net: fec: use a more proper compatible string for MVF type device
[linux-2.6.git] / drivers / net / ethernet / freescale / fec_main.c
blob85a06037b242bc8e5afd5916069062450aa4c1a4
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/pinctrl/consumer.h>
57 #include <linux/regulator/consumer.h>
59 #include <asm/cacheflush.h>
61 #include "fec.h"
63 #if defined(CONFIG_ARM)
64 #define FEC_ALIGNMENT 0xf
65 #else
66 #define FEC_ALIGNMENT 0x3
67 #endif
69 #define DRIVER_NAME "fec"
70 #define FEC_NAPI_WEIGHT 64
72 /* Pause frame feild and FIFO threshold */
73 #define FEC_ENET_FCE (1 << 5)
74 #define FEC_ENET_RSEM_V 0x84
75 #define FEC_ENET_RSFL_V 16
76 #define FEC_ENET_RAEM_V 0x8
77 #define FEC_ENET_RAFL_V 0x8
78 #define FEC_ENET_OPD_V 0xFFF0
80 /* Controller is ENET-MAC */
81 #define FEC_QUIRK_ENET_MAC (1 << 0)
82 /* Controller needs driver to swap frame */
83 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
84 /* Controller uses gasket */
85 #define FEC_QUIRK_USE_GASKET (1 << 2)
86 /* Controller has GBIT support */
87 #define FEC_QUIRK_HAS_GBIT (1 << 3)
88 /* Controller has extend desc buffer */
89 #define FEC_QUIRK_HAS_BUFDESC_EX (1 << 4)
90 /* Controller has hardware checksum support */
91 #define FEC_QUIRK_HAS_CSUM (1 << 5)
93 static struct platform_device_id fec_devtype[] = {
95 /* keep it for coldfire */
96 .name = DRIVER_NAME,
97 .driver_data = 0,
98 }, {
99 .name = "imx25-fec",
100 .driver_data = FEC_QUIRK_USE_GASKET,
101 }, {
102 .name = "imx27-fec",
103 .driver_data = 0,
104 }, {
105 .name = "imx28-fec",
106 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
107 }, {
108 .name = "imx6q-fec",
109 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM,
111 }, {
112 .name = "mvf600-fec",
113 .driver_data = FEC_QUIRK_ENET_MAC,
114 }, {
115 /* sentinel */
118 MODULE_DEVICE_TABLE(platform, fec_devtype);
120 enum imx_fec_type {
121 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
122 IMX27_FEC, /* runs on i.mx27/35/51 */
123 IMX28_FEC,
124 IMX6Q_FEC,
125 MVF600_FEC,
128 static const struct of_device_id fec_dt_ids[] = {
129 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
130 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
131 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
132 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
133 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
134 { /* sentinel */ }
136 MODULE_DEVICE_TABLE(of, fec_dt_ids);
138 static unsigned char macaddr[ETH_ALEN];
139 module_param_array(macaddr, byte, NULL, 0);
140 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
142 #if defined(CONFIG_M5272)
144 * Some hardware gets it MAC address out of local flash memory.
145 * if this is non-zero then assume it is the address to get MAC from.
147 #if defined(CONFIG_NETtel)
148 #define FEC_FLASHMAC 0xf0006006
149 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
150 #define FEC_FLASHMAC 0xf0006000
151 #elif defined(CONFIG_CANCam)
152 #define FEC_FLASHMAC 0xf0020000
153 #elif defined (CONFIG_M5272C3)
154 #define FEC_FLASHMAC (0xffe04000 + 4)
155 #elif defined(CONFIG_MOD5272)
156 #define FEC_FLASHMAC 0xffc0406b
157 #else
158 #define FEC_FLASHMAC 0
159 #endif
160 #endif /* CONFIG_M5272 */
162 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
163 #error "FEC: descriptor ring size constants too large"
164 #endif
166 /* Interrupt events/masks. */
167 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
168 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
169 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
170 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
171 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
172 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
173 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
174 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
175 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
176 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
178 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
179 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
181 /* The FEC stores dest/src/type, data, and checksum for receive packets.
183 #define PKT_MAXBUF_SIZE 1518
184 #define PKT_MINBUF_SIZE 64
185 #define PKT_MAXBLR_SIZE 1520
187 /* FEC receive acceleration */
188 #define FEC_RACC_IPDIS (1 << 1)
189 #define FEC_RACC_PRODIS (1 << 2)
190 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
193 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194 * size bits. Other FEC hardware does not, so we need to take that into
195 * account when setting it.
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
199 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
200 #else
201 #define OPT_FRAME_SIZE 0
202 #endif
204 /* FEC MII MMFR bits definition */
205 #define FEC_MMFR_ST (1 << 30)
206 #define FEC_MMFR_OP_READ (2 << 28)
207 #define FEC_MMFR_OP_WRITE (1 << 28)
208 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
209 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
210 #define FEC_MMFR_TA (2 << 16)
211 #define FEC_MMFR_DATA(v) (v & 0xffff)
213 #define FEC_MII_TIMEOUT 30000 /* us */
215 /* Transmitter timeout */
216 #define TX_TIMEOUT (2 * HZ)
218 #define FEC_PAUSE_FLAG_AUTONEG 0x1
219 #define FEC_PAUSE_FLAG_ENABLE 0x2
221 static int mii_cnt;
223 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, int is_ex)
225 struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
226 if (is_ex)
227 return (struct bufdesc *)(ex + 1);
228 else
229 return bdp + 1;
232 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, int is_ex)
234 struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
235 if (is_ex)
236 return (struct bufdesc *)(ex - 1);
237 else
238 return bdp - 1;
241 static void *swap_buffer(void *bufaddr, int len)
243 int i;
244 unsigned int *buf = bufaddr;
246 for (i = 0; i < (len + 3) / 4; i++, buf++)
247 *buf = cpu_to_be32(*buf);
249 return bufaddr;
252 static int
253 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
255 /* Only run for packets requiring a checksum. */
256 if (skb->ip_summed != CHECKSUM_PARTIAL)
257 return 0;
259 if (unlikely(skb_cow_head(skb, 0)))
260 return -1;
262 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
264 return 0;
267 static netdev_tx_t
268 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
270 struct fec_enet_private *fep = netdev_priv(ndev);
271 const struct platform_device_id *id_entry =
272 platform_get_device_id(fep->pdev);
273 struct bufdesc *bdp;
274 void *bufaddr;
275 unsigned short status;
276 unsigned int index;
278 if (!fep->link) {
279 /* Link is down or auto-negotiation is in progress. */
280 return NETDEV_TX_BUSY;
283 /* Fill in a Tx ring entry */
284 bdp = fep->cur_tx;
286 status = bdp->cbd_sc;
288 if (status & BD_ENET_TX_READY) {
289 /* Ooops. All transmit buffers are full. Bail out.
290 * This should not happen, since ndev->tbusy should be set.
292 netdev_err(ndev, "tx queue full!\n");
293 return NETDEV_TX_BUSY;
296 /* Protocol checksum off-load for TCP and UDP. */
297 if (fec_enet_clear_csum(skb, ndev)) {
298 kfree_skb(skb);
299 return NETDEV_TX_OK;
302 /* Clear all of the status flags */
303 status &= ~BD_ENET_TX_STATS;
305 /* Set buffer length and buffer pointer */
306 bufaddr = skb->data;
307 bdp->cbd_datlen = skb->len;
310 * On some FEC implementations data must be aligned on
311 * 4-byte boundaries. Use bounce buffers to copy data
312 * and get it aligned. Ugh.
314 if (fep->bufdesc_ex)
315 index = (struct bufdesc_ex *)bdp -
316 (struct bufdesc_ex *)fep->tx_bd_base;
317 else
318 index = bdp - fep->tx_bd_base;
320 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
321 memcpy(fep->tx_bounce[index], skb->data, skb->len);
322 bufaddr = fep->tx_bounce[index];
326 * Some design made an incorrect assumption on endian mode of
327 * the system that it's running on. As the result, driver has to
328 * swap every frame going to and coming from the controller.
330 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
331 swap_buffer(bufaddr, skb->len);
333 /* Save skb pointer */
334 fep->tx_skbuff[index] = skb;
336 /* Push the data cache so the CPM does not get stale memory
337 * data.
339 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
340 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
342 /* Send it on its way. Tell FEC it's ready, interrupt when done,
343 * it's the last BD of the frame, and to put the CRC on the end.
345 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
346 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
347 bdp->cbd_sc = status;
349 if (fep->bufdesc_ex) {
351 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
352 ebdp->cbd_bdu = 0;
353 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
354 fep->hwts_tx_en)) {
355 ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
356 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
357 } else {
358 ebdp->cbd_esc = BD_ENET_TX_INT;
360 /* Enable protocol checksum flags
361 * We do not bother with the IP Checksum bits as they
362 * are done by the kernel
364 if (skb->ip_summed == CHECKSUM_PARTIAL)
365 ebdp->cbd_esc |= BD_ENET_TX_PINS;
368 /* If this was the last BD in the ring, start at the beginning again. */
369 if (status & BD_ENET_TX_WRAP)
370 bdp = fep->tx_bd_base;
371 else
372 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
374 fep->cur_tx = bdp;
376 if (fep->cur_tx == fep->dirty_tx)
377 netif_stop_queue(ndev);
379 /* Trigger transmission start */
380 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
382 skb_tx_timestamp(skb);
384 return NETDEV_TX_OK;
387 /* Init RX & TX buffer descriptors
389 static void fec_enet_bd_init(struct net_device *dev)
391 struct fec_enet_private *fep = netdev_priv(dev);
392 struct bufdesc *bdp;
393 unsigned int i;
395 /* Initialize the receive buffer descriptors. */
396 bdp = fep->rx_bd_base;
397 for (i = 0; i < RX_RING_SIZE; i++) {
399 /* Initialize the BD for every fragment in the page. */
400 if (bdp->cbd_bufaddr)
401 bdp->cbd_sc = BD_ENET_RX_EMPTY;
402 else
403 bdp->cbd_sc = 0;
404 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
407 /* Set the last buffer to wrap */
408 bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
409 bdp->cbd_sc |= BD_SC_WRAP;
411 fep->cur_rx = fep->rx_bd_base;
413 /* ...and the same for transmit */
414 bdp = fep->tx_bd_base;
415 fep->cur_tx = bdp;
416 for (i = 0; i < TX_RING_SIZE; i++) {
418 /* Initialize the BD for every fragment in the page. */
419 bdp->cbd_sc = 0;
420 if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
421 dev_kfree_skb_any(fep->tx_skbuff[i]);
422 fep->tx_skbuff[i] = NULL;
424 bdp->cbd_bufaddr = 0;
425 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
428 /* Set the last buffer to wrap */
429 bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
430 bdp->cbd_sc |= BD_SC_WRAP;
431 fep->dirty_tx = bdp;
434 /* This function is called to start or restart the FEC during a link
435 * change. This only happens when switching between half and full
436 * duplex.
438 static void
439 fec_restart(struct net_device *ndev, int duplex)
441 struct fec_enet_private *fep = netdev_priv(ndev);
442 const struct platform_device_id *id_entry =
443 platform_get_device_id(fep->pdev);
444 int i;
445 u32 val;
446 u32 temp_mac[2];
447 u32 rcntl = OPT_FRAME_SIZE | 0x04;
448 u32 ecntl = 0x2; /* ETHEREN */
450 if (netif_running(ndev)) {
451 netif_device_detach(ndev);
452 napi_disable(&fep->napi);
453 netif_stop_queue(ndev);
454 netif_tx_lock_bh(ndev);
457 /* Whack a reset. We should wait for this. */
458 writel(1, fep->hwp + FEC_ECNTRL);
459 udelay(10);
462 * enet-mac reset will reset mac address registers too,
463 * so need to reconfigure it.
465 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
466 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
467 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
468 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
471 /* Clear any outstanding interrupt. */
472 writel(0xffc00000, fep->hwp + FEC_IEVENT);
474 /* Reset all multicast. */
475 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
476 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
477 #ifndef CONFIG_M5272
478 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
479 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
480 #endif
482 /* Set maximum receive buffer size. */
483 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
485 fec_enet_bd_init(ndev);
487 /* Set receive and transmit descriptor base. */
488 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
489 if (fep->bufdesc_ex)
490 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
491 * RX_RING_SIZE, fep->hwp + FEC_X_DES_START);
492 else
493 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
494 * RX_RING_SIZE, fep->hwp + FEC_X_DES_START);
497 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
498 if (fep->tx_skbuff[i]) {
499 dev_kfree_skb_any(fep->tx_skbuff[i]);
500 fep->tx_skbuff[i] = NULL;
504 /* Enable MII mode */
505 if (duplex) {
506 /* FD enable */
507 writel(0x04, fep->hwp + FEC_X_CNTRL);
508 } else {
509 /* No Rcv on Xmit */
510 rcntl |= 0x02;
511 writel(0x0, fep->hwp + FEC_X_CNTRL);
514 fep->full_duplex = duplex;
516 /* Set MII speed */
517 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
519 /* set RX checksum */
520 val = readl(fep->hwp + FEC_RACC);
521 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
522 val |= FEC_RACC_OPTIONS;
523 else
524 val &= ~FEC_RACC_OPTIONS;
525 writel(val, fep->hwp + FEC_RACC);
528 * The phy interface and speed need to get configured
529 * differently on enet-mac.
531 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
532 /* Enable flow control and length check */
533 rcntl |= 0x40000000 | 0x00000020;
535 /* RGMII, RMII or MII */
536 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
537 rcntl |= (1 << 6);
538 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
539 rcntl |= (1 << 8);
540 else
541 rcntl &= ~(1 << 8);
543 /* 1G, 100M or 10M */
544 if (fep->phy_dev) {
545 if (fep->phy_dev->speed == SPEED_1000)
546 ecntl |= (1 << 5);
547 else if (fep->phy_dev->speed == SPEED_100)
548 rcntl &= ~(1 << 9);
549 else
550 rcntl |= (1 << 9);
552 } else {
553 #ifdef FEC_MIIGSK_ENR
554 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
555 u32 cfgr;
556 /* disable the gasket and wait */
557 writel(0, fep->hwp + FEC_MIIGSK_ENR);
558 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
559 udelay(1);
562 * configure the gasket:
563 * RMII, 50 MHz, no loopback, no echo
564 * MII, 25 MHz, no loopback, no echo
566 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
567 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
568 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
569 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
570 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
572 /* re-enable the gasket */
573 writel(2, fep->hwp + FEC_MIIGSK_ENR);
575 #endif
578 /* enable pause frame*/
579 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
580 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
581 fep->phy_dev && fep->phy_dev->pause)) {
582 rcntl |= FEC_ENET_FCE;
584 /* set FIFO threshold parameter to reduce overrun */
585 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
586 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
587 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
588 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
590 /* OPD */
591 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
592 } else {
593 rcntl &= ~FEC_ENET_FCE;
596 writel(rcntl, fep->hwp + FEC_R_CNTRL);
598 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
599 /* enable ENET endian swap */
600 ecntl |= (1 << 8);
601 /* enable ENET store and forward mode */
602 writel(1 << 8, fep->hwp + FEC_X_WMRK);
605 if (fep->bufdesc_ex)
606 ecntl |= (1 << 4);
608 /* And last, enable the transmit and receive processing */
609 writel(ecntl, fep->hwp + FEC_ECNTRL);
610 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
612 if (fep->bufdesc_ex)
613 fec_ptp_start_cyclecounter(ndev);
615 /* Enable interrupts we wish to service */
616 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
618 if (netif_running(ndev)) {
619 netif_tx_unlock_bh(ndev);
620 netif_wake_queue(ndev);
621 napi_enable(&fep->napi);
622 netif_device_attach(ndev);
626 static void
627 fec_stop(struct net_device *ndev)
629 struct fec_enet_private *fep = netdev_priv(ndev);
630 const struct platform_device_id *id_entry =
631 platform_get_device_id(fep->pdev);
632 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
634 /* We cannot expect a graceful transmit stop without link !!! */
635 if (fep->link) {
636 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
637 udelay(10);
638 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
639 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
642 /* Whack a reset. We should wait for this. */
643 writel(1, fep->hwp + FEC_ECNTRL);
644 udelay(10);
645 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
646 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
648 /* We have to keep ENET enabled to have MII interrupt stay working */
649 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
650 writel(2, fep->hwp + FEC_ECNTRL);
651 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
656 static void
657 fec_timeout(struct net_device *ndev)
659 struct fec_enet_private *fep = netdev_priv(ndev);
661 ndev->stats.tx_errors++;
663 fep->delay_work.timeout = true;
664 schedule_delayed_work(&(fep->delay_work.delay_work), 0);
667 static void fec_enet_work(struct work_struct *work)
669 struct fec_enet_private *fep =
670 container_of(work,
671 struct fec_enet_private,
672 delay_work.delay_work.work);
674 if (fep->delay_work.timeout) {
675 fep->delay_work.timeout = false;
676 fec_restart(fep->netdev, fep->full_duplex);
677 netif_wake_queue(fep->netdev);
681 static void
682 fec_enet_tx(struct net_device *ndev)
684 struct fec_enet_private *fep;
685 struct bufdesc *bdp;
686 unsigned short status;
687 struct sk_buff *skb;
688 int index = 0;
690 fep = netdev_priv(ndev);
691 bdp = fep->dirty_tx;
693 /* get next bdp of dirty_tx */
694 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
695 bdp = fep->tx_bd_base;
696 else
697 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
699 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
701 /* current queue is empty */
702 if (bdp == fep->cur_tx)
703 break;
705 if (fep->bufdesc_ex)
706 index = (struct bufdesc_ex *)bdp -
707 (struct bufdesc_ex *)fep->tx_bd_base;
708 else
709 index = bdp - fep->tx_bd_base;
711 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
712 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
713 bdp->cbd_bufaddr = 0;
715 skb = fep->tx_skbuff[index];
717 /* Check for errors. */
718 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
719 BD_ENET_TX_RL | BD_ENET_TX_UN |
720 BD_ENET_TX_CSL)) {
721 ndev->stats.tx_errors++;
722 if (status & BD_ENET_TX_HB) /* No heartbeat */
723 ndev->stats.tx_heartbeat_errors++;
724 if (status & BD_ENET_TX_LC) /* Late collision */
725 ndev->stats.tx_window_errors++;
726 if (status & BD_ENET_TX_RL) /* Retrans limit */
727 ndev->stats.tx_aborted_errors++;
728 if (status & BD_ENET_TX_UN) /* Underrun */
729 ndev->stats.tx_fifo_errors++;
730 if (status & BD_ENET_TX_CSL) /* Carrier lost */
731 ndev->stats.tx_carrier_errors++;
732 } else {
733 ndev->stats.tx_packets++;
736 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
737 fep->bufdesc_ex) {
738 struct skb_shared_hwtstamps shhwtstamps;
739 unsigned long flags;
740 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
742 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
743 spin_lock_irqsave(&fep->tmreg_lock, flags);
744 shhwtstamps.hwtstamp = ns_to_ktime(
745 timecounter_cyc2time(&fep->tc, ebdp->ts));
746 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
747 skb_tstamp_tx(skb, &shhwtstamps);
750 if (status & BD_ENET_TX_READY)
751 netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
753 /* Deferred means some collisions occurred during transmit,
754 * but we eventually sent the packet OK.
756 if (status & BD_ENET_TX_DEF)
757 ndev->stats.collisions++;
759 /* Free the sk buffer associated with this last transmit */
760 dev_kfree_skb_any(skb);
761 fep->tx_skbuff[index] = NULL;
763 fep->dirty_tx = bdp;
765 /* Update pointer to next buffer descriptor to be transmitted */
766 if (status & BD_ENET_TX_WRAP)
767 bdp = fep->tx_bd_base;
768 else
769 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
771 /* Since we have freed up a buffer, the ring is no longer full
773 if (fep->dirty_tx != fep->cur_tx) {
774 if (netif_queue_stopped(ndev))
775 netif_wake_queue(ndev);
778 return;
782 /* During a receive, the cur_rx points to the current incoming buffer.
783 * When we update through the ring, if the next incoming buffer has
784 * not been given to the system, we just set the empty indicator,
785 * effectively tossing the packet.
787 static int
788 fec_enet_rx(struct net_device *ndev, int budget)
790 struct fec_enet_private *fep = netdev_priv(ndev);
791 const struct platform_device_id *id_entry =
792 platform_get_device_id(fep->pdev);
793 struct bufdesc *bdp;
794 unsigned short status;
795 struct sk_buff *skb;
796 ushort pkt_len;
797 __u8 *data;
798 int pkt_received = 0;
800 #ifdef CONFIG_M532x
801 flush_cache_all();
802 #endif
804 /* First, grab all of the stats for the incoming packet.
805 * These get messed up if we get called due to a busy condition.
807 bdp = fep->cur_rx;
809 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
811 if (pkt_received >= budget)
812 break;
813 pkt_received++;
815 /* Since we have allocated space to hold a complete frame,
816 * the last indicator should be set.
818 if ((status & BD_ENET_RX_LAST) == 0)
819 netdev_err(ndev, "rcv is not +last\n");
821 if (!fep->opened)
822 goto rx_processing_done;
824 /* Check for errors. */
825 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
826 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
827 ndev->stats.rx_errors++;
828 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
829 /* Frame too long or too short. */
830 ndev->stats.rx_length_errors++;
832 if (status & BD_ENET_RX_NO) /* Frame alignment */
833 ndev->stats.rx_frame_errors++;
834 if (status & BD_ENET_RX_CR) /* CRC Error */
835 ndev->stats.rx_crc_errors++;
836 if (status & BD_ENET_RX_OV) /* FIFO overrun */
837 ndev->stats.rx_fifo_errors++;
840 /* Report late collisions as a frame error.
841 * On this error, the BD is closed, but we don't know what we
842 * have in the buffer. So, just drop this frame on the floor.
844 if (status & BD_ENET_RX_CL) {
845 ndev->stats.rx_errors++;
846 ndev->stats.rx_frame_errors++;
847 goto rx_processing_done;
850 /* Process the incoming frame. */
851 ndev->stats.rx_packets++;
852 pkt_len = bdp->cbd_datlen;
853 ndev->stats.rx_bytes += pkt_len;
854 data = (__u8*)__va(bdp->cbd_bufaddr);
856 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
857 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
859 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
860 swap_buffer(data, pkt_len);
862 /* This does 16 byte alignment, exactly what we need.
863 * The packet length includes FCS, but we don't want to
864 * include that when passing upstream as it messes up
865 * bridging applications.
867 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
869 if (unlikely(!skb)) {
870 ndev->stats.rx_dropped++;
871 } else {
872 skb_reserve(skb, NET_IP_ALIGN);
873 skb_put(skb, pkt_len - 4); /* Make room */
874 skb_copy_to_linear_data(skb, data, pkt_len - 4);
875 skb->protocol = eth_type_trans(skb, ndev);
877 /* Get receive timestamp from the skb */
878 if (fep->hwts_rx_en && fep->bufdesc_ex) {
879 struct skb_shared_hwtstamps *shhwtstamps =
880 skb_hwtstamps(skb);
881 unsigned long flags;
882 struct bufdesc_ex *ebdp =
883 (struct bufdesc_ex *)bdp;
885 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
887 spin_lock_irqsave(&fep->tmreg_lock, flags);
888 shhwtstamps->hwtstamp = ns_to_ktime(
889 timecounter_cyc2time(&fep->tc, ebdp->ts));
890 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
893 if (fep->bufdesc_ex &&
894 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
895 struct bufdesc_ex *ebdp =
896 (struct bufdesc_ex *)bdp;
897 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
898 /* don't check it */
899 skb->ip_summed = CHECKSUM_UNNECESSARY;
900 } else {
901 skb_checksum_none_assert(skb);
905 if (!skb_defer_rx_timestamp(skb))
906 napi_gro_receive(&fep->napi, skb);
909 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
910 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
911 rx_processing_done:
912 /* Clear the status flags for this buffer */
913 status &= ~BD_ENET_RX_STATS;
915 /* Mark the buffer empty */
916 status |= BD_ENET_RX_EMPTY;
917 bdp->cbd_sc = status;
919 if (fep->bufdesc_ex) {
920 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
922 ebdp->cbd_esc = BD_ENET_RX_INT;
923 ebdp->cbd_prot = 0;
924 ebdp->cbd_bdu = 0;
927 /* Update BD pointer to next entry */
928 if (status & BD_ENET_RX_WRAP)
929 bdp = fep->rx_bd_base;
930 else
931 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
932 /* Doing this here will keep the FEC running while we process
933 * incoming frames. On a heavily loaded network, we should be
934 * able to keep up at the expense of system resources.
936 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
938 fep->cur_rx = bdp;
940 return pkt_received;
943 static irqreturn_t
944 fec_enet_interrupt(int irq, void *dev_id)
946 struct net_device *ndev = dev_id;
947 struct fec_enet_private *fep = netdev_priv(ndev);
948 uint int_events;
949 irqreturn_t ret = IRQ_NONE;
951 do {
952 int_events = readl(fep->hwp + FEC_IEVENT);
953 writel(int_events, fep->hwp + FEC_IEVENT);
955 if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
956 ret = IRQ_HANDLED;
958 /* Disable the RX interrupt */
959 if (napi_schedule_prep(&fep->napi)) {
960 writel(FEC_RX_DISABLED_IMASK,
961 fep->hwp + FEC_IMASK);
962 __napi_schedule(&fep->napi);
966 if (int_events & FEC_ENET_MII) {
967 ret = IRQ_HANDLED;
968 complete(&fep->mdio_done);
970 } while (int_events);
972 return ret;
975 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
977 struct net_device *ndev = napi->dev;
978 int pkts = fec_enet_rx(ndev, budget);
979 struct fec_enet_private *fep = netdev_priv(ndev);
981 fec_enet_tx(ndev);
983 if (pkts < budget) {
984 napi_complete(napi);
985 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
987 return pkts;
990 /* ------------------------------------------------------------------------- */
991 static void fec_get_mac(struct net_device *ndev)
993 struct fec_enet_private *fep = netdev_priv(ndev);
994 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
995 unsigned char *iap, tmpaddr[ETH_ALEN];
998 * try to get mac address in following order:
1000 * 1) module parameter via kernel command line in form
1001 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1003 iap = macaddr;
1006 * 2) from device tree data
1008 if (!is_valid_ether_addr(iap)) {
1009 struct device_node *np = fep->pdev->dev.of_node;
1010 if (np) {
1011 const char *mac = of_get_mac_address(np);
1012 if (mac)
1013 iap = (unsigned char *) mac;
1018 * 3) from flash or fuse (via platform data)
1020 if (!is_valid_ether_addr(iap)) {
1021 #ifdef CONFIG_M5272
1022 if (FEC_FLASHMAC)
1023 iap = (unsigned char *)FEC_FLASHMAC;
1024 #else
1025 if (pdata)
1026 iap = (unsigned char *)&pdata->mac;
1027 #endif
1031 * 4) FEC mac registers set by bootloader
1033 if (!is_valid_ether_addr(iap)) {
1034 *((unsigned long *) &tmpaddr[0]) =
1035 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
1036 *((unsigned short *) &tmpaddr[4]) =
1037 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1038 iap = &tmpaddr[0];
1041 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1043 /* Adjust MAC if using macaddr */
1044 if (iap == macaddr)
1045 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1048 /* ------------------------------------------------------------------------- */
1051 * Phy section
1053 static void fec_enet_adjust_link(struct net_device *ndev)
1055 struct fec_enet_private *fep = netdev_priv(ndev);
1056 struct phy_device *phy_dev = fep->phy_dev;
1057 int status_change = 0;
1059 /* Prevent a state halted on mii error */
1060 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1061 phy_dev->state = PHY_RESUMING;
1062 return;
1065 if (phy_dev->link) {
1066 if (!fep->link) {
1067 fep->link = phy_dev->link;
1068 status_change = 1;
1071 if (fep->full_duplex != phy_dev->duplex)
1072 status_change = 1;
1074 if (phy_dev->speed != fep->speed) {
1075 fep->speed = phy_dev->speed;
1076 status_change = 1;
1079 /* if any of the above changed restart the FEC */
1080 if (status_change)
1081 fec_restart(ndev, phy_dev->duplex);
1082 } else {
1083 if (fep->link) {
1084 fec_stop(ndev);
1085 fep->link = phy_dev->link;
1086 status_change = 1;
1090 if (status_change)
1091 phy_print_status(phy_dev);
1094 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1096 struct fec_enet_private *fep = bus->priv;
1097 unsigned long time_left;
1099 fep->mii_timeout = 0;
1100 init_completion(&fep->mdio_done);
1102 /* start a read op */
1103 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1104 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1105 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1107 /* wait for end of transfer */
1108 time_left = wait_for_completion_timeout(&fep->mdio_done,
1109 usecs_to_jiffies(FEC_MII_TIMEOUT));
1110 if (time_left == 0) {
1111 fep->mii_timeout = 1;
1112 netdev_err(fep->netdev, "MDIO read timeout\n");
1113 return -ETIMEDOUT;
1116 /* return value */
1117 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1120 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1121 u16 value)
1123 struct fec_enet_private *fep = bus->priv;
1124 unsigned long time_left;
1126 fep->mii_timeout = 0;
1127 init_completion(&fep->mdio_done);
1129 /* start a write op */
1130 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1131 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1132 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1133 fep->hwp + FEC_MII_DATA);
1135 /* wait for end of transfer */
1136 time_left = wait_for_completion_timeout(&fep->mdio_done,
1137 usecs_to_jiffies(FEC_MII_TIMEOUT));
1138 if (time_left == 0) {
1139 fep->mii_timeout = 1;
1140 netdev_err(fep->netdev, "MDIO write timeout\n");
1141 return -ETIMEDOUT;
1144 return 0;
1147 static int fec_enet_mdio_reset(struct mii_bus *bus)
1149 return 0;
1152 static int fec_enet_mii_probe(struct net_device *ndev)
1154 struct fec_enet_private *fep = netdev_priv(ndev);
1155 const struct platform_device_id *id_entry =
1156 platform_get_device_id(fep->pdev);
1157 struct phy_device *phy_dev = NULL;
1158 char mdio_bus_id[MII_BUS_ID_SIZE];
1159 char phy_name[MII_BUS_ID_SIZE + 3];
1160 int phy_id;
1161 int dev_id = fep->dev_id;
1163 fep->phy_dev = NULL;
1165 /* check for attached phy */
1166 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1167 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1168 continue;
1169 if (fep->mii_bus->phy_map[phy_id] == NULL)
1170 continue;
1171 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1172 continue;
1173 if (dev_id--)
1174 continue;
1175 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1176 break;
1179 if (phy_id >= PHY_MAX_ADDR) {
1180 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1181 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1182 phy_id = 0;
1185 snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1186 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1187 fep->phy_interface);
1188 if (IS_ERR(phy_dev)) {
1189 netdev_err(ndev, "could not attach to PHY\n");
1190 return PTR_ERR(phy_dev);
1193 /* mask with MAC supported features */
1194 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1195 phy_dev->supported &= PHY_GBIT_FEATURES;
1196 phy_dev->supported |= SUPPORTED_Pause;
1198 else
1199 phy_dev->supported &= PHY_BASIC_FEATURES;
1201 phy_dev->advertising = phy_dev->supported;
1203 fep->phy_dev = phy_dev;
1204 fep->link = 0;
1205 fep->full_duplex = 0;
1207 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1208 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1209 fep->phy_dev->irq);
1211 return 0;
1214 static int fec_enet_mii_init(struct platform_device *pdev)
1216 static struct mii_bus *fec0_mii_bus;
1217 struct net_device *ndev = platform_get_drvdata(pdev);
1218 struct fec_enet_private *fep = netdev_priv(ndev);
1219 const struct platform_device_id *id_entry =
1220 platform_get_device_id(fep->pdev);
1221 int err = -ENXIO, i;
1224 * The dual fec interfaces are not equivalent with enet-mac.
1225 * Here are the differences:
1227 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1228 * - fec0 acts as the 1588 time master while fec1 is slave
1229 * - external phys can only be configured by fec0
1231 * That is to say fec1 can not work independently. It only works
1232 * when fec0 is working. The reason behind this design is that the
1233 * second interface is added primarily for Switch mode.
1235 * Because of the last point above, both phys are attached on fec0
1236 * mdio interface in board design, and need to be configured by
1237 * fec0 mii_bus.
1239 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1240 /* fec1 uses fec0 mii_bus */
1241 if (mii_cnt && fec0_mii_bus) {
1242 fep->mii_bus = fec0_mii_bus;
1243 mii_cnt++;
1244 return 0;
1246 return -ENOENT;
1249 fep->mii_timeout = 0;
1252 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1254 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1255 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1256 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1257 * document.
1259 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1260 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1261 fep->phy_speed--;
1262 fep->phy_speed <<= 1;
1263 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1265 fep->mii_bus = mdiobus_alloc();
1266 if (fep->mii_bus == NULL) {
1267 err = -ENOMEM;
1268 goto err_out;
1271 fep->mii_bus->name = "fec_enet_mii_bus";
1272 fep->mii_bus->read = fec_enet_mdio_read;
1273 fep->mii_bus->write = fec_enet_mdio_write;
1274 fep->mii_bus->reset = fec_enet_mdio_reset;
1275 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1276 pdev->name, fep->dev_id + 1);
1277 fep->mii_bus->priv = fep;
1278 fep->mii_bus->parent = &pdev->dev;
1280 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1281 if (!fep->mii_bus->irq) {
1282 err = -ENOMEM;
1283 goto err_out_free_mdiobus;
1286 for (i = 0; i < PHY_MAX_ADDR; i++)
1287 fep->mii_bus->irq[i] = PHY_POLL;
1289 if (mdiobus_register(fep->mii_bus))
1290 goto err_out_free_mdio_irq;
1292 mii_cnt++;
1294 /* save fec0 mii_bus */
1295 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1296 fec0_mii_bus = fep->mii_bus;
1298 return 0;
1300 err_out_free_mdio_irq:
1301 kfree(fep->mii_bus->irq);
1302 err_out_free_mdiobus:
1303 mdiobus_free(fep->mii_bus);
1304 err_out:
1305 return err;
1308 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1310 if (--mii_cnt == 0) {
1311 mdiobus_unregister(fep->mii_bus);
1312 kfree(fep->mii_bus->irq);
1313 mdiobus_free(fep->mii_bus);
1317 static int fec_enet_get_settings(struct net_device *ndev,
1318 struct ethtool_cmd *cmd)
1320 struct fec_enet_private *fep = netdev_priv(ndev);
1321 struct phy_device *phydev = fep->phy_dev;
1323 if (!phydev)
1324 return -ENODEV;
1326 return phy_ethtool_gset(phydev, cmd);
1329 static int fec_enet_set_settings(struct net_device *ndev,
1330 struct ethtool_cmd *cmd)
1332 struct fec_enet_private *fep = netdev_priv(ndev);
1333 struct phy_device *phydev = fep->phy_dev;
1335 if (!phydev)
1336 return -ENODEV;
1338 return phy_ethtool_sset(phydev, cmd);
1341 static void fec_enet_get_drvinfo(struct net_device *ndev,
1342 struct ethtool_drvinfo *info)
1344 struct fec_enet_private *fep = netdev_priv(ndev);
1346 strlcpy(info->driver, fep->pdev->dev.driver->name,
1347 sizeof(info->driver));
1348 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1349 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1352 static int fec_enet_get_ts_info(struct net_device *ndev,
1353 struct ethtool_ts_info *info)
1355 struct fec_enet_private *fep = netdev_priv(ndev);
1357 if (fep->bufdesc_ex) {
1359 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1360 SOF_TIMESTAMPING_RX_SOFTWARE |
1361 SOF_TIMESTAMPING_SOFTWARE |
1362 SOF_TIMESTAMPING_TX_HARDWARE |
1363 SOF_TIMESTAMPING_RX_HARDWARE |
1364 SOF_TIMESTAMPING_RAW_HARDWARE;
1365 if (fep->ptp_clock)
1366 info->phc_index = ptp_clock_index(fep->ptp_clock);
1367 else
1368 info->phc_index = -1;
1370 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1371 (1 << HWTSTAMP_TX_ON);
1373 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1374 (1 << HWTSTAMP_FILTER_ALL);
1375 return 0;
1376 } else {
1377 return ethtool_op_get_ts_info(ndev, info);
1381 static void fec_enet_get_pauseparam(struct net_device *ndev,
1382 struct ethtool_pauseparam *pause)
1384 struct fec_enet_private *fep = netdev_priv(ndev);
1386 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1387 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1388 pause->rx_pause = pause->tx_pause;
1391 static int fec_enet_set_pauseparam(struct net_device *ndev,
1392 struct ethtool_pauseparam *pause)
1394 struct fec_enet_private *fep = netdev_priv(ndev);
1396 if (pause->tx_pause != pause->rx_pause) {
1397 netdev_info(ndev,
1398 "hardware only support enable/disable both tx and rx");
1399 return -EINVAL;
1402 fep->pause_flag = 0;
1404 /* tx pause must be same as rx pause */
1405 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1406 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1408 if (pause->rx_pause || pause->autoneg) {
1409 fep->phy_dev->supported |= ADVERTISED_Pause;
1410 fep->phy_dev->advertising |= ADVERTISED_Pause;
1411 } else {
1412 fep->phy_dev->supported &= ~ADVERTISED_Pause;
1413 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1416 if (pause->autoneg) {
1417 if (netif_running(ndev))
1418 fec_stop(ndev);
1419 phy_start_aneg(fep->phy_dev);
1421 if (netif_running(ndev))
1422 fec_restart(ndev, 0);
1424 return 0;
1427 static const struct ethtool_ops fec_enet_ethtool_ops = {
1428 .get_pauseparam = fec_enet_get_pauseparam,
1429 .set_pauseparam = fec_enet_set_pauseparam,
1430 .get_settings = fec_enet_get_settings,
1431 .set_settings = fec_enet_set_settings,
1432 .get_drvinfo = fec_enet_get_drvinfo,
1433 .get_link = ethtool_op_get_link,
1434 .get_ts_info = fec_enet_get_ts_info,
1437 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1439 struct fec_enet_private *fep = netdev_priv(ndev);
1440 struct phy_device *phydev = fep->phy_dev;
1442 if (!netif_running(ndev))
1443 return -EINVAL;
1445 if (!phydev)
1446 return -ENODEV;
1448 if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1449 return fec_ptp_ioctl(ndev, rq, cmd);
1451 return phy_mii_ioctl(phydev, rq, cmd);
1454 static void fec_enet_free_buffers(struct net_device *ndev)
1456 struct fec_enet_private *fep = netdev_priv(ndev);
1457 unsigned int i;
1458 struct sk_buff *skb;
1459 struct bufdesc *bdp;
1461 bdp = fep->rx_bd_base;
1462 for (i = 0; i < RX_RING_SIZE; i++) {
1463 skb = fep->rx_skbuff[i];
1465 if (bdp->cbd_bufaddr)
1466 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1467 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1468 if (skb)
1469 dev_kfree_skb(skb);
1470 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1473 bdp = fep->tx_bd_base;
1474 for (i = 0; i < TX_RING_SIZE; i++)
1475 kfree(fep->tx_bounce[i]);
1478 static int fec_enet_alloc_buffers(struct net_device *ndev)
1480 struct fec_enet_private *fep = netdev_priv(ndev);
1481 unsigned int i;
1482 struct sk_buff *skb;
1483 struct bufdesc *bdp;
1485 bdp = fep->rx_bd_base;
1486 for (i = 0; i < RX_RING_SIZE; i++) {
1487 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1488 if (!skb) {
1489 fec_enet_free_buffers(ndev);
1490 return -ENOMEM;
1492 fep->rx_skbuff[i] = skb;
1494 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1495 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1496 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1498 if (fep->bufdesc_ex) {
1499 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1500 ebdp->cbd_esc = BD_ENET_RX_INT;
1503 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1506 /* Set the last buffer to wrap. */
1507 bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1508 bdp->cbd_sc |= BD_SC_WRAP;
1510 bdp = fep->tx_bd_base;
1511 for (i = 0; i < TX_RING_SIZE; i++) {
1512 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1514 bdp->cbd_sc = 0;
1515 bdp->cbd_bufaddr = 0;
1517 if (fep->bufdesc_ex) {
1518 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1519 ebdp->cbd_esc = BD_ENET_TX_INT;
1522 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1525 /* Set the last buffer to wrap. */
1526 bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1527 bdp->cbd_sc |= BD_SC_WRAP;
1529 return 0;
1532 static int
1533 fec_enet_open(struct net_device *ndev)
1535 struct fec_enet_private *fep = netdev_priv(ndev);
1536 int ret;
1538 napi_enable(&fep->napi);
1540 /* I should reset the ring buffers here, but I don't yet know
1541 * a simple way to do that.
1544 ret = fec_enet_alloc_buffers(ndev);
1545 if (ret)
1546 return ret;
1548 /* Probe and connect to PHY when open the interface */
1549 ret = fec_enet_mii_probe(ndev);
1550 if (ret) {
1551 fec_enet_free_buffers(ndev);
1552 return ret;
1554 phy_start(fep->phy_dev);
1555 netif_start_queue(ndev);
1556 fep->opened = 1;
1557 return 0;
1560 static int
1561 fec_enet_close(struct net_device *ndev)
1563 struct fec_enet_private *fep = netdev_priv(ndev);
1565 /* Don't know what to do yet. */
1566 napi_disable(&fep->napi);
1567 fep->opened = 0;
1568 netif_stop_queue(ndev);
1569 fec_stop(ndev);
1571 if (fep->phy_dev) {
1572 phy_stop(fep->phy_dev);
1573 phy_disconnect(fep->phy_dev);
1576 fec_enet_free_buffers(ndev);
1578 return 0;
1581 /* Set or clear the multicast filter for this adaptor.
1582 * Skeleton taken from sunlance driver.
1583 * The CPM Ethernet implementation allows Multicast as well as individual
1584 * MAC address filtering. Some of the drivers check to make sure it is
1585 * a group multicast address, and discard those that are not. I guess I
1586 * will do the same for now, but just remove the test if you want
1587 * individual filtering as well (do the upper net layers want or support
1588 * this kind of feature?).
1591 #define HASH_BITS 6 /* #bits in hash */
1592 #define CRC32_POLY 0xEDB88320
1594 static void set_multicast_list(struct net_device *ndev)
1596 struct fec_enet_private *fep = netdev_priv(ndev);
1597 struct netdev_hw_addr *ha;
1598 unsigned int i, bit, data, crc, tmp;
1599 unsigned char hash;
1601 if (ndev->flags & IFF_PROMISC) {
1602 tmp = readl(fep->hwp + FEC_R_CNTRL);
1603 tmp |= 0x8;
1604 writel(tmp, fep->hwp + FEC_R_CNTRL);
1605 return;
1608 tmp = readl(fep->hwp + FEC_R_CNTRL);
1609 tmp &= ~0x8;
1610 writel(tmp, fep->hwp + FEC_R_CNTRL);
1612 if (ndev->flags & IFF_ALLMULTI) {
1613 /* Catch all multicast addresses, so set the
1614 * filter to all 1's
1616 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1617 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1619 return;
1622 /* Clear filter and add the addresses in hash register
1624 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1625 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1627 netdev_for_each_mc_addr(ha, ndev) {
1628 /* calculate crc32 value of mac address */
1629 crc = 0xffffffff;
1631 for (i = 0; i < ndev->addr_len; i++) {
1632 data = ha->addr[i];
1633 for (bit = 0; bit < 8; bit++, data >>= 1) {
1634 crc = (crc >> 1) ^
1635 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1639 /* only upper 6 bits (HASH_BITS) are used
1640 * which point to specific bit in he hash registers
1642 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1644 if (hash > 31) {
1645 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1646 tmp |= 1 << (hash - 32);
1647 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1648 } else {
1649 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1650 tmp |= 1 << hash;
1651 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1656 /* Set a MAC change in hardware. */
1657 static int
1658 fec_set_mac_address(struct net_device *ndev, void *p)
1660 struct fec_enet_private *fep = netdev_priv(ndev);
1661 struct sockaddr *addr = p;
1663 if (!is_valid_ether_addr(addr->sa_data))
1664 return -EADDRNOTAVAIL;
1666 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1668 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1669 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1670 fep->hwp + FEC_ADDR_LOW);
1671 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1672 fep->hwp + FEC_ADDR_HIGH);
1673 return 0;
1676 #ifdef CONFIG_NET_POLL_CONTROLLER
1678 * fec_poll_controller - FEC Poll controller function
1679 * @dev: The FEC network adapter
1681 * Polled functionality used by netconsole and others in non interrupt mode
1684 static void fec_poll_controller(struct net_device *dev)
1686 int i;
1687 struct fec_enet_private *fep = netdev_priv(dev);
1689 for (i = 0; i < FEC_IRQ_NUM; i++) {
1690 if (fep->irq[i] > 0) {
1691 disable_irq(fep->irq[i]);
1692 fec_enet_interrupt(fep->irq[i], dev);
1693 enable_irq(fep->irq[i]);
1697 #endif
1699 static int fec_set_features(struct net_device *netdev,
1700 netdev_features_t features)
1702 struct fec_enet_private *fep = netdev_priv(netdev);
1703 netdev_features_t changed = features ^ netdev->features;
1705 netdev->features = features;
1707 /* Receive checksum has been changed */
1708 if (changed & NETIF_F_RXCSUM) {
1709 if (features & NETIF_F_RXCSUM)
1710 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1711 else
1712 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1714 if (netif_running(netdev)) {
1715 fec_stop(netdev);
1716 fec_restart(netdev, fep->phy_dev->duplex);
1717 netif_wake_queue(netdev);
1718 } else {
1719 fec_restart(netdev, fep->phy_dev->duplex);
1723 return 0;
1726 static const struct net_device_ops fec_netdev_ops = {
1727 .ndo_open = fec_enet_open,
1728 .ndo_stop = fec_enet_close,
1729 .ndo_start_xmit = fec_enet_start_xmit,
1730 .ndo_set_rx_mode = set_multicast_list,
1731 .ndo_change_mtu = eth_change_mtu,
1732 .ndo_validate_addr = eth_validate_addr,
1733 .ndo_tx_timeout = fec_timeout,
1734 .ndo_set_mac_address = fec_set_mac_address,
1735 .ndo_do_ioctl = fec_enet_ioctl,
1736 #ifdef CONFIG_NET_POLL_CONTROLLER
1737 .ndo_poll_controller = fec_poll_controller,
1738 #endif
1739 .ndo_set_features = fec_set_features,
1743 * XXX: We need to clean up on failure exits here.
1746 static int fec_enet_init(struct net_device *ndev)
1748 struct fec_enet_private *fep = netdev_priv(ndev);
1749 const struct platform_device_id *id_entry =
1750 platform_get_device_id(fep->pdev);
1751 struct bufdesc *cbd_base;
1753 /* Allocate memory for buffer descriptors. */
1754 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1755 GFP_KERNEL);
1756 if (!cbd_base)
1757 return -ENOMEM;
1759 memset(cbd_base, 0, PAGE_SIZE);
1761 fep->netdev = ndev;
1763 /* Get the Ethernet address */
1764 fec_get_mac(ndev);
1766 /* Set receive and transmit descriptor base. */
1767 fep->rx_bd_base = cbd_base;
1768 if (fep->bufdesc_ex)
1769 fep->tx_bd_base = (struct bufdesc *)
1770 (((struct bufdesc_ex *)cbd_base) + RX_RING_SIZE);
1771 else
1772 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1774 /* The FEC Ethernet specific entries in the device structure */
1775 ndev->watchdog_timeo = TX_TIMEOUT;
1776 ndev->netdev_ops = &fec_netdev_ops;
1777 ndev->ethtool_ops = &fec_enet_ethtool_ops;
1779 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
1780 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, FEC_NAPI_WEIGHT);
1782 if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
1783 /* enable hw accelerator */
1784 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1785 | NETIF_F_RXCSUM);
1786 ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1787 | NETIF_F_RXCSUM);
1788 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1791 fec_restart(ndev, 0);
1793 return 0;
1796 #ifdef CONFIG_OF
1797 static void fec_reset_phy(struct platform_device *pdev)
1799 int err, phy_reset;
1800 int msec = 1;
1801 struct device_node *np = pdev->dev.of_node;
1803 if (!np)
1804 return;
1806 of_property_read_u32(np, "phy-reset-duration", &msec);
1807 /* A sane reset duration should not be longer than 1s */
1808 if (msec > 1000)
1809 msec = 1;
1811 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1812 if (!gpio_is_valid(phy_reset))
1813 return;
1815 err = devm_gpio_request_one(&pdev->dev, phy_reset,
1816 GPIOF_OUT_INIT_LOW, "phy-reset");
1817 if (err) {
1818 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
1819 return;
1821 msleep(msec);
1822 gpio_set_value(phy_reset, 1);
1824 #else /* CONFIG_OF */
1825 static void fec_reset_phy(struct platform_device *pdev)
1828 * In case of platform probe, the reset has been done
1829 * by machine code.
1832 #endif /* CONFIG_OF */
1834 static int
1835 fec_probe(struct platform_device *pdev)
1837 struct fec_enet_private *fep;
1838 struct fec_platform_data *pdata;
1839 struct net_device *ndev;
1840 int i, irq, ret = 0;
1841 struct resource *r;
1842 const struct of_device_id *of_id;
1843 static int dev_id;
1844 struct pinctrl *pinctrl;
1845 struct regulator *reg_phy;
1847 of_id = of_match_device(fec_dt_ids, &pdev->dev);
1848 if (of_id)
1849 pdev->id_entry = of_id->data;
1851 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1852 if (!r)
1853 return -ENXIO;
1855 /* Init network device */
1856 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1857 if (!ndev)
1858 return -ENOMEM;
1860 SET_NETDEV_DEV(ndev, &pdev->dev);
1862 /* setup board info structure */
1863 fep = netdev_priv(ndev);
1865 /* default enable pause frame auto negotiation */
1866 if (pdev->id_entry &&
1867 (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
1868 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
1870 fep->hwp = devm_request_and_ioremap(&pdev->dev, r);
1871 fep->pdev = pdev;
1872 fep->dev_id = dev_id++;
1874 fep->bufdesc_ex = 0;
1876 if (!fep->hwp) {
1877 ret = -ENOMEM;
1878 goto failed_ioremap;
1881 platform_set_drvdata(pdev, ndev);
1883 ret = of_get_phy_mode(pdev->dev.of_node);
1884 if (ret < 0) {
1885 pdata = pdev->dev.platform_data;
1886 if (pdata)
1887 fep->phy_interface = pdata->phy;
1888 else
1889 fep->phy_interface = PHY_INTERFACE_MODE_MII;
1890 } else {
1891 fep->phy_interface = ret;
1894 pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1895 if (IS_ERR(pinctrl)) {
1896 ret = PTR_ERR(pinctrl);
1897 goto failed_pin;
1900 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1901 if (IS_ERR(fep->clk_ipg)) {
1902 ret = PTR_ERR(fep->clk_ipg);
1903 goto failed_clk;
1906 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1907 if (IS_ERR(fep->clk_ahb)) {
1908 ret = PTR_ERR(fep->clk_ahb);
1909 goto failed_clk;
1912 /* enet_out is optional, depends on board */
1913 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
1914 if (IS_ERR(fep->clk_enet_out))
1915 fep->clk_enet_out = NULL;
1917 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
1918 fep->bufdesc_ex =
1919 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
1920 if (IS_ERR(fep->clk_ptp)) {
1921 fep->clk_ptp = NULL;
1922 fep->bufdesc_ex = 0;
1925 clk_prepare_enable(fep->clk_ahb);
1926 clk_prepare_enable(fep->clk_ipg);
1927 clk_prepare_enable(fep->clk_enet_out);
1928 clk_prepare_enable(fep->clk_ptp);
1930 reg_phy = devm_regulator_get(&pdev->dev, "phy");
1931 if (!IS_ERR(reg_phy)) {
1932 ret = regulator_enable(reg_phy);
1933 if (ret) {
1934 dev_err(&pdev->dev,
1935 "Failed to enable phy regulator: %d\n", ret);
1936 goto failed_regulator;
1940 fec_reset_phy(pdev);
1942 if (fep->bufdesc_ex)
1943 fec_ptp_init(ndev, pdev);
1945 ret = fec_enet_init(ndev);
1946 if (ret)
1947 goto failed_init;
1949 for (i = 0; i < FEC_IRQ_NUM; i++) {
1950 irq = platform_get_irq(pdev, i);
1951 if (irq < 0) {
1952 if (i)
1953 break;
1954 ret = irq;
1955 goto failed_irq;
1957 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1958 if (ret) {
1959 while (--i >= 0) {
1960 irq = platform_get_irq(pdev, i);
1961 free_irq(irq, ndev);
1963 goto failed_irq;
1967 ret = fec_enet_mii_init(pdev);
1968 if (ret)
1969 goto failed_mii_init;
1971 /* Carrier starts down, phylib will bring it up */
1972 netif_carrier_off(ndev);
1974 ret = register_netdev(ndev);
1975 if (ret)
1976 goto failed_register;
1978 if (fep->bufdesc_ex && fep->ptp_clock)
1979 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
1981 INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
1982 return 0;
1984 failed_register:
1985 fec_enet_mii_remove(fep);
1986 failed_mii_init:
1987 failed_init:
1988 for (i = 0; i < FEC_IRQ_NUM; i++) {
1989 irq = platform_get_irq(pdev, i);
1990 if (irq > 0)
1991 free_irq(irq, ndev);
1993 failed_irq:
1994 failed_regulator:
1995 clk_disable_unprepare(fep->clk_ahb);
1996 clk_disable_unprepare(fep->clk_ipg);
1997 clk_disable_unprepare(fep->clk_enet_out);
1998 clk_disable_unprepare(fep->clk_ptp);
1999 failed_pin:
2000 failed_clk:
2001 failed_ioremap:
2002 free_netdev(ndev);
2004 return ret;
2007 static int
2008 fec_drv_remove(struct platform_device *pdev)
2010 struct net_device *ndev = platform_get_drvdata(pdev);
2011 struct fec_enet_private *fep = netdev_priv(ndev);
2012 int i;
2014 cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2015 unregister_netdev(ndev);
2016 fec_enet_mii_remove(fep);
2017 del_timer_sync(&fep->time_keep);
2018 clk_disable_unprepare(fep->clk_ptp);
2019 if (fep->ptp_clock)
2020 ptp_clock_unregister(fep->ptp_clock);
2021 clk_disable_unprepare(fep->clk_enet_out);
2022 clk_disable_unprepare(fep->clk_ahb);
2023 clk_disable_unprepare(fep->clk_ipg);
2024 for (i = 0; i < FEC_IRQ_NUM; i++) {
2025 int irq = platform_get_irq(pdev, i);
2026 if (irq > 0)
2027 free_irq(irq, ndev);
2029 free_netdev(ndev);
2031 platform_set_drvdata(pdev, NULL);
2033 return 0;
2036 #ifdef CONFIG_PM_SLEEP
2037 static int
2038 fec_suspend(struct device *dev)
2040 struct net_device *ndev = dev_get_drvdata(dev);
2041 struct fec_enet_private *fep = netdev_priv(ndev);
2043 if (netif_running(ndev)) {
2044 fec_stop(ndev);
2045 netif_device_detach(ndev);
2047 clk_disable_unprepare(fep->clk_enet_out);
2048 clk_disable_unprepare(fep->clk_ahb);
2049 clk_disable_unprepare(fep->clk_ipg);
2051 return 0;
2054 static int
2055 fec_resume(struct device *dev)
2057 struct net_device *ndev = dev_get_drvdata(dev);
2058 struct fec_enet_private *fep = netdev_priv(ndev);
2060 clk_prepare_enable(fep->clk_enet_out);
2061 clk_prepare_enable(fep->clk_ahb);
2062 clk_prepare_enable(fep->clk_ipg);
2063 if (netif_running(ndev)) {
2064 fec_restart(ndev, fep->full_duplex);
2065 netif_device_attach(ndev);
2068 return 0;
2070 #endif /* CONFIG_PM_SLEEP */
2072 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2074 static struct platform_driver fec_driver = {
2075 .driver = {
2076 .name = DRIVER_NAME,
2077 .owner = THIS_MODULE,
2078 .pm = &fec_pm_ops,
2079 .of_match_table = fec_dt_ids,
2081 .id_table = fec_devtype,
2082 .probe = fec_probe,
2083 .remove = fec_drv_remove,
2086 module_platform_driver(fec_driver);
2088 MODULE_LICENSE("GPL");