Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6.git] / drivers / net / wan / dscc4.c
blob3f759daf3ca4a9869fdb2c5b3c5da22e8fee9342
1 /*
2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
14 * Theory of Operation
16 * I. Board Compatibility
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27 * driver.
28 * Sample code (2 revisions) is available at Infineon.
30 * II. Board-specific settings
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
37 * Sharing of the PCI interrupt line for this board is possible.
39 * III. Driver operation
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
47 * Tx direction
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
52 * Rx direction
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
56 * IV. Notes
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mistery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
67 * TODO:
68 * - test X25.
69 * - use polling at high irq/s,
70 * - performance analysis,
71 * - endianness.
73 * 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
76 * 2002/01 Ueimor
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
80 * - misc crapectomy.
83 #include <linux/module.h>
84 #include <linux/sched.h>
85 #include <linux/types.h>
86 #include <linux/errno.h>
87 #include <linux/list.h>
88 #include <linux/ioport.h>
89 #include <linux/pci.h>
90 #include <linux/kernel.h>
91 #include <linux/mm.h>
93 #include <asm/system.h>
94 #include <asm/cache.h>
95 #include <asm/byteorder.h>
96 #include <asm/uaccess.h>
97 #include <asm/io.h>
98 #include <asm/irq.h>
100 #include <linux/init.h>
101 #include <linux/string.h>
103 #include <linux/if_arp.h>
104 #include <linux/netdevice.h>
105 #include <linux/skbuff.h>
106 #include <linux/delay.h>
107 #include <linux/hdlc.h>
108 #include <linux/mutex.h>
110 /* Version */
111 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
112 static int debug;
113 static int quartz;
115 #ifdef CONFIG_DSCC4_PCI_RST
116 static DEFINE_MUTEX(dscc4_mutex);
117 static u32 dscc4_pci_config_store[16];
118 #endif
120 #define DRV_NAME "dscc4"
122 #undef DSCC4_POLLING
124 /* Module parameters */
126 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
127 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
128 MODULE_LICENSE("GPL");
129 module_param(debug, int, 0);
130 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
131 module_param(quartz, int, 0);
132 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
134 /* Structures */
136 struct thingie {
137 int define;
138 u32 bits;
141 struct TxFD {
142 __le32 state;
143 __le32 next;
144 __le32 data;
145 __le32 complete;
146 u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
147 /* FWIW, datasheet calls that "dummy" and says that card
148 * never looks at it; neither does the driver */
151 struct RxFD {
152 __le32 state1;
153 __le32 next;
154 __le32 data;
155 __le32 state2;
156 __le32 end;
159 #define DUMMY_SKB_SIZE 64
160 #define TX_LOW 8
161 #define TX_RING_SIZE 32
162 #define RX_RING_SIZE 32
163 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
164 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
165 #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
166 #define TX_TIMEOUT (HZ/10)
167 #define DSCC4_HZ_MAX 33000000
168 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
169 #define dev_per_card 4
170 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
172 #define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
173 #define TO_SIZE(state) (((state) >> 16) & 0x1fff)
176 * Given the operating range of Linux HDLC, the 2 defines below could be
177 * made simpler. However they are a fine reminder for the limitations of
178 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
180 #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
181 #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
182 #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
183 #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
185 struct dscc4_pci_priv {
186 __le32 *iqcfg;
187 int cfg_cur;
188 spinlock_t lock;
189 struct pci_dev *pdev;
191 struct dscc4_dev_priv *root;
192 dma_addr_t iqcfg_dma;
193 u32 xtal_hz;
196 struct dscc4_dev_priv {
197 struct sk_buff *rx_skbuff[RX_RING_SIZE];
198 struct sk_buff *tx_skbuff[TX_RING_SIZE];
200 struct RxFD *rx_fd;
201 struct TxFD *tx_fd;
202 __le32 *iqrx;
203 __le32 *iqtx;
205 /* FIXME: check all the volatile are required */
206 volatile u32 tx_current;
207 u32 rx_current;
208 u32 iqtx_current;
209 u32 iqrx_current;
211 volatile u32 tx_dirty;
212 volatile u32 ltda;
213 u32 rx_dirty;
214 u32 lrda;
216 dma_addr_t tx_fd_dma;
217 dma_addr_t rx_fd_dma;
218 dma_addr_t iqtx_dma;
219 dma_addr_t iqrx_dma;
221 u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
223 struct timer_list timer;
225 struct dscc4_pci_priv *pci_priv;
226 spinlock_t lock;
228 int dev_id;
229 volatile u32 flags;
230 u32 timer_help;
232 unsigned short encoding;
233 unsigned short parity;
234 struct net_device *dev;
235 sync_serial_settings settings;
236 void __iomem *base_addr;
237 u32 __pad __attribute__ ((aligned (4)));
240 /* GLOBAL registers definitions */
241 #define GCMDR 0x00
242 #define GSTAR 0x04
243 #define GMODE 0x08
244 #define IQLENR0 0x0C
245 #define IQLENR1 0x10
246 #define IQRX0 0x14
247 #define IQTX0 0x24
248 #define IQCFG 0x3c
249 #define FIFOCR1 0x44
250 #define FIFOCR2 0x48
251 #define FIFOCR3 0x4c
252 #define FIFOCR4 0x34
253 #define CH0CFG 0x50
254 #define CH0BRDA 0x54
255 #define CH0BTDA 0x58
256 #define CH0FRDA 0x98
257 #define CH0FTDA 0xb0
258 #define CH0LRDA 0xc8
259 #define CH0LTDA 0xe0
261 /* SCC registers definitions */
262 #define SCC_START 0x0100
263 #define SCC_OFFSET 0x80
264 #define CMDR 0x00
265 #define STAR 0x04
266 #define CCR0 0x08
267 #define CCR1 0x0c
268 #define CCR2 0x10
269 #define BRR 0x2C
270 #define RLCR 0x40
271 #define IMR 0x54
272 #define ISR 0x58
274 #define GPDIR 0x0400
275 #define GPDATA 0x0404
276 #define GPIM 0x0408
278 /* Bit masks */
279 #define EncodingMask 0x00700000
280 #define CrcMask 0x00000003
282 #define IntRxScc0 0x10000000
283 #define IntTxScc0 0x01000000
285 #define TxPollCmd 0x00000400
286 #define RxActivate 0x08000000
287 #define MTFi 0x04000000
288 #define Rdr 0x00400000
289 #define Rdt 0x00200000
290 #define Idr 0x00100000
291 #define Idt 0x00080000
292 #define TxSccRes 0x01000000
293 #define RxSccRes 0x00010000
294 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
295 #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
297 #define Ccr0ClockMask 0x0000003f
298 #define Ccr1LoopMask 0x00000200
299 #define IsrMask 0x000fffff
300 #define BrrExpMask 0x00000f00
301 #define BrrMultMask 0x0000003f
302 #define EncodingMask 0x00700000
303 #define Hold cpu_to_le32(0x40000000)
304 #define SccBusy 0x10000000
305 #define PowerUp 0x80000000
306 #define Vis 0x00001000
307 #define FrameOk (FrameVfr | FrameCrc)
308 #define FrameVfr 0x80
309 #define FrameRdo 0x40
310 #define FrameCrc 0x20
311 #define FrameRab 0x10
312 #define FrameAborted cpu_to_le32(0x00000200)
313 #define FrameEnd cpu_to_le32(0x80000000)
314 #define DataComplete cpu_to_le32(0x40000000)
315 #define LengthCheck 0x00008000
316 #define SccEvt 0x02000000
317 #define NoAck 0x00000200
318 #define Action 0x00000001
319 #define HiDesc cpu_to_le32(0x20000000)
321 /* SCC events */
322 #define RxEvt 0xf0000000
323 #define TxEvt 0x0f000000
324 #define Alls 0x00040000
325 #define Xdu 0x00010000
326 #define Cts 0x00004000
327 #define Xmr 0x00002000
328 #define Xpr 0x00001000
329 #define Rdo 0x00000080
330 #define Rfs 0x00000040
331 #define Cd 0x00000004
332 #define Rfo 0x00000002
333 #define Flex 0x00000001
335 /* DMA core events */
336 #define Cfg 0x00200000
337 #define Hi 0x00040000
338 #define Fi 0x00020000
339 #define Err 0x00010000
340 #define Arf 0x00000002
341 #define ArAck 0x00000001
343 /* State flags */
344 #define Ready 0x00000000
345 #define NeedIDR 0x00000001
346 #define NeedIDT 0x00000002
347 #define RdoSet 0x00000004
348 #define FakeReset 0x00000008
350 /* Don't mask RDO. Ever. */
351 #ifdef DSCC4_POLLING
352 #define EventsMask 0xfffeef7f
353 #else
354 #define EventsMask 0xfffa8f7a
355 #endif
357 /* Functions prototypes */
358 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
359 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
360 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
361 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
362 static int dscc4_open(struct net_device *);
363 static netdev_tx_t dscc4_start_xmit(struct sk_buff *,
364 struct net_device *);
365 static int dscc4_close(struct net_device *);
366 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
367 static int dscc4_init_ring(struct net_device *);
368 static void dscc4_release_ring(struct dscc4_dev_priv *);
369 static void dscc4_timer(unsigned long);
370 static void dscc4_tx_timeout(struct net_device *);
371 static irqreturn_t dscc4_irq(int irq, void *dev_id);
372 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
373 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
374 #ifdef DSCC4_POLLING
375 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
376 #endif
378 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
380 return dev_to_hdlc(dev)->priv;
383 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
385 return p->dev;
388 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
389 struct net_device *dev, int offset)
391 u32 state;
393 /* Cf scc_writel for concern regarding thread-safety */
394 state = dpriv->scc_regs[offset >> 2];
395 state &= ~mask;
396 state |= value;
397 dpriv->scc_regs[offset >> 2] = state;
398 writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
401 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
402 struct net_device *dev, int offset)
405 * Thread-UNsafe.
406 * As of 2002/02/16, there are no thread racing for access.
408 dpriv->scc_regs[offset >> 2] = bits;
409 writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
412 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
414 return dpriv->scc_regs[offset >> 2];
417 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
419 /* Cf errata DS5 p.4 */
420 readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
421 return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
424 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
425 struct net_device *dev)
427 dpriv->ltda = dpriv->tx_fd_dma +
428 ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
429 writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
430 /* Flush posted writes *NOW* */
431 readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
434 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
435 struct net_device *dev)
437 dpriv->lrda = dpriv->rx_fd_dma +
438 ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
439 writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
442 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
444 return dpriv->tx_current == dpriv->tx_dirty;
447 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
448 struct net_device *dev)
450 return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
453 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
454 struct net_device *dev, const char *msg)
456 int ret = 0;
458 if (debug > 1) {
459 if (SOURCE_ID(state) != dpriv->dev_id) {
460 printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
461 dev->name, msg, SOURCE_ID(state), state );
462 ret = -1;
464 if (state & 0x0df80c00) {
465 printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
466 dev->name, msg, state);
467 ret = -1;
470 return ret;
473 static void dscc4_tx_print(struct net_device *dev,
474 struct dscc4_dev_priv *dpriv,
475 char *msg)
477 printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
478 dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
481 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
483 struct pci_dev *pdev = dpriv->pci_priv->pdev;
484 struct TxFD *tx_fd = dpriv->tx_fd;
485 struct RxFD *rx_fd = dpriv->rx_fd;
486 struct sk_buff **skbuff;
487 int i;
489 pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
490 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
492 skbuff = dpriv->tx_skbuff;
493 for (i = 0; i < TX_RING_SIZE; i++) {
494 if (*skbuff) {
495 pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
496 (*skbuff)->len, PCI_DMA_TODEVICE);
497 dev_kfree_skb(*skbuff);
499 skbuff++;
500 tx_fd++;
503 skbuff = dpriv->rx_skbuff;
504 for (i = 0; i < RX_RING_SIZE; i++) {
505 if (*skbuff) {
506 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
507 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
508 dev_kfree_skb(*skbuff);
510 skbuff++;
511 rx_fd++;
515 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
516 struct net_device *dev)
518 unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
519 struct RxFD *rx_fd = dpriv->rx_fd + dirty;
520 const int len = RX_MAX(HDLC_MAX_MRU);
521 struct sk_buff *skb;
522 int ret = 0;
524 skb = dev_alloc_skb(len);
525 dpriv->rx_skbuff[dirty] = skb;
526 if (skb) {
527 skb->protocol = hdlc_type_trans(skb, dev);
528 rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
529 skb->data, len, PCI_DMA_FROMDEVICE));
530 } else {
531 rx_fd->data = 0;
532 ret = -1;
534 return ret;
538 * IRQ/thread/whatever safe
540 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
541 struct net_device *dev, char *msg)
543 s8 i = 0;
545 do {
546 if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
547 printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
548 msg, i);
549 goto done;
551 schedule_timeout_uninterruptible(10);
552 rmb();
553 } while (++i > 0);
554 printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
555 done:
556 return (i >= 0) ? i : -EAGAIN;
559 static int dscc4_do_action(struct net_device *dev, char *msg)
561 void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
562 s16 i = 0;
564 writel(Action, ioaddr + GCMDR);
565 ioaddr += GSTAR;
566 do {
567 u32 state = readl(ioaddr);
569 if (state & ArAck) {
570 printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
571 writel(ArAck, ioaddr);
572 goto done;
573 } else if (state & Arf) {
574 printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
575 writel(Arf, ioaddr);
576 i = -1;
577 goto done;
579 rmb();
580 } while (++i > 0);
581 printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
582 done:
583 return i;
586 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
588 int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
589 s8 i = 0;
591 do {
592 if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
593 (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
594 break;
595 smp_rmb();
596 schedule_timeout_uninterruptible(10);
597 } while (++i > 0);
599 return (i >= 0 ) ? i : -EAGAIN;
602 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
603 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
605 unsigned long flags;
607 spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
608 /* Cf errata DS5 p.6 */
609 writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
610 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
611 readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
612 writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
613 writel(Action, dpriv->base_addr + GCMDR);
614 spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
617 #endif
619 #if 0
620 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
622 u16 i = 0;
624 /* Cf errata DS5 p.7 */
625 scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
626 scc_writel(0x00050000, dpriv, dev, CCR2);
628 * Must be longer than the time required to fill the fifo.
630 while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
631 udelay(1);
632 wmb();
635 writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
636 if (dscc4_do_action(dev, "Rdt") < 0)
637 printk(KERN_ERR "%s: Tx reset failed\n", dev->name);
639 #endif
641 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
642 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
643 struct net_device *dev)
645 struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
646 struct pci_dev *pdev = dpriv->pci_priv->pdev;
647 struct sk_buff *skb;
648 int pkt_len;
650 skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
651 if (!skb) {
652 printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
653 goto refill;
655 pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
656 pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
657 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
658 if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
659 dev->stats.rx_packets++;
660 dev->stats.rx_bytes += pkt_len;
661 skb_put(skb, pkt_len);
662 if (netif_running(dev))
663 skb->protocol = hdlc_type_trans(skb, dev);
664 netif_rx(skb);
665 } else {
666 if (skb->data[pkt_len] & FrameRdo)
667 dev->stats.rx_fifo_errors++;
668 else if (!(skb->data[pkt_len] & FrameCrc))
669 dev->stats.rx_crc_errors++;
670 else if ((skb->data[pkt_len] & (FrameVfr | FrameRab)) !=
671 (FrameVfr | FrameRab))
672 dev->stats.rx_length_errors++;
673 dev->stats.rx_errors++;
674 dev_kfree_skb_irq(skb);
676 refill:
677 while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
678 if (try_get_rx_skb(dpriv, dev) < 0)
679 break;
680 dpriv->rx_dirty++;
682 dscc4_rx_update(dpriv, dev);
683 rx_fd->state2 = 0x00000000;
684 rx_fd->end = cpu_to_le32(0xbabeface);
687 static void dscc4_free1(struct pci_dev *pdev)
689 struct dscc4_pci_priv *ppriv;
690 struct dscc4_dev_priv *root;
691 int i;
693 ppriv = pci_get_drvdata(pdev);
694 root = ppriv->root;
696 for (i = 0; i < dev_per_card; i++)
697 unregister_hdlc_device(dscc4_to_dev(root + i));
699 pci_set_drvdata(pdev, NULL);
701 for (i = 0; i < dev_per_card; i++)
702 free_netdev(root[i].dev);
703 kfree(root);
704 kfree(ppriv);
707 static int __devinit dscc4_init_one(struct pci_dev *pdev,
708 const struct pci_device_id *ent)
710 struct dscc4_pci_priv *priv;
711 struct dscc4_dev_priv *dpriv;
712 void __iomem *ioaddr;
713 int i, rc;
715 printk(KERN_DEBUG "%s", version);
717 rc = pci_enable_device(pdev);
718 if (rc < 0)
719 goto out;
721 rc = pci_request_region(pdev, 0, "registers");
722 if (rc < 0) {
723 printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
724 DRV_NAME);
725 goto err_disable_0;
727 rc = pci_request_region(pdev, 1, "LBI interface");
728 if (rc < 0) {
729 printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
730 DRV_NAME);
731 goto err_free_mmio_region_1;
734 ioaddr = pci_ioremap_bar(pdev, 0);
735 if (!ioaddr) {
736 printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n",
737 DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0),
738 (unsigned long long)pci_resource_start(pdev, 0));
739 rc = -EIO;
740 goto err_free_mmio_regions_2;
742 printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
743 (unsigned long long)pci_resource_start(pdev, 0),
744 (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
746 /* Cf errata DS5 p.2 */
747 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
748 pci_set_master(pdev);
750 rc = dscc4_found1(pdev, ioaddr);
751 if (rc < 0)
752 goto err_iounmap_3;
754 priv = pci_get_drvdata(pdev);
756 rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
757 if (rc < 0) {
758 printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
759 goto err_release_4;
762 /* power up/little endian/dma core controlled via lrda/ltda */
763 writel(0x00000001, ioaddr + GMODE);
764 /* Shared interrupt queue */
766 u32 bits;
768 bits = (IRQ_RING_SIZE >> 5) - 1;
769 bits |= bits << 4;
770 bits |= bits << 8;
771 bits |= bits << 16;
772 writel(bits, ioaddr + IQLENR0);
774 /* Global interrupt queue */
775 writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
776 priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
777 IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
778 if (!priv->iqcfg)
779 goto err_free_irq_5;
780 writel(priv->iqcfg_dma, ioaddr + IQCFG);
782 rc = -ENOMEM;
785 * SCC 0-3 private rx/tx irq structures
786 * IQRX/TXi needs to be set soon. Learned it the hard way...
788 for (i = 0; i < dev_per_card; i++) {
789 dpriv = priv->root + i;
790 dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
791 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
792 if (!dpriv->iqtx)
793 goto err_free_iqtx_6;
794 writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
796 for (i = 0; i < dev_per_card; i++) {
797 dpriv = priv->root + i;
798 dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
799 IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
800 if (!dpriv->iqrx)
801 goto err_free_iqrx_7;
802 writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
805 /* Cf application hint. Beware of hard-lock condition on threshold. */
806 writel(0x42104000, ioaddr + FIFOCR1);
807 //writel(0x9ce69800, ioaddr + FIFOCR2);
808 writel(0xdef6d800, ioaddr + FIFOCR2);
809 //writel(0x11111111, ioaddr + FIFOCR4);
810 writel(0x18181818, ioaddr + FIFOCR4);
811 // FIXME: should depend on the chipset revision
812 writel(0x0000000e, ioaddr + FIFOCR3);
814 writel(0xff200001, ioaddr + GCMDR);
816 rc = 0;
817 out:
818 return rc;
820 err_free_iqrx_7:
821 while (--i >= 0) {
822 dpriv = priv->root + i;
823 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
824 dpriv->iqrx, dpriv->iqrx_dma);
826 i = dev_per_card;
827 err_free_iqtx_6:
828 while (--i >= 0) {
829 dpriv = priv->root + i;
830 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
831 dpriv->iqtx, dpriv->iqtx_dma);
833 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
834 priv->iqcfg_dma);
835 err_free_irq_5:
836 free_irq(pdev->irq, priv->root);
837 err_release_4:
838 dscc4_free1(pdev);
839 err_iounmap_3:
840 iounmap (ioaddr);
841 err_free_mmio_regions_2:
842 pci_release_region(pdev, 1);
843 err_free_mmio_region_1:
844 pci_release_region(pdev, 0);
845 err_disable_0:
846 pci_disable_device(pdev);
847 goto out;
851 * Let's hope the default values are decent enough to protect my
852 * feet from the user's gun - Ueimor
854 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
855 struct net_device *dev)
857 /* No interrupts, SCC core disabled. Let's relax */
858 scc_writel(0x00000000, dpriv, dev, CCR0);
860 scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
863 * No address recognition/crc-CCITT/cts enabled
864 * Shared flags transmission disabled - cf errata DS5 p.11
865 * Carrier detect disabled - cf errata p.14
866 * FIXME: carrier detection/polarity may be handled more gracefully.
868 scc_writel(0x02408000, dpriv, dev, CCR1);
870 /* crc not forwarded - Cf errata DS5 p.11 */
871 scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
872 // crc forwarded
873 //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
876 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
878 int ret = 0;
880 if ((hz < 0) || (hz > DSCC4_HZ_MAX))
881 ret = -EOPNOTSUPP;
882 else
883 dpriv->pci_priv->xtal_hz = hz;
885 return ret;
888 static const struct net_device_ops dscc4_ops = {
889 .ndo_open = dscc4_open,
890 .ndo_stop = dscc4_close,
891 .ndo_change_mtu = hdlc_change_mtu,
892 .ndo_start_xmit = hdlc_start_xmit,
893 .ndo_do_ioctl = dscc4_ioctl,
894 .ndo_tx_timeout = dscc4_tx_timeout,
897 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
899 struct dscc4_pci_priv *ppriv;
900 struct dscc4_dev_priv *root;
901 int i, ret = -ENOMEM;
903 root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
904 if (!root) {
905 printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
906 goto err_out;
909 for (i = 0; i < dev_per_card; i++) {
910 root[i].dev = alloc_hdlcdev(root + i);
911 if (!root[i].dev)
912 goto err_free_dev;
915 ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
916 if (!ppriv) {
917 printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
918 goto err_free_dev;
921 ppriv->root = root;
922 spin_lock_init(&ppriv->lock);
924 for (i = 0; i < dev_per_card; i++) {
925 struct dscc4_dev_priv *dpriv = root + i;
926 struct net_device *d = dscc4_to_dev(dpriv);
927 hdlc_device *hdlc = dev_to_hdlc(d);
929 d->base_addr = (unsigned long)ioaddr;
930 d->irq = pdev->irq;
931 d->netdev_ops = &dscc4_ops;
932 d->watchdog_timeo = TX_TIMEOUT;
933 SET_NETDEV_DEV(d, &pdev->dev);
935 dpriv->dev_id = i;
936 dpriv->pci_priv = ppriv;
937 dpriv->base_addr = ioaddr;
938 spin_lock_init(&dpriv->lock);
940 hdlc->xmit = dscc4_start_xmit;
941 hdlc->attach = dscc4_hdlc_attach;
943 dscc4_init_registers(dpriv, d);
944 dpriv->parity = PARITY_CRC16_PR0_CCITT;
945 dpriv->encoding = ENCODING_NRZ;
947 ret = dscc4_init_ring(d);
948 if (ret < 0)
949 goto err_unregister;
951 ret = register_hdlc_device(d);
952 if (ret < 0) {
953 printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
954 dscc4_release_ring(dpriv);
955 goto err_unregister;
959 ret = dscc4_set_quartz(root, quartz);
960 if (ret < 0)
961 goto err_unregister;
963 pci_set_drvdata(pdev, ppriv);
964 return ret;
966 err_unregister:
967 while (i-- > 0) {
968 dscc4_release_ring(root + i);
969 unregister_hdlc_device(dscc4_to_dev(root + i));
971 kfree(ppriv);
972 i = dev_per_card;
973 err_free_dev:
974 while (i-- > 0)
975 free_netdev(root[i].dev);
976 kfree(root);
977 err_out:
978 return ret;
981 /* FIXME: get rid of the unneeded code */
982 static void dscc4_timer(unsigned long data)
984 struct net_device *dev = (struct net_device *)data;
985 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
986 // struct dscc4_pci_priv *ppriv;
988 goto done;
989 done:
990 dpriv->timer.expires = jiffies + TX_TIMEOUT;
991 add_timer(&dpriv->timer);
994 static void dscc4_tx_timeout(struct net_device *dev)
996 /* FIXME: something is missing there */
999 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
1001 sync_serial_settings *settings = &dpriv->settings;
1003 if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
1004 struct net_device *dev = dscc4_to_dev(dpriv);
1006 printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
1007 return -1;
1009 return 0;
1012 #ifdef CONFIG_DSCC4_PCI_RST
1014 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1015 * so as to provide a safe way to reset the asic while not the whole machine
1016 * rebooting.
1018 * This code doesn't need to be efficient. Keep It Simple
1020 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1022 int i;
1024 mutex_lock(&dscc4_mutex);
1025 for (i = 0; i < 16; i++)
1026 pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1028 /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1029 writel(0x001c0000, ioaddr + GMODE);
1030 /* Configure GPIO port as output */
1031 writel(0x0000ffff, ioaddr + GPDIR);
1032 /* Disable interruption */
1033 writel(0x0000ffff, ioaddr + GPIM);
1035 writel(0x0000ffff, ioaddr + GPDATA);
1036 writel(0x00000000, ioaddr + GPDATA);
1038 /* Flush posted writes */
1039 readl(ioaddr + GSTAR);
1041 schedule_timeout_uninterruptible(10);
1043 for (i = 0; i < 16; i++)
1044 pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1045 mutex_unlock(&dscc4_mutex);
1047 #else
1048 #define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1049 #endif /* CONFIG_DSCC4_PCI_RST */
1051 static int dscc4_open(struct net_device *dev)
1053 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1054 struct dscc4_pci_priv *ppriv;
1055 int ret = -EAGAIN;
1057 if ((dscc4_loopback_check(dpriv) < 0))
1058 goto err;
1060 if ((ret = hdlc_open(dev)))
1061 goto err;
1063 ppriv = dpriv->pci_priv;
1066 * Due to various bugs, there is no way to reliably reset a
1067 * specific port (manufacturer's dependant special PCI #RST wiring
1068 * apart: it affects all ports). Thus the device goes in the best
1069 * silent mode possible at dscc4_close() time and simply claims to
1070 * be up if it's opened again. It still isn't possible to change
1071 * the HDLC configuration without rebooting but at least the ports
1072 * can be up/down ifconfig'ed without killing the host.
1074 if (dpriv->flags & FakeReset) {
1075 dpriv->flags &= ~FakeReset;
1076 scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1077 scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1078 scc_writel(EventsMask, dpriv, dev, IMR);
1079 printk(KERN_INFO "%s: up again.\n", dev->name);
1080 goto done;
1083 /* IDT+IDR during XPR */
1084 dpriv->flags = NeedIDR | NeedIDT;
1086 scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1089 * The following is a bit paranoid...
1091 * NB: the datasheet "...CEC will stay active if the SCC is in
1092 * power-down mode or..." and CCR2.RAC = 1 are two different
1093 * situations.
1095 if (scc_readl_star(dpriv, dev) & SccBusy) {
1096 printk(KERN_ERR "%s busy. Try later\n", dev->name);
1097 ret = -EAGAIN;
1098 goto err_out;
1099 } else
1100 printk(KERN_INFO "%s: available. Good\n", dev->name);
1102 scc_writel(EventsMask, dpriv, dev, IMR);
1104 /* Posted write is flushed in the wait_ack loop */
1105 scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1107 if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1108 goto err_disable_scc_events;
1111 * I would expect XPR near CE completion (before ? after ?).
1112 * At worst, this code won't see a late XPR and people
1113 * will have to re-issue an ifconfig (this is harmless).
1114 * WARNING, a really missing XPR usually means a hardware
1115 * reset is needed. Suggestions anyone ?
1117 if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1118 printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
1119 goto err_disable_scc_events;
1122 if (debug > 2)
1123 dscc4_tx_print(dev, dpriv, "Open");
1125 done:
1126 netif_start_queue(dev);
1128 init_timer(&dpriv->timer);
1129 dpriv->timer.expires = jiffies + 10*HZ;
1130 dpriv->timer.data = (unsigned long)dev;
1131 dpriv->timer.function = dscc4_timer;
1132 add_timer(&dpriv->timer);
1133 netif_carrier_on(dev);
1135 return 0;
1137 err_disable_scc_events:
1138 scc_writel(0xffffffff, dpriv, dev, IMR);
1139 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1140 err_out:
1141 hdlc_close(dev);
1142 err:
1143 return ret;
1146 #ifdef DSCC4_POLLING
1147 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1149 /* FIXME: it's gonna be easy (TM), for sure */
1151 #endif /* DSCC4_POLLING */
1153 static netdev_tx_t dscc4_start_xmit(struct sk_buff *skb,
1154 struct net_device *dev)
1156 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1157 struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1158 struct TxFD *tx_fd;
1159 int next;
1161 next = dpriv->tx_current%TX_RING_SIZE;
1162 dpriv->tx_skbuff[next] = skb;
1163 tx_fd = dpriv->tx_fd + next;
1164 tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1165 tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1166 PCI_DMA_TODEVICE));
1167 tx_fd->complete = 0x00000000;
1168 tx_fd->jiffies = jiffies;
1169 mb();
1171 #ifdef DSCC4_POLLING
1172 spin_lock(&dpriv->lock);
1173 while (dscc4_tx_poll(dpriv, dev));
1174 spin_unlock(&dpriv->lock);
1175 #endif
1177 dev->trans_start = jiffies;
1179 if (debug > 2)
1180 dscc4_tx_print(dev, dpriv, "Xmit");
1181 /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1182 if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1183 netif_stop_queue(dev);
1185 if (dscc4_tx_quiescent(dpriv, dev))
1186 dscc4_do_tx(dpriv, dev);
1188 return NETDEV_TX_OK;
1191 static int dscc4_close(struct net_device *dev)
1193 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1195 del_timer_sync(&dpriv->timer);
1196 netif_stop_queue(dev);
1198 scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1199 scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1200 scc_writel(0xffffffff, dpriv, dev, IMR);
1202 dpriv->flags |= FakeReset;
1204 hdlc_close(dev);
1206 return 0;
1209 static inline int dscc4_check_clock_ability(int port)
1211 int ret = 0;
1213 #ifdef CONFIG_DSCC4_PCISYNC
1214 if (port >= 2)
1215 ret = -1;
1216 #endif
1217 return ret;
1221 * DS1 p.137: "There are a total of 13 different clocking modes..."
1222 * ^^
1223 * Design choices:
1224 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1225 * Clock mode 3b _should_ work but the testing seems to make this point
1226 * dubious (DIY testing requires setting CCR0 at 0x00000033).
1227 * This is supposed to provide least surprise "DTE like" behavior.
1228 * - if line rate is specified, clocks are assumed to be locally generated.
1229 * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1230 * between these it automagically done according on the required frequency
1231 * scaling. Of course some rounding may take place.
1232 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1233 * appropriate external clocking device for testing.
1234 * - no time-slot/clock mode 5: shameless lazyness.
1236 * The clock signals wiring can be (is ?) manufacturer dependant. Good luck.
1238 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1239 * won't pass the init sequence. For example, straight back-to-back DTE without
1240 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1241 * called.
1243 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1244 * DS0 for example)
1246 * Clock mode related bits of CCR0:
1247 * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1248 * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1249 * | | +-------- High Speed: say 0
1250 * | | | +-+-+-- Clock Mode: 0..7
1251 * | | | | | |
1252 * -+-+-+-+-+-+-+-+
1253 * x|x|5|4|3|2|1|0| lower bits
1255 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1256 * +-+-+-+------------------ M (0..15)
1257 * | | | | +-+-+-+-+-+-- N (0..63)
1258 * 0 0 0 0 | | | | 0 0 | | | | | |
1259 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1260 * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1263 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1265 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1266 int ret = -1;
1267 u32 brr;
1269 *state &= ~Ccr0ClockMask;
1270 if (*bps) { /* Clock generated - required for DCE */
1271 u32 n = 0, m = 0, divider;
1272 int xtal;
1274 xtal = dpriv->pci_priv->xtal_hz;
1275 if (!xtal)
1276 goto done;
1277 if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1278 goto done;
1279 divider = xtal / *bps;
1280 if (divider > BRR_DIVIDER_MAX) {
1281 divider >>= 4;
1282 *state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1283 } else
1284 *state |= 0x00000037; /* Clock mode 7b (BRG) */
1285 if (divider >> 22) {
1286 n = 63;
1287 m = 15;
1288 } else if (divider) {
1289 /* Extraction of the 6 highest weighted bits */
1290 m = 0;
1291 while (0xffffffc0 & divider) {
1292 m++;
1293 divider >>= 1;
1295 n = divider;
1297 brr = (m << 8) | n;
1298 divider = n << m;
1299 if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1300 divider <<= 4;
1301 *bps = xtal / divider;
1302 } else {
1304 * External clock - DTE
1305 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1306 * Nothing more to be done
1308 brr = 0;
1310 scc_writel(brr, dpriv, dev, BRR);
1311 ret = 0;
1312 done:
1313 return ret;
1316 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1318 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1319 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1320 const size_t size = sizeof(dpriv->settings);
1321 int ret = 0;
1323 if (dev->flags & IFF_UP)
1324 return -EBUSY;
1326 if (cmd != SIOCWANDEV)
1327 return -EOPNOTSUPP;
1329 switch(ifr->ifr_settings.type) {
1330 case IF_GET_IFACE:
1331 ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1332 if (ifr->ifr_settings.size < size) {
1333 ifr->ifr_settings.size = size; /* data size wanted */
1334 return -ENOBUFS;
1336 if (copy_to_user(line, &dpriv->settings, size))
1337 return -EFAULT;
1338 break;
1340 case IF_IFACE_SYNC_SERIAL:
1341 if (!capable(CAP_NET_ADMIN))
1342 return -EPERM;
1344 if (dpriv->flags & FakeReset) {
1345 printk(KERN_INFO "%s: please reset the device"
1346 " before this command\n", dev->name);
1347 return -EPERM;
1349 if (copy_from_user(&dpriv->settings, line, size))
1350 return -EFAULT;
1351 ret = dscc4_set_iface(dpriv, dev);
1352 break;
1354 default:
1355 ret = hdlc_ioctl(dev, ifr, cmd);
1356 break;
1359 return ret;
1362 static int dscc4_match(struct thingie *p, int value)
1364 int i;
1366 for (i = 0; p[i].define != -1; i++) {
1367 if (value == p[i].define)
1368 break;
1370 if (p[i].define == -1)
1371 return -1;
1372 else
1373 return i;
1376 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1377 struct net_device *dev)
1379 sync_serial_settings *settings = &dpriv->settings;
1380 int ret = -EOPNOTSUPP;
1381 u32 bps, state;
1383 bps = settings->clock_rate;
1384 state = scc_readl(dpriv, CCR0);
1385 if (dscc4_set_clock(dev, &bps, &state) < 0)
1386 goto done;
1387 if (bps) { /* DCE */
1388 printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1389 if (settings->clock_rate != bps) {
1390 printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1391 dev->name, settings->clock_rate, bps);
1392 settings->clock_rate = bps;
1394 } else { /* DTE */
1395 state |= PowerUp | Vis;
1396 printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1398 scc_writel(state, dpriv, dev, CCR0);
1399 ret = 0;
1400 done:
1401 return ret;
1404 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1405 struct net_device *dev)
1407 struct thingie encoding[] = {
1408 { ENCODING_NRZ, 0x00000000 },
1409 { ENCODING_NRZI, 0x00200000 },
1410 { ENCODING_FM_MARK, 0x00400000 },
1411 { ENCODING_FM_SPACE, 0x00500000 },
1412 { ENCODING_MANCHESTER, 0x00600000 },
1413 { -1, 0}
1415 int i, ret = 0;
1417 i = dscc4_match(encoding, dpriv->encoding);
1418 if (i >= 0)
1419 scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1420 else
1421 ret = -EOPNOTSUPP;
1422 return ret;
1425 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1426 struct net_device *dev)
1428 sync_serial_settings *settings = &dpriv->settings;
1429 u32 state;
1431 state = scc_readl(dpriv, CCR1);
1432 if (settings->loopback) {
1433 printk(KERN_DEBUG "%s: loopback\n", dev->name);
1434 state |= 0x00000100;
1435 } else {
1436 printk(KERN_DEBUG "%s: normal\n", dev->name);
1437 state &= ~0x00000100;
1439 scc_writel(state, dpriv, dev, CCR1);
1440 return 0;
1443 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1444 struct net_device *dev)
1446 struct thingie crc[] = {
1447 { PARITY_CRC16_PR0_CCITT, 0x00000010 },
1448 { PARITY_CRC16_PR1_CCITT, 0x00000000 },
1449 { PARITY_CRC32_PR0_CCITT, 0x00000011 },
1450 { PARITY_CRC32_PR1_CCITT, 0x00000001 }
1452 int i, ret = 0;
1454 i = dscc4_match(crc, dpriv->parity);
1455 if (i >= 0)
1456 scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1457 else
1458 ret = -EOPNOTSUPP;
1459 return ret;
1462 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1464 struct {
1465 int (*action)(struct dscc4_dev_priv *, struct net_device *);
1466 } *p, do_setting[] = {
1467 { dscc4_encoding_setting },
1468 { dscc4_clock_setting },
1469 { dscc4_loopback_setting },
1470 { dscc4_crc_setting },
1471 { NULL }
1473 int ret = 0;
1475 for (p = do_setting; p->action; p++) {
1476 if ((ret = p->action(dpriv, dev)) < 0)
1477 break;
1479 return ret;
1482 static irqreturn_t dscc4_irq(int irq, void *token)
1484 struct dscc4_dev_priv *root = token;
1485 struct dscc4_pci_priv *priv;
1486 struct net_device *dev;
1487 void __iomem *ioaddr;
1488 u32 state;
1489 unsigned long flags;
1490 int i, handled = 1;
1492 priv = root->pci_priv;
1493 dev = dscc4_to_dev(root);
1495 spin_lock_irqsave(&priv->lock, flags);
1497 ioaddr = root->base_addr;
1499 state = readl(ioaddr + GSTAR);
1500 if (!state) {
1501 handled = 0;
1502 goto out;
1504 if (debug > 3)
1505 printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1506 writel(state, ioaddr + GSTAR);
1508 if (state & Arf) {
1509 printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
1510 dev->name);
1511 goto out;
1513 state &= ~ArAck;
1514 if (state & Cfg) {
1515 if (debug > 0)
1516 printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1517 if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1518 printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
1519 if (!(state &= ~Cfg))
1520 goto out;
1522 if (state & RxEvt) {
1523 i = dev_per_card - 1;
1524 do {
1525 dscc4_rx_irq(priv, root + i);
1526 } while (--i >= 0);
1527 state &= ~RxEvt;
1529 if (state & TxEvt) {
1530 i = dev_per_card - 1;
1531 do {
1532 dscc4_tx_irq(priv, root + i);
1533 } while (--i >= 0);
1534 state &= ~TxEvt;
1536 out:
1537 spin_unlock_irqrestore(&priv->lock, flags);
1538 return IRQ_RETVAL(handled);
1541 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1542 struct dscc4_dev_priv *dpriv)
1544 struct net_device *dev = dscc4_to_dev(dpriv);
1545 u32 state;
1546 int cur, loop = 0;
1548 try:
1549 cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1550 state = le32_to_cpu(dpriv->iqtx[cur]);
1551 if (!state) {
1552 if (debug > 4)
1553 printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1554 state);
1555 if ((debug > 1) && (loop > 1))
1556 printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1557 if (loop && netif_queue_stopped(dev))
1558 if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1559 netif_wake_queue(dev);
1561 if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1562 !dscc4_tx_done(dpriv))
1563 dscc4_do_tx(dpriv, dev);
1564 return;
1566 loop++;
1567 dpriv->iqtx[cur] = 0;
1568 dpriv->iqtx_current++;
1570 if (state_check(state, dpriv, dev, "Tx") < 0)
1571 return;
1573 if (state & SccEvt) {
1574 if (state & Alls) {
1575 struct sk_buff *skb;
1576 struct TxFD *tx_fd;
1578 if (debug > 2)
1579 dscc4_tx_print(dev, dpriv, "Alls");
1581 * DataComplete can't be trusted for Tx completion.
1582 * Cf errata DS5 p.8
1584 cur = dpriv->tx_dirty%TX_RING_SIZE;
1585 tx_fd = dpriv->tx_fd + cur;
1586 skb = dpriv->tx_skbuff[cur];
1587 if (skb) {
1588 pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1589 skb->len, PCI_DMA_TODEVICE);
1590 if (tx_fd->state & FrameEnd) {
1591 dev->stats.tx_packets++;
1592 dev->stats.tx_bytes += skb->len;
1594 dev_kfree_skb_irq(skb);
1595 dpriv->tx_skbuff[cur] = NULL;
1596 ++dpriv->tx_dirty;
1597 } else {
1598 if (debug > 1)
1599 printk(KERN_ERR "%s Tx: NULL skb %d\n",
1600 dev->name, cur);
1603 * If the driver ends sending crap on the wire, it
1604 * will be way easier to diagnose than the (not so)
1605 * random freeze induced by null sized tx frames.
1607 tx_fd->data = tx_fd->next;
1608 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1609 tx_fd->complete = 0x00000000;
1610 tx_fd->jiffies = 0;
1612 if (!(state &= ~Alls))
1613 goto try;
1616 * Transmit Data Underrun
1618 if (state & Xdu) {
1619 printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
1620 dpriv->flags = NeedIDT;
1621 /* Tx reset */
1622 writel(MTFi | Rdt,
1623 dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1624 writel(Action, dpriv->base_addr + GCMDR);
1625 return;
1627 if (state & Cts) {
1628 printk(KERN_INFO "%s: CTS transition\n", dev->name);
1629 if (!(state &= ~Cts)) /* DEBUG */
1630 goto try;
1632 if (state & Xmr) {
1633 /* Frame needs to be sent again - FIXME */
1634 printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
1635 if (!(state &= ~Xmr)) /* DEBUG */
1636 goto try;
1638 if (state & Xpr) {
1639 void __iomem *scc_addr;
1640 unsigned long ring;
1641 int i;
1644 * - the busy condition happens (sometimes);
1645 * - it doesn't seem to make the handler unreliable.
1647 for (i = 1; i; i <<= 1) {
1648 if (!(scc_readl_star(dpriv, dev) & SccBusy))
1649 break;
1651 if (!i)
1652 printk(KERN_INFO "%s busy in irq\n", dev->name);
1654 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1655 /* Keep this order: IDT before IDR */
1656 if (dpriv->flags & NeedIDT) {
1657 if (debug > 2)
1658 dscc4_tx_print(dev, dpriv, "Xpr");
1659 ring = dpriv->tx_fd_dma +
1660 (dpriv->tx_dirty%TX_RING_SIZE)*
1661 sizeof(struct TxFD);
1662 writel(ring, scc_addr + CH0BTDA);
1663 dscc4_do_tx(dpriv, dev);
1664 writel(MTFi | Idt, scc_addr + CH0CFG);
1665 if (dscc4_do_action(dev, "IDT") < 0)
1666 goto err_xpr;
1667 dpriv->flags &= ~NeedIDT;
1669 if (dpriv->flags & NeedIDR) {
1670 ring = dpriv->rx_fd_dma +
1671 (dpriv->rx_current%RX_RING_SIZE)*
1672 sizeof(struct RxFD);
1673 writel(ring, scc_addr + CH0BRDA);
1674 dscc4_rx_update(dpriv, dev);
1675 writel(MTFi | Idr, scc_addr + CH0CFG);
1676 if (dscc4_do_action(dev, "IDR") < 0)
1677 goto err_xpr;
1678 dpriv->flags &= ~NeedIDR;
1679 smp_wmb();
1680 /* Activate receiver and misc */
1681 scc_writel(0x08050008, dpriv, dev, CCR2);
1683 err_xpr:
1684 if (!(state &= ~Xpr))
1685 goto try;
1687 if (state & Cd) {
1688 if (debug > 0)
1689 printk(KERN_INFO "%s: CD transition\n", dev->name);
1690 if (!(state &= ~Cd)) /* DEBUG */
1691 goto try;
1693 } else { /* ! SccEvt */
1694 if (state & Hi) {
1695 #ifdef DSCC4_POLLING
1696 while (!dscc4_tx_poll(dpriv, dev));
1697 #endif
1698 printk(KERN_INFO "%s: Tx Hi\n", dev->name);
1699 state &= ~Hi;
1701 if (state & Err) {
1702 printk(KERN_INFO "%s: Tx ERR\n", dev->name);
1703 dev->stats.tx_errors++;
1704 state &= ~Err;
1707 goto try;
1710 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1711 struct dscc4_dev_priv *dpriv)
1713 struct net_device *dev = dscc4_to_dev(dpriv);
1714 u32 state;
1715 int cur;
1717 try:
1718 cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1719 state = le32_to_cpu(dpriv->iqrx[cur]);
1720 if (!state)
1721 return;
1722 dpriv->iqrx[cur] = 0;
1723 dpriv->iqrx_current++;
1725 if (state_check(state, dpriv, dev, "Rx") < 0)
1726 return;
1728 if (!(state & SccEvt)){
1729 struct RxFD *rx_fd;
1731 if (debug > 4)
1732 printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1733 state);
1734 state &= 0x00ffffff;
1735 if (state & Err) { /* Hold or reset */
1736 printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1737 cur = dpriv->rx_current%RX_RING_SIZE;
1738 rx_fd = dpriv->rx_fd + cur;
1740 * Presume we're not facing a DMAC receiver reset.
1741 * As We use the rx size-filtering feature of the
1742 * DSCC4, the beginning of a new frame is waiting in
1743 * the rx fifo. I bet a Receive Data Overflow will
1744 * happen most of time but let's try and avoid it.
1745 * Btw (as for RDO) if one experiences ERR whereas
1746 * the system looks rather idle, there may be a
1747 * problem with latency. In this case, increasing
1748 * RX_RING_SIZE may help.
1750 //while (dpriv->rx_needs_refill) {
1751 while (!(rx_fd->state1 & Hold)) {
1752 rx_fd++;
1753 cur++;
1754 if (!(cur = cur%RX_RING_SIZE))
1755 rx_fd = dpriv->rx_fd;
1757 //dpriv->rx_needs_refill--;
1758 try_get_rx_skb(dpriv, dev);
1759 if (!rx_fd->data)
1760 goto try;
1761 rx_fd->state1 &= ~Hold;
1762 rx_fd->state2 = 0x00000000;
1763 rx_fd->end = cpu_to_le32(0xbabeface);
1765 goto try;
1767 if (state & Fi) {
1768 dscc4_rx_skb(dpriv, dev);
1769 goto try;
1771 if (state & Hi ) { /* HI bit */
1772 printk(KERN_INFO "%s: Rx Hi\n", dev->name);
1773 state &= ~Hi;
1774 goto try;
1776 } else { /* SccEvt */
1777 if (debug > 1) {
1778 //FIXME: verifier la presence de tous les evenements
1779 static struct {
1780 u32 mask;
1781 const char *irq_name;
1782 } evts[] = {
1783 { 0x00008000, "TIN"},
1784 { 0x00000020, "RSC"},
1785 { 0x00000010, "PCE"},
1786 { 0x00000008, "PLLA"},
1787 { 0, NULL}
1788 }, *evt;
1790 for (evt = evts; evt->irq_name; evt++) {
1791 if (state & evt->mask) {
1792 printk(KERN_DEBUG "%s: %s\n",
1793 dev->name, evt->irq_name);
1794 if (!(state &= ~evt->mask))
1795 goto try;
1798 } else {
1799 if (!(state &= ~0x0000c03c))
1800 goto try;
1802 if (state & Cts) {
1803 printk(KERN_INFO "%s: CTS transition\n", dev->name);
1804 if (!(state &= ~Cts)) /* DEBUG */
1805 goto try;
1808 * Receive Data Overflow (FIXME: fscked)
1810 if (state & Rdo) {
1811 struct RxFD *rx_fd;
1812 void __iomem *scc_addr;
1813 int cur;
1815 //if (debug)
1816 // dscc4_rx_dump(dpriv);
1817 scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1819 scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1821 * This has no effect. Why ?
1822 * ORed with TxSccRes, one sees the CFG ack (for
1823 * the TX part only).
1825 scc_writel(RxSccRes, dpriv, dev, CMDR);
1826 dpriv->flags |= RdoSet;
1829 * Let's try and save something in the received data.
1830 * rx_current must be incremented at least once to
1831 * avoid HOLD in the BRDA-to-be-pointed desc.
1833 do {
1834 cur = dpriv->rx_current++%RX_RING_SIZE;
1835 rx_fd = dpriv->rx_fd + cur;
1836 if (!(rx_fd->state2 & DataComplete))
1837 break;
1838 if (rx_fd->state2 & FrameAborted) {
1839 dev->stats.rx_over_errors++;
1840 rx_fd->state1 |= Hold;
1841 rx_fd->state2 = 0x00000000;
1842 rx_fd->end = cpu_to_le32(0xbabeface);
1843 } else
1844 dscc4_rx_skb(dpriv, dev);
1845 } while (1);
1847 if (debug > 0) {
1848 if (dpriv->flags & RdoSet)
1849 printk(KERN_DEBUG
1850 "%s: no RDO in Rx data\n", DRV_NAME);
1852 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1854 * FIXME: must the reset be this violent ?
1856 #warning "FIXME: CH0BRDA"
1857 writel(dpriv->rx_fd_dma +
1858 (dpriv->rx_current%RX_RING_SIZE)*
1859 sizeof(struct RxFD), scc_addr + CH0BRDA);
1860 writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1861 if (dscc4_do_action(dev, "RDR") < 0) {
1862 printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1863 dev->name, "RDR");
1864 goto rdo_end;
1866 writel(MTFi|Idr, scc_addr + CH0CFG);
1867 if (dscc4_do_action(dev, "IDR") < 0) {
1868 printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1869 dev->name, "IDR");
1870 goto rdo_end;
1872 rdo_end:
1873 #endif
1874 scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1875 goto try;
1877 if (state & Cd) {
1878 printk(KERN_INFO "%s: CD transition\n", dev->name);
1879 if (!(state &= ~Cd)) /* DEBUG */
1880 goto try;
1882 if (state & Flex) {
1883 printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1884 if (!(state &= ~Flex))
1885 goto try;
1891 * I had expected the following to work for the first descriptor
1892 * (tx_fd->state = 0xc0000000)
1893 * - Hold=1 (don't try and branch to the next descripto);
1894 * - No=0 (I want an empty data section, i.e. size=0);
1895 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1896 * It failed and locked solid. Thus the introduction of a dummy skb.
1897 * Problem is acknowledged in errata sheet DS5. Joy :o/
1899 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1901 struct sk_buff *skb;
1903 skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1904 if (skb) {
1905 int last = dpriv->tx_dirty%TX_RING_SIZE;
1906 struct TxFD *tx_fd = dpriv->tx_fd + last;
1908 skb->len = DUMMY_SKB_SIZE;
1909 skb_copy_to_linear_data(skb, version,
1910 strlen(version) % DUMMY_SKB_SIZE);
1911 tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1912 tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1913 skb->data, DUMMY_SKB_SIZE,
1914 PCI_DMA_TODEVICE));
1915 dpriv->tx_skbuff[last] = skb;
1917 return skb;
1920 static int dscc4_init_ring(struct net_device *dev)
1922 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1923 struct pci_dev *pdev = dpriv->pci_priv->pdev;
1924 struct TxFD *tx_fd;
1925 struct RxFD *rx_fd;
1926 void *ring;
1927 int i;
1929 ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1930 if (!ring)
1931 goto err_out;
1932 dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1934 ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1935 if (!ring)
1936 goto err_free_dma_rx;
1937 dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1939 memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1940 dpriv->tx_dirty = 0xffffffff;
1941 i = dpriv->tx_current = 0;
1942 do {
1943 tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1944 tx_fd->complete = 0x00000000;
1945 /* FIXME: NULL should be ok - to be tried */
1946 tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1947 (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1948 (++i%TX_RING_SIZE)*sizeof(*tx_fd));
1949 } while (i < TX_RING_SIZE);
1951 if (!dscc4_init_dummy_skb(dpriv))
1952 goto err_free_dma_tx;
1954 memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1955 i = dpriv->rx_dirty = dpriv->rx_current = 0;
1956 do {
1957 /* size set by the host. Multiple of 4 bytes please */
1958 rx_fd->state1 = HiDesc;
1959 rx_fd->state2 = 0x00000000;
1960 rx_fd->end = cpu_to_le32(0xbabeface);
1961 rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1962 // FIXME: return value verifiee mais traitement suspect
1963 if (try_get_rx_skb(dpriv, dev) >= 0)
1964 dpriv->rx_dirty++;
1965 (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1966 (++i%RX_RING_SIZE)*sizeof(*rx_fd));
1967 } while (i < RX_RING_SIZE);
1969 return 0;
1971 err_free_dma_tx:
1972 pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1973 err_free_dma_rx:
1974 pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1975 err_out:
1976 return -ENOMEM;
1979 static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1981 struct dscc4_pci_priv *ppriv;
1982 struct dscc4_dev_priv *root;
1983 void __iomem *ioaddr;
1984 int i;
1986 ppriv = pci_get_drvdata(pdev);
1987 root = ppriv->root;
1989 ioaddr = root->base_addr;
1991 dscc4_pci_reset(pdev, ioaddr);
1993 free_irq(pdev->irq, root);
1994 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1995 ppriv->iqcfg_dma);
1996 for (i = 0; i < dev_per_card; i++) {
1997 struct dscc4_dev_priv *dpriv = root + i;
1999 dscc4_release_ring(dpriv);
2000 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
2001 dpriv->iqrx, dpriv->iqrx_dma);
2002 pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
2003 dpriv->iqtx, dpriv->iqtx_dma);
2006 dscc4_free1(pdev);
2008 iounmap(ioaddr);
2010 pci_release_region(pdev, 1);
2011 pci_release_region(pdev, 0);
2013 pci_disable_device(pdev);
2016 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2017 unsigned short parity)
2019 struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2021 if (encoding != ENCODING_NRZ &&
2022 encoding != ENCODING_NRZI &&
2023 encoding != ENCODING_FM_MARK &&
2024 encoding != ENCODING_FM_SPACE &&
2025 encoding != ENCODING_MANCHESTER)
2026 return -EINVAL;
2028 if (parity != PARITY_NONE &&
2029 parity != PARITY_CRC16_PR0_CCITT &&
2030 parity != PARITY_CRC16_PR1_CCITT &&
2031 parity != PARITY_CRC32_PR0_CCITT &&
2032 parity != PARITY_CRC32_PR1_CCITT)
2033 return -EINVAL;
2035 dpriv->encoding = encoding;
2036 dpriv->parity = parity;
2037 return 0;
2040 #ifndef MODULE
2041 static int __init dscc4_setup(char *str)
2043 int *args[] = { &debug, &quartz, NULL }, **p = args;
2045 while (*p && (get_option(&str, *p) == 2))
2046 p++;
2047 return 1;
2050 __setup("dscc4.setup=", dscc4_setup);
2051 #endif
2053 static struct pci_device_id dscc4_pci_tbl[] = {
2054 { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2055 PCI_ANY_ID, PCI_ANY_ID, },
2056 { 0,}
2058 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2060 static struct pci_driver dscc4_driver = {
2061 .name = DRV_NAME,
2062 .id_table = dscc4_pci_tbl,
2063 .probe = dscc4_init_one,
2064 .remove = __devexit_p(dscc4_remove_one),
2067 static int __init dscc4_init_module(void)
2069 return pci_register_driver(&dscc4_driver);
2072 static void __exit dscc4_cleanup_module(void)
2074 pci_unregister_driver(&dscc4_driver);
2077 module_init(dscc4_init_module);
2078 module_exit(dscc4_cleanup_module);