Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / drivers / usb / host / xhci.c
blob4265b48856f6a7b0160124964b3b7fc697ecd826
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
32 #include "xhci.h"
33 #include "xhci-trace.h"
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
45 * xhci_handshake - spin reading hc until handshake completes or fails
46 * @ptr: address of hc register to be read
47 * @mask: bits to look at in result of read
48 * @done: value of those bits when handshake succeeds
49 * @usec: timeout in microseconds
51 * Returns negative errno, or zero on success
53 * Success happens when the "mask" bits have the specified value (hardware
54 * handshake done). There are two failure modes: "usec" have passed (major
55 * hardware flakeout), or the register reads as all-ones (hardware removed).
57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58 u32 mask, u32 done, int usec)
60 u32 result;
62 do {
63 result = xhci_readl(xhci, ptr);
64 if (result == ~(u32)0) /* card removed */
65 return -ENODEV;
66 result &= mask;
67 if (result == done)
68 return 0;
69 udelay(1);
70 usec--;
71 } while (usec > 0);
72 return -ETIMEDOUT;
76 * Disable interrupts and begin the xHCI halting process.
78 void xhci_quiesce(struct xhci_hcd *xhci)
80 u32 halted;
81 u32 cmd;
82 u32 mask;
84 mask = ~(XHCI_IRQS);
85 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
86 if (!halted)
87 mask &= ~CMD_RUN;
89 cmd = xhci_readl(xhci, &xhci->op_regs->command);
90 cmd &= mask;
91 xhci_writel(xhci, cmd, &xhci->op_regs->command);
95 * Force HC into halt state.
97 * Disable any IRQs and clear the run/stop bit.
98 * HC will complete any current and actively pipelined transactions, and
99 * should halt within 16 ms of the run/stop bit being cleared.
100 * Read HC Halted bit in the status register to see when the HC is finished.
102 int xhci_halt(struct xhci_hcd *xhci)
104 int ret;
105 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
106 xhci_quiesce(xhci);
108 ret = xhci_handshake(xhci, &xhci->op_regs->status,
109 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110 if (!ret) {
111 xhci->xhc_state |= XHCI_STATE_HALTED;
112 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113 } else
114 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115 XHCI_MAX_HALT_USEC);
116 return ret;
120 * Set the run bit and wait for the host to be running.
122 static int xhci_start(struct xhci_hcd *xhci)
124 u32 temp;
125 int ret;
127 temp = xhci_readl(xhci, &xhci->op_regs->command);
128 temp |= (CMD_RUN);
129 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
130 temp);
131 xhci_writel(xhci, temp, &xhci->op_regs->command);
134 * Wait for the HCHalted Status bit to be 0 to indicate the host is
135 * running.
137 ret = xhci_handshake(xhci, &xhci->op_regs->status,
138 STS_HALT, 0, XHCI_MAX_HALT_USEC);
139 if (ret == -ETIMEDOUT)
140 xhci_err(xhci, "Host took too long to start, "
141 "waited %u microseconds.\n",
142 XHCI_MAX_HALT_USEC);
143 if (!ret)
144 xhci->xhc_state &= ~XHCI_STATE_HALTED;
145 return ret;
149 * Reset a halted HC.
151 * This resets pipelines, timers, counters, state machines, etc.
152 * Transactions will be terminated immediately, and operational registers
153 * will be set to their defaults.
155 int xhci_reset(struct xhci_hcd *xhci)
157 u32 command;
158 u32 state;
159 int ret, i;
161 state = xhci_readl(xhci, &xhci->op_regs->status);
162 if ((state & STS_HALT) == 0) {
163 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164 return 0;
167 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
168 command = xhci_readl(xhci, &xhci->op_regs->command);
169 command |= CMD_RESET;
170 xhci_writel(xhci, command, &xhci->op_regs->command);
172 ret = xhci_handshake(xhci, &xhci->op_regs->command,
173 CMD_RESET, 0, 10 * 1000 * 1000);
174 if (ret)
175 return ret;
177 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
178 "Wait for controller to be ready for doorbell rings");
180 * xHCI cannot write to any doorbells or operational registers other
181 * than status until the "Controller Not Ready" flag is cleared.
183 ret = xhci_handshake(xhci, &xhci->op_regs->status,
184 STS_CNR, 0, 10 * 1000 * 1000);
186 for (i = 0; i < 2; ++i) {
187 xhci->bus_state[i].port_c_suspend = 0;
188 xhci->bus_state[i].suspended_ports = 0;
189 xhci->bus_state[i].resuming_ports = 0;
192 return ret;
195 #ifdef CONFIG_PCI
196 static int xhci_free_msi(struct xhci_hcd *xhci)
198 int i;
200 if (!xhci->msix_entries)
201 return -EINVAL;
203 for (i = 0; i < xhci->msix_count; i++)
204 if (xhci->msix_entries[i].vector)
205 free_irq(xhci->msix_entries[i].vector,
206 xhci_to_hcd(xhci));
207 return 0;
211 * Set up MSI
213 static int xhci_setup_msi(struct xhci_hcd *xhci)
215 int ret;
216 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
218 ret = pci_enable_msi(pdev);
219 if (ret) {
220 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
221 "failed to allocate MSI entry");
222 return ret;
225 ret = request_irq(pdev->irq, xhci_msi_irq,
226 0, "xhci_hcd", xhci_to_hcd(xhci));
227 if (ret) {
228 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
229 "disable MSI interrupt");
230 pci_disable_msi(pdev);
233 return ret;
237 * Free IRQs
238 * free all IRQs request
240 static void xhci_free_irq(struct xhci_hcd *xhci)
242 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243 int ret;
245 /* return if using legacy interrupt */
246 if (xhci_to_hcd(xhci)->irq > 0)
247 return;
249 ret = xhci_free_msi(xhci);
250 if (!ret)
251 return;
252 if (pdev->irq > 0)
253 free_irq(pdev->irq, xhci_to_hcd(xhci));
255 return;
259 * Set up MSI-X
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
263 int i, ret = 0;
264 struct usb_hcd *hcd = xhci_to_hcd(xhci);
265 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
268 * calculate number of msi-x vectors supported.
269 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270 * with max number of interrupters based on the xhci HCSPARAMS1.
271 * - num_online_cpus: maximum msi-x vectors per CPUs core.
272 * Add additional 1 vector to ensure always available interrupt.
274 xhci->msix_count = min(num_online_cpus() + 1,
275 HCS_MAX_INTRS(xhci->hcs_params1));
277 xhci->msix_entries =
278 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
279 GFP_KERNEL);
280 if (!xhci->msix_entries) {
281 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
282 return -ENOMEM;
285 for (i = 0; i < xhci->msix_count; i++) {
286 xhci->msix_entries[i].entry = i;
287 xhci->msix_entries[i].vector = 0;
290 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
291 if (ret) {
292 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
293 "Failed to enable MSI-X");
294 goto free_entries;
297 for (i = 0; i < xhci->msix_count; i++) {
298 ret = request_irq(xhci->msix_entries[i].vector,
299 xhci_msi_irq,
300 0, "xhci_hcd", xhci_to_hcd(xhci));
301 if (ret)
302 goto disable_msix;
305 hcd->msix_enabled = 1;
306 return ret;
308 disable_msix:
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
310 xhci_free_irq(xhci);
311 pci_disable_msix(pdev);
312 free_entries:
313 kfree(xhci->msix_entries);
314 xhci->msix_entries = NULL;
315 return ret;
318 /* Free any IRQs and disable MSI-X */
319 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
321 struct usb_hcd *hcd = xhci_to_hcd(xhci);
322 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
324 xhci_free_irq(xhci);
326 if (xhci->msix_entries) {
327 pci_disable_msix(pdev);
328 kfree(xhci->msix_entries);
329 xhci->msix_entries = NULL;
330 } else {
331 pci_disable_msi(pdev);
334 hcd->msix_enabled = 0;
335 return;
338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
340 int i;
342 if (xhci->msix_entries) {
343 for (i = 0; i < xhci->msix_count; i++)
344 synchronize_irq(xhci->msix_entries[i].vector);
348 static int xhci_try_enable_msi(struct usb_hcd *hcd)
350 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
351 struct pci_dev *pdev;
352 int ret;
354 /* The xhci platform device has set up IRQs through usb_add_hcd. */
355 if (xhci->quirks & XHCI_PLAT)
356 return 0;
358 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
360 * Some Fresco Logic host controllers advertise MSI, but fail to
361 * generate interrupts. Don't even try to enable MSI.
363 if (xhci->quirks & XHCI_BROKEN_MSI)
364 goto legacy_irq;
366 /* unregister the legacy interrupt */
367 if (hcd->irq)
368 free_irq(hcd->irq, hcd);
369 hcd->irq = 0;
371 ret = xhci_setup_msix(xhci);
372 if (ret)
373 /* fall back to msi*/
374 ret = xhci_setup_msi(xhci);
376 if (!ret)
377 /* hcd->irq is 0, we have MSI */
378 return 0;
380 if (!pdev->irq) {
381 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
382 return -EINVAL;
385 legacy_irq:
386 /* fall back to legacy interrupt*/
387 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
388 hcd->irq_descr, hcd);
389 if (ret) {
390 xhci_err(xhci, "request interrupt %d failed\n",
391 pdev->irq);
392 return ret;
394 hcd->irq = pdev->irq;
395 return 0;
398 #else
400 static int xhci_try_enable_msi(struct usb_hcd *hcd)
402 return 0;
405 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
413 #endif
415 static void compliance_mode_recovery(unsigned long arg)
417 struct xhci_hcd *xhci;
418 struct usb_hcd *hcd;
419 u32 temp;
420 int i;
422 xhci = (struct xhci_hcd *)arg;
424 for (i = 0; i < xhci->num_usb3_ports; i++) {
425 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
426 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
428 * Compliance Mode Detected. Letting USB Core
429 * handle the Warm Reset
431 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
432 "Compliance mode detected->port %d",
433 i + 1);
434 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
435 "Attempting compliance mode recovery");
436 hcd = xhci->shared_hcd;
438 if (hcd->state == HC_STATE_SUSPENDED)
439 usb_hcd_resume_root_hub(hcd);
441 usb_hcd_poll_rh_status(hcd);
445 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
446 mod_timer(&xhci->comp_mode_recovery_timer,
447 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
451 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
452 * that causes ports behind that hardware to enter compliance mode sometimes.
453 * The quirk creates a timer that polls every 2 seconds the link state of
454 * each host controller's port and recovers it by issuing a Warm reset
455 * if Compliance mode is detected, otherwise the port will become "dead" (no
456 * device connections or disconnections will be detected anymore). Becasue no
457 * status event is generated when entering compliance mode (per xhci spec),
458 * this quirk is needed on systems that have the failing hardware installed.
460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
462 xhci->port_status_u0 = 0;
463 init_timer(&xhci->comp_mode_recovery_timer);
465 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
466 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
467 xhci->comp_mode_recovery_timer.expires = jiffies +
468 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
470 set_timer_slack(&xhci->comp_mode_recovery_timer,
471 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 add_timer(&xhci->comp_mode_recovery_timer);
473 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
474 "Compliance mode recovery timer initialized");
478 * This function identifies the systems that have installed the SN65LVPE502CP
479 * USB3.0 re-driver and that need the Compliance Mode Quirk.
480 * Systems:
481 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
483 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
485 const char *dmi_product_name, *dmi_sys_vendor;
487 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
488 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
489 if (!dmi_product_name || !dmi_sys_vendor)
490 return false;
492 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
493 return false;
495 if (strstr(dmi_product_name, "Z420") ||
496 strstr(dmi_product_name, "Z620") ||
497 strstr(dmi_product_name, "Z820") ||
498 strstr(dmi_product_name, "Z1 Workstation"))
499 return true;
501 return false;
504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
506 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
511 * Initialize memory for HCD and xHC (one-time init).
513 * Program the PAGESIZE register, initialize the device context array, create
514 * device contexts (?), set up a command ring segment (or two?), create event
515 * ring (one for now).
517 int xhci_init(struct usb_hcd *hcd)
519 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
520 int retval = 0;
522 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
523 spin_lock_init(&xhci->lock);
524 if (xhci->hci_version == 0x95 && link_quirk) {
525 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
526 "QUIRK: Not clearing Link TRB chain bits.");
527 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
528 } else {
529 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
530 "xHCI doesn't need link TRB QUIRK");
532 retval = xhci_mem_init(xhci, GFP_KERNEL);
533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
535 /* Initializing Compliance Mode Recovery Data If Needed */
536 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
537 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
538 compliance_mode_recovery_timer_init(xhci);
541 return retval;
544 /*-------------------------------------------------------------------------*/
547 static int xhci_run_finished(struct xhci_hcd *xhci)
549 if (xhci_start(xhci)) {
550 xhci_halt(xhci);
551 return -ENODEV;
553 xhci->shared_hcd->state = HC_STATE_RUNNING;
554 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
556 if (xhci->quirks & XHCI_NEC_HOST)
557 xhci_ring_cmd_db(xhci);
559 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
560 "Finished xhci_run for USB3 roothub");
561 return 0;
565 * Start the HC after it was halted.
567 * This function is called by the USB core when the HC driver is added.
568 * Its opposite is xhci_stop().
570 * xhci_init() must be called once before this function can be called.
571 * Reset the HC, enable device slot contexts, program DCBAAP, and
572 * set command ring pointer and event ring pointer.
574 * Setup MSI-X vectors and enable interrupts.
576 int xhci_run(struct usb_hcd *hcd)
578 u32 temp;
579 u64 temp_64;
580 int ret;
581 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
583 /* Start the xHCI host controller running only after the USB 2.0 roothub
584 * is setup.
587 hcd->uses_new_polling = 1;
588 if (!usb_hcd_is_primary_hcd(hcd))
589 return xhci_run_finished(xhci);
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
593 ret = xhci_try_enable_msi(hcd);
594 if (ret)
595 return ret;
597 xhci_dbg(xhci, "Command ring memory map follows:\n");
598 xhci_debug_ring(xhci, xhci->cmd_ring);
599 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
600 xhci_dbg_cmd_ptrs(xhci);
602 xhci_dbg(xhci, "ERST memory map follows:\n");
603 xhci_dbg_erst(xhci, &xhci->erst);
604 xhci_dbg(xhci, "Event ring:\n");
605 xhci_debug_ring(xhci, xhci->event_ring);
606 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
607 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
608 temp_64 &= ~ERST_PTR_MASK;
609 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613 "// Set the interrupt modulation register");
614 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
615 temp &= ~ER_IRQ_INTERVAL_MASK;
616 temp |= (u32) 160;
617 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
619 /* Set the HCD state before we enable the irqs */
620 temp = xhci_readl(xhci, &xhci->op_regs->command);
621 temp |= (CMD_EIE);
622 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 "// Enable interrupts, cmd = 0x%x.", temp);
624 xhci_writel(xhci, temp, &xhci->op_regs->command);
626 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
629 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
630 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
631 &xhci->ir_set->irq_pending);
632 xhci_print_ir_set(xhci, 0);
634 if (xhci->quirks & XHCI_NEC_HOST)
635 xhci_queue_vendor_command(xhci, 0, 0, 0,
636 TRB_TYPE(TRB_NEC_GET_FW));
638 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 "Finished xhci_run for USB2 roothub");
640 return 0;
643 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
645 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647 spin_lock_irq(&xhci->lock);
648 xhci_halt(xhci);
650 /* The shared_hcd is going to be deallocated shortly (the USB core only
651 * calls this function when allocation fails in usb_add_hcd(), or
652 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
654 xhci->shared_hcd = NULL;
655 spin_unlock_irq(&xhci->lock);
659 * Stop xHCI driver.
661 * This function is called by the USB core when the HC driver is removed.
662 * Its opposite is xhci_run().
664 * Disable device contexts, disable IRQs, and quiesce the HC.
665 * Reset the HC, finish any completed transactions, and cleanup memory.
667 void xhci_stop(struct usb_hcd *hcd)
669 u32 temp;
670 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
672 if (!usb_hcd_is_primary_hcd(hcd)) {
673 xhci_only_stop_hcd(xhci->shared_hcd);
674 return;
677 spin_lock_irq(&xhci->lock);
678 /* Make sure the xHC is halted for a USB3 roothub
679 * (xhci_stop() could be called as part of failed init).
681 xhci_halt(xhci);
682 xhci_reset(xhci);
683 spin_unlock_irq(&xhci->lock);
685 xhci_cleanup_msix(xhci);
687 /* Deleting Compliance Mode Recovery Timer */
688 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
689 (!(xhci_all_ports_seen_u0(xhci)))) {
690 del_timer_sync(&xhci->comp_mode_recovery_timer);
691 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
692 "%s: compliance mode recovery timer deleted",
693 __func__);
696 if (xhci->quirks & XHCI_AMD_PLL_FIX)
697 usb_amd_dev_put();
699 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
700 "// Disabling event ring interrupts");
701 temp = xhci_readl(xhci, &xhci->op_regs->status);
702 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
703 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
704 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
705 &xhci->ir_set->irq_pending);
706 xhci_print_ir_set(xhci, 0);
708 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
709 xhci_mem_cleanup(xhci);
710 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
711 "xhci_stop completed - status = %x",
712 xhci_readl(xhci, &xhci->op_regs->status));
716 * Shutdown HC (not bus-specific)
718 * This is called when the machine is rebooting or halting. We assume that the
719 * machine will be powered off, and the HC's internal state will be reset.
720 * Don't bother to free memory.
722 * This will only ever be called with the main usb_hcd (the USB3 roothub).
724 void xhci_shutdown(struct usb_hcd *hcd)
726 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
728 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
729 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
731 spin_lock_irq(&xhci->lock);
732 xhci_halt(xhci);
733 /* Workaround for spurious wakeups at shutdown with HSW */
734 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
735 xhci_reset(xhci);
736 spin_unlock_irq(&xhci->lock);
738 xhci_cleanup_msix(xhci);
740 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
741 "xhci_shutdown completed - status = %x",
742 xhci_readl(xhci, &xhci->op_regs->status));
744 /* Yet another workaround for spurious wakeups at shutdown with HSW */
745 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
746 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
749 #ifdef CONFIG_PM
750 static void xhci_save_registers(struct xhci_hcd *xhci)
752 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
753 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
754 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
755 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
756 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
757 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
758 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
759 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
760 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
763 static void xhci_restore_registers(struct xhci_hcd *xhci)
765 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
766 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
767 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
768 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
769 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
770 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
771 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
772 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
773 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
776 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
778 u64 val_64;
780 /* step 2: initialize command ring buffer */
781 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
782 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
783 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
784 xhci->cmd_ring->dequeue) &
785 (u64) ~CMD_RING_RSVD_BITS) |
786 xhci->cmd_ring->cycle_state;
787 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
788 "// Setting command ring address to 0x%llx",
789 (long unsigned long) val_64);
790 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
794 * The whole command ring must be cleared to zero when we suspend the host.
796 * The host doesn't save the command ring pointer in the suspend well, so we
797 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
798 * aligned, because of the reserved bits in the command ring dequeue pointer
799 * register. Therefore, we can't just set the dequeue pointer back in the
800 * middle of the ring (TRBs are 16-byte aligned).
802 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
804 struct xhci_ring *ring;
805 struct xhci_segment *seg;
807 ring = xhci->cmd_ring;
808 seg = ring->deq_seg;
809 do {
810 memset(seg->trbs, 0,
811 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
812 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
813 cpu_to_le32(~TRB_CYCLE);
814 seg = seg->next;
815 } while (seg != ring->deq_seg);
817 /* Reset the software enqueue and dequeue pointers */
818 ring->deq_seg = ring->first_seg;
819 ring->dequeue = ring->first_seg->trbs;
820 ring->enq_seg = ring->deq_seg;
821 ring->enqueue = ring->dequeue;
823 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
825 * Ring is now zeroed, so the HW should look for change of ownership
826 * when the cycle bit is set to 1.
828 ring->cycle_state = 1;
831 * Reset the hardware dequeue pointer.
832 * Yes, this will need to be re-written after resume, but we're paranoid
833 * and want to make sure the hardware doesn't access bogus memory
834 * because, say, the BIOS or an SMI started the host without changing
835 * the command ring pointers.
837 xhci_set_cmd_ring_deq(xhci);
841 * Stop HC (not bus-specific)
843 * This is called when the machine transition into S3/S4 mode.
846 int xhci_suspend(struct xhci_hcd *xhci)
848 int rc = 0;
849 unsigned int delay = XHCI_MAX_HALT_USEC;
850 struct usb_hcd *hcd = xhci_to_hcd(xhci);
851 u32 command;
853 if (hcd->state != HC_STATE_SUSPENDED ||
854 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
855 return -EINVAL;
857 /* Don't poll the roothubs on bus suspend. */
858 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
859 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
860 del_timer_sync(&hcd->rh_timer);
862 spin_lock_irq(&xhci->lock);
863 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
864 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
865 /* step 1: stop endpoint */
866 /* skipped assuming that port suspend has done */
868 /* step 2: clear Run/Stop bit */
869 command = xhci_readl(xhci, &xhci->op_regs->command);
870 command &= ~CMD_RUN;
871 xhci_writel(xhci, command, &xhci->op_regs->command);
873 /* Some chips from Fresco Logic need an extraordinary delay */
874 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
876 if (xhci_handshake(xhci, &xhci->op_regs->status,
877 STS_HALT, STS_HALT, delay)) {
878 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
879 spin_unlock_irq(&xhci->lock);
880 return -ETIMEDOUT;
882 xhci_clear_command_ring(xhci);
884 /* step 3: save registers */
885 xhci_save_registers(xhci);
887 /* step 4: set CSS flag */
888 command = xhci_readl(xhci, &xhci->op_regs->command);
889 command |= CMD_CSS;
890 xhci_writel(xhci, command, &xhci->op_regs->command);
891 if (xhci_handshake(xhci, &xhci->op_regs->status,
892 STS_SAVE, 0, 10 * 1000)) {
893 xhci_warn(xhci, "WARN: xHC save state timeout\n");
894 spin_unlock_irq(&xhci->lock);
895 return -ETIMEDOUT;
897 spin_unlock_irq(&xhci->lock);
900 * Deleting Compliance Mode Recovery Timer because the xHCI Host
901 * is about to be suspended.
903 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
904 (!(xhci_all_ports_seen_u0(xhci)))) {
905 del_timer_sync(&xhci->comp_mode_recovery_timer);
906 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
907 "%s: compliance mode recovery timer deleted",
908 __func__);
911 /* step 5: remove core well power */
912 /* synchronize irq when using MSI-X */
913 xhci_msix_sync_irqs(xhci);
915 return rc;
919 * start xHC (not bus-specific)
921 * This is called when the machine transition from S3/S4 mode.
924 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
926 u32 command, temp = 0;
927 struct usb_hcd *hcd = xhci_to_hcd(xhci);
928 struct usb_hcd *secondary_hcd;
929 int retval = 0;
930 bool comp_timer_running = false;
932 /* Wait a bit if either of the roothubs need to settle from the
933 * transition into bus suspend.
935 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
936 time_before(jiffies,
937 xhci->bus_state[1].next_statechange))
938 msleep(100);
940 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
941 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
943 spin_lock_irq(&xhci->lock);
944 if (xhci->quirks & XHCI_RESET_ON_RESUME)
945 hibernated = true;
947 if (!hibernated) {
948 /* step 1: restore register */
949 xhci_restore_registers(xhci);
950 /* step 2: initialize command ring buffer */
951 xhci_set_cmd_ring_deq(xhci);
952 /* step 3: restore state and start state*/
953 /* step 3: set CRS flag */
954 command = xhci_readl(xhci, &xhci->op_regs->command);
955 command |= CMD_CRS;
956 xhci_writel(xhci, command, &xhci->op_regs->command);
957 if (xhci_handshake(xhci, &xhci->op_regs->status,
958 STS_RESTORE, 0, 10 * 1000)) {
959 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
960 spin_unlock_irq(&xhci->lock);
961 return -ETIMEDOUT;
963 temp = xhci_readl(xhci, &xhci->op_regs->status);
966 /* If restore operation fails, re-initialize the HC during resume */
967 if ((temp & STS_SRE) || hibernated) {
969 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
970 !(xhci_all_ports_seen_u0(xhci))) {
971 del_timer_sync(&xhci->comp_mode_recovery_timer);
972 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
973 "Compliance Mode Recovery Timer deleted!");
976 /* Let the USB core know _both_ roothubs lost power. */
977 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
978 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
980 xhci_dbg(xhci, "Stop HCD\n");
981 xhci_halt(xhci);
982 xhci_reset(xhci);
983 spin_unlock_irq(&xhci->lock);
984 xhci_cleanup_msix(xhci);
986 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
987 temp = xhci_readl(xhci, &xhci->op_regs->status);
988 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
989 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
990 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
991 &xhci->ir_set->irq_pending);
992 xhci_print_ir_set(xhci, 0);
994 xhci_dbg(xhci, "cleaning up memory\n");
995 xhci_mem_cleanup(xhci);
996 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
997 xhci_readl(xhci, &xhci->op_regs->status));
999 /* USB core calls the PCI reinit and start functions twice:
1000 * first with the primary HCD, and then with the secondary HCD.
1001 * If we don't do the same, the host will never be started.
1003 if (!usb_hcd_is_primary_hcd(hcd))
1004 secondary_hcd = hcd;
1005 else
1006 secondary_hcd = xhci->shared_hcd;
1008 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1009 retval = xhci_init(hcd->primary_hcd);
1010 if (retval)
1011 return retval;
1012 comp_timer_running = true;
1014 xhci_dbg(xhci, "Start the primary HCD\n");
1015 retval = xhci_run(hcd->primary_hcd);
1016 if (!retval) {
1017 xhci_dbg(xhci, "Start the secondary HCD\n");
1018 retval = xhci_run(secondary_hcd);
1020 hcd->state = HC_STATE_SUSPENDED;
1021 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1022 goto done;
1025 /* step 4: set Run/Stop bit */
1026 command = xhci_readl(xhci, &xhci->op_regs->command);
1027 command |= CMD_RUN;
1028 xhci_writel(xhci, command, &xhci->op_regs->command);
1029 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1030 0, 250 * 1000);
1032 /* step 5: walk topology and initialize portsc,
1033 * portpmsc and portli
1035 /* this is done in bus_resume */
1037 /* step 6: restart each of the previously
1038 * Running endpoints by ringing their doorbells
1041 spin_unlock_irq(&xhci->lock);
1043 done:
1044 if (retval == 0) {
1045 usb_hcd_resume_root_hub(hcd);
1046 usb_hcd_resume_root_hub(xhci->shared_hcd);
1050 * If system is subject to the Quirk, Compliance Mode Timer needs to
1051 * be re-initialized Always after a system resume. Ports are subject
1052 * to suffer the Compliance Mode issue again. It doesn't matter if
1053 * ports have entered previously to U0 before system's suspension.
1055 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1056 compliance_mode_recovery_timer_init(xhci);
1058 /* Re-enable port polling. */
1059 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1060 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1061 usb_hcd_poll_rh_status(hcd);
1063 return retval;
1065 #endif /* CONFIG_PM */
1067 /*-------------------------------------------------------------------------*/
1070 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1071 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1072 * value to right shift 1 for the bitmask.
1074 * Index = (epnum * 2) + direction - 1,
1075 * where direction = 0 for OUT, 1 for IN.
1076 * For control endpoints, the IN index is used (OUT index is unused), so
1077 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1079 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1081 unsigned int index;
1082 if (usb_endpoint_xfer_control(desc))
1083 index = (unsigned int) (usb_endpoint_num(desc)*2);
1084 else
1085 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1086 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1087 return index;
1090 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1091 * address from the XHCI endpoint index.
1093 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1095 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1096 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1097 return direction | number;
1100 /* Find the flag for this endpoint (for use in the control context). Use the
1101 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1102 * bit 1, etc.
1104 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1106 return 1 << (xhci_get_endpoint_index(desc) + 1);
1109 /* Find the flag for this endpoint (for use in the control context). Use the
1110 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1111 * bit 1, etc.
1113 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1115 return 1 << (ep_index + 1);
1118 /* Compute the last valid endpoint context index. Basically, this is the
1119 * endpoint index plus one. For slot contexts with more than valid endpoint,
1120 * we find the most significant bit set in the added contexts flags.
1121 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1122 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1124 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1126 return fls(added_ctxs) - 1;
1129 /* Returns 1 if the arguments are OK;
1130 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1132 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1133 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1134 const char *func) {
1135 struct xhci_hcd *xhci;
1136 struct xhci_virt_device *virt_dev;
1138 if (!hcd || (check_ep && !ep) || !udev) {
1139 pr_debug("xHCI %s called with invalid args\n", func);
1140 return -EINVAL;
1142 if (!udev->parent) {
1143 pr_debug("xHCI %s called for root hub\n", func);
1144 return 0;
1147 xhci = hcd_to_xhci(hcd);
1148 if (check_virt_dev) {
1149 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1150 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1151 func);
1152 return -EINVAL;
1155 virt_dev = xhci->devs[udev->slot_id];
1156 if (virt_dev->udev != udev) {
1157 xhci_dbg(xhci, "xHCI %s called with udev and "
1158 "virt_dev does not match\n", func);
1159 return -EINVAL;
1163 if (xhci->xhc_state & XHCI_STATE_HALTED)
1164 return -ENODEV;
1166 return 1;
1169 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1170 struct usb_device *udev, struct xhci_command *command,
1171 bool ctx_change, bool must_succeed);
1174 * Full speed devices may have a max packet size greater than 8 bytes, but the
1175 * USB core doesn't know that until it reads the first 8 bytes of the
1176 * descriptor. If the usb_device's max packet size changes after that point,
1177 * we need to issue an evaluate context command and wait on it.
1179 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1180 unsigned int ep_index, struct urb *urb)
1182 struct xhci_container_ctx *in_ctx;
1183 struct xhci_container_ctx *out_ctx;
1184 struct xhci_input_control_ctx *ctrl_ctx;
1185 struct xhci_ep_ctx *ep_ctx;
1186 int max_packet_size;
1187 int hw_max_packet_size;
1188 int ret = 0;
1190 out_ctx = xhci->devs[slot_id]->out_ctx;
1191 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1192 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1193 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1194 if (hw_max_packet_size != max_packet_size) {
1195 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1196 "Max Packet Size for ep 0 changed.");
1197 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1198 "Max packet size in usb_device = %d",
1199 max_packet_size);
1200 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1201 "Max packet size in xHCI HW = %d",
1202 hw_max_packet_size);
1203 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1204 "Issuing evaluate context command.");
1206 /* Set up the input context flags for the command */
1207 /* FIXME: This won't work if a non-default control endpoint
1208 * changes max packet sizes.
1210 in_ctx = xhci->devs[slot_id]->in_ctx;
1211 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1212 if (!ctrl_ctx) {
1213 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1214 __func__);
1215 return -ENOMEM;
1217 /* Set up the modified control endpoint 0 */
1218 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1219 xhci->devs[slot_id]->out_ctx, ep_index);
1221 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1222 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1223 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1225 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1226 ctrl_ctx->drop_flags = 0;
1228 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1229 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1230 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1231 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1233 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1234 true, false);
1236 /* Clean up the input context for later use by bandwidth
1237 * functions.
1239 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1241 return ret;
1245 * non-error returns are a promise to giveback() the urb later
1246 * we drop ownership so next owner (or urb unlink) can get it
1248 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1250 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1251 struct xhci_td *buffer;
1252 unsigned long flags;
1253 int ret = 0;
1254 unsigned int slot_id, ep_index;
1255 struct urb_priv *urb_priv;
1256 int size, i;
1258 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1259 true, true, __func__) <= 0)
1260 return -EINVAL;
1262 slot_id = urb->dev->slot_id;
1263 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1265 if (!HCD_HW_ACCESSIBLE(hcd)) {
1266 if (!in_interrupt())
1267 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1268 ret = -ESHUTDOWN;
1269 goto exit;
1272 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1273 size = urb->number_of_packets;
1274 else
1275 size = 1;
1277 urb_priv = kzalloc(sizeof(struct urb_priv) +
1278 size * sizeof(struct xhci_td *), mem_flags);
1279 if (!urb_priv)
1280 return -ENOMEM;
1282 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1283 if (!buffer) {
1284 kfree(urb_priv);
1285 return -ENOMEM;
1288 for (i = 0; i < size; i++) {
1289 urb_priv->td[i] = buffer;
1290 buffer++;
1293 urb_priv->length = size;
1294 urb_priv->td_cnt = 0;
1295 urb->hcpriv = urb_priv;
1297 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1298 /* Check to see if the max packet size for the default control
1299 * endpoint changed during FS device enumeration
1301 if (urb->dev->speed == USB_SPEED_FULL) {
1302 ret = xhci_check_maxpacket(xhci, slot_id,
1303 ep_index, urb);
1304 if (ret < 0) {
1305 xhci_urb_free_priv(xhci, urb_priv);
1306 urb->hcpriv = NULL;
1307 return ret;
1311 /* We have a spinlock and interrupts disabled, so we must pass
1312 * atomic context to this function, which may allocate memory.
1314 spin_lock_irqsave(&xhci->lock, flags);
1315 if (xhci->xhc_state & XHCI_STATE_DYING)
1316 goto dying;
1317 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1318 slot_id, ep_index);
1319 if (ret)
1320 goto free_priv;
1321 spin_unlock_irqrestore(&xhci->lock, flags);
1322 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1323 spin_lock_irqsave(&xhci->lock, flags);
1324 if (xhci->xhc_state & XHCI_STATE_DYING)
1325 goto dying;
1326 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1327 EP_GETTING_STREAMS) {
1328 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1329 "is transitioning to using streams.\n");
1330 ret = -EINVAL;
1331 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1332 EP_GETTING_NO_STREAMS) {
1333 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1334 "is transitioning to "
1335 "not having streams.\n");
1336 ret = -EINVAL;
1337 } else {
1338 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1339 slot_id, ep_index);
1341 if (ret)
1342 goto free_priv;
1343 spin_unlock_irqrestore(&xhci->lock, flags);
1344 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1345 spin_lock_irqsave(&xhci->lock, flags);
1346 if (xhci->xhc_state & XHCI_STATE_DYING)
1347 goto dying;
1348 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1349 slot_id, ep_index);
1350 if (ret)
1351 goto free_priv;
1352 spin_unlock_irqrestore(&xhci->lock, flags);
1353 } else {
1354 spin_lock_irqsave(&xhci->lock, flags);
1355 if (xhci->xhc_state & XHCI_STATE_DYING)
1356 goto dying;
1357 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1358 slot_id, ep_index);
1359 if (ret)
1360 goto free_priv;
1361 spin_unlock_irqrestore(&xhci->lock, flags);
1363 exit:
1364 return ret;
1365 dying:
1366 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1367 "non-responsive xHCI host.\n",
1368 urb->ep->desc.bEndpointAddress, urb);
1369 ret = -ESHUTDOWN;
1370 free_priv:
1371 xhci_urb_free_priv(xhci, urb_priv);
1372 urb->hcpriv = NULL;
1373 spin_unlock_irqrestore(&xhci->lock, flags);
1374 return ret;
1377 /* Get the right ring for the given URB.
1378 * If the endpoint supports streams, boundary check the URB's stream ID.
1379 * If the endpoint doesn't support streams, return the singular endpoint ring.
1381 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1382 struct urb *urb)
1384 unsigned int slot_id;
1385 unsigned int ep_index;
1386 unsigned int stream_id;
1387 struct xhci_virt_ep *ep;
1389 slot_id = urb->dev->slot_id;
1390 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1391 stream_id = urb->stream_id;
1392 ep = &xhci->devs[slot_id]->eps[ep_index];
1393 /* Common case: no streams */
1394 if (!(ep->ep_state & EP_HAS_STREAMS))
1395 return ep->ring;
1397 if (stream_id == 0) {
1398 xhci_warn(xhci,
1399 "WARN: Slot ID %u, ep index %u has streams, "
1400 "but URB has no stream ID.\n",
1401 slot_id, ep_index);
1402 return NULL;
1405 if (stream_id < ep->stream_info->num_streams)
1406 return ep->stream_info->stream_rings[stream_id];
1408 xhci_warn(xhci,
1409 "WARN: Slot ID %u, ep index %u has "
1410 "stream IDs 1 to %u allocated, "
1411 "but stream ID %u is requested.\n",
1412 slot_id, ep_index,
1413 ep->stream_info->num_streams - 1,
1414 stream_id);
1415 return NULL;
1419 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1420 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1421 * should pick up where it left off in the TD, unless a Set Transfer Ring
1422 * Dequeue Pointer is issued.
1424 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1425 * the ring. Since the ring is a contiguous structure, they can't be physically
1426 * removed. Instead, there are two options:
1428 * 1) If the HC is in the middle of processing the URB to be canceled, we
1429 * simply move the ring's dequeue pointer past those TRBs using the Set
1430 * Transfer Ring Dequeue Pointer command. This will be the common case,
1431 * when drivers timeout on the last submitted URB and attempt to cancel.
1433 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1434 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1435 * HC will need to invalidate the any TRBs it has cached after the stop
1436 * endpoint command, as noted in the xHCI 0.95 errata.
1438 * 3) The TD may have completed by the time the Stop Endpoint Command
1439 * completes, so software needs to handle that case too.
1441 * This function should protect against the TD enqueueing code ringing the
1442 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1443 * It also needs to account for multiple cancellations on happening at the same
1444 * time for the same endpoint.
1446 * Note that this function can be called in any context, or so says
1447 * usb_hcd_unlink_urb()
1449 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1451 unsigned long flags;
1452 int ret, i;
1453 u32 temp;
1454 struct xhci_hcd *xhci;
1455 struct urb_priv *urb_priv;
1456 struct xhci_td *td;
1457 unsigned int ep_index;
1458 struct xhci_ring *ep_ring;
1459 struct xhci_virt_ep *ep;
1461 xhci = hcd_to_xhci(hcd);
1462 spin_lock_irqsave(&xhci->lock, flags);
1463 /* Make sure the URB hasn't completed or been unlinked already */
1464 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1465 if (ret || !urb->hcpriv)
1466 goto done;
1467 temp = xhci_readl(xhci, &xhci->op_regs->status);
1468 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1469 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1470 "HW died, freeing TD.");
1471 urb_priv = urb->hcpriv;
1472 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1473 td = urb_priv->td[i];
1474 if (!list_empty(&td->td_list))
1475 list_del_init(&td->td_list);
1476 if (!list_empty(&td->cancelled_td_list))
1477 list_del_init(&td->cancelled_td_list);
1480 usb_hcd_unlink_urb_from_ep(hcd, urb);
1481 spin_unlock_irqrestore(&xhci->lock, flags);
1482 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1483 xhci_urb_free_priv(xhci, urb_priv);
1484 return ret;
1486 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1487 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1488 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1489 "Ep 0x%x: URB %p to be canceled on "
1490 "non-responsive xHCI host.",
1491 urb->ep->desc.bEndpointAddress, urb);
1492 /* Let the stop endpoint command watchdog timer (which set this
1493 * state) finish cleaning up the endpoint TD lists. We must
1494 * have caught it in the middle of dropping a lock and giving
1495 * back an URB.
1497 goto done;
1500 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1501 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1502 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1503 if (!ep_ring) {
1504 ret = -EINVAL;
1505 goto done;
1508 urb_priv = urb->hcpriv;
1509 i = urb_priv->td_cnt;
1510 if (i < urb_priv->length)
1511 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1512 "Cancel URB %p, dev %s, ep 0x%x, "
1513 "starting at offset 0x%llx",
1514 urb, urb->dev->devpath,
1515 urb->ep->desc.bEndpointAddress,
1516 (unsigned long long) xhci_trb_virt_to_dma(
1517 urb_priv->td[i]->start_seg,
1518 urb_priv->td[i]->first_trb));
1520 for (; i < urb_priv->length; i++) {
1521 td = urb_priv->td[i];
1522 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1525 /* Queue a stop endpoint command, but only if this is
1526 * the first cancellation to be handled.
1528 if (!(ep->ep_state & EP_HALT_PENDING)) {
1529 ep->ep_state |= EP_HALT_PENDING;
1530 ep->stop_cmds_pending++;
1531 ep->stop_cmd_timer.expires = jiffies +
1532 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1533 add_timer(&ep->stop_cmd_timer);
1534 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1535 xhci_ring_cmd_db(xhci);
1537 done:
1538 spin_unlock_irqrestore(&xhci->lock, flags);
1539 return ret;
1542 /* Drop an endpoint from a new bandwidth configuration for this device.
1543 * Only one call to this function is allowed per endpoint before
1544 * check_bandwidth() or reset_bandwidth() must be called.
1545 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1546 * add the endpoint to the schedule with possibly new parameters denoted by a
1547 * different endpoint descriptor in usb_host_endpoint.
1548 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1549 * not allowed.
1551 * The USB core will not allow URBs to be queued to an endpoint that is being
1552 * disabled, so there's no need for mutual exclusion to protect
1553 * the xhci->devs[slot_id] structure.
1555 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1556 struct usb_host_endpoint *ep)
1558 struct xhci_hcd *xhci;
1559 struct xhci_container_ctx *in_ctx, *out_ctx;
1560 struct xhci_input_control_ctx *ctrl_ctx;
1561 struct xhci_slot_ctx *slot_ctx;
1562 unsigned int last_ctx;
1563 unsigned int ep_index;
1564 struct xhci_ep_ctx *ep_ctx;
1565 u32 drop_flag;
1566 u32 new_add_flags, new_drop_flags, new_slot_info;
1567 int ret;
1569 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1570 if (ret <= 0)
1571 return ret;
1572 xhci = hcd_to_xhci(hcd);
1573 if (xhci->xhc_state & XHCI_STATE_DYING)
1574 return -ENODEV;
1576 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1577 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1578 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1579 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1580 __func__, drop_flag);
1581 return 0;
1584 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1585 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1586 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1587 if (!ctrl_ctx) {
1588 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1589 __func__);
1590 return 0;
1593 ep_index = xhci_get_endpoint_index(&ep->desc);
1594 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1595 /* If the HC already knows the endpoint is disabled,
1596 * or the HCD has noted it is disabled, ignore this request
1598 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1599 cpu_to_le32(EP_STATE_DISABLED)) ||
1600 le32_to_cpu(ctrl_ctx->drop_flags) &
1601 xhci_get_endpoint_flag(&ep->desc)) {
1602 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1603 __func__, ep);
1604 return 0;
1607 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1608 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1610 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1611 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1613 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1614 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1615 /* Update the last valid endpoint context, if we deleted the last one */
1616 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1617 LAST_CTX(last_ctx)) {
1618 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1619 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1621 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1623 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1625 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1626 (unsigned int) ep->desc.bEndpointAddress,
1627 udev->slot_id,
1628 (unsigned int) new_drop_flags,
1629 (unsigned int) new_add_flags,
1630 (unsigned int) new_slot_info);
1631 return 0;
1634 /* Add an endpoint to a new possible bandwidth configuration for this device.
1635 * Only one call to this function is allowed per endpoint before
1636 * check_bandwidth() or reset_bandwidth() must be called.
1637 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1638 * add the endpoint to the schedule with possibly new parameters denoted by a
1639 * different endpoint descriptor in usb_host_endpoint.
1640 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1641 * not allowed.
1643 * The USB core will not allow URBs to be queued to an endpoint until the
1644 * configuration or alt setting is installed in the device, so there's no need
1645 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1647 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1648 struct usb_host_endpoint *ep)
1650 struct xhci_hcd *xhci;
1651 struct xhci_container_ctx *in_ctx, *out_ctx;
1652 unsigned int ep_index;
1653 struct xhci_slot_ctx *slot_ctx;
1654 struct xhci_input_control_ctx *ctrl_ctx;
1655 u32 added_ctxs;
1656 unsigned int last_ctx;
1657 u32 new_add_flags, new_drop_flags, new_slot_info;
1658 struct xhci_virt_device *virt_dev;
1659 int ret = 0;
1661 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1662 if (ret <= 0) {
1663 /* So we won't queue a reset ep command for a root hub */
1664 ep->hcpriv = NULL;
1665 return ret;
1667 xhci = hcd_to_xhci(hcd);
1668 if (xhci->xhc_state & XHCI_STATE_DYING)
1669 return -ENODEV;
1671 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1672 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1673 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1674 /* FIXME when we have to issue an evaluate endpoint command to
1675 * deal with ep0 max packet size changing once we get the
1676 * descriptors
1678 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1679 __func__, added_ctxs);
1680 return 0;
1683 virt_dev = xhci->devs[udev->slot_id];
1684 in_ctx = virt_dev->in_ctx;
1685 out_ctx = virt_dev->out_ctx;
1686 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1687 if (!ctrl_ctx) {
1688 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1689 __func__);
1690 return 0;
1693 ep_index = xhci_get_endpoint_index(&ep->desc);
1694 /* If this endpoint is already in use, and the upper layers are trying
1695 * to add it again without dropping it, reject the addition.
1697 if (virt_dev->eps[ep_index].ring &&
1698 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1699 xhci_get_endpoint_flag(&ep->desc))) {
1700 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1701 "without dropping it.\n",
1702 (unsigned int) ep->desc.bEndpointAddress);
1703 return -EINVAL;
1706 /* If the HCD has already noted the endpoint is enabled,
1707 * ignore this request.
1709 if (le32_to_cpu(ctrl_ctx->add_flags) &
1710 xhci_get_endpoint_flag(&ep->desc)) {
1711 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1712 __func__, ep);
1713 return 0;
1717 * Configuration and alternate setting changes must be done in
1718 * process context, not interrupt context (or so documenation
1719 * for usb_set_interface() and usb_set_configuration() claim).
1721 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1722 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1723 __func__, ep->desc.bEndpointAddress);
1724 return -ENOMEM;
1727 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1728 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1730 /* If xhci_endpoint_disable() was called for this endpoint, but the
1731 * xHC hasn't been notified yet through the check_bandwidth() call,
1732 * this re-adds a new state for the endpoint from the new endpoint
1733 * descriptors. We must drop and re-add this endpoint, so we leave the
1734 * drop flags alone.
1736 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1738 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1739 /* Update the last valid endpoint context, if we just added one past */
1740 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1741 LAST_CTX(last_ctx)) {
1742 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1743 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1745 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1747 /* Store the usb_device pointer for later use */
1748 ep->hcpriv = udev;
1750 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1751 (unsigned int) ep->desc.bEndpointAddress,
1752 udev->slot_id,
1753 (unsigned int) new_drop_flags,
1754 (unsigned int) new_add_flags,
1755 (unsigned int) new_slot_info);
1756 return 0;
1759 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1761 struct xhci_input_control_ctx *ctrl_ctx;
1762 struct xhci_ep_ctx *ep_ctx;
1763 struct xhci_slot_ctx *slot_ctx;
1764 int i;
1766 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1767 if (!ctrl_ctx) {
1768 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1769 __func__);
1770 return;
1773 /* When a device's add flag and drop flag are zero, any subsequent
1774 * configure endpoint command will leave that endpoint's state
1775 * untouched. Make sure we don't leave any old state in the input
1776 * endpoint contexts.
1778 ctrl_ctx->drop_flags = 0;
1779 ctrl_ctx->add_flags = 0;
1780 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1781 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1782 /* Endpoint 0 is always valid */
1783 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1784 for (i = 1; i < 31; ++i) {
1785 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1786 ep_ctx->ep_info = 0;
1787 ep_ctx->ep_info2 = 0;
1788 ep_ctx->deq = 0;
1789 ep_ctx->tx_info = 0;
1793 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1794 struct usb_device *udev, u32 *cmd_status)
1796 int ret;
1798 switch (*cmd_status) {
1799 case COMP_ENOMEM:
1800 dev_warn(&udev->dev, "Not enough host controller resources "
1801 "for new device state.\n");
1802 ret = -ENOMEM;
1803 /* FIXME: can we allocate more resources for the HC? */
1804 break;
1805 case COMP_BW_ERR:
1806 case COMP_2ND_BW_ERR:
1807 dev_warn(&udev->dev, "Not enough bandwidth "
1808 "for new device state.\n");
1809 ret = -ENOSPC;
1810 /* FIXME: can we go back to the old state? */
1811 break;
1812 case COMP_TRB_ERR:
1813 /* the HCD set up something wrong */
1814 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1815 "add flag = 1, "
1816 "and endpoint is not disabled.\n");
1817 ret = -EINVAL;
1818 break;
1819 case COMP_DEV_ERR:
1820 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1821 "configure command.\n");
1822 ret = -ENODEV;
1823 break;
1824 case COMP_SUCCESS:
1825 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1826 "Successful Endpoint Configure command");
1827 ret = 0;
1828 break;
1829 default:
1830 xhci_err(xhci, "ERROR: unexpected command completion "
1831 "code 0x%x.\n", *cmd_status);
1832 ret = -EINVAL;
1833 break;
1835 return ret;
1838 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1839 struct usb_device *udev, u32 *cmd_status)
1841 int ret;
1842 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1844 switch (*cmd_status) {
1845 case COMP_EINVAL:
1846 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1847 "context command.\n");
1848 ret = -EINVAL;
1849 break;
1850 case COMP_EBADSLT:
1851 dev_warn(&udev->dev, "WARN: slot not enabled for"
1852 "evaluate context command.\n");
1853 ret = -EINVAL;
1854 break;
1855 case COMP_CTX_STATE:
1856 dev_warn(&udev->dev, "WARN: invalid context state for "
1857 "evaluate context command.\n");
1858 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1859 ret = -EINVAL;
1860 break;
1861 case COMP_DEV_ERR:
1862 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1863 "context command.\n");
1864 ret = -ENODEV;
1865 break;
1866 case COMP_MEL_ERR:
1867 /* Max Exit Latency too large error */
1868 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1869 ret = -EINVAL;
1870 break;
1871 case COMP_SUCCESS:
1872 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1873 "Successful evaluate context command");
1874 ret = 0;
1875 break;
1876 default:
1877 xhci_err(xhci, "ERROR: unexpected command completion "
1878 "code 0x%x.\n", *cmd_status);
1879 ret = -EINVAL;
1880 break;
1882 return ret;
1885 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1886 struct xhci_input_control_ctx *ctrl_ctx)
1888 u32 valid_add_flags;
1889 u32 valid_drop_flags;
1891 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1892 * (bit 1). The default control endpoint is added during the Address
1893 * Device command and is never removed until the slot is disabled.
1895 valid_add_flags = ctrl_ctx->add_flags >> 2;
1896 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1898 /* Use hweight32 to count the number of ones in the add flags, or
1899 * number of endpoints added. Don't count endpoints that are changed
1900 * (both added and dropped).
1902 return hweight32(valid_add_flags) -
1903 hweight32(valid_add_flags & valid_drop_flags);
1906 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1907 struct xhci_input_control_ctx *ctrl_ctx)
1909 u32 valid_add_flags;
1910 u32 valid_drop_flags;
1912 valid_add_flags = ctrl_ctx->add_flags >> 2;
1913 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1915 return hweight32(valid_drop_flags) -
1916 hweight32(valid_add_flags & valid_drop_flags);
1920 * We need to reserve the new number of endpoints before the configure endpoint
1921 * command completes. We can't subtract the dropped endpoints from the number
1922 * of active endpoints until the command completes because we can oversubscribe
1923 * the host in this case:
1925 * - the first configure endpoint command drops more endpoints than it adds
1926 * - a second configure endpoint command that adds more endpoints is queued
1927 * - the first configure endpoint command fails, so the config is unchanged
1928 * - the second command may succeed, even though there isn't enough resources
1930 * Must be called with xhci->lock held.
1932 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1933 struct xhci_input_control_ctx *ctrl_ctx)
1935 u32 added_eps;
1937 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1938 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1939 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1940 "Not enough ep ctxs: "
1941 "%u active, need to add %u, limit is %u.",
1942 xhci->num_active_eps, added_eps,
1943 xhci->limit_active_eps);
1944 return -ENOMEM;
1946 xhci->num_active_eps += added_eps;
1947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948 "Adding %u ep ctxs, %u now active.", added_eps,
1949 xhci->num_active_eps);
1950 return 0;
1954 * The configure endpoint was failed by the xHC for some other reason, so we
1955 * need to revert the resources that failed configuration would have used.
1957 * Must be called with xhci->lock held.
1959 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1960 struct xhci_input_control_ctx *ctrl_ctx)
1962 u32 num_failed_eps;
1964 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1965 xhci->num_active_eps -= num_failed_eps;
1966 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1967 "Removing %u failed ep ctxs, %u now active.",
1968 num_failed_eps,
1969 xhci->num_active_eps);
1973 * Now that the command has completed, clean up the active endpoint count by
1974 * subtracting out the endpoints that were dropped (but not changed).
1976 * Must be called with xhci->lock held.
1978 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1979 struct xhci_input_control_ctx *ctrl_ctx)
1981 u32 num_dropped_eps;
1983 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1984 xhci->num_active_eps -= num_dropped_eps;
1985 if (num_dropped_eps)
1986 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1987 "Removing %u dropped ep ctxs, %u now active.",
1988 num_dropped_eps,
1989 xhci->num_active_eps);
1992 static unsigned int xhci_get_block_size(struct usb_device *udev)
1994 switch (udev->speed) {
1995 case USB_SPEED_LOW:
1996 case USB_SPEED_FULL:
1997 return FS_BLOCK;
1998 case USB_SPEED_HIGH:
1999 return HS_BLOCK;
2000 case USB_SPEED_SUPER:
2001 return SS_BLOCK;
2002 case USB_SPEED_UNKNOWN:
2003 case USB_SPEED_WIRELESS:
2004 default:
2005 /* Should never happen */
2006 return 1;
2010 static unsigned int
2011 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2013 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2014 return LS_OVERHEAD;
2015 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2016 return FS_OVERHEAD;
2017 return HS_OVERHEAD;
2020 /* If we are changing a LS/FS device under a HS hub,
2021 * make sure (if we are activating a new TT) that the HS bus has enough
2022 * bandwidth for this new TT.
2024 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2025 struct xhci_virt_device *virt_dev,
2026 int old_active_eps)
2028 struct xhci_interval_bw_table *bw_table;
2029 struct xhci_tt_bw_info *tt_info;
2031 /* Find the bandwidth table for the root port this TT is attached to. */
2032 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2033 tt_info = virt_dev->tt_info;
2034 /* If this TT already had active endpoints, the bandwidth for this TT
2035 * has already been added. Removing all periodic endpoints (and thus
2036 * making the TT enactive) will only decrease the bandwidth used.
2038 if (old_active_eps)
2039 return 0;
2040 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2041 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2042 return -ENOMEM;
2043 return 0;
2045 /* Not sure why we would have no new active endpoints...
2047 * Maybe because of an Evaluate Context change for a hub update or a
2048 * control endpoint 0 max packet size change?
2049 * FIXME: skip the bandwidth calculation in that case.
2051 return 0;
2054 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2055 struct xhci_virt_device *virt_dev)
2057 unsigned int bw_reserved;
2059 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2060 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2061 return -ENOMEM;
2063 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2064 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2065 return -ENOMEM;
2067 return 0;
2071 * This algorithm is a very conservative estimate of the worst-case scheduling
2072 * scenario for any one interval. The hardware dynamically schedules the
2073 * packets, so we can't tell which microframe could be the limiting factor in
2074 * the bandwidth scheduling. This only takes into account periodic endpoints.
2076 * Obviously, we can't solve an NP complete problem to find the minimum worst
2077 * case scenario. Instead, we come up with an estimate that is no less than
2078 * the worst case bandwidth used for any one microframe, but may be an
2079 * over-estimate.
2081 * We walk the requirements for each endpoint by interval, starting with the
2082 * smallest interval, and place packets in the schedule where there is only one
2083 * possible way to schedule packets for that interval. In order to simplify
2084 * this algorithm, we record the largest max packet size for each interval, and
2085 * assume all packets will be that size.
2087 * For interval 0, we obviously must schedule all packets for each interval.
2088 * The bandwidth for interval 0 is just the amount of data to be transmitted
2089 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2090 * the number of packets).
2092 * For interval 1, we have two possible microframes to schedule those packets
2093 * in. For this algorithm, if we can schedule the same number of packets for
2094 * each possible scheduling opportunity (each microframe), we will do so. The
2095 * remaining number of packets will be saved to be transmitted in the gaps in
2096 * the next interval's scheduling sequence.
2098 * As we move those remaining packets to be scheduled with interval 2 packets,
2099 * we have to double the number of remaining packets to transmit. This is
2100 * because the intervals are actually powers of 2, and we would be transmitting
2101 * the previous interval's packets twice in this interval. We also have to be
2102 * sure that when we look at the largest max packet size for this interval, we
2103 * also look at the largest max packet size for the remaining packets and take
2104 * the greater of the two.
2106 * The algorithm continues to evenly distribute packets in each scheduling
2107 * opportunity, and push the remaining packets out, until we get to the last
2108 * interval. Then those packets and their associated overhead are just added
2109 * to the bandwidth used.
2111 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2112 struct xhci_virt_device *virt_dev,
2113 int old_active_eps)
2115 unsigned int bw_reserved;
2116 unsigned int max_bandwidth;
2117 unsigned int bw_used;
2118 unsigned int block_size;
2119 struct xhci_interval_bw_table *bw_table;
2120 unsigned int packet_size = 0;
2121 unsigned int overhead = 0;
2122 unsigned int packets_transmitted = 0;
2123 unsigned int packets_remaining = 0;
2124 unsigned int i;
2126 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2127 return xhci_check_ss_bw(xhci, virt_dev);
2129 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2130 max_bandwidth = HS_BW_LIMIT;
2131 /* Convert percent of bus BW reserved to blocks reserved */
2132 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2133 } else {
2134 max_bandwidth = FS_BW_LIMIT;
2135 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2138 bw_table = virt_dev->bw_table;
2139 /* We need to translate the max packet size and max ESIT payloads into
2140 * the units the hardware uses.
2142 block_size = xhci_get_block_size(virt_dev->udev);
2144 /* If we are manipulating a LS/FS device under a HS hub, double check
2145 * that the HS bus has enough bandwidth if we are activing a new TT.
2147 if (virt_dev->tt_info) {
2148 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2149 "Recalculating BW for rootport %u",
2150 virt_dev->real_port);
2151 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2152 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2153 "newly activated TT.\n");
2154 return -ENOMEM;
2156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157 "Recalculating BW for TT slot %u port %u",
2158 virt_dev->tt_info->slot_id,
2159 virt_dev->tt_info->ttport);
2160 } else {
2161 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2162 "Recalculating BW for rootport %u",
2163 virt_dev->real_port);
2166 /* Add in how much bandwidth will be used for interval zero, or the
2167 * rounded max ESIT payload + number of packets * largest overhead.
2169 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2170 bw_table->interval_bw[0].num_packets *
2171 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2173 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2174 unsigned int bw_added;
2175 unsigned int largest_mps;
2176 unsigned int interval_overhead;
2179 * How many packets could we transmit in this interval?
2180 * If packets didn't fit in the previous interval, we will need
2181 * to transmit that many packets twice within this interval.
2183 packets_remaining = 2 * packets_remaining +
2184 bw_table->interval_bw[i].num_packets;
2186 /* Find the largest max packet size of this or the previous
2187 * interval.
2189 if (list_empty(&bw_table->interval_bw[i].endpoints))
2190 largest_mps = 0;
2191 else {
2192 struct xhci_virt_ep *virt_ep;
2193 struct list_head *ep_entry;
2195 ep_entry = bw_table->interval_bw[i].endpoints.next;
2196 virt_ep = list_entry(ep_entry,
2197 struct xhci_virt_ep, bw_endpoint_list);
2198 /* Convert to blocks, rounding up */
2199 largest_mps = DIV_ROUND_UP(
2200 virt_ep->bw_info.max_packet_size,
2201 block_size);
2203 if (largest_mps > packet_size)
2204 packet_size = largest_mps;
2206 /* Use the larger overhead of this or the previous interval. */
2207 interval_overhead = xhci_get_largest_overhead(
2208 &bw_table->interval_bw[i]);
2209 if (interval_overhead > overhead)
2210 overhead = interval_overhead;
2212 /* How many packets can we evenly distribute across
2213 * (1 << (i + 1)) possible scheduling opportunities?
2215 packets_transmitted = packets_remaining >> (i + 1);
2217 /* Add in the bandwidth used for those scheduled packets */
2218 bw_added = packets_transmitted * (overhead + packet_size);
2220 /* How many packets do we have remaining to transmit? */
2221 packets_remaining = packets_remaining % (1 << (i + 1));
2223 /* What largest max packet size should those packets have? */
2224 /* If we've transmitted all packets, don't carry over the
2225 * largest packet size.
2227 if (packets_remaining == 0) {
2228 packet_size = 0;
2229 overhead = 0;
2230 } else if (packets_transmitted > 0) {
2231 /* Otherwise if we do have remaining packets, and we've
2232 * scheduled some packets in this interval, take the
2233 * largest max packet size from endpoints with this
2234 * interval.
2236 packet_size = largest_mps;
2237 overhead = interval_overhead;
2239 /* Otherwise carry over packet_size and overhead from the last
2240 * time we had a remainder.
2242 bw_used += bw_added;
2243 if (bw_used > max_bandwidth) {
2244 xhci_warn(xhci, "Not enough bandwidth. "
2245 "Proposed: %u, Max: %u\n",
2246 bw_used, max_bandwidth);
2247 return -ENOMEM;
2251 * Ok, we know we have some packets left over after even-handedly
2252 * scheduling interval 15. We don't know which microframes they will
2253 * fit into, so we over-schedule and say they will be scheduled every
2254 * microframe.
2256 if (packets_remaining > 0)
2257 bw_used += overhead + packet_size;
2259 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2260 unsigned int port_index = virt_dev->real_port - 1;
2262 /* OK, we're manipulating a HS device attached to a
2263 * root port bandwidth domain. Include the number of active TTs
2264 * in the bandwidth used.
2266 bw_used += TT_HS_OVERHEAD *
2267 xhci->rh_bw[port_index].num_active_tts;
2270 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2271 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2272 "Available: %u " "percent",
2273 bw_used, max_bandwidth, bw_reserved,
2274 (max_bandwidth - bw_used - bw_reserved) * 100 /
2275 max_bandwidth);
2277 bw_used += bw_reserved;
2278 if (bw_used > max_bandwidth) {
2279 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2280 bw_used, max_bandwidth);
2281 return -ENOMEM;
2284 bw_table->bw_used = bw_used;
2285 return 0;
2288 static bool xhci_is_async_ep(unsigned int ep_type)
2290 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2291 ep_type != ISOC_IN_EP &&
2292 ep_type != INT_IN_EP);
2295 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2297 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2300 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2302 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2304 if (ep_bw->ep_interval == 0)
2305 return SS_OVERHEAD_BURST +
2306 (ep_bw->mult * ep_bw->num_packets *
2307 (SS_OVERHEAD + mps));
2308 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2309 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2310 1 << ep_bw->ep_interval);
2314 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2315 struct xhci_bw_info *ep_bw,
2316 struct xhci_interval_bw_table *bw_table,
2317 struct usb_device *udev,
2318 struct xhci_virt_ep *virt_ep,
2319 struct xhci_tt_bw_info *tt_info)
2321 struct xhci_interval_bw *interval_bw;
2322 int normalized_interval;
2324 if (xhci_is_async_ep(ep_bw->type))
2325 return;
2327 if (udev->speed == USB_SPEED_SUPER) {
2328 if (xhci_is_sync_in_ep(ep_bw->type))
2329 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2330 xhci_get_ss_bw_consumed(ep_bw);
2331 else
2332 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2333 xhci_get_ss_bw_consumed(ep_bw);
2334 return;
2337 /* SuperSpeed endpoints never get added to intervals in the table, so
2338 * this check is only valid for HS/FS/LS devices.
2340 if (list_empty(&virt_ep->bw_endpoint_list))
2341 return;
2342 /* For LS/FS devices, we need to translate the interval expressed in
2343 * microframes to frames.
2345 if (udev->speed == USB_SPEED_HIGH)
2346 normalized_interval = ep_bw->ep_interval;
2347 else
2348 normalized_interval = ep_bw->ep_interval - 3;
2350 if (normalized_interval == 0)
2351 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2352 interval_bw = &bw_table->interval_bw[normalized_interval];
2353 interval_bw->num_packets -= ep_bw->num_packets;
2354 switch (udev->speed) {
2355 case USB_SPEED_LOW:
2356 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2357 break;
2358 case USB_SPEED_FULL:
2359 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2360 break;
2361 case USB_SPEED_HIGH:
2362 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2363 break;
2364 case USB_SPEED_SUPER:
2365 case USB_SPEED_UNKNOWN:
2366 case USB_SPEED_WIRELESS:
2367 /* Should never happen because only LS/FS/HS endpoints will get
2368 * added to the endpoint list.
2370 return;
2372 if (tt_info)
2373 tt_info->active_eps -= 1;
2374 list_del_init(&virt_ep->bw_endpoint_list);
2377 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2378 struct xhci_bw_info *ep_bw,
2379 struct xhci_interval_bw_table *bw_table,
2380 struct usb_device *udev,
2381 struct xhci_virt_ep *virt_ep,
2382 struct xhci_tt_bw_info *tt_info)
2384 struct xhci_interval_bw *interval_bw;
2385 struct xhci_virt_ep *smaller_ep;
2386 int normalized_interval;
2388 if (xhci_is_async_ep(ep_bw->type))
2389 return;
2391 if (udev->speed == USB_SPEED_SUPER) {
2392 if (xhci_is_sync_in_ep(ep_bw->type))
2393 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2394 xhci_get_ss_bw_consumed(ep_bw);
2395 else
2396 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2397 xhci_get_ss_bw_consumed(ep_bw);
2398 return;
2401 /* For LS/FS devices, we need to translate the interval expressed in
2402 * microframes to frames.
2404 if (udev->speed == USB_SPEED_HIGH)
2405 normalized_interval = ep_bw->ep_interval;
2406 else
2407 normalized_interval = ep_bw->ep_interval - 3;
2409 if (normalized_interval == 0)
2410 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2411 interval_bw = &bw_table->interval_bw[normalized_interval];
2412 interval_bw->num_packets += ep_bw->num_packets;
2413 switch (udev->speed) {
2414 case USB_SPEED_LOW:
2415 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2416 break;
2417 case USB_SPEED_FULL:
2418 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2419 break;
2420 case USB_SPEED_HIGH:
2421 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2422 break;
2423 case USB_SPEED_SUPER:
2424 case USB_SPEED_UNKNOWN:
2425 case USB_SPEED_WIRELESS:
2426 /* Should never happen because only LS/FS/HS endpoints will get
2427 * added to the endpoint list.
2429 return;
2432 if (tt_info)
2433 tt_info->active_eps += 1;
2434 /* Insert the endpoint into the list, largest max packet size first. */
2435 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2436 bw_endpoint_list) {
2437 if (ep_bw->max_packet_size >=
2438 smaller_ep->bw_info.max_packet_size) {
2439 /* Add the new ep before the smaller endpoint */
2440 list_add_tail(&virt_ep->bw_endpoint_list,
2441 &smaller_ep->bw_endpoint_list);
2442 return;
2445 /* Add the new endpoint at the end of the list. */
2446 list_add_tail(&virt_ep->bw_endpoint_list,
2447 &interval_bw->endpoints);
2450 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2451 struct xhci_virt_device *virt_dev,
2452 int old_active_eps)
2454 struct xhci_root_port_bw_info *rh_bw_info;
2455 if (!virt_dev->tt_info)
2456 return;
2458 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2459 if (old_active_eps == 0 &&
2460 virt_dev->tt_info->active_eps != 0) {
2461 rh_bw_info->num_active_tts += 1;
2462 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2463 } else if (old_active_eps != 0 &&
2464 virt_dev->tt_info->active_eps == 0) {
2465 rh_bw_info->num_active_tts -= 1;
2466 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2470 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2471 struct xhci_virt_device *virt_dev,
2472 struct xhci_container_ctx *in_ctx)
2474 struct xhci_bw_info ep_bw_info[31];
2475 int i;
2476 struct xhci_input_control_ctx *ctrl_ctx;
2477 int old_active_eps = 0;
2479 if (virt_dev->tt_info)
2480 old_active_eps = virt_dev->tt_info->active_eps;
2482 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2483 if (!ctrl_ctx) {
2484 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2485 __func__);
2486 return -ENOMEM;
2489 for (i = 0; i < 31; i++) {
2490 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2491 continue;
2493 /* Make a copy of the BW info in case we need to revert this */
2494 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2495 sizeof(ep_bw_info[i]));
2496 /* Drop the endpoint from the interval table if the endpoint is
2497 * being dropped or changed.
2499 if (EP_IS_DROPPED(ctrl_ctx, i))
2500 xhci_drop_ep_from_interval_table(xhci,
2501 &virt_dev->eps[i].bw_info,
2502 virt_dev->bw_table,
2503 virt_dev->udev,
2504 &virt_dev->eps[i],
2505 virt_dev->tt_info);
2507 /* Overwrite the information stored in the endpoints' bw_info */
2508 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2509 for (i = 0; i < 31; i++) {
2510 /* Add any changed or added endpoints to the interval table */
2511 if (EP_IS_ADDED(ctrl_ctx, i))
2512 xhci_add_ep_to_interval_table(xhci,
2513 &virt_dev->eps[i].bw_info,
2514 virt_dev->bw_table,
2515 virt_dev->udev,
2516 &virt_dev->eps[i],
2517 virt_dev->tt_info);
2520 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2521 /* Ok, this fits in the bandwidth we have.
2522 * Update the number of active TTs.
2524 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2525 return 0;
2528 /* We don't have enough bandwidth for this, revert the stored info. */
2529 for (i = 0; i < 31; i++) {
2530 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2531 continue;
2533 /* Drop the new copies of any added or changed endpoints from
2534 * the interval table.
2536 if (EP_IS_ADDED(ctrl_ctx, i)) {
2537 xhci_drop_ep_from_interval_table(xhci,
2538 &virt_dev->eps[i].bw_info,
2539 virt_dev->bw_table,
2540 virt_dev->udev,
2541 &virt_dev->eps[i],
2542 virt_dev->tt_info);
2544 /* Revert the endpoint back to its old information */
2545 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2546 sizeof(ep_bw_info[i]));
2547 /* Add any changed or dropped endpoints back into the table */
2548 if (EP_IS_DROPPED(ctrl_ctx, i))
2549 xhci_add_ep_to_interval_table(xhci,
2550 &virt_dev->eps[i].bw_info,
2551 virt_dev->bw_table,
2552 virt_dev->udev,
2553 &virt_dev->eps[i],
2554 virt_dev->tt_info);
2556 return -ENOMEM;
2560 /* Issue a configure endpoint command or evaluate context command
2561 * and wait for it to finish.
2563 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2564 struct usb_device *udev,
2565 struct xhci_command *command,
2566 bool ctx_change, bool must_succeed)
2568 int ret;
2569 int timeleft;
2570 unsigned long flags;
2571 struct xhci_container_ctx *in_ctx;
2572 struct xhci_input_control_ctx *ctrl_ctx;
2573 struct completion *cmd_completion;
2574 u32 *cmd_status;
2575 struct xhci_virt_device *virt_dev;
2576 union xhci_trb *cmd_trb;
2578 spin_lock_irqsave(&xhci->lock, flags);
2579 virt_dev = xhci->devs[udev->slot_id];
2581 if (command)
2582 in_ctx = command->in_ctx;
2583 else
2584 in_ctx = virt_dev->in_ctx;
2585 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2586 if (!ctrl_ctx) {
2587 spin_unlock_irqrestore(&xhci->lock, flags);
2588 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2589 __func__);
2590 return -ENOMEM;
2593 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2594 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2595 spin_unlock_irqrestore(&xhci->lock, flags);
2596 xhci_warn(xhci, "Not enough host resources, "
2597 "active endpoint contexts = %u\n",
2598 xhci->num_active_eps);
2599 return -ENOMEM;
2601 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2602 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2603 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2604 xhci_free_host_resources(xhci, ctrl_ctx);
2605 spin_unlock_irqrestore(&xhci->lock, flags);
2606 xhci_warn(xhci, "Not enough bandwidth\n");
2607 return -ENOMEM;
2610 if (command) {
2611 cmd_completion = command->completion;
2612 cmd_status = &command->status;
2613 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2614 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2615 } else {
2616 cmd_completion = &virt_dev->cmd_completion;
2617 cmd_status = &virt_dev->cmd_status;
2619 init_completion(cmd_completion);
2621 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2622 if (!ctx_change)
2623 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2624 udev->slot_id, must_succeed);
2625 else
2626 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2627 udev->slot_id, must_succeed);
2628 if (ret < 0) {
2629 if (command)
2630 list_del(&command->cmd_list);
2631 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2632 xhci_free_host_resources(xhci, ctrl_ctx);
2633 spin_unlock_irqrestore(&xhci->lock, flags);
2634 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2635 "FIXME allocate a new ring segment");
2636 return -ENOMEM;
2638 xhci_ring_cmd_db(xhci);
2639 spin_unlock_irqrestore(&xhci->lock, flags);
2641 /* Wait for the configure endpoint command to complete */
2642 timeleft = wait_for_completion_interruptible_timeout(
2643 cmd_completion,
2644 XHCI_CMD_DEFAULT_TIMEOUT);
2645 if (timeleft <= 0) {
2646 xhci_warn(xhci, "%s while waiting for %s command\n",
2647 timeleft == 0 ? "Timeout" : "Signal",
2648 ctx_change == 0 ?
2649 "configure endpoint" :
2650 "evaluate context");
2651 /* cancel the configure endpoint command */
2652 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2653 if (ret < 0)
2654 return ret;
2655 return -ETIME;
2658 if (!ctx_change)
2659 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2660 else
2661 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2663 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2664 spin_lock_irqsave(&xhci->lock, flags);
2665 /* If the command failed, remove the reserved resources.
2666 * Otherwise, clean up the estimate to include dropped eps.
2668 if (ret)
2669 xhci_free_host_resources(xhci, ctrl_ctx);
2670 else
2671 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2672 spin_unlock_irqrestore(&xhci->lock, flags);
2674 return ret;
2677 /* Called after one or more calls to xhci_add_endpoint() or
2678 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2679 * to call xhci_reset_bandwidth().
2681 * Since we are in the middle of changing either configuration or
2682 * installing a new alt setting, the USB core won't allow URBs to be
2683 * enqueued for any endpoint on the old config or interface. Nothing
2684 * else should be touching the xhci->devs[slot_id] structure, so we
2685 * don't need to take the xhci->lock for manipulating that.
2687 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2689 int i;
2690 int ret = 0;
2691 struct xhci_hcd *xhci;
2692 struct xhci_virt_device *virt_dev;
2693 struct xhci_input_control_ctx *ctrl_ctx;
2694 struct xhci_slot_ctx *slot_ctx;
2696 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2697 if (ret <= 0)
2698 return ret;
2699 xhci = hcd_to_xhci(hcd);
2700 if (xhci->xhc_state & XHCI_STATE_DYING)
2701 return -ENODEV;
2703 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2704 virt_dev = xhci->devs[udev->slot_id];
2706 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2707 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2708 if (!ctrl_ctx) {
2709 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2710 __func__);
2711 return -ENOMEM;
2713 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2714 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2715 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2717 /* Don't issue the command if there's no endpoints to update. */
2718 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2719 ctrl_ctx->drop_flags == 0)
2720 return 0;
2722 xhci_dbg(xhci, "New Input Control Context:\n");
2723 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2724 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2725 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2727 ret = xhci_configure_endpoint(xhci, udev, NULL,
2728 false, false);
2729 if (ret) {
2730 /* Callee should call reset_bandwidth() */
2731 return ret;
2734 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2735 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2736 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2738 /* Free any rings that were dropped, but not changed. */
2739 for (i = 1; i < 31; ++i) {
2740 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2741 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2742 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2744 xhci_zero_in_ctx(xhci, virt_dev);
2746 * Install any rings for completely new endpoints or changed endpoints,
2747 * and free or cache any old rings from changed endpoints.
2749 for (i = 1; i < 31; ++i) {
2750 if (!virt_dev->eps[i].new_ring)
2751 continue;
2752 /* Only cache or free the old ring if it exists.
2753 * It may not if this is the first add of an endpoint.
2755 if (virt_dev->eps[i].ring) {
2756 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2758 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2759 virt_dev->eps[i].new_ring = NULL;
2762 return ret;
2765 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2767 struct xhci_hcd *xhci;
2768 struct xhci_virt_device *virt_dev;
2769 int i, ret;
2771 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2772 if (ret <= 0)
2773 return;
2774 xhci = hcd_to_xhci(hcd);
2776 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2777 virt_dev = xhci->devs[udev->slot_id];
2778 /* Free any rings allocated for added endpoints */
2779 for (i = 0; i < 31; ++i) {
2780 if (virt_dev->eps[i].new_ring) {
2781 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2782 virt_dev->eps[i].new_ring = NULL;
2785 xhci_zero_in_ctx(xhci, virt_dev);
2788 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2789 struct xhci_container_ctx *in_ctx,
2790 struct xhci_container_ctx *out_ctx,
2791 struct xhci_input_control_ctx *ctrl_ctx,
2792 u32 add_flags, u32 drop_flags)
2794 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2795 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2796 xhci_slot_copy(xhci, in_ctx, out_ctx);
2797 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2799 xhci_dbg(xhci, "Input Context:\n");
2800 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2803 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2804 unsigned int slot_id, unsigned int ep_index,
2805 struct xhci_dequeue_state *deq_state)
2807 struct xhci_input_control_ctx *ctrl_ctx;
2808 struct xhci_container_ctx *in_ctx;
2809 struct xhci_ep_ctx *ep_ctx;
2810 u32 added_ctxs;
2811 dma_addr_t addr;
2813 in_ctx = xhci->devs[slot_id]->in_ctx;
2814 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2815 if (!ctrl_ctx) {
2816 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2817 __func__);
2818 return;
2821 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2822 xhci->devs[slot_id]->out_ctx, ep_index);
2823 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2824 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2825 deq_state->new_deq_ptr);
2826 if (addr == 0) {
2827 xhci_warn(xhci, "WARN Cannot submit config ep after "
2828 "reset ep command\n");
2829 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2830 deq_state->new_deq_seg,
2831 deq_state->new_deq_ptr);
2832 return;
2834 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2836 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2837 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2838 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2839 added_ctxs, added_ctxs);
2842 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2843 struct usb_device *udev, unsigned int ep_index)
2845 struct xhci_dequeue_state deq_state;
2846 struct xhci_virt_ep *ep;
2848 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2849 "Cleaning up stalled endpoint ring");
2850 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2851 /* We need to move the HW's dequeue pointer past this TD,
2852 * or it will attempt to resend it on the next doorbell ring.
2854 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2855 ep_index, ep->stopped_stream, ep->stopped_td,
2856 &deq_state);
2858 /* HW with the reset endpoint quirk will use the saved dequeue state to
2859 * issue a configure endpoint command later.
2861 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2862 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2863 "Queueing new dequeue state");
2864 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2865 ep_index, ep->stopped_stream, &deq_state);
2866 } else {
2867 /* Better hope no one uses the input context between now and the
2868 * reset endpoint completion!
2869 * XXX: No idea how this hardware will react when stream rings
2870 * are enabled.
2872 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2873 "Setting up input context for "
2874 "configure endpoint command");
2875 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2876 ep_index, &deq_state);
2880 /* Deal with stalled endpoints. The core should have sent the control message
2881 * to clear the halt condition. However, we need to make the xHCI hardware
2882 * reset its sequence number, since a device will expect a sequence number of
2883 * zero after the halt condition is cleared.
2884 * Context: in_interrupt
2886 void xhci_endpoint_reset(struct usb_hcd *hcd,
2887 struct usb_host_endpoint *ep)
2889 struct xhci_hcd *xhci;
2890 struct usb_device *udev;
2891 unsigned int ep_index;
2892 unsigned long flags;
2893 int ret;
2894 struct xhci_virt_ep *virt_ep;
2896 xhci = hcd_to_xhci(hcd);
2897 udev = (struct usb_device *) ep->hcpriv;
2898 /* Called with a root hub endpoint (or an endpoint that wasn't added
2899 * with xhci_add_endpoint()
2901 if (!ep->hcpriv)
2902 return;
2903 ep_index = xhci_get_endpoint_index(&ep->desc);
2904 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2905 if (!virt_ep->stopped_td) {
2906 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2907 "Endpoint 0x%x not halted, refusing to reset.",
2908 ep->desc.bEndpointAddress);
2909 return;
2911 if (usb_endpoint_xfer_control(&ep->desc)) {
2912 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2913 "Control endpoint stall already handled.");
2914 return;
2917 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2918 "Queueing reset endpoint command");
2919 spin_lock_irqsave(&xhci->lock, flags);
2920 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2922 * Can't change the ring dequeue pointer until it's transitioned to the
2923 * stopped state, which is only upon a successful reset endpoint
2924 * command. Better hope that last command worked!
2926 if (!ret) {
2927 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2928 kfree(virt_ep->stopped_td);
2929 xhci_ring_cmd_db(xhci);
2931 virt_ep->stopped_td = NULL;
2932 virt_ep->stopped_trb = NULL;
2933 virt_ep->stopped_stream = 0;
2934 spin_unlock_irqrestore(&xhci->lock, flags);
2936 if (ret)
2937 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2940 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2941 struct usb_device *udev, struct usb_host_endpoint *ep,
2942 unsigned int slot_id)
2944 int ret;
2945 unsigned int ep_index;
2946 unsigned int ep_state;
2948 if (!ep)
2949 return -EINVAL;
2950 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2951 if (ret <= 0)
2952 return -EINVAL;
2953 if (ep->ss_ep_comp.bmAttributes == 0) {
2954 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2955 " descriptor for ep 0x%x does not support streams\n",
2956 ep->desc.bEndpointAddress);
2957 return -EINVAL;
2960 ep_index = xhci_get_endpoint_index(&ep->desc);
2961 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2962 if (ep_state & EP_HAS_STREAMS ||
2963 ep_state & EP_GETTING_STREAMS) {
2964 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2965 "already has streams set up.\n",
2966 ep->desc.bEndpointAddress);
2967 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2968 "dynamic stream context array reallocation.\n");
2969 return -EINVAL;
2971 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2972 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2973 "endpoint 0x%x; URBs are pending.\n",
2974 ep->desc.bEndpointAddress);
2975 return -EINVAL;
2977 return 0;
2980 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2981 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2983 unsigned int max_streams;
2985 /* The stream context array size must be a power of two */
2986 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2988 * Find out how many primary stream array entries the host controller
2989 * supports. Later we may use secondary stream arrays (similar to 2nd
2990 * level page entries), but that's an optional feature for xHCI host
2991 * controllers. xHCs must support at least 4 stream IDs.
2993 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2994 if (*num_stream_ctxs > max_streams) {
2995 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2996 max_streams);
2997 *num_stream_ctxs = max_streams;
2998 *num_streams = max_streams;
3002 /* Returns an error code if one of the endpoint already has streams.
3003 * This does not change any data structures, it only checks and gathers
3004 * information.
3006 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3007 struct usb_device *udev,
3008 struct usb_host_endpoint **eps, unsigned int num_eps,
3009 unsigned int *num_streams, u32 *changed_ep_bitmask)
3011 unsigned int max_streams;
3012 unsigned int endpoint_flag;
3013 int i;
3014 int ret;
3016 for (i = 0; i < num_eps; i++) {
3017 ret = xhci_check_streams_endpoint(xhci, udev,
3018 eps[i], udev->slot_id);
3019 if (ret < 0)
3020 return ret;
3022 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3023 if (max_streams < (*num_streams - 1)) {
3024 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3025 eps[i]->desc.bEndpointAddress,
3026 max_streams);
3027 *num_streams = max_streams+1;
3030 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3031 if (*changed_ep_bitmask & endpoint_flag)
3032 return -EINVAL;
3033 *changed_ep_bitmask |= endpoint_flag;
3035 return 0;
3038 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3039 struct usb_device *udev,
3040 struct usb_host_endpoint **eps, unsigned int num_eps)
3042 u32 changed_ep_bitmask = 0;
3043 unsigned int slot_id;
3044 unsigned int ep_index;
3045 unsigned int ep_state;
3046 int i;
3048 slot_id = udev->slot_id;
3049 if (!xhci->devs[slot_id])
3050 return 0;
3052 for (i = 0; i < num_eps; i++) {
3053 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3054 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3055 /* Are streams already being freed for the endpoint? */
3056 if (ep_state & EP_GETTING_NO_STREAMS) {
3057 xhci_warn(xhci, "WARN Can't disable streams for "
3058 "endpoint 0x%x, "
3059 "streams are being disabled already\n",
3060 eps[i]->desc.bEndpointAddress);
3061 return 0;
3063 /* Are there actually any streams to free? */
3064 if (!(ep_state & EP_HAS_STREAMS) &&
3065 !(ep_state & EP_GETTING_STREAMS)) {
3066 xhci_warn(xhci, "WARN Can't disable streams for "
3067 "endpoint 0x%x, "
3068 "streams are already disabled!\n",
3069 eps[i]->desc.bEndpointAddress);
3070 xhci_warn(xhci, "WARN xhci_free_streams() called "
3071 "with non-streams endpoint\n");
3072 return 0;
3074 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3076 return changed_ep_bitmask;
3080 * The USB device drivers use this function (though the HCD interface in USB
3081 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3082 * coordinate mass storage command queueing across multiple endpoints (basically
3083 * a stream ID == a task ID).
3085 * Setting up streams involves allocating the same size stream context array
3086 * for each endpoint and issuing a configure endpoint command for all endpoints.
3088 * Don't allow the call to succeed if one endpoint only supports one stream
3089 * (which means it doesn't support streams at all).
3091 * Drivers may get less stream IDs than they asked for, if the host controller
3092 * hardware or endpoints claim they can't support the number of requested
3093 * stream IDs.
3095 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3096 struct usb_host_endpoint **eps, unsigned int num_eps,
3097 unsigned int num_streams, gfp_t mem_flags)
3099 int i, ret;
3100 struct xhci_hcd *xhci;
3101 struct xhci_virt_device *vdev;
3102 struct xhci_command *config_cmd;
3103 struct xhci_input_control_ctx *ctrl_ctx;
3104 unsigned int ep_index;
3105 unsigned int num_stream_ctxs;
3106 unsigned long flags;
3107 u32 changed_ep_bitmask = 0;
3109 if (!eps)
3110 return -EINVAL;
3112 /* Add one to the number of streams requested to account for
3113 * stream 0 that is reserved for xHCI usage.
3115 num_streams += 1;
3116 xhci = hcd_to_xhci(hcd);
3117 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3118 num_streams);
3120 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3121 if (!config_cmd) {
3122 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3123 return -ENOMEM;
3125 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3126 if (!ctrl_ctx) {
3127 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3128 __func__);
3129 xhci_free_command(xhci, config_cmd);
3130 return -ENOMEM;
3133 /* Check to make sure all endpoints are not already configured for
3134 * streams. While we're at it, find the maximum number of streams that
3135 * all the endpoints will support and check for duplicate endpoints.
3137 spin_lock_irqsave(&xhci->lock, flags);
3138 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3139 num_eps, &num_streams, &changed_ep_bitmask);
3140 if (ret < 0) {
3141 xhci_free_command(xhci, config_cmd);
3142 spin_unlock_irqrestore(&xhci->lock, flags);
3143 return ret;
3145 if (num_streams <= 1) {
3146 xhci_warn(xhci, "WARN: endpoints can't handle "
3147 "more than one stream.\n");
3148 xhci_free_command(xhci, config_cmd);
3149 spin_unlock_irqrestore(&xhci->lock, flags);
3150 return -EINVAL;
3152 vdev = xhci->devs[udev->slot_id];
3153 /* Mark each endpoint as being in transition, so
3154 * xhci_urb_enqueue() will reject all URBs.
3156 for (i = 0; i < num_eps; i++) {
3157 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3158 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3160 spin_unlock_irqrestore(&xhci->lock, flags);
3162 /* Setup internal data structures and allocate HW data structures for
3163 * streams (but don't install the HW structures in the input context
3164 * until we're sure all memory allocation succeeded).
3166 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3167 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3168 num_stream_ctxs, num_streams);
3170 for (i = 0; i < num_eps; i++) {
3171 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3172 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3173 num_stream_ctxs,
3174 num_streams, mem_flags);
3175 if (!vdev->eps[ep_index].stream_info)
3176 goto cleanup;
3177 /* Set maxPstreams in endpoint context and update deq ptr to
3178 * point to stream context array. FIXME
3182 /* Set up the input context for a configure endpoint command. */
3183 for (i = 0; i < num_eps; i++) {
3184 struct xhci_ep_ctx *ep_ctx;
3186 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3187 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3189 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3190 vdev->out_ctx, ep_index);
3191 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3192 vdev->eps[ep_index].stream_info);
3194 /* Tell the HW to drop its old copy of the endpoint context info
3195 * and add the updated copy from the input context.
3197 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3198 vdev->out_ctx, ctrl_ctx,
3199 changed_ep_bitmask, changed_ep_bitmask);
3201 /* Issue and wait for the configure endpoint command */
3202 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3203 false, false);
3205 /* xHC rejected the configure endpoint command for some reason, so we
3206 * leave the old ring intact and free our internal streams data
3207 * structure.
3209 if (ret < 0)
3210 goto cleanup;
3212 spin_lock_irqsave(&xhci->lock, flags);
3213 for (i = 0; i < num_eps; i++) {
3214 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3215 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3216 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3217 udev->slot_id, ep_index);
3218 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3220 xhci_free_command(xhci, config_cmd);
3221 spin_unlock_irqrestore(&xhci->lock, flags);
3223 /* Subtract 1 for stream 0, which drivers can't use */
3224 return num_streams - 1;
3226 cleanup:
3227 /* If it didn't work, free the streams! */
3228 for (i = 0; i < num_eps; i++) {
3229 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3230 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3231 vdev->eps[ep_index].stream_info = NULL;
3232 /* FIXME Unset maxPstreams in endpoint context and
3233 * update deq ptr to point to normal string ring.
3235 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3236 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3237 xhci_endpoint_zero(xhci, vdev, eps[i]);
3239 xhci_free_command(xhci, config_cmd);
3240 return -ENOMEM;
3243 /* Transition the endpoint from using streams to being a "normal" endpoint
3244 * without streams.
3246 * Modify the endpoint context state, submit a configure endpoint command,
3247 * and free all endpoint rings for streams if that completes successfully.
3249 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3250 struct usb_host_endpoint **eps, unsigned int num_eps,
3251 gfp_t mem_flags)
3253 int i, ret;
3254 struct xhci_hcd *xhci;
3255 struct xhci_virt_device *vdev;
3256 struct xhci_command *command;
3257 struct xhci_input_control_ctx *ctrl_ctx;
3258 unsigned int ep_index;
3259 unsigned long flags;
3260 u32 changed_ep_bitmask;
3262 xhci = hcd_to_xhci(hcd);
3263 vdev = xhci->devs[udev->slot_id];
3265 /* Set up a configure endpoint command to remove the streams rings */
3266 spin_lock_irqsave(&xhci->lock, flags);
3267 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3268 udev, eps, num_eps);
3269 if (changed_ep_bitmask == 0) {
3270 spin_unlock_irqrestore(&xhci->lock, flags);
3271 return -EINVAL;
3274 /* Use the xhci_command structure from the first endpoint. We may have
3275 * allocated too many, but the driver may call xhci_free_streams() for
3276 * each endpoint it grouped into one call to xhci_alloc_streams().
3278 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3279 command = vdev->eps[ep_index].stream_info->free_streams_command;
3280 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3281 if (!ctrl_ctx) {
3282 spin_unlock_irqrestore(&xhci->lock, flags);
3283 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3284 __func__);
3285 return -EINVAL;
3288 for (i = 0; i < num_eps; i++) {
3289 struct xhci_ep_ctx *ep_ctx;
3291 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3292 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3293 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3294 EP_GETTING_NO_STREAMS;
3296 xhci_endpoint_copy(xhci, command->in_ctx,
3297 vdev->out_ctx, ep_index);
3298 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3299 &vdev->eps[ep_index]);
3301 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3302 vdev->out_ctx, ctrl_ctx,
3303 changed_ep_bitmask, changed_ep_bitmask);
3304 spin_unlock_irqrestore(&xhci->lock, flags);
3306 /* Issue and wait for the configure endpoint command,
3307 * which must succeed.
3309 ret = xhci_configure_endpoint(xhci, udev, command,
3310 false, true);
3312 /* xHC rejected the configure endpoint command for some reason, so we
3313 * leave the streams rings intact.
3315 if (ret < 0)
3316 return ret;
3318 spin_lock_irqsave(&xhci->lock, flags);
3319 for (i = 0; i < num_eps; i++) {
3320 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3321 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3322 vdev->eps[ep_index].stream_info = NULL;
3323 /* FIXME Unset maxPstreams in endpoint context and
3324 * update deq ptr to point to normal string ring.
3326 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3327 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3329 spin_unlock_irqrestore(&xhci->lock, flags);
3331 return 0;
3335 * Deletes endpoint resources for endpoints that were active before a Reset
3336 * Device command, or a Disable Slot command. The Reset Device command leaves
3337 * the control endpoint intact, whereas the Disable Slot command deletes it.
3339 * Must be called with xhci->lock held.
3341 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3342 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3344 int i;
3345 unsigned int num_dropped_eps = 0;
3346 unsigned int drop_flags = 0;
3348 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3349 if (virt_dev->eps[i].ring) {
3350 drop_flags |= 1 << i;
3351 num_dropped_eps++;
3354 xhci->num_active_eps -= num_dropped_eps;
3355 if (num_dropped_eps)
3356 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3357 "Dropped %u ep ctxs, flags = 0x%x, "
3358 "%u now active.",
3359 num_dropped_eps, drop_flags,
3360 xhci->num_active_eps);
3364 * This submits a Reset Device Command, which will set the device state to 0,
3365 * set the device address to 0, and disable all the endpoints except the default
3366 * control endpoint. The USB core should come back and call
3367 * xhci_address_device(), and then re-set up the configuration. If this is
3368 * called because of a usb_reset_and_verify_device(), then the old alternate
3369 * settings will be re-installed through the normal bandwidth allocation
3370 * functions.
3372 * Wait for the Reset Device command to finish. Remove all structures
3373 * associated with the endpoints that were disabled. Clear the input device
3374 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3376 * If the virt_dev to be reset does not exist or does not match the udev,
3377 * it means the device is lost, possibly due to the xHC restore error and
3378 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3379 * re-allocate the device.
3381 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3383 int ret, i;
3384 unsigned long flags;
3385 struct xhci_hcd *xhci;
3386 unsigned int slot_id;
3387 struct xhci_virt_device *virt_dev;
3388 struct xhci_command *reset_device_cmd;
3389 int timeleft;
3390 int last_freed_endpoint;
3391 struct xhci_slot_ctx *slot_ctx;
3392 int old_active_eps = 0;
3394 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3395 if (ret <= 0)
3396 return ret;
3397 xhci = hcd_to_xhci(hcd);
3398 slot_id = udev->slot_id;
3399 virt_dev = xhci->devs[slot_id];
3400 if (!virt_dev) {
3401 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3402 "not exist. Re-allocate the device\n", slot_id);
3403 ret = xhci_alloc_dev(hcd, udev);
3404 if (ret == 1)
3405 return 0;
3406 else
3407 return -EINVAL;
3410 if (virt_dev->udev != udev) {
3411 /* If the virt_dev and the udev does not match, this virt_dev
3412 * may belong to another udev.
3413 * Re-allocate the device.
3415 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3416 "not match the udev. Re-allocate the device\n",
3417 slot_id);
3418 ret = xhci_alloc_dev(hcd, udev);
3419 if (ret == 1)
3420 return 0;
3421 else
3422 return -EINVAL;
3425 /* If device is not setup, there is no point in resetting it */
3426 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3427 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3428 SLOT_STATE_DISABLED)
3429 return 0;
3431 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3432 /* Allocate the command structure that holds the struct completion.
3433 * Assume we're in process context, since the normal device reset
3434 * process has to wait for the device anyway. Storage devices are
3435 * reset as part of error handling, so use GFP_NOIO instead of
3436 * GFP_KERNEL.
3438 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3439 if (!reset_device_cmd) {
3440 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3441 return -ENOMEM;
3444 /* Attempt to submit the Reset Device command to the command ring */
3445 spin_lock_irqsave(&xhci->lock, flags);
3446 reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3448 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3449 ret = xhci_queue_reset_device(xhci, slot_id);
3450 if (ret) {
3451 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3452 list_del(&reset_device_cmd->cmd_list);
3453 spin_unlock_irqrestore(&xhci->lock, flags);
3454 goto command_cleanup;
3456 xhci_ring_cmd_db(xhci);
3457 spin_unlock_irqrestore(&xhci->lock, flags);
3459 /* Wait for the Reset Device command to finish */
3460 timeleft = wait_for_completion_interruptible_timeout(
3461 reset_device_cmd->completion,
3462 XHCI_CMD_DEFAULT_TIMEOUT);
3463 if (timeleft <= 0) {
3464 xhci_warn(xhci, "%s while waiting for reset device command\n",
3465 timeleft == 0 ? "Timeout" : "Signal");
3466 spin_lock_irqsave(&xhci->lock, flags);
3467 /* The timeout might have raced with the event ring handler, so
3468 * only delete from the list if the item isn't poisoned.
3470 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3471 list_del(&reset_device_cmd->cmd_list);
3472 spin_unlock_irqrestore(&xhci->lock, flags);
3473 ret = -ETIME;
3474 goto command_cleanup;
3477 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3478 * unless we tried to reset a slot ID that wasn't enabled,
3479 * or the device wasn't in the addressed or configured state.
3481 ret = reset_device_cmd->status;
3482 switch (ret) {
3483 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3484 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3485 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3486 slot_id,
3487 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3488 xhci_dbg(xhci, "Not freeing device rings.\n");
3489 /* Don't treat this as an error. May change my mind later. */
3490 ret = 0;
3491 goto command_cleanup;
3492 case COMP_SUCCESS:
3493 xhci_dbg(xhci, "Successful reset device command.\n");
3494 break;
3495 default:
3496 if (xhci_is_vendor_info_code(xhci, ret))
3497 break;
3498 xhci_warn(xhci, "Unknown completion code %u for "
3499 "reset device command.\n", ret);
3500 ret = -EINVAL;
3501 goto command_cleanup;
3504 /* Free up host controller endpoint resources */
3505 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3506 spin_lock_irqsave(&xhci->lock, flags);
3507 /* Don't delete the default control endpoint resources */
3508 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3509 spin_unlock_irqrestore(&xhci->lock, flags);
3512 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3513 last_freed_endpoint = 1;
3514 for (i = 1; i < 31; ++i) {
3515 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3517 if (ep->ep_state & EP_HAS_STREAMS) {
3518 xhci_free_stream_info(xhci, ep->stream_info);
3519 ep->stream_info = NULL;
3520 ep->ep_state &= ~EP_HAS_STREAMS;
3523 if (ep->ring) {
3524 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3525 last_freed_endpoint = i;
3527 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3528 xhci_drop_ep_from_interval_table(xhci,
3529 &virt_dev->eps[i].bw_info,
3530 virt_dev->bw_table,
3531 udev,
3532 &virt_dev->eps[i],
3533 virt_dev->tt_info);
3534 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3536 /* If necessary, update the number of active TTs on this root port */
3537 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3539 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3540 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3541 ret = 0;
3543 command_cleanup:
3544 xhci_free_command(xhci, reset_device_cmd);
3545 return ret;
3549 * At this point, the struct usb_device is about to go away, the device has
3550 * disconnected, and all traffic has been stopped and the endpoints have been
3551 * disabled. Free any HC data structures associated with that device.
3553 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3555 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3556 struct xhci_virt_device *virt_dev;
3557 unsigned long flags;
3558 u32 state;
3559 int i, ret;
3561 #ifndef CONFIG_USB_DEFAULT_PERSIST
3563 * We called pm_runtime_get_noresume when the device was attached.
3564 * Decrement the counter here to allow controller to runtime suspend
3565 * if no devices remain.
3567 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3568 pm_runtime_put_noidle(hcd->self.controller);
3569 #endif
3571 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3572 /* If the host is halted due to driver unload, we still need to free the
3573 * device.
3575 if (ret <= 0 && ret != -ENODEV)
3576 return;
3578 virt_dev = xhci->devs[udev->slot_id];
3580 /* Stop any wayward timer functions (which may grab the lock) */
3581 for (i = 0; i < 31; ++i) {
3582 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3583 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3586 spin_lock_irqsave(&xhci->lock, flags);
3587 /* Don't disable the slot if the host controller is dead. */
3588 state = xhci_readl(xhci, &xhci->op_regs->status);
3589 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3590 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3591 xhci_free_virt_device(xhci, udev->slot_id);
3592 spin_unlock_irqrestore(&xhci->lock, flags);
3593 return;
3596 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3597 spin_unlock_irqrestore(&xhci->lock, flags);
3598 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3599 return;
3601 xhci_ring_cmd_db(xhci);
3602 spin_unlock_irqrestore(&xhci->lock, flags);
3604 * Event command completion handler will free any data structures
3605 * associated with the slot. XXX Can free sleep?
3610 * Checks if we have enough host controller resources for the default control
3611 * endpoint.
3613 * Must be called with xhci->lock held.
3615 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3617 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3618 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3619 "Not enough ep ctxs: "
3620 "%u active, need to add 1, limit is %u.",
3621 xhci->num_active_eps, xhci->limit_active_eps);
3622 return -ENOMEM;
3624 xhci->num_active_eps += 1;
3625 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3626 "Adding 1 ep ctx, %u now active.",
3627 xhci->num_active_eps);
3628 return 0;
3633 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3634 * timed out, or allocating memory failed. Returns 1 on success.
3636 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3638 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3639 unsigned long flags;
3640 int timeleft;
3641 int ret;
3642 union xhci_trb *cmd_trb;
3644 spin_lock_irqsave(&xhci->lock, flags);
3645 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3646 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3647 if (ret) {
3648 spin_unlock_irqrestore(&xhci->lock, flags);
3649 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3650 return 0;
3652 xhci_ring_cmd_db(xhci);
3653 spin_unlock_irqrestore(&xhci->lock, flags);
3655 /* XXX: how much time for xHC slot assignment? */
3656 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3657 XHCI_CMD_DEFAULT_TIMEOUT);
3658 if (timeleft <= 0) {
3659 xhci_warn(xhci, "%s while waiting for a slot\n",
3660 timeleft == 0 ? "Timeout" : "Signal");
3661 /* cancel the enable slot request */
3662 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3665 if (!xhci->slot_id) {
3666 xhci_err(xhci, "Error while assigning device slot ID\n");
3667 return 0;
3670 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3671 spin_lock_irqsave(&xhci->lock, flags);
3672 ret = xhci_reserve_host_control_ep_resources(xhci);
3673 if (ret) {
3674 spin_unlock_irqrestore(&xhci->lock, flags);
3675 xhci_warn(xhci, "Not enough host resources, "
3676 "active endpoint contexts = %u\n",
3677 xhci->num_active_eps);
3678 goto disable_slot;
3680 spin_unlock_irqrestore(&xhci->lock, flags);
3682 /* Use GFP_NOIO, since this function can be called from
3683 * xhci_discover_or_reset_device(), which may be called as part of
3684 * mass storage driver error handling.
3686 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3687 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3688 goto disable_slot;
3690 udev->slot_id = xhci->slot_id;
3692 #ifndef CONFIG_USB_DEFAULT_PERSIST
3694 * If resetting upon resume, we can't put the controller into runtime
3695 * suspend if there is a device attached.
3697 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3698 pm_runtime_get_noresume(hcd->self.controller);
3699 #endif
3701 /* Is this a LS or FS device under a HS hub? */
3702 /* Hub or peripherial? */
3703 return 1;
3705 disable_slot:
3706 /* Disable slot, if we can do it without mem alloc */
3707 spin_lock_irqsave(&xhci->lock, flags);
3708 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3709 xhci_ring_cmd_db(xhci);
3710 spin_unlock_irqrestore(&xhci->lock, flags);
3711 return 0;
3715 * Issue an Address Device command (which will issue a SetAddress request to
3716 * the device).
3717 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3718 * we should only issue and wait on one address command at the same time.
3720 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3722 unsigned long flags;
3723 int timeleft;
3724 struct xhci_virt_device *virt_dev;
3725 int ret = 0;
3726 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3727 struct xhci_slot_ctx *slot_ctx;
3728 struct xhci_input_control_ctx *ctrl_ctx;
3729 u64 temp_64;
3730 union xhci_trb *cmd_trb;
3732 if (!udev->slot_id) {
3733 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3734 "Bad Slot ID %d", udev->slot_id);
3735 return -EINVAL;
3738 virt_dev = xhci->devs[udev->slot_id];
3740 if (WARN_ON(!virt_dev)) {
3742 * In plug/unplug torture test with an NEC controller,
3743 * a zero-dereference was observed once due to virt_dev = 0.
3744 * Print useful debug rather than crash if it is observed again!
3746 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3747 udev->slot_id);
3748 return -EINVAL;
3751 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3752 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3753 if (!ctrl_ctx) {
3754 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3755 __func__);
3756 return -EINVAL;
3759 * If this is the first Set Address since device plug-in or
3760 * virt_device realloaction after a resume with an xHCI power loss,
3761 * then set up the slot context.
3763 if (!slot_ctx->dev_info)
3764 xhci_setup_addressable_virt_dev(xhci, udev);
3765 /* Otherwise, update the control endpoint ring enqueue pointer. */
3766 else
3767 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3768 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3769 ctrl_ctx->drop_flags = 0;
3771 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3772 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3773 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3774 slot_ctx->dev_info >> 27);
3776 spin_lock_irqsave(&xhci->lock, flags);
3777 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3778 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3779 udev->slot_id);
3780 if (ret) {
3781 spin_unlock_irqrestore(&xhci->lock, flags);
3782 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3783 "FIXME: allocate a command ring segment");
3784 return ret;
3786 xhci_ring_cmd_db(xhci);
3787 spin_unlock_irqrestore(&xhci->lock, flags);
3789 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3790 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3791 XHCI_CMD_DEFAULT_TIMEOUT);
3792 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3793 * the SetAddress() "recovery interval" required by USB and aborting the
3794 * command on a timeout.
3796 if (timeleft <= 0) {
3797 xhci_warn(xhci, "%s while waiting for address device command\n",
3798 timeleft == 0 ? "Timeout" : "Signal");
3799 /* cancel the address device command */
3800 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3801 if (ret < 0)
3802 return ret;
3803 return -ETIME;
3806 switch (virt_dev->cmd_status) {
3807 case COMP_CTX_STATE:
3808 case COMP_EBADSLT:
3809 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3810 udev->slot_id);
3811 ret = -EINVAL;
3812 break;
3813 case COMP_TX_ERR:
3814 dev_warn(&udev->dev, "Device not responding to set address.\n");
3815 ret = -EPROTO;
3816 break;
3817 case COMP_DEV_ERR:
3818 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3819 "device command.\n");
3820 ret = -ENODEV;
3821 break;
3822 case COMP_SUCCESS:
3823 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3824 "Successful Address Device command");
3825 break;
3826 default:
3827 xhci_err(xhci, "ERROR: unexpected command completion "
3828 "code 0x%x.\n", virt_dev->cmd_status);
3829 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3830 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3831 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3832 ret = -EINVAL;
3833 break;
3835 if (ret) {
3836 return ret;
3838 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3839 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3840 "Op regs DCBAA ptr = %#016llx", temp_64);
3841 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3842 "Slot ID %d dcbaa entry @%p = %#016llx",
3843 udev->slot_id,
3844 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3845 (unsigned long long)
3846 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3847 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3848 "Output Context DMA address = %#08llx",
3849 (unsigned long long)virt_dev->out_ctx->dma);
3850 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3851 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3852 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3853 slot_ctx->dev_info >> 27);
3854 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3855 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3857 * USB core uses address 1 for the roothubs, so we add one to the
3858 * address given back to us by the HC.
3860 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3861 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3862 slot_ctx->dev_info >> 27);
3863 /* Zero the input context control for later use */
3864 ctrl_ctx->add_flags = 0;
3865 ctrl_ctx->drop_flags = 0;
3867 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3868 "Internal device address = %d",
3869 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3871 return 0;
3875 * Transfer the port index into real index in the HW port status
3876 * registers. Caculate offset between the port's PORTSC register
3877 * and port status base. Divide the number of per port register
3878 * to get the real index. The raw port number bases 1.
3880 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3882 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3883 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3884 __le32 __iomem *addr;
3885 int raw_port;
3887 if (hcd->speed != HCD_USB3)
3888 addr = xhci->usb2_ports[port1 - 1];
3889 else
3890 addr = xhci->usb3_ports[port1 - 1];
3892 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3893 return raw_port;
3897 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3898 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3900 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3901 struct usb_device *udev, u16 max_exit_latency)
3903 struct xhci_virt_device *virt_dev;
3904 struct xhci_command *command;
3905 struct xhci_input_control_ctx *ctrl_ctx;
3906 struct xhci_slot_ctx *slot_ctx;
3907 unsigned long flags;
3908 int ret;
3910 spin_lock_irqsave(&xhci->lock, flags);
3911 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3912 spin_unlock_irqrestore(&xhci->lock, flags);
3913 return 0;
3916 /* Attempt to issue an Evaluate Context command to change the MEL. */
3917 virt_dev = xhci->devs[udev->slot_id];
3918 command = xhci->lpm_command;
3919 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3920 if (!ctrl_ctx) {
3921 spin_unlock_irqrestore(&xhci->lock, flags);
3922 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3923 __func__);
3924 return -ENOMEM;
3927 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3928 spin_unlock_irqrestore(&xhci->lock, flags);
3930 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3931 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3932 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3933 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3935 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3936 "Set up evaluate context for LPM MEL change.");
3937 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3938 xhci_dbg_ctx(xhci, command->in_ctx, 0);
3940 /* Issue and wait for the evaluate context command. */
3941 ret = xhci_configure_endpoint(xhci, udev, command,
3942 true, true);
3943 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3944 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3946 if (!ret) {
3947 spin_lock_irqsave(&xhci->lock, flags);
3948 virt_dev->current_mel = max_exit_latency;
3949 spin_unlock_irqrestore(&xhci->lock, flags);
3951 return ret;
3954 #ifdef CONFIG_PM_RUNTIME
3956 /* BESL to HIRD Encoding array for USB2 LPM */
3957 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3958 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3960 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3961 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3962 struct usb_device *udev)
3964 int u2del, besl, besl_host;
3965 int besl_device = 0;
3966 u32 field;
3968 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3969 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3971 if (field & USB_BESL_SUPPORT) {
3972 for (besl_host = 0; besl_host < 16; besl_host++) {
3973 if (xhci_besl_encoding[besl_host] >= u2del)
3974 break;
3976 /* Use baseline BESL value as default */
3977 if (field & USB_BESL_BASELINE_VALID)
3978 besl_device = USB_GET_BESL_BASELINE(field);
3979 else if (field & USB_BESL_DEEP_VALID)
3980 besl_device = USB_GET_BESL_DEEP(field);
3981 } else {
3982 if (u2del <= 50)
3983 besl_host = 0;
3984 else
3985 besl_host = (u2del - 51) / 75 + 1;
3988 besl = besl_host + besl_device;
3989 if (besl > 15)
3990 besl = 15;
3992 return besl;
3995 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3996 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3998 u32 field;
3999 int l1;
4000 int besld = 0;
4001 int hirdm = 0;
4003 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4005 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4006 l1 = udev->l1_params.timeout / 256;
4008 /* device has preferred BESLD */
4009 if (field & USB_BESL_DEEP_VALID) {
4010 besld = USB_GET_BESL_DEEP(field);
4011 hirdm = 1;
4014 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4017 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4018 struct usb_device *udev, int enable)
4020 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4021 __le32 __iomem **port_array;
4022 __le32 __iomem *pm_addr, *hlpm_addr;
4023 u32 pm_val, hlpm_val, field;
4024 unsigned int port_num;
4025 unsigned long flags;
4026 int hird, exit_latency;
4027 int ret;
4029 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4030 !udev->lpm_capable)
4031 return -EPERM;
4033 if (!udev->parent || udev->parent->parent ||
4034 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4035 return -EPERM;
4037 if (udev->usb2_hw_lpm_capable != 1)
4038 return -EPERM;
4040 spin_lock_irqsave(&xhci->lock, flags);
4042 port_array = xhci->usb2_ports;
4043 port_num = udev->portnum - 1;
4044 pm_addr = port_array[port_num] + PORTPMSC;
4045 pm_val = xhci_readl(xhci, pm_addr);
4046 hlpm_addr = port_array[port_num] + PORTHLPMC;
4047 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4049 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4050 enable ? "enable" : "disable", port_num);
4052 if (enable) {
4053 /* Host supports BESL timeout instead of HIRD */
4054 if (udev->usb2_hw_lpm_besl_capable) {
4055 /* if device doesn't have a preferred BESL value use a
4056 * default one which works with mixed HIRD and BESL
4057 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4059 if ((field & USB_BESL_SUPPORT) &&
4060 (field & USB_BESL_BASELINE_VALID))
4061 hird = USB_GET_BESL_BASELINE(field);
4062 else
4063 hird = udev->l1_params.besl;
4065 exit_latency = xhci_besl_encoding[hird];
4066 spin_unlock_irqrestore(&xhci->lock, flags);
4068 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4069 * input context for link powermanagement evaluate
4070 * context commands. It is protected by hcd->bandwidth
4071 * mutex and is shared by all devices. We need to set
4072 * the max ext latency in USB 2 BESL LPM as well, so
4073 * use the same mutex and xhci_change_max_exit_latency()
4075 mutex_lock(hcd->bandwidth_mutex);
4076 ret = xhci_change_max_exit_latency(xhci, udev,
4077 exit_latency);
4078 mutex_unlock(hcd->bandwidth_mutex);
4080 if (ret < 0)
4081 return ret;
4082 spin_lock_irqsave(&xhci->lock, flags);
4084 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4085 xhci_writel(xhci, hlpm_val, hlpm_addr);
4086 /* flush write */
4087 xhci_readl(xhci, hlpm_addr);
4088 } else {
4089 hird = xhci_calculate_hird_besl(xhci, udev);
4092 pm_val &= ~PORT_HIRD_MASK;
4093 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4094 xhci_writel(xhci, pm_val, pm_addr);
4095 pm_val = xhci_readl(xhci, pm_addr);
4096 pm_val |= PORT_HLE;
4097 xhci_writel(xhci, pm_val, pm_addr);
4098 /* flush write */
4099 xhci_readl(xhci, pm_addr);
4100 } else {
4101 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4102 xhci_writel(xhci, pm_val, pm_addr);
4103 /* flush write */
4104 xhci_readl(xhci, pm_addr);
4105 if (udev->usb2_hw_lpm_besl_capable) {
4106 spin_unlock_irqrestore(&xhci->lock, flags);
4107 mutex_lock(hcd->bandwidth_mutex);
4108 xhci_change_max_exit_latency(xhci, udev, 0);
4109 mutex_unlock(hcd->bandwidth_mutex);
4110 return 0;
4114 spin_unlock_irqrestore(&xhci->lock, flags);
4115 return 0;
4118 /* check if a usb2 port supports a given extened capability protocol
4119 * only USB2 ports extended protocol capability values are cached.
4120 * Return 1 if capability is supported
4122 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4123 unsigned capability)
4125 u32 port_offset, port_count;
4126 int i;
4128 for (i = 0; i < xhci->num_ext_caps; i++) {
4129 if (xhci->ext_caps[i] & capability) {
4130 /* port offsets starts at 1 */
4131 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4132 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4133 if (port >= port_offset &&
4134 port < port_offset + port_count)
4135 return 1;
4138 return 0;
4141 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4143 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4144 int portnum = udev->portnum - 1;
4146 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4147 !udev->lpm_capable)
4148 return 0;
4150 /* we only support lpm for non-hub device connected to root hub yet */
4151 if (!udev->parent || udev->parent->parent ||
4152 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4153 return 0;
4155 if (xhci->hw_lpm_support == 1 &&
4156 xhci_check_usb2_port_capability(
4157 xhci, portnum, XHCI_HLC)) {
4158 udev->usb2_hw_lpm_capable = 1;
4159 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4160 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4161 if (xhci_check_usb2_port_capability(xhci, portnum,
4162 XHCI_BLC))
4163 udev->usb2_hw_lpm_besl_capable = 1;
4166 return 0;
4169 #else
4171 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4172 struct usb_device *udev, int enable)
4174 return 0;
4177 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4179 return 0;
4182 #endif /* CONFIG_PM_RUNTIME */
4184 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4186 #ifdef CONFIG_PM
4187 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4188 static unsigned long long xhci_service_interval_to_ns(
4189 struct usb_endpoint_descriptor *desc)
4191 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4194 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4195 enum usb3_link_state state)
4197 unsigned long long sel;
4198 unsigned long long pel;
4199 unsigned int max_sel_pel;
4200 char *state_name;
4202 switch (state) {
4203 case USB3_LPM_U1:
4204 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4205 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4206 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4207 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4208 state_name = "U1";
4209 break;
4210 case USB3_LPM_U2:
4211 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4212 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4213 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4214 state_name = "U2";
4215 break;
4216 default:
4217 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4218 __func__);
4219 return USB3_LPM_DISABLED;
4222 if (sel <= max_sel_pel && pel <= max_sel_pel)
4223 return USB3_LPM_DEVICE_INITIATED;
4225 if (sel > max_sel_pel)
4226 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4227 "due to long SEL %llu ms\n",
4228 state_name, sel);
4229 else
4230 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4231 "due to long PEL %llu ms\n",
4232 state_name, pel);
4233 return USB3_LPM_DISABLED;
4236 /* Returns the hub-encoded U1 timeout value.
4237 * The U1 timeout should be the maximum of the following values:
4238 * - For control endpoints, U1 system exit latency (SEL) * 3
4239 * - For bulk endpoints, U1 SEL * 5
4240 * - For interrupt endpoints:
4241 * - Notification EPs, U1 SEL * 3
4242 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4243 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4245 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4246 struct usb_endpoint_descriptor *desc)
4248 unsigned long long timeout_ns;
4249 int ep_type;
4250 int intr_type;
4252 ep_type = usb_endpoint_type(desc);
4253 switch (ep_type) {
4254 case USB_ENDPOINT_XFER_CONTROL:
4255 timeout_ns = udev->u1_params.sel * 3;
4256 break;
4257 case USB_ENDPOINT_XFER_BULK:
4258 timeout_ns = udev->u1_params.sel * 5;
4259 break;
4260 case USB_ENDPOINT_XFER_INT:
4261 intr_type = usb_endpoint_interrupt_type(desc);
4262 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4263 timeout_ns = udev->u1_params.sel * 3;
4264 break;
4266 /* Otherwise the calculation is the same as isoc eps */
4267 case USB_ENDPOINT_XFER_ISOC:
4268 timeout_ns = xhci_service_interval_to_ns(desc);
4269 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4270 if (timeout_ns < udev->u1_params.sel * 2)
4271 timeout_ns = udev->u1_params.sel * 2;
4272 break;
4273 default:
4274 return 0;
4277 /* The U1 timeout is encoded in 1us intervals. */
4278 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4279 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4280 if (timeout_ns == USB3_LPM_DISABLED)
4281 timeout_ns++;
4283 /* If the necessary timeout value is bigger than what we can set in the
4284 * USB 3.0 hub, we have to disable hub-initiated U1.
4286 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4287 return timeout_ns;
4288 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4289 "due to long timeout %llu ms\n", timeout_ns);
4290 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4293 /* Returns the hub-encoded U2 timeout value.
4294 * The U2 timeout should be the maximum of:
4295 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4296 * - largest bInterval of any active periodic endpoint (to avoid going
4297 * into lower power link states between intervals).
4298 * - the U2 Exit Latency of the device
4300 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4301 struct usb_endpoint_descriptor *desc)
4303 unsigned long long timeout_ns;
4304 unsigned long long u2_del_ns;
4306 timeout_ns = 10 * 1000 * 1000;
4308 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4309 (xhci_service_interval_to_ns(desc) > timeout_ns))
4310 timeout_ns = xhci_service_interval_to_ns(desc);
4312 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4313 if (u2_del_ns > timeout_ns)
4314 timeout_ns = u2_del_ns;
4316 /* The U2 timeout is encoded in 256us intervals */
4317 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4318 /* If the necessary timeout value is bigger than what we can set in the
4319 * USB 3.0 hub, we have to disable hub-initiated U2.
4321 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4322 return timeout_ns;
4323 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4324 "due to long timeout %llu ms\n", timeout_ns);
4325 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4328 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4329 struct usb_device *udev,
4330 struct usb_endpoint_descriptor *desc,
4331 enum usb3_link_state state,
4332 u16 *timeout)
4334 if (state == USB3_LPM_U1) {
4335 if (xhci->quirks & XHCI_INTEL_HOST)
4336 return xhci_calculate_intel_u1_timeout(udev, desc);
4337 } else {
4338 if (xhci->quirks & XHCI_INTEL_HOST)
4339 return xhci_calculate_intel_u2_timeout(udev, desc);
4342 return USB3_LPM_DISABLED;
4345 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4346 struct usb_device *udev,
4347 struct usb_endpoint_descriptor *desc,
4348 enum usb3_link_state state,
4349 u16 *timeout)
4351 u16 alt_timeout;
4353 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4354 desc, state, timeout);
4356 /* If we found we can't enable hub-initiated LPM, or
4357 * the U1 or U2 exit latency was too high to allow
4358 * device-initiated LPM as well, just stop searching.
4360 if (alt_timeout == USB3_LPM_DISABLED ||
4361 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4362 *timeout = alt_timeout;
4363 return -E2BIG;
4365 if (alt_timeout > *timeout)
4366 *timeout = alt_timeout;
4367 return 0;
4370 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4371 struct usb_device *udev,
4372 struct usb_host_interface *alt,
4373 enum usb3_link_state state,
4374 u16 *timeout)
4376 int j;
4378 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4379 if (xhci_update_timeout_for_endpoint(xhci, udev,
4380 &alt->endpoint[j].desc, state, timeout))
4381 return -E2BIG;
4382 continue;
4384 return 0;
4387 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4388 enum usb3_link_state state)
4390 struct usb_device *parent;
4391 unsigned int num_hubs;
4393 if (state == USB3_LPM_U2)
4394 return 0;
4396 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4397 for (parent = udev->parent, num_hubs = 0; parent->parent;
4398 parent = parent->parent)
4399 num_hubs++;
4401 if (num_hubs < 2)
4402 return 0;
4404 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4405 " below second-tier hub.\n");
4406 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4407 "to decrease power consumption.\n");
4408 return -E2BIG;
4411 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4412 struct usb_device *udev,
4413 enum usb3_link_state state)
4415 if (xhci->quirks & XHCI_INTEL_HOST)
4416 return xhci_check_intel_tier_policy(udev, state);
4417 return -EINVAL;
4420 /* Returns the U1 or U2 timeout that should be enabled.
4421 * If the tier check or timeout setting functions return with a non-zero exit
4422 * code, that means the timeout value has been finalized and we shouldn't look
4423 * at any more endpoints.
4425 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4426 struct usb_device *udev, enum usb3_link_state state)
4428 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4429 struct usb_host_config *config;
4430 char *state_name;
4431 int i;
4432 u16 timeout = USB3_LPM_DISABLED;
4434 if (state == USB3_LPM_U1)
4435 state_name = "U1";
4436 else if (state == USB3_LPM_U2)
4437 state_name = "U2";
4438 else {
4439 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4440 state);
4441 return timeout;
4444 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4445 return timeout;
4447 /* Gather some information about the currently installed configuration
4448 * and alternate interface settings.
4450 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4451 state, &timeout))
4452 return timeout;
4454 config = udev->actconfig;
4455 if (!config)
4456 return timeout;
4458 for (i = 0; i < USB_MAXINTERFACES; i++) {
4459 struct usb_driver *driver;
4460 struct usb_interface *intf = config->interface[i];
4462 if (!intf)
4463 continue;
4465 /* Check if any currently bound drivers want hub-initiated LPM
4466 * disabled.
4468 if (intf->dev.driver) {
4469 driver = to_usb_driver(intf->dev.driver);
4470 if (driver && driver->disable_hub_initiated_lpm) {
4471 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4472 "at request of driver %s\n",
4473 state_name, driver->name);
4474 return xhci_get_timeout_no_hub_lpm(udev, state);
4478 /* Not sure how this could happen... */
4479 if (!intf->cur_altsetting)
4480 continue;
4482 if (xhci_update_timeout_for_interface(xhci, udev,
4483 intf->cur_altsetting,
4484 state, &timeout))
4485 return timeout;
4487 return timeout;
4490 static int calculate_max_exit_latency(struct usb_device *udev,
4491 enum usb3_link_state state_changed,
4492 u16 hub_encoded_timeout)
4494 unsigned long long u1_mel_us = 0;
4495 unsigned long long u2_mel_us = 0;
4496 unsigned long long mel_us = 0;
4497 bool disabling_u1;
4498 bool disabling_u2;
4499 bool enabling_u1;
4500 bool enabling_u2;
4502 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4503 hub_encoded_timeout == USB3_LPM_DISABLED);
4504 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4505 hub_encoded_timeout == USB3_LPM_DISABLED);
4507 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4508 hub_encoded_timeout != USB3_LPM_DISABLED);
4509 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4510 hub_encoded_timeout != USB3_LPM_DISABLED);
4512 /* If U1 was already enabled and we're not disabling it,
4513 * or we're going to enable U1, account for the U1 max exit latency.
4515 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4516 enabling_u1)
4517 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4518 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4519 enabling_u2)
4520 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4522 if (u1_mel_us > u2_mel_us)
4523 mel_us = u1_mel_us;
4524 else
4525 mel_us = u2_mel_us;
4526 /* xHCI host controller max exit latency field is only 16 bits wide. */
4527 if (mel_us > MAX_EXIT) {
4528 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4529 "is too big.\n", mel_us);
4530 return -E2BIG;
4532 return mel_us;
4535 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4536 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4537 struct usb_device *udev, enum usb3_link_state state)
4539 struct xhci_hcd *xhci;
4540 u16 hub_encoded_timeout;
4541 int mel;
4542 int ret;
4544 xhci = hcd_to_xhci(hcd);
4545 /* The LPM timeout values are pretty host-controller specific, so don't
4546 * enable hub-initiated timeouts unless the vendor has provided
4547 * information about their timeout algorithm.
4549 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4550 !xhci->devs[udev->slot_id])
4551 return USB3_LPM_DISABLED;
4553 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4554 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4555 if (mel < 0) {
4556 /* Max Exit Latency is too big, disable LPM. */
4557 hub_encoded_timeout = USB3_LPM_DISABLED;
4558 mel = 0;
4561 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4562 if (ret)
4563 return ret;
4564 return hub_encoded_timeout;
4567 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4568 struct usb_device *udev, enum usb3_link_state state)
4570 struct xhci_hcd *xhci;
4571 u16 mel;
4572 int ret;
4574 xhci = hcd_to_xhci(hcd);
4575 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4576 !xhci->devs[udev->slot_id])
4577 return 0;
4579 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4580 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4581 if (ret)
4582 return ret;
4583 return 0;
4585 #else /* CONFIG_PM */
4587 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4588 struct usb_device *udev, enum usb3_link_state state)
4590 return USB3_LPM_DISABLED;
4593 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4594 struct usb_device *udev, enum usb3_link_state state)
4596 return 0;
4598 #endif /* CONFIG_PM */
4600 /*-------------------------------------------------------------------------*/
4602 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4603 * internal data structures for the device.
4605 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4606 struct usb_tt *tt, gfp_t mem_flags)
4608 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4609 struct xhci_virt_device *vdev;
4610 struct xhci_command *config_cmd;
4611 struct xhci_input_control_ctx *ctrl_ctx;
4612 struct xhci_slot_ctx *slot_ctx;
4613 unsigned long flags;
4614 unsigned think_time;
4615 int ret;
4617 /* Ignore root hubs */
4618 if (!hdev->parent)
4619 return 0;
4621 vdev = xhci->devs[hdev->slot_id];
4622 if (!vdev) {
4623 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4624 return -EINVAL;
4626 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4627 if (!config_cmd) {
4628 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4629 return -ENOMEM;
4631 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4632 if (!ctrl_ctx) {
4633 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4634 __func__);
4635 xhci_free_command(xhci, config_cmd);
4636 return -ENOMEM;
4639 spin_lock_irqsave(&xhci->lock, flags);
4640 if (hdev->speed == USB_SPEED_HIGH &&
4641 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4642 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4643 xhci_free_command(xhci, config_cmd);
4644 spin_unlock_irqrestore(&xhci->lock, flags);
4645 return -ENOMEM;
4648 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4649 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4650 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4651 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4652 if (tt->multi)
4653 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4654 if (xhci->hci_version > 0x95) {
4655 xhci_dbg(xhci, "xHCI version %x needs hub "
4656 "TT think time and number of ports\n",
4657 (unsigned int) xhci->hci_version);
4658 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4659 /* Set TT think time - convert from ns to FS bit times.
4660 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4661 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4663 * xHCI 1.0: this field shall be 0 if the device is not a
4664 * High-spped hub.
4666 think_time = tt->think_time;
4667 if (think_time != 0)
4668 think_time = (think_time / 666) - 1;
4669 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4670 slot_ctx->tt_info |=
4671 cpu_to_le32(TT_THINK_TIME(think_time));
4672 } else {
4673 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4674 "TT think time or number of ports\n",
4675 (unsigned int) xhci->hci_version);
4677 slot_ctx->dev_state = 0;
4678 spin_unlock_irqrestore(&xhci->lock, flags);
4680 xhci_dbg(xhci, "Set up %s for hub device.\n",
4681 (xhci->hci_version > 0x95) ?
4682 "configure endpoint" : "evaluate context");
4683 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4684 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4686 /* Issue and wait for the configure endpoint or
4687 * evaluate context command.
4689 if (xhci->hci_version > 0x95)
4690 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4691 false, false);
4692 else
4693 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4694 true, false);
4696 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4697 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4699 xhci_free_command(xhci, config_cmd);
4700 return ret;
4703 int xhci_get_frame(struct usb_hcd *hcd)
4705 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4706 /* EHCI mods by the periodic size. Why? */
4707 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4710 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4712 struct xhci_hcd *xhci;
4713 struct device *dev = hcd->self.controller;
4714 int retval;
4716 /* Accept arbitrarily long scatter-gather lists */
4717 hcd->self.sg_tablesize = ~0;
4719 /* support to build packet from discontinuous buffers */
4720 hcd->self.no_sg_constraint = 1;
4722 /* XHCI controllers don't stop the ep queue on short packets :| */
4723 hcd->self.no_stop_on_short = 1;
4725 if (usb_hcd_is_primary_hcd(hcd)) {
4726 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4727 if (!xhci)
4728 return -ENOMEM;
4729 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4730 xhci->main_hcd = hcd;
4731 /* Mark the first roothub as being USB 2.0.
4732 * The xHCI driver will register the USB 3.0 roothub.
4734 hcd->speed = HCD_USB2;
4735 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4737 * USB 2.0 roothub under xHCI has an integrated TT,
4738 * (rate matching hub) as opposed to having an OHCI/UHCI
4739 * companion controller.
4741 hcd->has_tt = 1;
4742 } else {
4743 /* xHCI private pointer was set in xhci_pci_probe for the second
4744 * registered roothub.
4746 return 0;
4749 xhci->cap_regs = hcd->regs;
4750 xhci->op_regs = hcd->regs +
4751 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4752 xhci->run_regs = hcd->regs +
4753 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4754 /* Cache read-only capability registers */
4755 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4756 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4757 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4758 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4759 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4760 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4761 xhci_print_registers(xhci);
4763 get_quirks(dev, xhci);
4765 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4766 * success event after a short transfer. This quirk will ignore such
4767 * spurious event.
4769 if (xhci->hci_version > 0x96)
4770 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4772 /* Make sure the HC is halted. */
4773 retval = xhci_halt(xhci);
4774 if (retval)
4775 goto error;
4777 xhci_dbg(xhci, "Resetting HCD\n");
4778 /* Reset the internal HC memory state and registers. */
4779 retval = xhci_reset(xhci);
4780 if (retval)
4781 goto error;
4782 xhci_dbg(xhci, "Reset complete\n");
4784 /* Set dma_mask and coherent_dma_mask to 64-bits,
4785 * if xHC supports 64-bit addressing */
4786 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4787 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4788 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4789 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4792 xhci_dbg(xhci, "Calling HCD init\n");
4793 /* Initialize HCD and host controller data structures. */
4794 retval = xhci_init(hcd);
4795 if (retval)
4796 goto error;
4797 xhci_dbg(xhci, "Called HCD init\n");
4798 return 0;
4799 error:
4800 kfree(xhci);
4801 return retval;
4804 MODULE_DESCRIPTION(DRIVER_DESC);
4805 MODULE_AUTHOR(DRIVER_AUTHOR);
4806 MODULE_LICENSE("GPL");
4808 static int __init xhci_hcd_init(void)
4810 int retval;
4812 retval = xhci_register_pci();
4813 if (retval < 0) {
4814 pr_debug("Problem registering PCI driver.\n");
4815 return retval;
4817 retval = xhci_register_plat();
4818 if (retval < 0) {
4819 pr_debug("Problem registering platform driver.\n");
4820 goto unreg_pci;
4823 * Check the compiler generated sizes of structures that must be laid
4824 * out in specific ways for hardware access.
4826 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4827 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4828 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4829 /* xhci_device_control has eight fields, and also
4830 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4832 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4833 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4834 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4835 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4836 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4837 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4838 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4839 return 0;
4840 unreg_pci:
4841 xhci_unregister_pci();
4842 return retval;
4844 module_init(xhci_hcd_init);
4846 static void __exit xhci_hcd_cleanup(void)
4848 xhci_unregister_pci();
4849 xhci_unregister_plat();
4851 module_exit(xhci_hcd_cleanup);