3 * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License v2.0 as published by
9 * the Free Software Foundation
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * PV guests under Xen are running in an non-contiguous memory architecture.
18 * When PCI pass-through is utilized, this necessitates an IOMMU for
19 * translating bus (DMA) to virtual and vice-versa and also providing a
20 * mechanism to have contiguous pages for device drivers operations (say DMA
23 * Specifically, under Xen the Linux idea of pages is an illusion. It
24 * assumes that pages start at zero and go up to the available memory. To
25 * help with that, the Linux Xen MMU provides a lookup mechanism to
26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28 * memory is not contiguous. Xen hypervisor stitches memory for guests
29 * from different pools, which means there is no guarantee that PFN==MFN
30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31 * allocated in descending order (high to low), meaning the guest might
32 * never get any MFN's under the 4GB mark.
36 #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
38 #include <linux/bootmem.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/export.h>
41 #include <xen/swiotlb-xen.h>
43 #include <xen/xen-ops.h>
44 #include <xen/hvc-console.h>
46 * Used to do a quick range check in swiotlb_tbl_unmap_single and
47 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
51 static char *xen_io_tlb_start
, *xen_io_tlb_end
;
52 static unsigned long xen_io_tlb_nslabs
;
54 * Quick lookup value of the bus address of the IOTLB.
57 static u64 start_dma_addr
;
59 static dma_addr_t
xen_phys_to_bus(phys_addr_t paddr
)
61 return phys_to_machine(XPADDR(paddr
)).maddr
;
64 static phys_addr_t
xen_bus_to_phys(dma_addr_t baddr
)
66 return machine_to_phys(XMADDR(baddr
)).paddr
;
69 static dma_addr_t
xen_virt_to_bus(void *address
)
71 return xen_phys_to_bus(virt_to_phys(address
));
74 static int check_pages_physically_contiguous(unsigned long pfn
,
78 unsigned long next_mfn
;
82 next_mfn
= pfn_to_mfn(pfn
);
83 nr_pages
= (offset
+ length
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
85 for (i
= 1; i
< nr_pages
; i
++) {
86 if (pfn_to_mfn(++pfn
) != ++next_mfn
)
92 static int range_straddles_page_boundary(phys_addr_t p
, size_t size
)
94 unsigned long pfn
= PFN_DOWN(p
);
95 unsigned int offset
= p
& ~PAGE_MASK
;
97 if (offset
+ size
<= PAGE_SIZE
)
99 if (check_pages_physically_contiguous(pfn
, offset
, size
))
104 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr
)
106 unsigned long mfn
= PFN_DOWN(dma_addr
);
107 unsigned long pfn
= mfn_to_local_pfn(mfn
);
110 /* If the address is outside our domain, it CAN
111 * have the same virtual address as another address
112 * in our domain. Therefore _only_ check address within our domain.
114 if (pfn_valid(pfn
)) {
115 paddr
= PFN_PHYS(pfn
);
116 return paddr
>= virt_to_phys(xen_io_tlb_start
) &&
117 paddr
< virt_to_phys(xen_io_tlb_end
);
122 static int max_dma_bits
= 32;
125 xen_swiotlb_fixup(void *buf
, size_t size
, unsigned long nslabs
)
130 dma_bits
= get_order(IO_TLB_SEGSIZE
<< IO_TLB_SHIFT
) + PAGE_SHIFT
;
134 int slabs
= min(nslabs
- i
, (unsigned long)IO_TLB_SEGSIZE
);
137 rc
= xen_create_contiguous_region(
138 (unsigned long)buf
+ (i
<< IO_TLB_SHIFT
),
139 get_order(slabs
<< IO_TLB_SHIFT
),
141 } while (rc
&& dma_bits
++ < max_dma_bits
);
146 } while (i
< nslabs
);
149 static unsigned long xen_set_nslabs(unsigned long nr_tbl
)
152 xen_io_tlb_nslabs
= (64 * 1024 * 1024 >> IO_TLB_SHIFT
);
153 xen_io_tlb_nslabs
= ALIGN(xen_io_tlb_nslabs
, IO_TLB_SEGSIZE
);
155 xen_io_tlb_nslabs
= nr_tbl
;
157 return xen_io_tlb_nslabs
<< IO_TLB_SHIFT
;
160 enum xen_swiotlb_err
{
161 XEN_SWIOTLB_UNKNOWN
= 0,
166 static const char *xen_swiotlb_error(enum xen_swiotlb_err err
)
169 case XEN_SWIOTLB_ENOMEM
:
170 return "Cannot allocate Xen-SWIOTLB buffer\n";
171 case XEN_SWIOTLB_EFIXUP
:
172 return "Failed to get contiguous memory for DMA from Xen!\n"\
173 "You either: don't have the permissions, do not have"\
174 " enough free memory under 4GB, or the hypervisor memory"\
175 " is too fragmented!";
181 int __ref
xen_swiotlb_init(int verbose
, bool early
)
183 unsigned long bytes
, order
;
185 enum xen_swiotlb_err m_ret
= XEN_SWIOTLB_UNKNOWN
;
186 unsigned int repeat
= 3;
188 xen_io_tlb_nslabs
= swiotlb_nr_tbl();
190 bytes
= xen_set_nslabs(xen_io_tlb_nslabs
);
191 order
= get_order(xen_io_tlb_nslabs
<< IO_TLB_SHIFT
);
193 * Get IO TLB memory from any location.
196 xen_io_tlb_start
= alloc_bootmem_pages(PAGE_ALIGN(bytes
));
198 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
199 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
200 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
201 xen_io_tlb_start
= (void *)__get_free_pages(__GFP_NOWARN
, order
);
202 if (xen_io_tlb_start
)
206 if (order
!= get_order(bytes
)) {
207 pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
208 (PAGE_SIZE
<< order
) >> 20);
209 xen_io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
210 bytes
= xen_io_tlb_nslabs
<< IO_TLB_SHIFT
;
213 if (!xen_io_tlb_start
) {
214 m_ret
= XEN_SWIOTLB_ENOMEM
;
217 xen_io_tlb_end
= xen_io_tlb_start
+ bytes
;
219 * And replace that memory with pages under 4GB.
221 rc
= xen_swiotlb_fixup(xen_io_tlb_start
,
226 free_bootmem(__pa(xen_io_tlb_start
), PAGE_ALIGN(bytes
));
228 free_pages((unsigned long)xen_io_tlb_start
, order
);
229 xen_io_tlb_start
= NULL
;
231 m_ret
= XEN_SWIOTLB_EFIXUP
;
234 start_dma_addr
= xen_virt_to_bus(xen_io_tlb_start
);
236 if (swiotlb_init_with_tbl(xen_io_tlb_start
, xen_io_tlb_nslabs
,
238 panic("Cannot allocate SWIOTLB buffer");
241 rc
= swiotlb_late_init_with_tbl(xen_io_tlb_start
, xen_io_tlb_nslabs
);
245 xen_io_tlb_nslabs
= max(1024UL, /* Min is 2MB */
246 (xen_io_tlb_nslabs
>> 1));
247 pr_info("Lowering to %luMB\n",
248 (xen_io_tlb_nslabs
<< IO_TLB_SHIFT
) >> 20);
251 pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret
), rc
);
253 panic("%s (rc:%d)", xen_swiotlb_error(m_ret
), rc
);
255 free_pages((unsigned long)xen_io_tlb_start
, order
);
259 xen_swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
260 dma_addr_t
*dma_handle
, gfp_t flags
,
261 struct dma_attrs
*attrs
)
264 int order
= get_order(size
);
265 u64 dma_mask
= DMA_BIT_MASK(32);
266 unsigned long vstart
;
271 * Ignore region specifiers - the kernel's ideas of
272 * pseudo-phys memory layout has nothing to do with the
273 * machine physical layout. We can't allocate highmem
274 * because we can't return a pointer to it.
276 flags
&= ~(__GFP_DMA
| __GFP_HIGHMEM
);
278 if (dma_alloc_from_coherent(hwdev
, size
, dma_handle
, &ret
))
281 vstart
= __get_free_pages(flags
, order
);
282 ret
= (void *)vstart
;
287 if (hwdev
&& hwdev
->coherent_dma_mask
)
288 dma_mask
= dma_alloc_coherent_mask(hwdev
, flags
);
290 phys
= virt_to_phys(ret
);
291 dev_addr
= xen_phys_to_bus(phys
);
292 if (((dev_addr
+ size
- 1 <= dma_mask
)) &&
293 !range_straddles_page_boundary(phys
, size
))
294 *dma_handle
= dev_addr
;
296 if (xen_create_contiguous_region(vstart
, order
,
297 fls64(dma_mask
)) != 0) {
298 free_pages(vstart
, order
);
301 *dma_handle
= virt_to_machine(ret
).maddr
;
303 memset(ret
, 0, size
);
306 EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent
);
309 xen_swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
310 dma_addr_t dev_addr
, struct dma_attrs
*attrs
)
312 int order
= get_order(size
);
314 u64 dma_mask
= DMA_BIT_MASK(32);
316 if (dma_release_from_coherent(hwdev
, order
, vaddr
))
319 if (hwdev
&& hwdev
->coherent_dma_mask
)
320 dma_mask
= hwdev
->coherent_dma_mask
;
322 phys
= virt_to_phys(vaddr
);
324 if (((dev_addr
+ size
- 1 > dma_mask
)) ||
325 range_straddles_page_boundary(phys
, size
))
326 xen_destroy_contiguous_region((unsigned long)vaddr
, order
);
328 free_pages((unsigned long)vaddr
, order
);
330 EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent
);
334 * Map a single buffer of the indicated size for DMA in streaming mode. The
335 * physical address to use is returned.
337 * Once the device is given the dma address, the device owns this memory until
338 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
340 dma_addr_t
xen_swiotlb_map_page(struct device
*dev
, struct page
*page
,
341 unsigned long offset
, size_t size
,
342 enum dma_data_direction dir
,
343 struct dma_attrs
*attrs
)
345 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
346 dma_addr_t dev_addr
= xen_phys_to_bus(phys
);
348 BUG_ON(dir
== DMA_NONE
);
350 * If the address happens to be in the device's DMA window,
351 * we can safely return the device addr and not worry about bounce
354 if (dma_capable(dev
, dev_addr
, size
) &&
355 !range_straddles_page_boundary(phys
, size
) && !swiotlb_force
)
359 * Oh well, have to allocate and map a bounce buffer.
361 map
= swiotlb_tbl_map_single(dev
, start_dma_addr
, phys
, size
, dir
);
362 if (map
== SWIOTLB_MAP_ERROR
)
363 return DMA_ERROR_CODE
;
365 dev_addr
= xen_phys_to_bus(map
);
368 * Ensure that the address returned is DMA'ble
370 if (!dma_capable(dev
, dev_addr
, size
)) {
371 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
);
376 EXPORT_SYMBOL_GPL(xen_swiotlb_map_page
);
379 * Unmap a single streaming mode DMA translation. The dma_addr and size must
380 * match what was provided for in a previous xen_swiotlb_map_page call. All
381 * other usages are undefined.
383 * After this call, reads by the cpu to the buffer are guaranteed to see
384 * whatever the device wrote there.
386 static void xen_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
387 size_t size
, enum dma_data_direction dir
)
389 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
391 BUG_ON(dir
== DMA_NONE
);
393 /* NOTE: We use dev_addr here, not paddr! */
394 if (is_xen_swiotlb_buffer(dev_addr
)) {
395 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
);
399 if (dir
!= DMA_FROM_DEVICE
)
403 * phys_to_virt doesn't work with hihgmem page but we could
404 * call dma_mark_clean() with hihgmem page here. However, we
405 * are fine since dma_mark_clean() is null on POWERPC. We can
406 * make dma_mark_clean() take a physical address if necessary.
408 dma_mark_clean(phys_to_virt(paddr
), size
);
411 void xen_swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
412 size_t size
, enum dma_data_direction dir
,
413 struct dma_attrs
*attrs
)
415 xen_unmap_single(hwdev
, dev_addr
, size
, dir
);
417 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page
);
420 * Make physical memory consistent for a single streaming mode DMA translation
423 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
424 * using the cpu, yet do not wish to teardown the dma mapping, you must
425 * call this function before doing so. At the next point you give the dma
426 * address back to the card, you must first perform a
427 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
430 xen_swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
431 size_t size
, enum dma_data_direction dir
,
432 enum dma_sync_target target
)
434 phys_addr_t paddr
= xen_bus_to_phys(dev_addr
);
436 BUG_ON(dir
== DMA_NONE
);
438 /* NOTE: We use dev_addr here, not paddr! */
439 if (is_xen_swiotlb_buffer(dev_addr
)) {
440 swiotlb_tbl_sync_single(hwdev
, paddr
, size
, dir
, target
);
444 if (dir
!= DMA_FROM_DEVICE
)
447 dma_mark_clean(phys_to_virt(paddr
), size
);
451 xen_swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
452 size_t size
, enum dma_data_direction dir
)
454 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
456 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu
);
459 xen_swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
460 size_t size
, enum dma_data_direction dir
)
462 xen_swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
464 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device
);
467 * Map a set of buffers described by scatterlist in streaming mode for DMA.
468 * This is the scatter-gather version of the above xen_swiotlb_map_page
469 * interface. Here the scatter gather list elements are each tagged with the
470 * appropriate dma address and length. They are obtained via
471 * sg_dma_{address,length}(SG).
473 * NOTE: An implementation may be able to use a smaller number of
474 * DMA address/length pairs than there are SG table elements.
475 * (for example via virtual mapping capabilities)
476 * The routine returns the number of addr/length pairs actually
477 * used, at most nents.
479 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
483 xen_swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
484 int nelems
, enum dma_data_direction dir
,
485 struct dma_attrs
*attrs
)
487 struct scatterlist
*sg
;
490 BUG_ON(dir
== DMA_NONE
);
492 for_each_sg(sgl
, sg
, nelems
, i
) {
493 phys_addr_t paddr
= sg_phys(sg
);
494 dma_addr_t dev_addr
= xen_phys_to_bus(paddr
);
497 !dma_capable(hwdev
, dev_addr
, sg
->length
) ||
498 range_straddles_page_boundary(paddr
, sg
->length
)) {
499 phys_addr_t map
= swiotlb_tbl_map_single(hwdev
,
504 if (map
== SWIOTLB_MAP_ERROR
) {
505 /* Don't panic here, we expect map_sg users
506 to do proper error handling. */
507 xen_swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
510 return DMA_ERROR_CODE
;
512 sg
->dma_address
= xen_phys_to_bus(map
);
514 sg
->dma_address
= dev_addr
;
515 sg_dma_len(sg
) = sg
->length
;
519 EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs
);
522 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
523 * concerning calls here are the same as for swiotlb_unmap_page() above.
526 xen_swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
527 int nelems
, enum dma_data_direction dir
,
528 struct dma_attrs
*attrs
)
530 struct scatterlist
*sg
;
533 BUG_ON(dir
== DMA_NONE
);
535 for_each_sg(sgl
, sg
, nelems
, i
)
536 xen_unmap_single(hwdev
, sg
->dma_address
, sg_dma_len(sg
), dir
);
539 EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs
);
542 * Make physical memory consistent for a set of streaming mode DMA translations
545 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
549 xen_swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
550 int nelems
, enum dma_data_direction dir
,
551 enum dma_sync_target target
)
553 struct scatterlist
*sg
;
556 for_each_sg(sgl
, sg
, nelems
, i
)
557 xen_swiotlb_sync_single(hwdev
, sg
->dma_address
,
558 sg_dma_len(sg
), dir
, target
);
562 xen_swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
563 int nelems
, enum dma_data_direction dir
)
565 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
567 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu
);
570 xen_swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
571 int nelems
, enum dma_data_direction dir
)
573 xen_swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
575 EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device
);
578 xen_swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
582 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error
);
585 * Return whether the given device DMA address mask can be supported
586 * properly. For example, if your device can only drive the low 24-bits
587 * during bus mastering, then you would pass 0x00ffffff as the mask to
591 xen_swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
593 return xen_virt_to_bus(xen_io_tlb_end
- 1) <= mask
;
595 EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported
);