_off = 0;
1293 struct inode *inode = page->mapping->host;
1294 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1295 int num_clusters;
1296 ext4_fsblk_t lblk;
1298 head = page_buffers(page);
1299 bh = head;
1300 do {
1301 unsigned int next_off = curr_off + bh->b_size;
1303 if ((offset <= curr_off) && (buffer_delay(bh))) {
1304 to_release++;
1305 clear_buffer_delay(bh);
1307 curr_off = next_off;
1308 } while ((bh = bh->b_this_page) != head);
1310 if (to_release) {
1311 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1312 ext4_es_remove_extent(inode, lblk, to_release);
1315 /* If we have released all the blocks belonging to a cluster, then we
1316 * need to release the reserved space for that cluster. */
1317 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1318 while (num_clusters > 0) {
1319 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1320 ((num_clusters - 1) << sbi->s_cluster_bits);
1321 if (sbi->s_cluster_ratio == 1 ||
1322 !ext4_find_delalloc_cluster(inode, lblk))
1323 ext4_da_release_space(inode, 1);
1325 num_clusters--;
1330 * Delayed allocation stuff
1334 * mpage_da_submit_io - walks through extent of pages and try to write
1335 * them with writepage() call back
1337 * @mpd->inode: inode
1338 * @mpd->first_page: first page of the extent
1339 * @mpd->next_page: page after the last page of the extent
1341 * By the time mpage_da_submit_io() is called we expect all blocks
1342 * to be allocated. this may be wrong if allocation failed.
1344 * As pages are already locked by write_cache_pages(), we can't use it
1346 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1347 struct ext4_map_blocks *map)
1349 struct pagevec pvec;
1350 unsigned long index, end;
1351 int ret = 0, err, nr_pages, i;
1352 struct inode *inode = mpd->inode;
1353 struct address_space *mapping = inode->i_mapping;
1354 loff_t size = i_size_read(inode);
1355 unsigned int len, block_start;
1356 struct buffer_head *bh, *page_bufs = NULL;
1357 int journal_data = ext4_should_journal_data(inode);
1358 sector_t pblock = 0, cur_logical = 0;
1359 struct ext4_io_submit io_submit;
1361 BUG_ON(mpd->next_page <= mpd->first_page);
1362 memset(&io_submit, 0, sizeof(io_submit));
1364 * We need to start from the first_page to the next_page - 1
1365 * to make sure we also write the mapped dirty buffer_heads.
1366 * If we look at mpd->b_blocknr we would only be looking
1367 * at the currently mapped buffer_heads.
1369 index = mpd->first_page;
1370 end = mpd->next_page - 1;
1372 pagevec_init(&pvec, 0);
1373 while (index <= end) {
1374 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1375 if (nr_pages == 0)
1376 break;
1377 for (i = 0; i < nr_pages; i++) {
1378 int commit_write = 0, skip_page = 0;
1379 struct page *page = pvec.pages[i];
1381 index = page->index;
1382 if (index > end)
1383 break;
1385 if (index == size >> PAGE_CACHE_SHIFT)
1386 len = size & ~PAGE_CACHE_MASK;
1387 else
1388 len = PAGE_CACHE_SIZE;
1389 if (map) {
1390 cur_logical = index << (PAGE_CACHE_SHIFT -
1391 inode->i_blkbits);
1392 pblock = map->m_pblk + (cur_logical -
1393 map->m_lblk);
1395 index++;
1397 BUG_ON(!PageLocked(page));
1398 BUG_ON(PageWriteback(page));
1401 * If the page does not have buffers (for
1402 * whatever reason), try to create them using
1403 * __block_write_begin. If this fails,
1404 * skip the page and move on.
1406 if (!page_has_buffers(page)) {
1407 if (__block_write_begin(page, 0, len,
1408 noalloc_get_block_write)) {
1409 skip_page:
1410 unlock_page(page);
1411 continue;
1413 commit_write = 1;
1416 bh = page_bufs = page_buffers(page);
1417 block_start = 0;
1418 do {
1419 if (!bh)
1420 goto skip_page;
1421 if (map && (cur_logical >= map->m_lblk) &&
1422 (cur_logical <= (map->m_lblk +
1423 (map->m_len - 1)))) {
1424 if (buffer_delay(bh)) {
1425 clear_buffer_delay(bh);
1426 bh->b_blocknr = pblock;
1428 if (buffer_unwritten(bh) ||
1429 buffer_mapped(bh))
1430 BUG_ON(bh->b_blocknr != pblock);
1431 if (map->m_flags & EXT4_MAP_UNINIT)
1432 set_buffer_uninit(bh);
1433 clear_buffer_unwritten(bh);
1437 * skip page if block allocation undone and
1438 * block is dirty
1440 if (ext4_bh_delay_or_unwritten(NULL, bh))
1441 skip_page = 1;
1442 bh = bh->b_this_page;
1443 block_start += bh->b_size;
1444 cur_logical++;
1445 pblock++;
1446 } while (bh != page_bufs);
1448 if (skip_page)
1449 goto skip_page;
1451 if (commit_write)
1452 /* mark the buffer_heads as dirty & uptodate */
1453 block_commit_write(page, 0, len);
1455 clear_page_dirty_for_io(page);
1457 * Delalloc doesn't support data journalling,
1458 * but eventually maybe we'll lift this
1459 * restriction.
1461 if (unlikely(journal_data && PageChecked(page)))
1462 err = __ext4_journalled_writepage(page, len);
1463 else
1464 err = ext4_bio_write_page(&io_submit, page,
1465 len, mpd->wbc);
1466 if (!err)
1467 mpd->pages_written++;
1469 * In error case, we have to continue because
1470 * remaining pages are still locked
1472 if (ret == 0)
1473 ret = err;
1475 pagevec_release(&pvec);
1477 ext4_io_submit(&io_submit);
1478 return ret;
1481 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1483 int nr_pages, i;
1484 pgoff_t index, end;
1485 struct pagevec pvec;
1486 struct inode *inode = mpd->inode;
1487 struct address_space *mapping = inode->i_mapping;
1488 ext4_lblk_t start, last;
1490 index = mpd->first_page;
1491 end = mpd->next_page - 1;
1493 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1494 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1495 ext4_es_remove_extent(inode, start, last - start + 1);
1497 pagevec_init(&pvec, 0);
1498 while (index <= end) {
1499 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1500 if (nr_pages == 0)
1501 break;
1502 for (i = 0; i < nr_pages; i++) {
1503 struct page *page = pvec.pages[i];
1504 if (page->index > end)
1505 break;
1506 BUG_ON(!PageLocked(page));
1507 BUG_ON(PageWriteback(page));
1508 block_invalidatepage(page, 0);
1509 ClearPageUptodate(page);
1510 unlock_page(page);
1512 index = pvec.pages[nr_pages - 1]->index + 1;
1513 pagevec_release(&pvec);
1515 return;
1518 static void ext4_print_free_blocks(struct inode *inode)
1520 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1521 struct super_block *sb = inode->i_sb;
1523 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1524 EXT4_C2B(EXT4_SB(inode->i_sb),
1525 ext4_count_free_clusters(inode->i_sb)));
1526 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1527 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1528 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1529 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1530 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1531 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1532 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1533 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1534 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1535 EXT4_I(inode)->i_reserved_data_blocks);
1536 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1537 EXT4_I(inode)->i_reserved_meta_blocks);
1538 return;
1542 * mpage_da_map_and_submit - go through given space, map them
1543 * if necessary, and then submit them for I/O
1545 * @mpd - bh describing space
1547 * The function skips space we know is already mapped to disk blocks.
1550 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1552 int err, blks, get_blocks_flags;
1553 struct ext4_map_blocks map, *mapp = NULL;
1554 sector_t next = mpd->b_blocknr;
1555 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1556 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1557 handle_t *handle = NULL;
1560 * If the blocks are mapped already, or we couldn't accumulate
1561 * any blocks, then proceed immediately to the submission stage.
1563 if ((mpd->b_size == 0) ||
1564 ((mpd->b_state & (1 << BH_Mapped)) &&
1565 !(mpd->b_state & (1 << BH_Delay)) &&
1566 !(mpd->b_state & (1 << BH_Unwritten))))
1567 goto submit_io;
1569 handle = ext4_journal_current_handle();
1570 BUG_ON(!handle);
1573 * Call ext4_map_blocks() to allocate any delayed allocation
1574 * blocks, or to convert an uninitialized extent to be
1575 * initialized (in the case where we have written into
1576 * one or more preallocated blocks).
1578 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1579 * indicate that we are on the delayed allocation path. This
1580 * affects functions in many different parts of the allocation
1581 * call path. This flag exists primarily because we don't
1582 * want to change *many* call functions, so ext4_map_blocks()
1583 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1584 * inode's allocation semaphore is taken.
1586 * If the blocks in questions were delalloc blocks, set
1587 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1588 * variables are updated after the blocks have been allocated.
1590 map.m_lblk = next;
1591 map.m_len = max_blocks;
1592 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1593 if (ext4_should_dioread_nolock(mpd->inode))
1594 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1595 if (mpd->b_state & (1 << BH_Delay))
1596 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1598 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1599 if (blks < 0) {
1600 struct super_block *sb = mpd->inode->i_sb;
1602 err = blks;
1604 * If get block returns EAGAIN or ENOSPC and there
1605 * appears to be free blocks we will just let
1606 * mpage_da_submit_io() unlock all of the pages.
1608 if (err == -EAGAIN)
1609 goto submit_io;
1611 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1612 mpd->retval = err;
1613 goto submit_io;
1617 * get block failure will cause us to loop in
1618 * writepages, because a_ops->writepage won't be able
1619 * to make progress. The page will be redirtied by
1620 * writepage and writepages will again try to write
1621 * the same.
1623 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1624 ext4_msg(sb, KERN_CRIT,
1625 "delayed block allocation failed for inode %lu "
1626 "at logical offset %llu with max blocks %zd "
1627 "with error %d", mpd->inode->i_ino,
1628 (unsigned long long) next,
1629 mpd->b_size >> mpd->inode->i_blkbits, err);
1630 ext4_msg(sb, KERN_CRIT,
1631 "This should not happen!! Data will be lost\n");
1632 if (err == -ENOSPC)
1633 ext4_print_free_blocks(mpd->inode);
1635 /* invalidate all the pages */
1636 ext4_da_block_invalidatepages(mpd);
1638 /* Mark this page range as having been completed */
1639 mpd->io_done = 1;
1640 return;
1642 BUG_ON(blks == 0);
1644 mapp = &map;
1645 if (map.m_flags & EXT4_MAP_NEW) {
1646 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1647 int i;
1649 for (i = 0; i < map.m_len; i++)
1650 unmap_underlying_metadata(bdev, map.m_pblk + i);
1654 * Update on-disk size along with block allocation.
1656 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1657 if (disksize > i_size_read(mpd->inode))
1658 disksize = i_size_read(mpd->inode);
1659 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1660 ext4_update_i_disksize(mpd->inode, disksize);
1661 err = ext4_mark_inode_dirty(handle, mpd->inode);
1662 if (err)
1663 ext4_error(mpd->inode->i_sb,
1664 "Failed to mark inode %lu dirty",
1665 mpd->inode->i_ino);
1668 submit_io:
1669 mpage_da_submit_io(mpd, mapp);
1670 mpd->io_done = 1;
1673 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1674 (1 << BH_Delay) | (1 << BH_Unwritten))
1677 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1679 * @mpd->lbh - extent of blocks
1680 * @logical - logical number of the block in the file
1681 * @bh - bh of the block (used to access block's state)
1683 * the function is used to collect contig. blocks in same state
1685 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1686 sector_t logical, size_t b_size,
1687 unsigned long b_state)
1689 sector_t next;
1690 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1693 * XXX Don't go larger than mballoc is willing to allocate
1694 * This is a stopgap solution. We eventually need to fold
1695 * mpage_da_submit_io() into this function and then call
1696 * ext4_map_blocks() multiple times in a loop
1698 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1699 goto flush_it;
1701 /* check if thereserved journal credits might overflow */
1702 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1703 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1705 * With non-extent format we are limited by the journal
1706 * credit available. Total credit needed to insert
1707 * nrblocks contiguous blocks is dependent on the
1708 * nrblocks. So limit nrblocks.
1710 goto flush_it;
1711 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1712 EXT4_MAX_TRANS_DATA) {
1714 * Adding the new buffer_head would make it cross the
1715 * allowed limit for which we have journal credit
1716 * reserved. So limit the new bh->b_size
1718 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1719 mpd->inode->i_blkbits;
1720 /* we will do mpage_da_submit_io in the next loop */
1724 * First block in the extent
1726 if (mpd->b_size == 0) {
1727 mpd->b_blocknr = logical;
1728 mpd->b_size = b_size;
1729 mpd->b_state = b_state & BH_FLAGS;
1730 return;
1733 next = mpd->b_blocknr + nrblocks;
1735 * Can we merge the block to our big extent?
1737 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1738 mpd->b_size += b_size;
1739 return;
1742 flush_it:
1744 * We couldn't merge the block to our extent, so we
1745 * need to flush current extent and start new one
1747 mpage_da_map_and_submit(mpd);
1748 return;
1751 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1753 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1757 * This function is grabs code from the very beginning of
1758 * ext4_map_blocks, but assumes that the caller is from delayed write
1759 * time. This function looks up the requested blocks and sets the
1760 * buffer delay bit under the protection of i_data_sem.
1762 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1763 struct ext4_map_blocks *map,
1764 struct buffer_head *bh)
1766 int retval;
1767 sector_t invalid_block = ~((sector_t) 0xffff);
1769 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1770 invalid_block = ~0;
1772 map->m_flags = 0;
1773 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1774 "logical block %lu\n", inode->i_ino, map->m_len,
1775 (unsigned long) map->m_lblk);
1777 * Try to see if we can get the block without requesting a new
1778 * file system block.
1780 down_read((&EXT4_I(inode)->i_data_sem));
1781 if (ext4_has_inline_data(inode)) {
1783 * We will soon create blocks for this page, and let
1784 * us pretend as if the blocks aren't allocated yet.
1785 * In case of clusters, we have to handle the work
1786 * of mapping from cluster so that the reserved space
1787 * is calculated properly.
1789 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1790 ext4_find_delalloc_cluster(inode, map->m_lblk))
1791 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1792 retval = 0;
1793 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795 else
1796 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1798 if (retval == 0) {
1800 * XXX: __block_prepare_write() unmaps passed block,
1801 * is it OK?
1803 /* If the block was allocated from previously allocated cluster,
1804 * then we dont need to reserve it again. */
1805 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1806 retval = ext4_da_reserve_space(inode, iblock);
1807 if (retval)
1808 /* not enough space to reserve */
1809 goto out_unlock;
1812 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1813 if (retval)
1814 goto out_unlock;
1816 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1817 * and it should not appear on the bh->b_state.
1819 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1821 map_bh(bh, inode->i_sb, invalid_block);
1822 set_buffer_new(bh);
1823 set_buffer_delay(bh);
1826 out_unlock:
1827 up_read((&EXT4_I(inode)->i_data_sem));
1829 return retval;
1833 * This is a special get_blocks_t callback which is used by
1834 * ext4_da_write_begin(). It will either return mapped block or
1835 * reserve space for a single block.
1837 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1838 * We also have b_blocknr = -1 and b_bdev initialized properly
1840 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1841 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1842 * initialized properly.
1844 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1845 struct buffer_head *bh, int create)
1847 struct ext4_map_blocks map;
1848 int ret = 0;
1850 BUG_ON(create == 0);
1851 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1853 map.m_lblk = iblock;
1854 map.m_len = 1;
1857 * first, we need to know whether the block is allocated already
1858 * preallocated blocks are unmapped but should treated
1859 * the same as allocated blocks.
1861 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1862 if (ret <= 0)
1863 return ret;
1865 map_bh(bh, inode->i_sb, map.m_pblk);
1866 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1868 if (buffer_unwritten(bh)) {
1869 /* A delayed write to unwritten bh should be marked
1870 * new and mapped. Mapped ensures that we don't do
1871 * get_block multiple times when we write to the same
1872 * offset and new ensures that we do proper zero out
1873 * for partial write.
1875 set_buffer_new(bh);
1876 set_buffer_mapped(bh);
1878 return 0;
1882 * This function is used as a standard get_block_t calback function when there
1883 * is no desire to allocate any blocks. It is used as a callback function for
1884 * block_write_begin(). These functions should only try to map a single block
1885 * at a time.
1887 * Since this function doesn't do block allocations even if the caller
1888 * requests it by passing in create=1, it is critically important that
1889 * any caller checks to make sure that any buffer heads are returned
1890 * by this function are either all already mapped or marked for
1891 * delayed allocation before calling ext4_bio_write_page(). Otherwise,
1892 * b_blocknr could be left unitialized, and the page write functions will
1893 * be taken by surprise.
1895 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1896 struct buffer_head *bh_result, int create)
1898 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1899 return _ext4_get_block(inode, iblock, bh_result, 0);
1902 static int bget_one(handle_t *handle, struct buffer_head *bh)
1904 get_bh(bh);
1905 return 0;
1908 static int bput_one(handle_t *handle, struct buffer_head *bh)
1910 put_bh(bh);
1911 return 0;
1914 static int __ext4_journalled_writepage(struct page *page,
1915 unsigned int len)
1917 struct address_space *mapping = page->mapping;
1918 struct inode *inode = mapping->host;
1919 struct buffer_head *page_bufs = NULL;
1920 handle_t *handle = NULL;
1921 int ret = 0, err = 0;
1922 int inline_data = ext4_has_inline_data(inode);
1923 struct buffer_head *inode_bh = NULL;
1925 ClearPageChecked(page);
1927 if (inline_data) {
1928 BUG_ON(page->index != 0);
1929 BUG_ON(len > ext4_get_max_inline_size(inode));
1930 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1931 if (inode_bh == NULL)
1932 goto out;
1933 } else {
1934 page_bufs = page_buffers(page);
1935 if (!page_bufs) {
1936 BUG();
1937 goto out;
1939 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1940 NULL, bget_one);
1942 /* As soon as we unlock the page, it can go away, but we have
1943 * references to buffers so we are safe */
1944 unlock_page(page);
1946 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1947 if (IS_ERR(handle)) {
1948 ret = PTR_ERR(handle);
1949 goto out;
1952 BUG_ON(!ext4_handle_valid(handle));
1954 if (inline_data) {
1955 ret = ext4_journal_get_write_access(handle, inode_bh);
1957 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1959 } else {
1960 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1961 do_journal_get_write_access);
1963 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1964 write_end_fn);
1966 if (ret == 0)
1967 ret = err;
1968 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1969 err = ext4_journal_stop(handle);
1970 if (!ret)
1971 ret = err;
1973 if (!ext4_has_inline_data(inode))
1974 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1975 NULL, bput_one);
1976 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1977 out:
1978 brelse(inode_bh);
1979 return ret;
1983 * Note that we don't need to start a transaction unless we're journaling data
1984 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1985 * need to file the inode to the transaction's list in ordered mode because if
1986 * we are writing back data added by write(), the inode is already there and if
1987 * we are writing back data modified via mmap(), no one guarantees in which
1988 * transaction the data will hit the disk. In case we are journaling data, we
1989 * cannot start transaction directly because transaction start ranks above page
1990 * lock so we have to do some magic.
1992 * This function can get called via...
1993 * - ext4_da_writepages after taking page lock (have journal handle)
1994 * - journal_submit_inode_data_buffers (no journal handle)
1995 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1996 * - grab_page_cache when doing write_begin (have journal handle)
1998 * We don't do any block allocation in this function. If we have page with
1999 * multiple blocks we need to write those buffer_heads that are mapped. This
2000 * is important for mmaped based write. So if we do with blocksize 1K
2001 * truncate(f, 1024);
2002 * a = mmap(f, 0, 4096);
2003 * a[0] = 'a';
2004 * truncate(f, 4096);
2005 * we have in the page first buffer_head mapped via page_mkwrite call back
2006 * but other buffer_heads would be unmapped but dirty (dirty done via the
2007 * do_wp_page). So writepage should write the first block. If we modify
2008 * the mmap area beyond 1024 we will again get a page_fault and the
2009 * page_mkwrite callback will do the block allocation and mark the
2010 * buffer_heads mapped.
2012 * We redirty the page if we have any buffer_heads that is either delay or
2013 * unwritten in the page.
2015 * We can get recursively called as show below.
2017 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2018 * ext4_writepage()
2020 * But since we don't do any block allocation we should not deadlock.
2021 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2023 static int ext4_writepage(struct page *page,
2024 struct writeback_control *wbc)
2026 int ret = 0, commit_write = 0;
2027 loff_t size;
2028 unsigned int len;
2029 struct buffer_head *page_bufs = NULL;
2030 struct inode *inode = page->mapping->host;
2031 struct ext4_io_submit io_submit;
2033 trace_ext4_writepage(page);
2034 size = i_size_read(inode);
2035 if (page->index == size >> PAGE_CACHE_SHIFT)
2036 len = size & ~PAGE_CACHE_MASK;
2037 else
2038 len = PAGE_CACHE_SIZE;
2041 * If the page does not have buffers (for whatever reason),
2042 * try to create them using __block_write_begin. If this
2043 * fails, redirty the page and move on.
2045 if (!page_has_buffers(page)) {
2046 if (__block_write_begin(page, 0, len,
2047 noalloc_get_block_write)) {
2048 redirty_page:
2049 redirty_page_for_writepage(wbc, page);
2050 unlock_page(page);
2051 return 0;
2053 commit_write = 1;
2055 page_bufs = page_buffers(page);
2056 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2057 ext4_bh_delay_or_unwritten)) {
2059 * We don't want to do block allocation, so redirty
2060 * the page and return. We may reach here when we do
2061 * a journal commit via journal_submit_inode_data_buffers.
2062 * We can also reach here via shrink_page_list but it
2063 * should never be for direct reclaim so warn if that
2064 * happens
2066 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2067 PF_MEMALLOC);
2068 goto redirty_page;
2070 if (commit_write)
2071 /* now mark the buffer_heads as dirty and uptodate */
2072 block_commit_write(page, 0, len);
2074 if (PageChecked(page) && ext4_should_journal_data(inode))
2076 * It's mmapped pagecache. Add buffers and journal it. There
2077 * doesn't seem much point in redirtying the page here.
2079 return __ext4_journalled_writepage(page, len);
2081 memset(&io_submit, 0, sizeof(io_submit));
2082 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2083 ext4_io_submit(&io_submit);
2084 return ret;
2088 * This is called via ext4_da_writepages() to
2089 * calculate the total number of credits to reserve to fit
2090 * a single extent allocation into a single transaction,
2091 * ext4_da_writpeages() will loop calling this before
2092 * the block allocation.
2095 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2097 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2100 * With non-extent format the journal credit needed to
2101 * insert nrblocks contiguous block is dependent on
2102 * number of contiguous block. So we will limit
2103 * number of contiguous block to a sane value
2105 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2106 (max_blocks > EXT4_MAX_TRANS_DATA))
2107 max_blocks = EXT4_MAX_TRANS_DATA;
2109 return ext4_chunk_trans_blocks(inode, max_blocks);
2113 * write_cache_pages_da - walk the list of dirty pages of the given
2114 * address space and accumulate pages that need writing, and call
2115 * mpage_da_map_and_submit to map a single contiguous memory region
2116 * and then write them.
2118 static int write_cache_pages_da(handle_t *handle,
2119 struct address_space *mapping,
2120 struct writeback_control *wbc,
2121 struct mpage_da_data *mpd,
2122 pgoff_t *done_index)
2124 struct buffer_head *bh, *head;
2125 struct inode *inode = mapping->host;
2126 struct pagevec pvec;
2127 unsigned int nr_pages;
2128 sector_t logical;
2129 pgoff_t index, end;
2130 long nr_to_write = wbc->nr_to_write;
2131 int i, tag, ret = 0;
2133 memset(mpd, 0, sizeof(struct mpage_da_data));
2134 mpd->wbc = wbc;
2135 mpd->inode = inode;
2136 pagevec_init(&pvec, 0);
2137 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2138 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2140 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2141 tag = PAGECACHE_TAG_TOWRITE;
2142 else
2143 tag = PAGECACHE_TAG_DIRTY;
2145 *done_index = index;
2146 while (index <= end) {
2147 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2148 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2149 if (nr_pages == 0)
2150 return 0;
2152 for (i = 0; i < nr_pages; i++) {
2153 struct page *page = pvec.pages[i];
2156 * At this point, the page may be truncated or
2157 * invalidated (changing page->mapping to NULL), or
2158 * even swizzled back from swapper_space to tmpfs file
2159 * mapping. However, page->index will not change
2160 * because we have a reference on the page.
2162 if (page->index > end)
2163 goto out;
2165 *done_index = page->index + 1;
2168 * If we can't merge this page, and we have
2169 * accumulated an contiguous region, write it
2171 if ((mpd->next_page != page->index) &&
2172 (mpd->next_page != mpd->first_page)) {
2173 mpage_da_map_and_submit(mpd);
2174 goto ret_extent_tail;
2177 lock_page(page);
2180 * If the page is no longer dirty, or its
2181 * mapping no longer corresponds to inode we
2182 * are writing (which means it has been
2183 * truncated or invalidated), or the page is
2184 * already under writeback and we are not
2185 * doing a data integrity writeback, skip the page
2187 if (!PageDirty(page) ||
2188 (PageWriteback(page) &&
2189 (wbc->sync_mode == WB_SYNC_NONE)) ||
2190 unlikely(page->mapping != mapping)) {
2191 unlock_page(page);
2192 continue;
2195 wait_on_page_writeback(page);
2196 BUG_ON(PageWriteback(page));
2199 * If we have inline data and arrive here, it means that
2200 * we will soon create the block for the 1st page, so
2201 * we'd better clear the inline data here.
2203 if (ext4_has_inline_data(inode)) {
2204 BUG_ON(ext4_test_inode_state(inode,
2205 EXT4_STATE_MAY_INLINE_DATA));
2206 ext4_destroy_inline_data(handle, inode);
2209 if (mpd->next_page != page->index)
2210 mpd->first_page = page->index;
2211 mpd->next_page = page->index + 1;
2212 logical = (sector_t) page->index <<
2213 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2215 if (!page_has_buffers(page)) {
2216 mpage_add_bh_to_extent(mpd, logical,
2217 PAGE_CACHE_SIZE,
2218 (1 << BH_Dirty) | (1 << BH_Uptodate));
2219 if (mpd->io_done)
2220 goto ret_extent_tail;
2221 } else {
2223 * Page with regular buffer heads,
2224 * just add all dirty ones
2226 head = page_buffers(page);
2227 bh = head;
2228 do {
2229 BUG_ON(buffer_locked(bh));
2231 * We need to try to allocate
2232 * unmapped blocks in the same page.
2233 * Otherwise we won't make progress
2234 * with the page in ext4_writepage
2236 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2237 mpage_add_bh_to_extent(mpd, logical,
2238 bh->b_size,
2239 bh->b_state);
2240 if (mpd->io_done)
2241 goto ret_extent_tail;
2242 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2244 * mapped dirty buffer. We need
2245 * to update the b_state
2246 * because we look at b_state
2247 * in mpage_da_map_blocks. We
2248 * don't update b_size because
2249 * if we find an unmapped
2250 * buffer_head later we need to
2251 * use the b_state flag of that
2252 * buffer_head.
2254 if (mpd->b_size == 0)
2255 mpd->b_state = bh->b_state & BH_FLAGS;
2257 logical++;
2258 } while ((bh = bh->b_this_page) != head);
2261 if (nr_to_write > 0) {
2262 nr_to_write--;
2263 if (nr_to_write == 0 &&
2264 wbc->sync_mode == WB_SYNC_NONE)
2266 * We stop writing back only if we are
2267 * not doing integrity sync. In case of
2268 * integrity sync we have to keep going
2269 * because someone may be concurrently
2270 * dirtying pages, and we might have
2271 * synced a lot of newly appeared dirty
2272 * pages, but have not synced all of the
2273 * old dirty pages.
2275 goto out;
2278 pagevec_release(&pvec);
2279 cond_resched();
2281 return 0;
2282 ret_extent_tail:
2283 ret = MPAGE_DA_EXTENT_TAIL;
2284 out:
2285 pagevec_release(&pvec);
2286 cond_resched();
2287 return ret;
2291 static int ext4_da_writepages(struct address_space *mapping,
2292 struct writeback_control *wbc)
2294 pgoff_t index;
2295 int range_whole = 0;
2296 handle_t *handle = NULL;
2297 struct mpage_da_data mpd;
2298 struct inode *inode = mapping->host;
2299 int pages_written = 0;
2300 unsigned int max_pages;
2301 int range_cyclic, cycled = 1, io_done = 0;
2302 int needed_blocks, ret = 0;
2303 long desired_nr_to_write, nr_to_writebump = 0;
2304 loff_t range_start = wbc->range_start;
2305 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2306 pgoff_t done_index = 0;
2307 pgoff_t end;
2308 struct blk_plug plug;
2310 trace_ext4_da_writepages(inode, wbc);
2313 * No pages to write? This is mainly a kludge to avoid starting
2314 * a transaction for special inodes like journal inode on last iput()
2315 * because that could violate lock ordering on umount
2317 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2318 return 0;
2321 * If the filesystem has aborted, it is read-only, so return
2322 * right away instead of dumping stack traces later on that
2323 * will obscure the real source of the problem. We test
2324 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2325 * the latter could be true if the filesystem is mounted
2326 * read-only, and in that case, ext4_da_writepages should
2327 * *never* be called, so if that ever happens, we would want
2328 * the stack trace.
2330 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2331 return -EROFS;
2333 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2334 range_whole = 1;
2336 range_cyclic = wbc->range_cyclic;
2337 if (wbc->range_cyclic) {
2338 index = mapping->writeback_index;
2339 if (index)
2340 cycled = 0;
2341 wbc->range_start = index << PAGE_CACHE_SHIFT;
2342 wbc->range_end = LLONG_MAX;
2343 wbc->range_cyclic = 0;
2344 end = -1;
2345 } else {
2346 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2347 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2351 * This works around two forms of stupidity. The first is in
2352 * the writeback code, which caps the maximum number of pages
2353 * written to be 1024 pages. This is wrong on multiple
2354 * levels; different architectues have a different page size,
2355 * which changes the maximum amount of data which gets
2356 * written. Secondly, 4 megabytes is way too small. XFS
2357 * forces this value to be 16 megabytes by multiplying
2358 * nr_to_write parameter by four, and then relies on its
2359 * allocator to allocate larger extents to make them
2360 * contiguous. Unfortunately this brings us to the second
2361 * stupidity, which is that ext4's mballoc code only allocates
2362 * at most 2048 blocks. So we force contiguous writes up to
2363 * the number of dirty blocks in the inode, or
2364 * sbi->max_writeback_mb_bump whichever is smaller.
2366 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2367 if (!range_cyclic && range_whole) {
2368 if (wbc->nr_to_write == LONG_MAX)
2369 desired_nr_to_write = wbc->nr_to_write;
2370 else
2371 desired_nr_to_write = wbc->nr_to_write * 8;
2372 } else
2373 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2374 max_pages);
2375 if (desired_nr_to_write > max_pages)
2376 desired_nr_to_write = max_pages;
2378 if (wbc->nr_to_write < desired_nr_to_write) {
2379 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2380 wbc->nr_to_write = desired_nr_to_write;
2383 retry:
2384 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2385 tag_pages_for_writeback(mapping, index, end);
2387 blk_start_plug(&plug);
2388 while (!ret && wbc->nr_to_write > 0) {
2391 * we insert one extent at a time. So we need
2392 * credit needed for single extent allocation.
2393 * journalled mode is currently not supported
2394 * by delalloc
2396 BUG_ON(ext4_should_journal_data(inode));
2397 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2399 /* start a new transaction*/
2400 handle = ext4_journal_start(inode, needed_blocks);
2401 if (IS_ERR(handle)) {
2402 ret = PTR_ERR(handle);
2403 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2404 "%ld pages, ino %lu; err %d", __func__,
2405 wbc->nr_to_write, inode->i_ino, ret);
2406 blk_finish_plug(&plug);
2407 goto out_writepages;
2411 * Now call write_cache_pages_da() to find the next
2412 * contiguous region of logical blocks that need
2413 * blocks to be allocated by ext4 and submit them.
2415 ret = write_cache_pages_da(handle, mapping,
2416 wbc, &mpd, &done_index);
2418 * If we have a contiguous extent of pages and we
2419 * haven't done the I/O yet, map the blocks and submit
2420 * them for I/O.
2422 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2423 mpage_da_map_and_submit(&mpd);
2424 ret = MPAGE_DA_EXTENT_TAIL;
2426 trace_ext4_da_write_pages(inode, &mpd);
2427 wbc->nr_to_write -= mpd.pages_written;
2429 ext4_journal_stop(handle);
2431 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2432 /* commit the transaction which would
2433 * free blocks released in the transaction
2434 * and try again
2436 jbd2_journal_force_commit_nested(sbi->s_journal);
2437 ret = 0;
2438 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2440 * Got one extent now try with rest of the pages.
2441 * If mpd.retval is set -EIO, journal is aborted.
2442 * So we don't need to write any more.
2444 pages_written += mpd.pages_written;
2445 ret = mpd.retval;
2446 io_done = 1;
2447 } else if (wbc->nr_to_write)
2449 * There is no more writeout needed
2450 * or we requested for a noblocking writeout
2451 * and we found the device congested
2453 break;
2455 blk_finish_plug(&plug);
2456 if (!io_done && !cycled) {
2457 cycled = 1;
2458 index = 0;
2459 wbc->range_start = index << PAGE_CACHE_SHIFT;
2460 wbc->range_end = mapping->writeback_index - 1;
2461 goto retry;
2464 /* Update index */
2465 wbc->range_cyclic = range_cyclic;
2466 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2468 * set the writeback_index so that range_cyclic
2469 * mode will write it back later
2471 mapping->writeback_index = done_index;
2473 out_writepages:
2474 wbc->nr_to_write -= nr_to_writebump;
2475 wbc->range_start = range_start;
2476 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2477 return ret;
2480 static int ext4_nonda_switch(struct super_block *sb)
2482 s64 free_blocks, dirty_blocks;
2483 struct ext4_sb_info *sbi = EXT4_SB(sb);
2486 * switch to non delalloc mode if we are running low
2487 * on free block. The free block accounting via percpu
2488 * counters can get slightly wrong with percpu_counter_batch getting
2489 * accumulated on each CPU without updating global counters
2490 * Delalloc need an accurate free block accounting. So switch
2491 * to non delalloc when we are near to error range.
2493 free_blocks = EXT4_C2B(sbi,
2494 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2495 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2497 * Start pushing delalloc when 1/2 of free blocks are dirty.
2499 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2500 !writeback_in_progress(sb->s_bdi) &&
2501 down_read_trylock(&sb->s_umount)) {
2502 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2503 up_read(&sb->s_umount);
2506 if (2 * free_blocks < 3 * dirty_blocks ||
2507 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2509 * free block count is less than 150% of dirty blocks
2510 * or free blocks is less than watermark
2512 return 1;
2514 return 0;
2517 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2518 loff_t pos, unsigned len, unsigned flags,
2519 struct page **pagep, void **fsdata)
2521 int ret, retries = 0;
2522 struct page *page;
2523 pgoff_t index;
2524 struct inode *inode = mapping->host;
2525 handle_t *handle;
2527 index = pos >> PAGE_CACHE_SHIFT;
2529 if (ext4_nonda_switch(inode->i_sb)) {
2530 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2531 return ext4_write_begin(file, mapping, pos,
2532 len, flags, pagep, fsdata);
2534 *fsdata = (void *)0;
2535 trace_ext4_da_write_begin(inode, pos, len, flags);
2537 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2538 ret = ext4_da_write_inline_data_begin(mapping, inode,
2539 pos, len, flags,
2540 pagep, fsdata);
2541 if (ret < 0)
2542 goto out;
2543 if (ret == 1) {
2544 ret = 0;
2545 goto out;
2549 retry:
2551 * With delayed allocation, we don't log the i_disksize update
2552 * if there is delayed block allocation. But we still need
2553 * to journalling the i_disksize update if writes to the end
2554 * of file which has an already mapped buffer.
2556 handle = ext4_journal_start(inode, 1);
2557 if (IS_ERR(handle)) {
2558 ret = PTR_ERR(handle);
2559 goto out;
2561 /* We cannot recurse into the filesystem as the transaction is already
2562 * started */
2563 flags |= AOP_FLAG_NOFS;
2565 page = grab_cache_page_write_begin(mapping, index, flags);
2566 if (!page) {
2567 ext4_journal_stop(handle);
2568 ret = -ENOMEM;
2569 goto out;
2571 *pagep = page;
2573 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2574 if (ret < 0) {
2575 unlock_page(page);
2576 ext4_journal_stop(handle);
2577 page_cache_release(page);
2579 * block_write_begin may have instantiated a few blocks
2580 * outside i_size. Trim these off again. Don't need
2581 * i_size_read because we hold i_mutex.
2583 if (pos + len > inode->i_size)
2584 ext4_truncate_failed_write(inode);
2587 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2588 goto retry;
2589 out:
2590 return ret;
2594 * Check if we should update i_disksize
2595 * when write to the end of file but not require block allocation
2597 static int ext4_da_should_update_i_disksize(struct page *page,
2598 unsigned long offset)
2600 struct buffer_head *bh;
2601 struct inode *inode = page->mapping->host;
2602 unsigned int idx;
2603 int i;
2605 bh = page_buffers(page);
2606 idx = offset >> inode->i_blkbits;
2608 for (i = 0; i < idx; i++)
2609 bh = bh->b_this_page;
2611 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2612 return 0;
2613 return 1;
2616 static int ext4_da_write_end(struct file *file,
2617 struct address_space *mapping,
2618 loff_t pos, unsigned len, unsigned copied,
2619 struct page *page, void *fsdata)
2621 struct inode *inode = mapping->host;
2622 int ret = 0, ret2;
2623 handle_t *handle = ext4_journal_current_handle();
2624 loff_t new_i_size;
2625 unsigned long start, end;
2626 int write_mode = (int)(unsigned long)fsdata;
2628 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2629 switch (ext4_inode_journal_mode(inode)) {
2630 case EXT4_INODE_ORDERED_DATA_MODE:
2631 return ext4_ordered_write_end(file, mapping, pos,
2632 len, copied, page, fsdata);
2633 case EXT4_INODE_WRITEBACK_DATA_MODE:
2634 return ext4_writeback_write_end(file, mapping, pos,
2635 len, copied, page, fsdata);
2636 default:
2637 BUG();
2641 trace_ext4_da_write_end(inode, pos, len, copied);
2642 start = pos & (PAGE_CACHE_SIZE - 1);
2643 end = start + copied - 1;
2646 * generic_write_end() will run mark_inode_dirty() if i_size
2647 * changes. So let's piggyback the i_disksize mark_inode_dirty
2648 * into that.
2650 new_i_size = pos + copied;
2651 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2652 if (ext4_has_inline_data(inode) ||
2653 ext4_da_should_update_i_disksize(page, end)) {
2654 down_write(&EXT4_I(inode)->i_data_sem);
2655 if (new_i_size > EXT4_I(inode)->i_disksize)
2656 EXT4_I(inode)->i_disksize = new_i_size;
2657 up_write(&EXT4_I(inode)->i_data_sem);
2658 /* We need to mark inode dirty even if
2659 * new_i_size is less that inode->i_size
2660 * bu greater than i_disksize.(hint delalloc)
2662 ext4_mark_inode_dirty(handle, inode);
2666 if (write_mode != CONVERT_INLINE_DATA &&
2667 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2668 ext4_has_inline_data(inode))
2669 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2670 page);
2671 else
2672 ret2 = generic_write_end(file, mapping, pos, len, copied,
2673 page, fsdata);
2675 copied = ret2;
2676 if (ret2 < 0)
2677 ret = ret2;
2678 ret2 = ext4_journal_stop(handle);
2679 if (!ret)
2680 ret = ret2;
2682 return ret ? ret : copied;
2685 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2688 * Drop reserved blocks
2690 BUG_ON(!PageLocked(page));
2691 if (!page_has_buffers(page))
2692 goto out;
2694 ext4_da_page_release_reservation(page, offset);
2696 out:
2697 ext4_invalidatepage(page, offset);
2699 return;
2703 * Force all delayed allocation blocks to be allocated for a given inode.
2705 int ext4_alloc_da_blocks(struct inode *inode)
2707 trace_ext4_alloc_da_blocks(inode);
2709 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2710 !EXT4_I(inode)->i_reserved_meta_blocks)
2711 return 0;
2714 * We do something simple for now. The filemap_flush() will
2715 * also start triggering a write of the data blocks, which is
2716 * not strictly speaking necessary (and for users of
2717 * laptop_mode, not even desirable). However, to do otherwise
2718 * would require replicating code paths in:
2720 * ext4_da_writepages() ->
2721 * write_cache_pages() ---> (via passed in callback function)
2722 * __mpage_da_writepage() -->
2723 * mpage_add_bh_to_extent()
2724 * mpage_da_map_blocks()
2726 * The problem is that write_cache_pages(), located in
2727 * mm/page-writeback.c, marks pages clean in preparation for
2728 * doing I/O, which is not desirable if we're not planning on
2729 * doing I/O at all.
2731 * We could call write_cache_pages(), and then redirty all of
2732 * the pages by calling redirty_page_for_writepage() but that
2733 * would be ugly in the extreme. So instead we would need to
2734 * replicate parts of the code in the above functions,
2735 * simplifying them because we wouldn't actually intend to
2736 * write out the pages, but rather only collect contiguous
2737 * logical block extents, call the multi-block allocator, and
2738 * then update the buffer heads with the block allocations.
2740 * For now, though, we'll cheat by calling filemap_flush(),
2741 * which will map the blocks, and start the I/O, but not
2742 * actually wait for the I/O to complete.
2744 return filemap_flush(inode->i_mapping);
2748 * bmap() is special. It gets used by applications such as lilo and by
2749 * the swapper to find the on-disk block of a specific piece of data.
2751 * Naturally, this is dangerous if the block concerned is still in the
2752 * journal. If somebody makes a swapfile on an ext4 data-journaling
2753 * filesystem and enables swap, then they may get a nasty shock when the
2754 * data getting swapped to that swapfile suddenly gets overwritten by
2755 * the original zero's written out previously to the journal and
2756 * awaiting writeback in the kernel's buffer cache.
2758 * So, if we see any bmap calls here on a modified, data-journaled file,
2759 * take extra steps to flush any blocks which might be in the cache.
2761 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2763 struct inode *inode = mapping->host;
2764 journal_t *journal;
2765 int err;
2768 * We can get here for an inline file via the FIBMAP ioctl
2770 if (ext4_has_inline_data(inode))
2771 return 0;
2773 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2774 test_opt(inode->i_sb, DELALLOC)) {
2776 * With delalloc we want to sync the file
2777 * so that we can make sure we allocate
2778 * blocks for file
2780 filemap_write_and_wait(mapping);
2783 if (EXT4_JOURNAL(inode) &&
2784 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2786 * This is a REALLY heavyweight approach, but the use of
2787 * bmap on dirty files is expected to be extremely rare:
2788 * only if we run lilo or swapon on a freshly made file
2789 * do we expect this to happen.
2791 * (bmap requires CAP_SYS_RAWIO so this does not
2792 * represent an unprivileged user DOS attack --- we'd be
2793 * in trouble if mortal users could trigger this path at
2794 * will.)
2796 * NB. EXT4_STATE_JDATA is not set on files other than
2797 * regular files. If somebody wants to bmap a directory
2798 * or symlink and gets confused because the buffer
2799 * hasn't yet been flushed to disk, they deserve
2800 * everything they get.
2803 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2804 journal = EXT4_JOURNAL(inode);
2805 jbd2_journal_lock_updates(journal);
2806 err = jbd2_journal_flush(journal);
2807 jbd2_journal_unlock_updates(journal);
2809 if (err)
2810 return 0;
2813 return generic_block_bmap(mapping, block, ext4_get_block);
2816 static int ext4_readpage(struct file *file, struct page *page)
2818 int ret = -EAGAIN;
2819 struct inode *inode = page->mapping->host;
2821 trace_ext4_readpage(page);
2823 if (ext4_has_inline_data(inode))
2824 ret = ext4_readpage_inline(inode, page);
2826 if (ret == -EAGAIN)
2827 return mpage_readpage(page, ext4_get_block);
2829 return ret;
2832 static int
2833 ext4_readpages(struct file *file, struct address_space *mapping,
2834 struct list_head *pages, unsigned nr_pages)
2836 struct inode *inode = mapping->host;
2838 /* If the file has inline data, no need to do readpages. */
2839 if (ext4_has_inline_data(inode))
2840 return 0;
2842 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2845 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2847 trace_ext4_invalidatepage(page, offset);
2849 /* No journalling happens on data buffers when this function is used */
2850 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2852 block_invalidatepage(page, offset);
2855 static int __ext4_journalled_invalidatepage(struct page *page,
2856 unsigned long offset)
2858 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2860 trace_ext4_journalled_invalidatepage(page, offset);
2863 * If it's a full truncate we just forget about the pending dirtying
2865 if (offset == 0)
2866 ClearPageChecked(page);
2868 return jbd2_journal_invalidatepage(journal, page, offset);
2871 /* Wrapper for aops... */
2872 static void ext4_journalled_invalidatepage(struct page *page,
2873 unsigned long offset)
2875 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2878 static int ext4_releasepage(struct page *page, gfp_t wait)
2880 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2882 trace_ext4_releasepage(page);
2884 WARN_ON(PageChecked(page));
2885 if (!page_has_buffers(page))
2886 return 0;
2887 if (journal)
2888 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2889 else
2890 return try_to_free_buffers(page);
2894 * ext4_get_block used when preparing for a DIO write or buffer write.
2895 * We allocate an uinitialized extent if blocks haven't been allocated.
2896 * The extent will be converted to initialized after the IO is complete.
2898 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2899 struct buffer_head *bh_result, int create)
2901 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2902 inode->i_ino, create);
2903 return _ext4_get_block(inode, iblock, bh_result,
2904 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2907 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2908 struct buffer_head *bh_result, int create)
2910 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2911 inode->i_ino, create);
2912 return _ext4_get_block(inode, iblock, bh_result,
2913 EXT4_GET_BLOCKS_NO_LOCK);
2916 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2917 ssize_t size, void *private, int ret,
2918 bool is_async)
2920 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2921 ext4_io_end_t *io_end = iocb->private;
2923 /* if not async direct IO or dio with 0 bytes write, just return */
2924 if (!io_end || !size)
2925 goto out;
2927 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2928 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2929 iocb->private, io_end->inode->i_ino, iocb, offset,
2930 size);
2932 iocb->private = NULL;
2934 /* if not aio dio with unwritten extents, just free io and return */
2935 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2936 ext4_free_io_end(io_end);
2937 out:
2938 if (is_async)
2939 aio_complete(iocb, ret, 0);
2940 inode_dio_done(inode);
2941 return;
2944 io_end->offset = offset;
2945 io_end->size = size;
2946 if (is_async) {
2947 io_end->iocb = iocb;
2948 io_end->result = ret;
2951 ext4_add_complete_io(io_end);
2955 * For ext4 extent files, ext4 will do direct-io write to holes,
2956 * preallocated extents, and those write extend the file, no need to
2957 * fall back to buffered IO.
2959 * For holes, we fallocate those blocks, mark them as uninitialized
2960 * If those blocks were preallocated, we mark sure they are split, but
2961 * still keep the range to write as uninitialized.
2963 * The unwritten extents will be converted to written when DIO is completed.
2964 * For async direct IO, since the IO may still pending when return, we
2965 * set up an end_io call back function, which will do the conversion
2966 * when async direct IO completed.
2968 * If the O_DIRECT write will extend the file then add this inode to the
2969 * orphan list. So recovery will truncate it back to the original size
2970 * if the machine crashes during the write.
2973 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2974 const struct iovec *iov, loff_t offset,
2975 unsigned long nr_segs)
2977 struct file *file = iocb->ki_filp;
2978 struct inode *inode = file->f_mapping->host;
2979 ssize_t ret;
2980 size_t count = iov_length(iov, nr_segs);
2981 int overwrite = 0;
2982 get_block_t *get_block_func = NULL;
2983 int dio_flags = 0;
2984 loff_t final_size = offset + count;
2986 /* Use the old path for reads and writes beyond i_size. */
2987 if (rw != WRITE || final_size > inode->i_size)
2988 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2990 BUG_ON(iocb->private == NULL);
2992 /* If we do a overwrite dio, i_mutex locking can be released */
2993 overwrite = *((int *)iocb->private);
2995 if (overwrite) {
2996 atomic_inc(&inode->i_dio_count);
2997 down_read(&EXT4_I(inode)->i_data_sem);
2998 mutex_unlock(&inode->i_mutex);
3002 * We could direct write to holes and fallocate.
3004 * Allocated blocks to fill the hole are marked as
3005 * uninitialized to prevent parallel buffered read to expose
3006 * the stale data before DIO complete the data IO.
3008 * As to previously fallocated extents, ext4 get_block will
3009 * just simply mark the buffer mapped but still keep the
3010 * extents uninitialized.
3012 * For non AIO case, we will convert those unwritten extents
3013 * to written after return back from blockdev_direct_IO.
3015 * For async DIO, the conversion needs to be deferred when the
3016 * IO is completed. The ext4 end_io callback function will be
3017 * called to take care of the conversion work. Here for async
3018 * case, we allocate an io_end structure to hook to the iocb.
3020 iocb->private = NULL;
3021 ext4_inode_aio_set(inode, NULL);
3022 if (!is_sync_kiocb(iocb)) {
3023 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3024 if (!io_end) {
3025 ret = -ENOMEM;
3026 goto retake_lock;
3028 io_end->flag |= EXT4_IO_END_DIRECT;
3029 iocb->private = io_end;
3031 * we save the io structure for current async direct
3032 * IO, so that later ext4_map_blocks() could flag the
3033 * io structure whether there is a unwritten extents
3034 * needs to be converted when IO is completed.
3036 ext4_inode_aio_set(inode, io_end);
3039 if (overwrite) {
3040 get_block_func = ext4_get_block_write_nolock;
3041 } else {
3042 get_block_func = ext4_get_block_write;
3043 dio_flags = DIO_LOCKING;
3045 ret = __blockdev_direct_IO(rw, iocb, inode,
3046 inode->i_sb->s_bdev, iov,
3047 offset, nr_segs,
3048 get_block_func,
3049 ext4_end_io_dio,
3050 NULL,
3051 dio_flags);
3053 if (iocb->private)
3054 ext4_inode_aio_set(inode, NULL);
3056 * The io_end structure takes a reference to the inode, that
3057 * structure needs to be destroyed and the reference to the
3058 * inode need to be dropped, when IO is complete, even with 0
3059 * byte write, or failed.
3061 * In the successful AIO DIO case, the io_end structure will
3062 * be destroyed and the reference to the inode will be dropped
3063 * after the end_io call back function is called.
3065 * In the case there is 0 byte write, or error case, since VFS
3066 * direct IO won't invoke the end_io call back function, we
3067 * need to free the end_io structure here.
3069 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3070 ext4_free_io_end(iocb->private);
3071 iocb->private = NULL;
3072 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3073 EXT4_STATE_DIO_UNWRITTEN)) {
3074 int err;
3076 * for non AIO case, since the IO is already
3077 * completed, we could do the conversion right here
3079 err = ext4_convert_unwritten_extents(inode,
3080 offset, ret);
3081 if (err < 0)
3082 ret = err;
3083 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3086 retake_lock:
3087 /* take i_mutex locking again if we do a ovewrite dio */
3088 if (overwrite) {
3089 inode_dio_done(inode);
3090 up_read(&EXT4_I(inode)->i_data_sem);
3091 mutex_lock(&inode->i_mutex);
3094 return ret;
3097 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3098 const struct iovec *iov, loff_t offset,
3099 unsigned long nr_segs)
3101 struct file *file = iocb->ki_filp;
3102 struct inode *inode = file->f_mapping->host;
3103 ssize_t ret;
3106 * If we are doing data journalling we don't support O_DIRECT
3108 if (ext4_should_journal_data(inode))
3109 return 0;
3111 /* Let buffer I/O handle the inline data case. */
3112 if (ext4_has_inline_data(inode))
3113 return 0;
3115 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3116 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3117 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3118 else
3119 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3120 trace_ext4_direct_IO_exit(inode, offset,
3121 iov_length(iov, nr_segs), rw, ret);
3122 return ret;
3126 * Pages can be marked dirty completely asynchronously from ext4's journalling
3127 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3128 * much here because ->set_page_dirty is called under VFS locks. The page is
3129 * not necessarily locked.
3131 * We cannot just dirty the page and leave attached buffers clean, because the
3132 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3133 * or jbddirty because all the journalling code will explode.
3135 * So what we do is to mark the page "pending dirty" and next time writepage
3136 * is called, propagate that into the buffers appropriately.
3138 static int ext4_journalled_set_page_dirty(struct page *page)
3140 SetPageChecked(page);
3141 return __set_page_dirty_nobuffers(page);
3144 static const struct address_space_operations ext4_ordered_aops = {
3145 .readpage = ext4_readpage,
3146 .readpages = ext4_readpages,
3147 .writepage = ext4_writepage,
3148 .write_begin = ext4_write_begin,
3149 .write_end = ext4_ordered_write_end,
3150 .bmap = ext4_bmap,
3151 .invalidatepage = ext4_invalidatepage,
3152 .releasepage = ext4_releasepage,
3153 .direct_IO = ext4_direct_IO,
3154 .migratepage = buffer_migrate_page,
3155 .is_partially_uptodate = block_is_partially_uptodate,
3156 .error_remove_page = generic_error_remove_page,
3159 static const struct address_space_operations ext4_writeback_aops = {
3160 .readpage = ext4_readpage,
3161 .readpages = ext4_readpages,
3162 .writepage = ext4_writepage,
3163 .write_begin = ext4_write_begin,
3164 .write_end = ext4_writeback_write_end,
3165 .bmap = ext4_bmap,
3166 .invalidatepage = ext4_invalidatepage,
3167 .releasepage = ext4_releasepage,
3168 .direct_IO = ext4_direct_IO,
3169 .migratepage = buffer_migrate_page,
3170 .is_partially_uptodate = block_is_partially_uptodate,
3171 .error_remove_page = generic_error_remove_page,
3174 static const struct address_space_operations ext4_journalled_aops = {
3175 .readpage = ext4_readpage,
3176 .readpages = ext4_readpages,
3177 .writepage = ext4_writepage,
3178 .write_begin = ext4_write_begin,
3179 .write_end = ext4_journalled_write_end,
3180 .set_page_dirty = ext4_journalled_set_page_dirty,
3181 .bmap = ext4_bmap,
3182 .invalidatepage = ext4_journalled_invalidatepage,
3183 .releasepage = ext4_releasepage,
3184 .direct_IO = ext4_direct_IO,
3185 .is_partially_uptodate = block_is_partially_uptodate,
3186 .error_remove_page = generic_error_remove_page,
3189 static const struct address_space_operations ext4_da_aops = {
3190 .readpage = ext4_readpage,
3191 .readpages = ext4_readpages,
3192 .writepage = ext4_writepage,
3193 .writepages = ext4_da_writepages,
3194 .write_begin = ext4_da_write_begin,
3195 .write_end = ext4_da_write_end,
3196 .bmap = ext4_bmap,
3197 .invalidatepage = ext4_da_invalidatepage,
3198 .releasepage = ext4_releasepage,
3199 .direct_IO = ext4_direct_IO,
3200 .migratepage = buffer_migrate_page,
3201 .is_partially_uptodate = block_is_partially_uptodate,
3202 .error_remove_page = generic_error_remove_page,
3205 void ext4_set_aops(struct inode *inode)
3207 switch (ext4_inode_journal_mode(inode)) {
3208 case EXT4_INODE_ORDERED_DATA_MODE:
3209 if (test_opt(inode->i_sb, DELALLOC))
3210 inode->i_mapping->a_ops = &ext4_da_aops;
3211 else
3212 inode->i_mapping->a_ops = &ext4_ordered_aops;
3213 break;
3214 case EXT4_INODE_WRITEBACK_DATA_MODE:
3215 if (test_opt(inode->i_sb, DELALLOC))
3216 inode->i_mapping->a_ops = &ext4_da_aops;
3217 else
3218 inode->i_mapping->a_ops = &ext4_writeback_aops;
3219 break;
3220 case EXT4_INODE_JOURNAL_DATA_MODE:
3221 inode->i_mapping->a_ops = &ext4_journalled_aops;
3222 break;
3223 default:
3224 BUG();
3230 * ext4_discard_partial_page_buffers()
3231 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3232 * This function finds and locks the page containing the offset
3233 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3234 * Calling functions that already have the page locked should call
3235 * ext4_discard_partial_page_buffers_no_lock directly.
3237 int ext4_discard_partial_page_buffers(handle_t *handle,
3238 struct address_space *mapping, loff_t from,
3239 loff_t length, int flags)
3241 struct inode *inode = mapping->host;
3242 struct page *page;
3243 int err = 0;
3245 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3246 mapping_gfp_mask(mapping) & ~__GFP_FS);
3247 if (!page)
3248 return -ENOMEM;
3250 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3251 from, length, flags);
3253 unlock_page(page);
3254 page_cache_release(page);
3255 return err;
3259 * ext4_discard_partial_page_buffers_no_lock()
3260 * Zeros a page range of length 'length' starting from offset 'from'.
3261 * Buffer heads that correspond to the block aligned regions of the
3262 * zeroed range will be unmapped. Unblock aligned regions
3263 * will have the corresponding buffer head mapped if needed so that
3264 * that region of the page can be updated with the partial zero out.
3266 * This function assumes that the page has already been locked. The
3267 * The range to be discarded must be contained with in the given page.
3268 * If the specified range exceeds the end of the page it will be shortened
3269 * to the end of the page that corresponds to 'from'. This function is
3270 * appropriate for updating a page and it buffer heads to be unmapped and
3271 * zeroed for blocks that have been either released, or are going to be
3272 * released.
3274 * handle: The journal handle
3275 * inode: The files inode
3276 * page: A locked page that contains the offset "from"
3277 * from: The starting byte offset (from the beginning of the file)
3278 * to begin discarding
3279 * len: The length of bytes to discard
3280 * flags: Optional flags that may be used:
3282 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3283 * Only zero the regions of the page whose buffer heads
3284 * have already been unmapped. This flag is appropriate
3285 * for updating the contents of a page whose blocks may
3286 * have already been released, and we only want to zero
3287 * out the regions that correspond to those released blocks.
3289 * Returns zero on success or negative on failure.
3291 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3292 struct inode *inode, struct page *page, loff_t from,
3293 loff_t length, int flags)
3295 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3296 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3297 unsigned int blocksize, max, pos;
3298 ext4_lblk_t iblock;
3299 struct buffer_head *bh;
3300 int err = 0;
3302 blocksize = inode->i_sb->s_blocksize;
3303 max = PAGE_CACHE_SIZE - offset;
3305 if (index != page->index)
3306 return -EINVAL;
3309 * correct length if it does not fall between
3310 * 'from' and the end of the page
3312 if (length > max || length < 0)
3313 length = max;
3315 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3317 if (!page_has_buffers(page))
3318 create_empty_buffers(page, blocksize, 0);
3320 /* Find the buffer that contains "offset" */
3321 bh = page_buffers(page);
3322 pos = blocksize;
3323 while (offset >= pos) {
3324 bh = bh->b_this_page;
3325 iblock++;
3326 pos += blocksize;
3329 pos = offset;
3330 while (pos < offset + length) {
3331 unsigned int end_of_block, range_to_discard;
3333 err = 0;
3335 /* The length of space left to zero and unmap */
3336 range_to_discard = offset + length - pos;
3338 /* The length of space until the end of the block */
3339 end_of_block = blocksize - (pos & (blocksize-1));
3342 * Do not unmap or zero past end of block
3343 * for this buffer head
3345 if (range_to_discard > end_of_block)
3346 range_to_discard = end_of_block;
3350 * Skip this buffer head if we are only zeroing unampped
3351 * regions of the page
3353 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3354 buffer_mapped(bh))
3355 goto next;
3357 /* If the range is block aligned, unmap */
3358 if (range_to_discard == blocksize) {
3359 clear_buffer_dirty(bh);
3360 bh->b_bdev = NULL;
3361 clear_buffer_mapped(bh);
3362 clear_buffer_req(bh);
3363 clear_buffer_new(bh);
3364 clear_buffer_delay(bh);
3365 clear_buffer_unwritten(bh);
3366 clear_buffer_uptodate(bh);
3367 zero_user(page, pos, range_to_discard);
3368 BUFFER_TRACE(bh, "Buffer discarded");
3369 goto next;
3373 * If this block is not completely contained in the range
3374 * to be discarded, then it is not going to be released. Because
3375 * we need to keep this block, we need to make sure this part
3376 * of the page is uptodate before we modify it by writeing
3377 * partial zeros on it.
3379 if (!buffer_mapped(bh)) {
3381 * Buffer head must be mapped before we can read
3382 * from the block
3384 BUFFER_TRACE(bh, "unmapped");
3385 ext4_get_block(inode, iblock, bh, 0);
3386 /* unmapped? It's a hole - nothing to do */
3387 if (!buffer_mapped(bh)) {
3388 BUFFER_TRACE(bh, "still unmapped");
3389 goto next;
3393 /* Ok, it's mapped. Make sure it's up-to-date */
3394 if (PageUptodate(page))
3395 set_buffer_uptodate(bh);
3397 if (!buffer_uptodate(bh)) {
3398 err = -EIO;
3399 ll_rw_block(READ, 1, &bh);
3400 wait_on_buffer(bh);
3401 /* Uhhuh. Read error. Complain and punt.*/
3402 if (!buffer_uptodate(bh))
3403 goto next;
3406 if (ext4_should_journal_data(inode)) {
3407 BUFFER_TRACE(bh, "get write access");
3408 err = ext4_journal_get_write_access(handle, bh);
3409 if (err)
3410 goto next;
3413 zero_user(page, pos, range_to_discard);
3415 err = 0;
3416 if (ext4_should_journal_data(inode)) {
3417 err = ext4_handle_dirty_metadata(handle, inode, bh);
3418 } else
3419 mark_buffer_dirty(bh);
3421 BUFFER_TRACE(bh, "Partial buffer zeroed");
3422 next:
3423 bh = bh->b_this_page;
3424 iblock++;
3425 pos += range_to_discard;
3428 return err;
3431 int ext4_can_truncate(struct inode *inode)
3433 if (S_ISREG(inode->i_mode))
3434 return 1;
3435 if (S_ISDIR(inode->i_mode))
3436 return 1;
3437 if (S_ISLNK(inode->i_mode))
3438 return !ext4_inode_is_fast_symlink(inode);
3439 return 0;
3443 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3444 * associated with the given offset and length
3446 * @inode: File inode
3447 * @offset: The offset where the hole will begin
3448 * @len: The length of the hole
3450 * Returns: 0 on success or negative on failure
3453 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3455 struct inode *inode = file->f_path.dentry->d_inode;
3456 if (!S_ISREG(inode->i_mode))
3457 return -EOPNOTSUPP;
3459 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3460 return ext4_ind_punch_hole(file, offset, length);
3462 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3463 /* TODO: Add support for bigalloc file systems */
3464 return -EOPNOTSUPP;
3467 trace_ext4_punch_hole(inode, offset, length);
3469 return ext4_ext_punch_hole(file, offset, length);
3473 * ext4_truncate()
3475 * We block out ext4_get_block() block instantiations across the entire
3476 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3477 * simultaneously on behalf of the same inode.
3479 * As we work through the truncate and commit bits of it to the journal there
3480 * is one core, guiding principle: the file's tree must always be consistent on
3481 * disk. We must be able to restart the truncate after a crash.
3483 * The file's tree may be transiently inconsistent in memory (although it
3484 * probably isn't), but whenever we close off and commit a journal transaction,
3485 * the contents of (the filesystem + the journal) must be consistent and
3486 * restartable. It's pretty simple, really: bottom up, right to left (although
3487 * left-to-right works OK too).
3489 * Note that at recovery time, journal replay occurs *before* the restart of
3490 * truncate against the orphan inode list.
3492 * The committed inode has the new, desired i_size (which is the same as
3493 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3494 * that this inode's truncate did not complete and it will again call
3495 * ext4_truncate() to have another go. So there will be instantiated blocks
3496 * to the right of the truncation point in a crashed ext4 filesystem. But
3497 * that's fine - as long as they are linked from the inode, the post-crash
3498 * ext4_truncate() run will find them and release them.
3500 void ext4_truncate(struct inode *inode)
3502 trace_ext4_truncate_enter(inode);
3504 if (!ext4_can_truncate(inode))
3505 return;
3507 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3509 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3510 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3512 if (ext4_has_inline_data(inode)) {
3513 int has_inline = 1;
3515 ext4_inline_data_truncate(inode, &has_inline);
3516 if (has_inline)
3517 return;
3520 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3521 ext4_ext_truncate(inode);
3522 else
3523 ext4_ind_truncate(inode);
3525 trace_ext4_truncate_exit(inode);
3529 * ext4_get_inode_loc returns with an extra refcount against the inode's
3530 * underlying buffer_head on success. If 'in_mem' is true, we have all
3531 * data in memory that is needed to recreate the on-disk version of this
3532 * inode.
3534 static int __ext4_get_inode_loc(struct inode *inode,
3535 struct ext4_iloc *iloc, int in_mem)
3537 struct ext4_group_desc *gdp;
3538 struct buffer_head *bh;
3539 struct super_block *sb = inode->i_sb;
3540 ext4_fsblk_t block;
3541 int inodes_per_block, inode_offset;
3543 iloc->bh = NULL;
3544 if (!ext4_valid_inum(sb, inode->i_ino))
3545 return -EIO;
3547 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3548 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3549 if (!gdp)
3550 return -EIO;
3553 * Figure out the offset within the block group inode table
3555 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3556 inode_offset = ((inode->i_ino - 1) %
3557 EXT4_INODES_PER_GROUP(sb));
3558 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3559 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3561 bh = sb_getblk(sb, block);
3562 if (unlikely(!bh))
3563 return -ENOMEM;
3564 if (!buffer_uptodate(bh)) {
3565 lock_buffer(bh);
3568 * If the buffer has the write error flag, we have failed
3569 * to write out another inode in the same block. In this
3570 * case, we don't have to read the block because we may
3571 * read the old inode data successfully.
3573 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3574 set_buffer_uptodate(bh);
3576 if (buffer_uptodate(bh)) {
3577 /* someone brought it uptodate while we waited */
3578 unlock_buffer(bh);
3579 goto has_buffer;
3583 * If we have all information of the inode in memory and this
3584 * is the only valid inode in the block, we need not read the
3585 * block.
3587 if (in_mem) {
3588 struct buffer_head *bitmap_bh;
3589 int i, start;
3591 start = inode_offset & ~(inodes_per_block - 1);
3593 /* Is the inode bitmap in cache? */
3594 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3595 if (unlikely(!bitmap_bh))
3596 goto make_io;
3599 * If the inode bitmap isn't in cache then the
3600 * optimisation may end up performing two reads instead
3601 * of one, so skip it.
3603 if (!buffer_uptodate(bitmap_bh)) {
3604 brelse(bitmap_bh);
3605 goto make_io;
3607 for (i = start; i < start + inodes_per_block; i++) {
3608 if (i == inode_offset)
3609 continue;
3610 if (ext4_test_bit(i, bitmap_bh->b_data))
3611 break;
3613 brelse(bitmap_bh);
3614 if (i == start + inodes_per_block) {
3615 /* all other inodes are free, so skip I/O */
3616 memset(bh->b_data, 0, bh->b_size);
3617 set_buffer_uptodate(bh);
3618 unlock_buffer(bh);
3619 goto has_buffer;
3623 make_io:
3625 * If we need to do any I/O, try to pre-readahead extra
3626 * blocks from the inode table.
3628 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3629 ext4_fsblk_t b, end, table;
3630 unsigned num;
3632 table = ext4_inode_table(sb, gdp);
3633 /* s_inode_readahead_blks is always a power of 2 */
3634 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3635 if (table > b)
3636 b = table;
3637 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3638 num = EXT4_INODES_PER_GROUP(sb);
3639 if (ext4_has_group_desc_csum(sb))
3640 num -= ext4_itable_unused_count(sb, gdp);
3641 table += num / inodes_per_block;
3642 if (end > table)
3643 end = table;
3644 while (b <= end)
3645 sb_breadahead(sb, b++);
3649 * There are other valid inodes in the buffer, this inode
3650 * has in-inode xattrs, or we don't have this inode in memory.
3651 * Read the block from disk.
3653 trace_ext4_load_inode(inode);
3654 get_bh(bh);
3655 bh->b_end_io = end_buffer_read_sync;
3656 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3657 wait_on_buffer(bh);
3658 if (!buffer_uptodate(bh)) {
3659 EXT4_ERROR_INODE_BLOCK(inode, block,
3660 "unable to read itable block");
3661 brelse(bh);
3662 return -EIO;
3665 has_buffer:
3666 iloc->bh = bh;
3667 return 0;
3670 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3672 /* We have all inode data except xattrs in memory here. */
3673 return __ext4_get_inode_loc(inode, iloc,
3674 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3677 void ext4_set_inode_flags(struct inode *inode)
3679 unsigned int flags = EXT4_I(inode)->i_flags;
3681 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3682 if (flags & EXT4_SYNC_FL)
3683 inode->i_flags |= S_SYNC;
3684 if (flags & EXT4_APPEND_FL)
3685 inode->i_flags |= S_APPEND;
3686 if (flags & EXT4_IMMUTABLE_FL)
3687 inode->i_flags |= S_IMMUTABLE;
3688 if (flags & EXT4_NOATIME_FL)
3689 inode->i_flags |= S_NOATIME;
3690 if (flags & EXT4_DIRSYNC_FL)
3691 inode->i_flags |= S_DIRSYNC;
3694 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3695 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3697 unsigned int vfs_fl;
3698 unsigned long old_fl, new_fl;
3700 do {
3701 vfs_fl = ei->vfs_inode.i_flags;
3702 old_fl = ei->i_flags;
3703 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3704 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3705 EXT4_DIRSYNC_FL);
3706 if (vfs_fl & S_SYNC)
3707 new_fl |= EXT4_SYNC_FL;
3708 if (vfs_fl & S_APPEND)
3709 new_fl |= EXT4_APPEND_FL;
3710 if (vfs_fl & S_IMMUTABLE)
3711 new_fl |= EXT4_IMMUTABLE_FL;
3712 if (vfs_fl & S_NOATIME)
3713 new_fl |= EXT4_NOATIME_FL;
3714 if (vfs_fl & S_DIRSYNC)
3715 new_fl |= EXT4_DIRSYNC_FL;
3716 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3719 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3720 struct ext4_inode_info *ei)
3722 blkcnt_t i_blocks ;
3723 struct inode *inode = &(ei->vfs_inode);
3724 struct super_block *sb = inode->i_sb;
3726 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3727 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3728 /* we are using combined 48 bit field */
3729 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3730 le32_to_cpu(raw_inode->i_blocks_lo);
3731 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3732 /* i_blocks represent file system block size */
3733 return i_blocks << (inode->i_blkbits - 9);
3734 } else {
3735 return i_blocks;
3737 } else {
3738 return le32_to_cpu(raw_inode->i_blocks_lo);
3742 static inline void ext4_iget_extra_inode(struct inode *inode,
3743 struct ext4_inode *raw_inode,
3744 struct ext4_inode_info *ei)
3746 __le32 *magic = (void *)raw_inode +
3747 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3748 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3749 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3750 ext4_find_inline_data_nolock(inode);
3751 } else
3752 EXT4_I(inode)->i_inline_off = 0;
3755 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3757 struct ext4_iloc iloc;
3758 struct ext4_inode *raw_inode;
3759 struct ext4_inode_info *ei;
3760 struct inode *inode;
3761 journal_t *journal = EXT4_SB(sb)->s_journal;
3762 long ret;
3763 int block;
3764 uid_t i_uid;
3765 gid_t i_gid;
3767 inode = iget_locked(sb, ino);
3768 if (!inode)
3769 return ERR_PTR(-ENOMEM);
3770 if (!(inode->i_state & I_NEW))
3771 return inode;
3773 ei = EXT4_I(inode);
3774 iloc.bh = NULL;
3776 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3777 if (ret < 0)
3778 goto bad_inode;
3779 raw_inode = ext4_raw_inode(&iloc);
3781 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3782 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3783 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3784 EXT4_INODE_SIZE(inode->i_sb)) {
3785 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3786 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3787 EXT4_INODE_SIZE(inode->i_sb));
3788 ret = -EIO;
3789 goto bad_inode;
3791 } else
3792 ei->i_extra_isize = 0;
3794 /* Precompute checksum seed for inode metadata */
3795 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3796 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3797 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3798 __u32 csum;
3799 __le32 inum = cpu_to_le32(inode->i_ino);
3800 __le32 gen = raw_inode->i_generation;
3801 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3802 sizeof(inum));
3803 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3804 sizeof(gen));
3807 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3808 EXT4_ERROR_INODE(inode, "checksum invalid");
3809 ret = -EIO;
3810 goto bad_inode;
3813 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3814 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3815 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3816 if (!(test_opt(inode->i_sb, NO_UID32))) {
3817 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3818 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3820 i_uid_write(inode, i_uid);
3821 i_gid_write(inode, i_gid);
3822 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3824 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3825 ei->i_inline_off = 0;
3826 ei->i_dir_start_lookup = 0;
3827 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3828 /* We now have enough fields to check if the inode was active or not.
3829 * This is needed because nfsd might try to access dead inodes
3830 * the test is that same one that e2fsck uses
3831 * NeilBrown 1999oct15
3833 if (inode->i_nlink == 0) {
3834 if (inode->i_mode == 0 ||
3835 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3836 /* this inode is deleted */
3837 ret = -ESTALE;
3838 goto bad_inode;
3840 /* The only unlinked inodes we let through here have
3841 * valid i_mode and are being read by the orphan
3842 * recovery code: that's fine, we're about to complete
3843 * the process of deleting those. */
3845 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3846 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3847 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3848 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3849 ei->i_file_acl |=
3850 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3851 inode->i_size = ext4_isize(raw_inode);
3852 ei->i_disksize = inode->i_size;
3853 #ifdef CONFIG_QUOTA
3854 ei->i_reserved_quota = 0;
3855 #endif
3856 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3857 ei->i_block_group = iloc.block_group;
3858 ei->i_last_alloc_group = ~0;
3860 * NOTE! The in-memory inode i_data array is in little-endian order
3861 * even on big-endian machines: we do NOT byteswap the block numbers!
3863 for (block = 0; block < EXT4_N_BLOCKS; block++)
3864 ei->i_data[block] = raw_inode->i_block[block];
3865 INIT_LIST_HEAD(&ei->i_orphan);
3868 * Set transaction id's of transactions that have to be committed
3869 * to finish f[data]sync. We set them to currently running transaction
3870 * as we cannot be sure that the inode or some of its metadata isn't
3871 * part of the transaction - the inode could have been reclaimed and
3872 * now it is reread from disk.
3874 if (journal) {
3875 transaction_t *transaction;
3876 tid_t tid;
3878 read_lock(&journal->j_state_lock);
3879 if (journal->j_running_transaction)
3880 transaction = journal->j_running_transaction;
3881 else
3882 transaction = journal->j_committing_transaction;
3883 if (transaction)
3884 tid = transaction->t_tid;
3885 else
3886 tid = journal->j_commit_sequence;
3887 read_unlock(&journal->j_state_lock);
3888 ei->i_sync_tid = tid;
3889 ei->i_datasync_tid = tid;
3892 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3893 if (ei->i_extra_isize == 0) {
3894 /* The extra space is currently unused. Use it. */
3895 ei->i_extra_isize = sizeof(struct ext4_inode) -
3896 EXT4_GOOD_OLD_INODE_SIZE;
3897 } else {
3898 ext4_iget_extra_inode(inode, raw_inode, ei);
3902 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3903 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3904 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3905 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3907 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3908 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3909 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3910 inode->i_version |=
3911 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3914 ret = 0;
3915 if (ei->i_file_acl &&
3916 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3917 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3918 ei->i_file_acl);
3919 ret = -EIO;
3920 goto bad_inode;
3921 } else if (!ext4_has_inline_data(inode)) {
3922 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3923 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3924 (S_ISLNK(inode->i_mode) &&
3925 !ext4_inode_is_fast_symlink(inode))))
3926 /* Validate extent which is part of inode */
3927 ret = ext4_ext_check_inode(inode);
3928 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3929 (S_ISLNK(inode->i_mode) &&
3930 !ext4_inode_is_fast_symlink(inode))) {
3931 /* Validate block references which are part of inode */
3932 ret = ext4_ind_check_inode(inode);
3935 if (ret)
3936 goto bad_inode;
3938 if (S_ISREG(inode->i_mode)) {
3939 inode->i_op = &ext4_file_inode_operations;
3940 inode->i_fop = &ext4_file_operations;
3941 ext4_set_aops(inode);
3942 } else if (S_ISDIR(inode->i_mode)) {
3943 inode->i_op = &ext4_dir_inode_operations;
3944 inode->i_fop = &ext4_dir_operations;
3945 } else if (S_ISLNK(inode->i_mode)) {
3946 if (ext4_inode_is_fast_symlink(inode)) {
3947 inode->i_op = &ext4_fast_symlink_inode_operations;
3948 nd_terminate_link(ei->i_data, inode->i_size,
3949 sizeof(ei->i_data) - 1);
3950 } else {
3951 inode->i_op = &ext4_symlink_inode_operations;
3952 ext4_set_aops(inode);
3954 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3955 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3956 inode->i_op = &ext4_special_inode_operations;
3957 if (raw_inode->i_block[0])
3958 init_special_inode(inode, inode->i_mode,
3959 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3960 else
3961 init_special_inode(inode, inode->i_mode,
3962 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3963 } else {
3964 ret = -EIO;
3965 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3966 goto bad_inode;
3968 brelse(iloc.bh);
3969 ext4_set_inode_flags(inode);
3970 unlock_new_inode(inode);
3971 return inode;
3973 bad_inode:
3974 brelse(iloc.bh);
3975 iget_failed(inode);
3976 return ERR_PTR(ret);
3979 static int ext4_inode_blocks_set(handle_t *handle,
3980 struct ext4_inode *raw_inode,
3981 struct ext4_inode_info *ei)
3983 struct inode *inode = &(ei->vfs_inode);
3984 u64 i_blocks = inode->i_blocks;
3985 struct super_block *sb = inode->i_sb;
3987 if (i_blocks <= ~0U) {
3989 * i_blocks can be represented in a 32 bit variable
3990 * as multiple of 512 bytes
3992 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3993 raw_inode->i_blocks_high = 0;
3994 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3995 return 0;
3997 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3998 return -EFBIG;
4000 if (i_blocks <= 0xffffffffffffULL) {
4002 * i_blocks can be represented in a 48 bit variable
4003 * as multiple of 512 bytes
4005 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4006 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4007 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4008 } else {
4009 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4010 /* i_block is stored in file system block size */
4011 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4012 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4013 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4015 return 0;
4019 * Post the struct inode info into an on-disk inode location in the
4020 * buffer-cache. This gobbles the caller's reference to the
4021 * buffer_head in the inode location struct.
4023 * The caller must have write access to iloc->bh.
4025 static int ext4_do_update_inode(handle_t *handle,
4026 struct inode *inode,
4027 struct ext4_iloc *iloc)
4029 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4030 struct ext4_inode_info *ei = EXT4_I(inode);
4031 struct buffer_head *bh = iloc->bh;
4032 int err = 0, rc, block;
4033 int need_datasync = 0;
4034 uid_t i_uid;
4035 gid_t i_gid;
4037 /* For fields not not tracking in the in-memory inode,
4038 * initialise them to zero for new inodes. */
4039 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4040 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4042 ext4_get_inode_flags(ei);
4043 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4044 i_uid = i_uid_read(inode);
4045 i_gid = i_gid_read(inode);
4046 if (!(test_opt(inode->i_sb, NO_UID32))) {
4047 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4048 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4050 * Fix up interoperability with old kernels. Otherwise, old inodes get
4051 * re-used with the upper 16 bits of the uid/gid intact
4053 if (!ei->i_dtime) {
4054 raw_inode->i_uid_high =
4055 cpu_to_le16(high_16_bits(i_uid));
4056 raw_inode->i_gid_high =
4057 cpu_to_le16(high_16_bits(i_gid));
4058 } else {
4059 raw_inode->i_uid_high = 0;
4060 raw_inode->i_gid_high = 0;
4062 } else {
4063 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4064 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4065 raw_inode->i_uid_high = 0;
4066 raw_inode->i_gid_high = 0;
4068 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4070 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4071 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4072 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4073 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4075 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4076 goto out_brelse;
4077 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4078 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4079 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4080 cpu_to_le32(EXT4_OS_HURD))
4081 raw_inode->i_file_acl_high =
4082 cpu_to_le16(ei->i_file_acl >> 32);
4083 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4084 if (ei->i_disksize != ext4_isize(raw_inode)) {
4085 ext4_isize_set(raw_inode, ei->i_disksize);
4086 need_datasync = 1;
4088 if (ei->i_disksize > 0x7fffffffULL) {
4089 struct super_block *sb = inode->i_sb;
4090 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4091 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4092 EXT4_SB(sb)->s_es->s_rev_level ==
4093 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4094 /* If this is the first large file
4095 * created, add a flag to the superblock.
4097 err = ext4_journal_get_write_access(handle,
4098 EXT4_SB(sb)->s_sbh);
4099 if (err)
4100 goto out_brelse;
4101 ext4_update_dynamic_rev(sb);
4102 EXT4_SET_RO_COMPAT_FEATURE(sb,
4103 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4104 ext4_handle_sync(handle);
4105 err = ext4_handle_dirty_super(handle, sb);
4108 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4109 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4110 if (old_valid_dev(inode->i_rdev)) {
4111 raw_inode->i_block[0] =
4112 cpu_to_le32(old_encode_dev(inode->i_rdev));
4113 raw_inode->i_block[1] = 0;
4114 } else {
4115 raw_inode->i_block[0] = 0;
4116 raw_inode->i_block[1] =
4117 cpu_to_le32(new_encode_dev(inode->i_rdev));
4118 raw_inode->i_block[2] = 0;
4120 } else if (!ext4_has_inline_data(inode)) {
4121 for (block = 0; block < EXT4_N_BLOCKS; block++)
4122 raw_inode->i_block[block] = ei->i_data[block];
4125 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4126 if (ei->i_extra_isize) {
4127 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4128 raw_inode->i_version_hi =
4129 cpu_to_le32(inode->i_version >> 32);
4130 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4133 ext4_inode_csum_set(inode, raw_inode, ei);
4135 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4136 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4137 if (!err)
4138 err = rc;
4139 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4141 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4142 out_brelse:
4143 brelse(bh);
4144 ext4_std_error(inode->i_sb, err);
4145 return err;
4149 * ext4_write_inode()
4151 * We are called from a few places:
4153 * - Within generic_file_write() for O_SYNC files.
4154 * Here, there will be no transaction running. We wait for any running
4155 * transaction to commit.
4157 * - Within sys_sync(), kupdate and such.
4158 * We wait on commit, if tol to.
4160 * - Within prune_icache() (PF_MEMALLOC == true)
4161 * Here we simply return. We can't afford to block kswapd on the
4162 * journal commit.
4164 * In all cases it is actually safe for us to return without doing anything,
4165 * because the inode has been copied into a raw inode buffer in
4166 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4167 * knfsd.
4169 * Note that we are absolutely dependent upon all inode dirtiers doing the
4170 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4171 * which we are interested.
4173 * It would be a bug for them to not do this. The code:
4175 * mark_inode_dirty(inode)
4176 * stuff();
4177 * inode->i_size = expr;
4179 * is in error because a kswapd-driven write_inode() could occur while
4180 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4181 * will no longer be on the superblock's dirty inode list.
4183 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4185 int err;
4187 if (current->flags & PF_MEMALLOC)
4188 return 0;
4190 if (EXT4_SB(inode->i_sb)->s_journal) {
4191 if (ext4_journal_current_handle()) {
4192 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4193 dump_stack();
4194 return -EIO;
4197 if (wbc->sync_mode != WB_SYNC_ALL)
4198 return 0;
4200 err = ext4_force_commit(inode->i_sb);
4201 } else {
4202 struct ext4_iloc iloc;
4204 err = __ext4_get_inode_loc(inode, &iloc, 0);
4205 if (err)
4206 return err;
4207 if (wbc->sync_mode == WB_SYNC_ALL)
4208 sync_dirty_buffer(iloc.bh);
4209 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4210 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4211 "IO error syncing inode");
4212 err = -EIO;
4214 brelse(iloc.bh);
4216 return err;
4220 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4221 * buffers that are attached to a page stradding i_size and are undergoing
4222 * commit. In that case we have to wait for commit to finish and try again.
4224 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4226 struct page *page;
4227 unsigned offset;
4228 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4229 tid_t commit_tid = 0;
4230 int ret;
4232 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4234 * All buffers in the last page remain valid? Then there's nothing to
4235 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4236 * blocksize case
4238 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4239 return;
4240 while (1) {
4241 page = find_lock_page(inode->i_mapping,
4242 inode->i_size >> PAGE_CACHE_SHIFT);
4243 if (!page)
4244 return;
4245 ret = __ext4_journalled_invalidatepage(page, offset);
4246 unlock_page(page);
4247 page_cache_release(page);
4248 if (ret != -EBUSY)
4249 return;
4250 commit_tid = 0;
4251 read_lock(&journal->j_state_lock);
4252 if (journal->j_committing_transaction)
4253 commit_tid = journal->j_committing_transaction->t_tid;
4254 read_unlock(&journal->j_state_lock);
4255 if (commit_tid)
4256 jbd2_log_wait_commit(journal, commit_tid);
4261 * ext4_setattr()
4263 * Called from notify_change.
4265 * We want to trap VFS attempts to truncate the file as soon as
4266 * possible. In particular, we want to make sure that when the VFS
4267 * shrinks i_size, we put the inode on the orphan list and modify
4268 * i_disksize immediately, so that during the subsequent flushing of
4269 * dirty pages and freeing of disk blocks, we can guarantee that any
4270 * commit will leave the blocks being flushed in an unused state on
4271 * disk. (On recovery, the inode will get truncated and the blocks will
4272 * be freed, so we have a strong guarantee that no future commit will
4273 * leave these blocks visible to the user.)
4275 * Another thing we have to assure is that if we are in ordered mode
4276 * and inode is still attached to the committing transaction, we must
4277 * we start writeout of all the dirty pages which are being truncated.
4278 * This way we are sure that all the data written in the previous
4279 * transaction are already on disk (truncate waits for pages under
4280 * writeback).
4282 * Called with inode->i_mutex down.
4284 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4286 struct inode *inode = dentry->d_inode;
4287 int error, rc = 0;
4288 int orphan = 0;
4289 const unsigned int ia_valid = attr->ia_valid;
4291 error = inode_change_ok(inode, attr);
4292 if (error)
4293 return error;
4295 if (is_quota_modification(inode, attr))
4296 dquot_initialize(inode);
4297 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4298 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4299 handle_t *handle;
4301 /* (user+group)*(old+new) structure, inode write (sb,
4302 * inode block, ? - but truncate inode update has it) */
4303 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4304 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4305 if (IS_ERR(handle)) {
4306 error = PTR_ERR(handle);
4307 goto err_out;
4309 error = dquot_transfer(inode, attr);
4310 if (error) {
4311 ext4_journal_stop(handle);
4312 return error;
4314 /* Update corresponding info in inode so that everything is in
4315 * one transaction */
4316 if (attr->ia_valid & ATTR_UID)
4317 inode->i_uid = attr->ia_uid;
4318 if (attr->ia_valid & ATTR_GID)
4319 inode->i_gid = attr->ia_gid;
4320 error = ext4_mark_inode_dirty(handle, inode);
4321 ext4_journal_stop(handle);
4324 if (attr->ia_valid & ATTR_SIZE) {
4326 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4327 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4329 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4330 return -EFBIG;
4334 if (S_ISREG(inode->i_mode) &&
4335 attr->ia_valid & ATTR_SIZE &&
4336 (attr->ia_size < inode->i_size)) {
4337 handle_t *handle;
4339 handle = ext4_journal_start(inode, 3);
4340 if (IS_ERR(handle)) {
4341 error = PTR_ERR(handle);
4342 goto err_out;
4344 if (ext4_handle_valid(handle)) {
4345 error = ext4_orphan_add(handle, inode);
4346 orphan = 1;
4348 EXT4_I(inode)->i_disksize = attr->ia_size;
4349 rc = ext4_mark_inode_dirty(handle, inode);
4350 if (!error)
4351 error = rc;
4352 ext4_journal_stop(handle);
4354 if (ext4_should_order_data(inode)) {
4355 error = ext4_begin_ordered_truncate(inode,
4356 attr->ia_size);
4357 if (error) {
4358 /* Do as much error cleanup as possible */
4359 handle = ext4_journal_start(inode, 3);
4360 if (IS_ERR(handle)) {
4361 ext4_orphan_del(NULL, inode);
4362 goto err_out;
4364 ext4_orphan_del(handle, inode);
4365 orphan = 0;
4366 ext4_journal_stop(handle);
4367 goto err_out;
4372 if (attr->ia_valid & ATTR_SIZE) {
4373 if (attr->ia_size != inode->i_size) {
4374 loff_t oldsize = inode->i_size;
4376 i_size_write(inode, attr->ia_size);
4378 * Blocks are going to be removed from the inode. Wait
4379 * for dio in flight. Temporarily disable
4380 * dioread_nolock to prevent livelock.
4382 if (orphan) {
4383 if (!ext4_should_journal_data(inode)) {
4384 ext4_inode_block_unlocked_dio(inode);
4385 inode_dio_wait(inode);
4386 ext4_inode_resume_unlocked_dio(inode);
4387 } else
4388 ext4_wait_for_tail_page_commit(inode);
4391 * Truncate pagecache after we've waited for commit
4392 * in data=journal mode to make pages freeable.
4394 truncate_pagecache(inode, oldsize, inode->i_size);
4396 ext4_truncate(inode);
4399 if (!rc) {
4400 setattr_copy(inode, attr);
4401 mark_inode_dirty(inode);
4405 * If the call to ext4_truncate failed to get a transaction handle at
4406 * all, we need to clean up the in-core orphan list manually.
4408 if (orphan && inode->i_nlink)
4409 ext4_orphan_del(NULL, inode);
4411 if (!rc && (ia_valid & ATTR_MODE))
4412 rc = ext4_acl_chmod(inode);
4414 err_out:
4415 ext4_std_error(inode->i_sb, error);
4416 if (!error)
4417 error = rc;
4418 return error;
4421 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4422 struct kstat *stat)
4424 struct inode *inode;
4425 unsigned long delalloc_blocks;
4427 inode = dentry->d_inode;
4428 generic_fillattr(inode, stat);
4431 * We can't update i_blocks if the block allocation is delayed
4432 * otherwise in the case of system crash before the real block
4433 * allocation is done, we will have i_blocks inconsistent with
4434 * on-disk file blocks.
4435 * We always keep i_blocks updated together with real
4436 * allocation. But to not confuse with user, stat
4437 * will return the blocks that include the delayed allocation
4438 * blocks for this file.
4440 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4441 EXT4_I(inode)->i_reserved_data_blocks);
4443 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4444 return 0;
4447 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4449 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4450 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4451 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4455 * Account for index blocks, block groups bitmaps and block group
4456 * descriptor blocks if modify datablocks and index blocks
4457 * worse case, the indexs blocks spread over different block groups
4459 * If datablocks are discontiguous, they are possible to spread over
4460 * different block groups too. If they are contiguous, with flexbg,
4461 * they could still across block group boundary.
4463 * Also account for superblock, inode, quota and xattr blocks
4465 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4467 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4468 int gdpblocks;
4469 int idxblocks;
4470 int ret = 0;
4473 * How many index blocks need to touch to modify nrblocks?
4474 * The "Chunk" flag indicating whether the nrblocks is
4475 * physically contiguous on disk
4477 * For Direct IO and fallocate, they calls get_block to allocate
4478 * one single extent at a time, so they could set the "Chunk" flag
4480 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4482 ret = idxblocks;
4485 * Now let's see how many group bitmaps and group descriptors need
4486 * to account
4488 groups = idxblocks;
4489 if (chunk)
4490 groups += 1;
4491 else
4492 groups += nrblocks;
4494 gdpblocks = groups;
4495 if (groups > ngroups)
4496 groups = ngroups;
4497 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4498 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4500 /* bitmaps and block group descriptor blocks */
4501 ret += groups + gdpblocks;
4503 /* Blocks for super block, inode, quota and xattr blocks */
4504 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4506 return ret;
4510 * Calculate the total number of credits to reserve to fit
4511 * the modification of a single pages into a single transaction,
4512 * which may include multiple chunks of block allocations.
4514 * This could be called via ext4_write_begin()
4516 * We need to consider the worse case, when
4517 * one new block per extent.
4519 int ext4_writepage_trans_blocks(struct inode *inode)
4521 int bpp = ext4_journal_blocks_per_page(inode);
4522 int ret;
4524 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4526 /* Account for data blocks for journalled mode */
4527 if (ext4_should_journal_data(inode))
4528 ret += bpp;
4529 return ret;
4533 * Calculate the journal credits for a chunk of data modification.
4535 * This is called from DIO, fallocate or whoever calling
4536 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4538 * journal buffers for data blocks are not included here, as DIO
4539 * and fallocate do no need to journal data buffers.
4541 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4543 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4547 * The caller must have previously called ext4_reserve_inode_write().
4548 * Give this, we know that the caller already has write access to iloc->bh.
4550 int ext4_mark_iloc_dirty(handle_t *handle,
4551 struct inode *inode, struct ext4_iloc *iloc)
4553 int err = 0;
4555 if (IS_I_VERSION(inode))
4556 inode_inc_iversion(inode);
4558 /* the do_update_inode consumes one bh->b_count */
4559 get_bh(iloc->bh);
4561 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4562 err = ext4_do_update_inode(handle, inode, iloc);
4563 put_bh(iloc->bh);
4564 return err;
4568 * On success, We end up with an outstanding reference count against
4569 * iloc->bh. This _must_ be cleaned up later.
4573 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4574 struct ext4_iloc *iloc)
4576 int err;
4578 err = ext4_get_inode_loc(inode, iloc);
4579 if (!err) {
4580 BUFFER_TRACE(iloc->bh, "get_write_access");
4581 err = ext4_journal_get_write_access(handle, iloc->bh);
4582 if (err) {
4583 brelse(iloc->bh);
4584 iloc->bh = NULL;
4587 ext4_std_error(inode->i_sb, err);
4588 return err;
4592 * Expand an inode by new_extra_isize bytes.
4593 * Returns 0 on success or negative error number on failure.
4595 static int ext4_expand_extra_isize(struct inode *inode,
4596 unsigned int new_extra_isize,
4597 struct ext4_iloc iloc,
4598 handle_t *handle)
4600 struct ext4_inode *raw_inode;
4601 struct ext4_xattr_ibody_header *header;
4603 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4604 return 0;
4606 raw_inode = ext4_raw_inode(&iloc);
4608 header = IHDR(inode, raw_inode);
4610 /* No extended attributes present */
4611 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4612 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4613 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4614 new_extra_isize);
4615 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4616 return 0;
4619 /* try to expand with EAs present */
4620 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4621 raw_inode, handle);
4625 * What we do here is to mark the in-core inode as clean with respect to inode
4626 * dirtiness (it may still be data-dirty).
4627 * This means that the in-core inode may be reaped by prune_icache
4628 * without having to perform any I/O. This is a very good thing,
4629 * because *any* task may call prune_icache - even ones which
4630 * have a transaction open against a different journal.
4632 * Is this cheating? Not really. Sure, we haven't written the
4633 * inode out, but prune_icache isn't a user-visible syncing function.
4634 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4635 * we start and wait on commits.
4637 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4639 struct ext4_iloc iloc;
4640 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4641 static unsigned int mnt_count;
4642 int err, ret;
4644 might_sleep();
4645 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4646 err = ext4_reserve_inode_write(handle, inode, &iloc);
4647 if (ext4_handle_valid(handle) &&
4648 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4649 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4651 * We need extra buffer credits since we may write into EA block
4652 * with this same handle. If journal_extend fails, then it will
4653 * only result in a minor loss of functionality for that inode.
4654 * If this is felt to be critical, then e2fsck should be run to
4655 * force a large enough s_min_extra_isize.
4657 if ((jbd2_journal_extend(handle,
4658 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4659 ret = ext4_expand_extra_isize(inode,
4660 sbi->s_want_extra_isize,
4661 iloc, handle);
4662 if (ret) {
4663 ext4_set_inode_state(inode,
4664 EXT4_STATE_NO_EXPAND);
4665 if (mnt_count !=
4666 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4667 ext4_warning(inode->i_sb,
4668 "Unable to expand inode %lu. Delete"
4669 " some EAs or run e2fsck.",
4670 inode->i_ino);
4671 mnt_count =
4672 le16_to_cpu(sbi->s_es->s_mnt_count);
4677 if (!err)
4678 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4679 return err;
4683 * ext4_dirty_inode() is called from __mark_inode_dirty()
4685 * We're really interested in the case where a file is being extended.
4686 * i_size has been changed by generic_commit_write() and we thus need
4687 * to include the updated inode in the current transaction.
4689 * Also, dquot_alloc_block() will always dirty the inode when blocks
4690 * are allocated to the file.
4692 * If the inode is marked synchronous, we don't honour that here - doing
4693 * so would cause a commit on atime updates, which we don't bother doing.
4694 * We handle synchronous inodes at the highest possible level.
4696 void ext4_dirty_inode(struct inode *inode, int flags)
4698 handle_t *handle;
4700 handle = ext4_journal_start(inode, 2);
4701 if (IS_ERR(handle))
4702 goto out;
4704 ext4_mark_inode_dirty(handle, inode);
4706 ext4_journal_stop(handle);
4707 out:
4708 return;
4711 #if 0
4713 * Bind an inode's backing buffer_head into this transaction, to prevent
4714 * it from being flushed to disk early. Unlike
4715 * ext4_reserve_inode_write, this leaves behind no bh reference and
4716 * returns no iloc structure, so the caller needs to repeat the iloc
4717 * lookup to mark the inode dirty later.
4719 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4721 struct ext4_iloc iloc;
4723 int err = 0;
4724 if (handle) {
4725 err = ext4_get_inode_loc(inode, &iloc);
4726 if (!err) {
4727 BUFFER_TRACE(iloc.bh, "get_write_access");
4728 err = jbd2_journal_get_write_access(handle, iloc.bh);
4729 if (!err)
4730 err = ext4_handle_dirty_metadata(handle,
4731 NULL,
4732 iloc.bh);
4733 brelse(iloc.bh);
4736 ext4_std_error(inode->i_sb, err);
4737 return err;
4739 #endif
4741 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4743 journal_t *journal;
4744 handle_t *handle;
4745 int err;
4748 * We have to be very careful here: changing a data block's
4749 * journaling status dynamically is dangerous. If we write a
4750 * data block to the journal, change the status and then delete
4751 * that block, we risk forgetting to revoke the old log record
4752 * from the journal and so a subsequent replay can corrupt data.
4753 * So, first we make sure that the journal is empty and that
4754 * nobody is changing anything.
4757 journal = EXT4_JOURNAL(inode);
4758 if (!journal)
4759 return 0;
4760 if (is_journal_aborted(journal))
4761 return -EROFS;
4762 /* We have to allocate physical blocks for delalloc blocks
4763 * before flushing journal. otherwise delalloc blocks can not
4764 * be allocated any more. even more truncate on delalloc blocks
4765 * could trigger BUG by flushing delalloc blocks in journal.
4766 * There is no delalloc block in non-journal data mode.
4768 if (val && test_opt(inode->i_sb, DELALLOC)) {
4769 err = ext4_alloc_da_blocks(inode);
4770 if (err < 0)
4771 return err;
4774 /* Wait for all existing dio workers */
4775 ext4_inode_block_unlocked_dio(inode);
4776 inode_dio_wait(inode);
4778 jbd2_journal_lock_updates(journal);
4781 * OK, there are no updates running now, and all cached data is
4782 * synced to disk. We are now in a completely consistent state
4783 * which doesn't have anything in the journal, and we know that
4784 * no filesystem updates are running, so it is safe to modify
4785 * the inode's in-core data-journaling state flag now.
4788 if (val)
4789 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4790 else {
4791 jbd2_journal_flush(journal);
4792 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4794 ext4_set_aops(inode);
4796 jbd2_journal_unlock_updates(journal);
4797 ext4_inode_resume_unlocked_dio(inode);
4799 /* Finally we can mark the inode as dirty. */
4801 handle = ext4_journal_start(inode, 1);
4802 if (IS_ERR(handle))
4803 return PTR_ERR(handle);
4805 err = ext4_mark_inode_dirty(handle, inode);
4806 ext4_handle_sync(handle);
4807 ext4_journal_stop(handle);
4808 ext4_std_error(inode->i_sb, err);
4810 return err;
4813 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4815 return !buffer_mapped(bh);
4818 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4820 struct page *page = vmf->page;
4821 loff_t size;
4822 unsigned long len;
4823 int ret;
4824 struct file *file = vma->vm_file;
4825 struct inode *inode = file->f_path.dentry->d_inode;
4826 struct address_space *mapping = inode->i_mapping;
4827 handle_t *handle;
4828 get_block_t *get_block;
4829 int retries = 0;
4831 sb_start_pagefault(inode->i_sb);
4832 file_update_time(vma->vm_file);
4833 /* Delalloc case is easy... */
4834 if (test_opt(inode->i_sb, DELALLOC) &&
4835 !ext4_should_journal_data(inode) &&
4836 !ext4_nonda_switch(inode->i_sb)) {
4837 do {
4838 ret = __block_page_mkwrite(vma, vmf,
4839 ext4_da_get_block_prep);
4840 } while (ret == -ENOSPC &&
4841 ext4_should_retry_alloc(inode->i_sb, &retries));
4842 goto out_ret;
4845 lock_page(page);
4846 size = i_size_read(inode);
4847 /* Page got truncated from under us? */
4848 if (page->mapping != mapping || page_offset(page) > size) {
4849 unlock_page(page);
4850 ret = VM_FAULT_NOPAGE;
4851 goto out;
4854 if (page->index == size >> PAGE_CACHE_SHIFT)
4855 len = size & ~PAGE_CACHE_MASK;
4856 else
4857 len = PAGE_CACHE_SIZE;
4859 * Return if we have all the buffers mapped. This avoids the need to do
4860 * journal_start/journal_stop which can block and take a long time
4862 if (page_has_buffers(page)) {
4863 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4864 0, len, NULL,
4865 ext4_bh_unmapped)) {
4866 /* Wait so that we don't change page under IO */
4867 wait_on_page_writeback(page);
4868 ret = VM_FAULT_LOCKED;
4869 goto out;
4872 unlock_page(page);
4873 /* OK, we need to fill the hole... */
4874 if (ext4_should_dioread_nolock(inode))
4875 get_block = ext4_get_block_write;
4876 else
4877 get_block = ext4_get_block;
4878 retry_alloc:
4879 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4880 if (IS_ERR(handle)) {
4881 ret = VM_FAULT_SIGBUS;
4882 goto out;
4884 ret = __block_page_mkwrite(vma, vmf, get_block);
4885 if (!ret && ext4_should_journal_data(inode)) {
4886 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4887 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4888 unlock_page(page);
4889 ret = VM_FAULT_SIGBUS;
4890 ext4_journal_stop(handle);
4891 goto out;
4893 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4895 ext4_journal_stop(handle);
4896 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4897 goto retry_alloc;
4898 out_ret:
4899 ret = block_page_mkwrite_return(ret);
4900 out:
4901 sb_end_pagefault(inode->i_sb);
4902 return ret;