4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
51 bh
->b_end_io
= handler
;
52 bh
->b_private
= private;
54 EXPORT_SYMBOL(init_buffer
);
56 static int sleep_on_buffer(void *word
)
62 void __lock_buffer(struct buffer_head
*bh
)
64 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sleep_on_buffer
,
65 TASK_UNINTERRUPTIBLE
);
67 EXPORT_SYMBOL(__lock_buffer
);
69 void unlock_buffer(struct buffer_head
*bh
)
71 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
72 smp_mb__after_clear_bit();
73 wake_up_bit(&bh
->b_state
, BH_Lock
);
75 EXPORT_SYMBOL(unlock_buffer
);
78 * Block until a buffer comes unlocked. This doesn't stop it
79 * from becoming locked again - you have to lock it yourself
80 * if you want to preserve its state.
82 void __wait_on_buffer(struct buffer_head
* bh
)
84 wait_on_bit(&bh
->b_state
, BH_Lock
, sleep_on_buffer
, TASK_UNINTERRUPTIBLE
);
86 EXPORT_SYMBOL(__wait_on_buffer
);
89 __clear_page_buffers(struct page
*page
)
91 ClearPagePrivate(page
);
92 set_page_private(page
, 0);
93 page_cache_release(page
);
97 static int quiet_error(struct buffer_head
*bh
)
99 if (!test_bit(BH_Quiet
, &bh
->b_state
) && printk_ratelimit())
105 static void buffer_io_error(struct buffer_head
*bh
)
107 char b
[BDEVNAME_SIZE
];
108 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh
->b_bdev
, b
),
110 (unsigned long long)bh
->b_blocknr
);
114 * End-of-IO handler helper function which does not touch the bh after
116 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
117 * a race there is benign: unlock_buffer() only use the bh's address for
118 * hashing after unlocking the buffer, so it doesn't actually touch the bh
121 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
124 set_buffer_uptodate(bh
);
126 /* This happens, due to failed READA attempts. */
127 clear_buffer_uptodate(bh
);
133 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
134 * unlock the buffer. This is what ll_rw_block uses too.
136 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
138 __end_buffer_read_notouch(bh
, uptodate
);
141 EXPORT_SYMBOL(end_buffer_read_sync
);
143 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
145 char b
[BDEVNAME_SIZE
];
148 set_buffer_uptodate(bh
);
150 if (!quiet_error(bh
)) {
152 printk(KERN_WARNING
"lost page write due to "
154 bdevname(bh
->b_bdev
, b
));
156 set_buffer_write_io_error(bh
);
157 clear_buffer_uptodate(bh
);
162 EXPORT_SYMBOL(end_buffer_write_sync
);
165 * Various filesystems appear to want __find_get_block to be non-blocking.
166 * But it's the page lock which protects the buffers. To get around this,
167 * we get exclusion from try_to_free_buffers with the blockdev mapping's
170 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
171 * may be quite high. This code could TryLock the page, and if that
172 * succeeds, there is no need to take private_lock. (But if
173 * private_lock is contended then so is mapping->tree_lock).
175 static struct buffer_head
*
176 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
178 struct inode
*bd_inode
= bdev
->bd_inode
;
179 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
180 struct buffer_head
*ret
= NULL
;
182 struct buffer_head
*bh
;
183 struct buffer_head
*head
;
187 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
188 page
= find_get_page(bd_mapping
, index
);
192 spin_lock(&bd_mapping
->private_lock
);
193 if (!page_has_buffers(page
))
195 head
= page_buffers(page
);
198 if (!buffer_mapped(bh
))
200 else if (bh
->b_blocknr
== block
) {
205 bh
= bh
->b_this_page
;
206 } while (bh
!= head
);
208 /* we might be here because some of the buffers on this page are
209 * not mapped. This is due to various races between
210 * file io on the block device and getblk. It gets dealt with
211 * elsewhere, don't buffer_error if we had some unmapped buffers
214 char b
[BDEVNAME_SIZE
];
216 printk("__find_get_block_slow() failed. "
217 "block=%llu, b_blocknr=%llu\n",
218 (unsigned long long)block
,
219 (unsigned long long)bh
->b_blocknr
);
220 printk("b_state=0x%08lx, b_size=%zu\n",
221 bh
->b_state
, bh
->b_size
);
222 printk("device %s blocksize: %d\n", bdevname(bdev
, b
),
223 1 << bd_inode
->i_blkbits
);
226 spin_unlock(&bd_mapping
->private_lock
);
227 page_cache_release(page
);
233 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
235 static void free_more_memory(void)
240 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
243 for_each_online_node(nid
) {
244 (void)first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
245 gfp_zone(GFP_NOFS
), NULL
,
248 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
254 * I/O completion handler for block_read_full_page() - pages
255 * which come unlocked at the end of I/O.
257 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
260 struct buffer_head
*first
;
261 struct buffer_head
*tmp
;
263 int page_uptodate
= 1;
265 BUG_ON(!buffer_async_read(bh
));
269 set_buffer_uptodate(bh
);
271 clear_buffer_uptodate(bh
);
272 if (!quiet_error(bh
))
278 * Be _very_ careful from here on. Bad things can happen if
279 * two buffer heads end IO at almost the same time and both
280 * decide that the page is now completely done.
282 first
= page_buffers(page
);
283 local_irq_save(flags
);
284 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
285 clear_buffer_async_read(bh
);
289 if (!buffer_uptodate(tmp
))
291 if (buffer_async_read(tmp
)) {
292 BUG_ON(!buffer_locked(tmp
));
295 tmp
= tmp
->b_this_page
;
297 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
298 local_irq_restore(flags
);
301 * If none of the buffers had errors and they are all
302 * uptodate then we can set the page uptodate.
304 if (page_uptodate
&& !PageError(page
))
305 SetPageUptodate(page
);
310 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
311 local_irq_restore(flags
);
316 * Completion handler for block_write_full_page() - pages which are unlocked
317 * during I/O, and which have PageWriteback cleared upon I/O completion.
319 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
321 char b
[BDEVNAME_SIZE
];
323 struct buffer_head
*first
;
324 struct buffer_head
*tmp
;
327 BUG_ON(!buffer_async_write(bh
));
331 set_buffer_uptodate(bh
);
333 if (!quiet_error(bh
)) {
335 printk(KERN_WARNING
"lost page write due to "
337 bdevname(bh
->b_bdev
, b
));
339 set_bit(AS_EIO
, &page
->mapping
->flags
);
340 set_buffer_write_io_error(bh
);
341 clear_buffer_uptodate(bh
);
345 first
= page_buffers(page
);
346 local_irq_save(flags
);
347 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
349 clear_buffer_async_write(bh
);
351 tmp
= bh
->b_this_page
;
353 if (buffer_async_write(tmp
)) {
354 BUG_ON(!buffer_locked(tmp
));
357 tmp
= tmp
->b_this_page
;
359 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
360 local_irq_restore(flags
);
361 end_page_writeback(page
);
365 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
366 local_irq_restore(flags
);
369 EXPORT_SYMBOL(end_buffer_async_write
);
372 * If a page's buffers are under async readin (end_buffer_async_read
373 * completion) then there is a possibility that another thread of
374 * control could lock one of the buffers after it has completed
375 * but while some of the other buffers have not completed. This
376 * locked buffer would confuse end_buffer_async_read() into not unlocking
377 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
378 * that this buffer is not under async I/O.
380 * The page comes unlocked when it has no locked buffer_async buffers
383 * PageLocked prevents anyone starting new async I/O reads any of
386 * PageWriteback is used to prevent simultaneous writeout of the same
389 * PageLocked prevents anyone from starting writeback of a page which is
390 * under read I/O (PageWriteback is only ever set against a locked page).
392 static void mark_buffer_async_read(struct buffer_head
*bh
)
394 bh
->b_end_io
= end_buffer_async_read
;
395 set_buffer_async_read(bh
);
398 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
399 bh_end_io_t
*handler
)
401 bh
->b_end_io
= handler
;
402 set_buffer_async_write(bh
);
405 void mark_buffer_async_write(struct buffer_head
*bh
)
407 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
409 EXPORT_SYMBOL(mark_buffer_async_write
);
413 * fs/buffer.c contains helper functions for buffer-backed address space's
414 * fsync functions. A common requirement for buffer-based filesystems is
415 * that certain data from the backing blockdev needs to be written out for
416 * a successful fsync(). For example, ext2 indirect blocks need to be
417 * written back and waited upon before fsync() returns.
419 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
420 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
421 * management of a list of dependent buffers at ->i_mapping->private_list.
423 * Locking is a little subtle: try_to_free_buffers() will remove buffers
424 * from their controlling inode's queue when they are being freed. But
425 * try_to_free_buffers() will be operating against the *blockdev* mapping
426 * at the time, not against the S_ISREG file which depends on those buffers.
427 * So the locking for private_list is via the private_lock in the address_space
428 * which backs the buffers. Which is different from the address_space
429 * against which the buffers are listed. So for a particular address_space,
430 * mapping->private_lock does *not* protect mapping->private_list! In fact,
431 * mapping->private_list will always be protected by the backing blockdev's
434 * Which introduces a requirement: all buffers on an address_space's
435 * ->private_list must be from the same address_space: the blockdev's.
437 * address_spaces which do not place buffers at ->private_list via these
438 * utility functions are free to use private_lock and private_list for
439 * whatever they want. The only requirement is that list_empty(private_list)
440 * be true at clear_inode() time.
442 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
443 * filesystems should do that. invalidate_inode_buffers() should just go
444 * BUG_ON(!list_empty).
446 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
447 * take an address_space, not an inode. And it should be called
448 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
451 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
452 * list if it is already on a list. Because if the buffer is on a list,
453 * it *must* already be on the right one. If not, the filesystem is being
454 * silly. This will save a ton of locking. But first we have to ensure
455 * that buffers are taken *off* the old inode's list when they are freed
456 * (presumably in truncate). That requires careful auditing of all
457 * filesystems (do it inside bforget()). It could also be done by bringing
462 * The buffer's backing address_space's private_lock must be held
464 static void __remove_assoc_queue(struct buffer_head
*bh
)
466 list_del_init(&bh
->b_assoc_buffers
);
467 WARN_ON(!bh
->b_assoc_map
);
468 if (buffer_write_io_error(bh
))
469 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
470 bh
->b_assoc_map
= NULL
;
473 int inode_has_buffers(struct inode
*inode
)
475 return !list_empty(&inode
->i_data
.private_list
);
479 * osync is designed to support O_SYNC io. It waits synchronously for
480 * all already-submitted IO to complete, but does not queue any new
481 * writes to the disk.
483 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
484 * you dirty the buffers, and then use osync_inode_buffers to wait for
485 * completion. Any other dirty buffers which are not yet queued for
486 * write will not be flushed to disk by the osync.
488 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
490 struct buffer_head
*bh
;
496 list_for_each_prev(p
, list
) {
498 if (buffer_locked(bh
)) {
502 if (!buffer_uptodate(bh
))
513 static void do_thaw_one(struct super_block
*sb
, void *unused
)
515 char b
[BDEVNAME_SIZE
];
516 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
517 printk(KERN_WARNING
"Emergency Thaw on %s\n",
518 bdevname(sb
->s_bdev
, b
));
521 static void do_thaw_all(struct work_struct
*work
)
523 iterate_supers(do_thaw_one
, NULL
);
525 printk(KERN_WARNING
"Emergency Thaw complete\n");
529 * emergency_thaw_all -- forcibly thaw every frozen filesystem
531 * Used for emergency unfreeze of all filesystems via SysRq
533 void emergency_thaw_all(void)
535 struct work_struct
*work
;
537 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
539 INIT_WORK(work
, do_thaw_all
);
545 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
546 * @mapping: the mapping which wants those buffers written
548 * Starts I/O against the buffers at mapping->private_list, and waits upon
551 * Basically, this is a convenience function for fsync().
552 * @mapping is a file or directory which needs those buffers to be written for
553 * a successful fsync().
555 int sync_mapping_buffers(struct address_space
*mapping
)
557 struct address_space
*buffer_mapping
= mapping
->private_data
;
559 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
562 return fsync_buffers_list(&buffer_mapping
->private_lock
,
563 &mapping
->private_list
);
565 EXPORT_SYMBOL(sync_mapping_buffers
);
568 * Called when we've recently written block `bblock', and it is known that
569 * `bblock' was for a buffer_boundary() buffer. This means that the block at
570 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
571 * dirty, schedule it for IO. So that indirects merge nicely with their data.
573 void write_boundary_block(struct block_device
*bdev
,
574 sector_t bblock
, unsigned blocksize
)
576 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
578 if (buffer_dirty(bh
))
579 ll_rw_block(WRITE
, 1, &bh
);
584 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
586 struct address_space
*mapping
= inode
->i_mapping
;
587 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
589 mark_buffer_dirty(bh
);
590 if (!mapping
->private_data
) {
591 mapping
->private_data
= buffer_mapping
;
593 BUG_ON(mapping
->private_data
!= buffer_mapping
);
595 if (!bh
->b_assoc_map
) {
596 spin_lock(&buffer_mapping
->private_lock
);
597 list_move_tail(&bh
->b_assoc_buffers
,
598 &mapping
->private_list
);
599 bh
->b_assoc_map
= mapping
;
600 spin_unlock(&buffer_mapping
->private_lock
);
603 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
606 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
609 * If warn is true, then emit a warning if the page is not uptodate and has
610 * not been truncated.
612 static void __set_page_dirty(struct page
*page
,
613 struct address_space
*mapping
, int warn
)
615 spin_lock_irq(&mapping
->tree_lock
);
616 if (page
->mapping
) { /* Race with truncate? */
617 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
618 account_page_dirtied(page
, mapping
);
619 radix_tree_tag_set(&mapping
->page_tree
,
620 page_index(page
), PAGECACHE_TAG_DIRTY
);
622 spin_unlock_irq(&mapping
->tree_lock
);
623 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
627 * Add a page to the dirty page list.
629 * It is a sad fact of life that this function is called from several places
630 * deeply under spinlocking. It may not sleep.
632 * If the page has buffers, the uptodate buffers are set dirty, to preserve
633 * dirty-state coherency between the page and the buffers. It the page does
634 * not have buffers then when they are later attached they will all be set
637 * The buffers are dirtied before the page is dirtied. There's a small race
638 * window in which a writepage caller may see the page cleanness but not the
639 * buffer dirtiness. That's fine. If this code were to set the page dirty
640 * before the buffers, a concurrent writepage caller could clear the page dirty
641 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
642 * page on the dirty page list.
644 * We use private_lock to lock against try_to_free_buffers while using the
645 * page's buffer list. Also use this to protect against clean buffers being
646 * added to the page after it was set dirty.
648 * FIXME: may need to call ->reservepage here as well. That's rather up to the
649 * address_space though.
651 int __set_page_dirty_buffers(struct page
*page
)
654 struct address_space
*mapping
= page_mapping(page
);
656 if (unlikely(!mapping
))
657 return !TestSetPageDirty(page
);
659 spin_lock(&mapping
->private_lock
);
660 if (page_has_buffers(page
)) {
661 struct buffer_head
*head
= page_buffers(page
);
662 struct buffer_head
*bh
= head
;
665 set_buffer_dirty(bh
);
666 bh
= bh
->b_this_page
;
667 } while (bh
!= head
);
669 newly_dirty
= !TestSetPageDirty(page
);
670 spin_unlock(&mapping
->private_lock
);
673 __set_page_dirty(page
, mapping
, 1);
676 EXPORT_SYMBOL(__set_page_dirty_buffers
);
679 * Write out and wait upon a list of buffers.
681 * We have conflicting pressures: we want to make sure that all
682 * initially dirty buffers get waited on, but that any subsequently
683 * dirtied buffers don't. After all, we don't want fsync to last
684 * forever if somebody is actively writing to the file.
686 * Do this in two main stages: first we copy dirty buffers to a
687 * temporary inode list, queueing the writes as we go. Then we clean
688 * up, waiting for those writes to complete.
690 * During this second stage, any subsequent updates to the file may end
691 * up refiling the buffer on the original inode's dirty list again, so
692 * there is a chance we will end up with a buffer queued for write but
693 * not yet completed on that list. So, as a final cleanup we go through
694 * the osync code to catch these locked, dirty buffers without requeuing
695 * any newly dirty buffers for write.
697 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
699 struct buffer_head
*bh
;
700 struct list_head tmp
;
701 struct address_space
*mapping
;
703 struct blk_plug plug
;
705 INIT_LIST_HEAD(&tmp
);
706 blk_start_plug(&plug
);
709 while (!list_empty(list
)) {
710 bh
= BH_ENTRY(list
->next
);
711 mapping
= bh
->b_assoc_map
;
712 __remove_assoc_queue(bh
);
713 /* Avoid race with mark_buffer_dirty_inode() which does
714 * a lockless check and we rely on seeing the dirty bit */
716 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
717 list_add(&bh
->b_assoc_buffers
, &tmp
);
718 bh
->b_assoc_map
= mapping
;
719 if (buffer_dirty(bh
)) {
723 * Ensure any pending I/O completes so that
724 * write_dirty_buffer() actually writes the
725 * current contents - it is a noop if I/O is
726 * still in flight on potentially older
729 write_dirty_buffer(bh
, WRITE_SYNC
);
732 * Kick off IO for the previous mapping. Note
733 * that we will not run the very last mapping,
734 * wait_on_buffer() will do that for us
735 * through sync_buffer().
744 blk_finish_plug(&plug
);
747 while (!list_empty(&tmp
)) {
748 bh
= BH_ENTRY(tmp
.prev
);
750 mapping
= bh
->b_assoc_map
;
751 __remove_assoc_queue(bh
);
752 /* Avoid race with mark_buffer_dirty_inode() which does
753 * a lockless check and we rely on seeing the dirty bit */
755 if (buffer_dirty(bh
)) {
756 list_add(&bh
->b_assoc_buffers
,
757 &mapping
->private_list
);
758 bh
->b_assoc_map
= mapping
;
762 if (!buffer_uptodate(bh
))
769 err2
= osync_buffers_list(lock
, list
);
777 * Invalidate any and all dirty buffers on a given inode. We are
778 * probably unmounting the fs, but that doesn't mean we have already
779 * done a sync(). Just drop the buffers from the inode list.
781 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
782 * assumes that all the buffers are against the blockdev. Not true
785 void invalidate_inode_buffers(struct inode
*inode
)
787 if (inode_has_buffers(inode
)) {
788 struct address_space
*mapping
= &inode
->i_data
;
789 struct list_head
*list
= &mapping
->private_list
;
790 struct address_space
*buffer_mapping
= mapping
->private_data
;
792 spin_lock(&buffer_mapping
->private_lock
);
793 while (!list_empty(list
))
794 __remove_assoc_queue(BH_ENTRY(list
->next
));
795 spin_unlock(&buffer_mapping
->private_lock
);
798 EXPORT_SYMBOL(invalidate_inode_buffers
);
801 * Remove any clean buffers from the inode's buffer list. This is called
802 * when we're trying to free the inode itself. Those buffers can pin it.
804 * Returns true if all buffers were removed.
806 int remove_inode_buffers(struct inode
*inode
)
810 if (inode_has_buffers(inode
)) {
811 struct address_space
*mapping
= &inode
->i_data
;
812 struct list_head
*list
= &mapping
->private_list
;
813 struct address_space
*buffer_mapping
= mapping
->private_data
;
815 spin_lock(&buffer_mapping
->private_lock
);
816 while (!list_empty(list
)) {
817 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
818 if (buffer_dirty(bh
)) {
822 __remove_assoc_queue(bh
);
824 spin_unlock(&buffer_mapping
->private_lock
);
830 * Create the appropriate buffers when given a page for data area and
831 * the size of each buffer.. Use the bh->b_this_page linked list to
832 * follow the buffers created. Return NULL if unable to create more
835 * The retry flag is used to differentiate async IO (paging, swapping)
836 * which may not fail from ordinary buffer allocations.
838 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
841 struct buffer_head
*bh
, *head
;
847 while ((offset
-= size
) >= 0) {
848 bh
= alloc_buffer_head(GFP_NOFS
);
852 bh
->b_this_page
= head
;
858 /* Link the buffer to its page */
859 set_bh_page(bh
, page
, offset
);
861 init_buffer(bh
, NULL
, NULL
);
865 * In case anything failed, we just free everything we got.
871 head
= head
->b_this_page
;
872 free_buffer_head(bh
);
877 * Return failure for non-async IO requests. Async IO requests
878 * are not allowed to fail, so we have to wait until buffer heads
879 * become available. But we don't want tasks sleeping with
880 * partially complete buffers, so all were released above.
885 /* We're _really_ low on memory. Now we just
886 * wait for old buffer heads to become free due to
887 * finishing IO. Since this is an async request and
888 * the reserve list is empty, we're sure there are
889 * async buffer heads in use.
894 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
897 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
899 struct buffer_head
*bh
, *tail
;
904 bh
= bh
->b_this_page
;
906 tail
->b_this_page
= head
;
907 attach_page_buffers(page
, head
);
910 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
912 sector_t retval
= ~((sector_t
)0);
913 loff_t sz
= i_size_read(bdev
->bd_inode
);
916 unsigned int sizebits
= blksize_bits(size
);
917 retval
= (sz
>> sizebits
);
923 * Initialise the state of a blockdev page's buffers.
926 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
927 sector_t block
, int size
)
929 struct buffer_head
*head
= page_buffers(page
);
930 struct buffer_head
*bh
= head
;
931 int uptodate
= PageUptodate(page
);
932 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
935 if (!buffer_mapped(bh
)) {
936 init_buffer(bh
, NULL
, NULL
);
938 bh
->b_blocknr
= block
;
940 set_buffer_uptodate(bh
);
941 if (block
< end_block
)
942 set_buffer_mapped(bh
);
945 bh
= bh
->b_this_page
;
946 } while (bh
!= head
);
949 * Caller needs to validate requested block against end of device.
955 * Create the page-cache page that contains the requested block.
957 * This is used purely for blockdev mappings.
960 grow_dev_page(struct block_device
*bdev
, sector_t block
,
961 pgoff_t index
, int size
, int sizebits
)
963 struct inode
*inode
= bdev
->bd_inode
;
965 struct buffer_head
*bh
;
967 int ret
= 0; /* Will call free_more_memory() */
969 page
= find_or_create_page(inode
->i_mapping
, index
,
970 (mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
)|__GFP_MOVABLE
);
974 BUG_ON(!PageLocked(page
));
976 if (page_has_buffers(page
)) {
977 bh
= page_buffers(page
);
978 if (bh
->b_size
== size
) {
979 end_block
= init_page_buffers(page
, bdev
,
980 index
<< sizebits
, size
);
983 if (!try_to_free_buffers(page
))
988 * Allocate some buffers for this page
990 bh
= alloc_page_buffers(page
, size
, 0);
995 * Link the page to the buffers and initialise them. Take the
996 * lock to be atomic wrt __find_get_block(), which does not
997 * run under the page lock.
999 spin_lock(&inode
->i_mapping
->private_lock
);
1000 link_dev_buffers(page
, bh
);
1001 end_block
= init_page_buffers(page
, bdev
, index
<< sizebits
, size
);
1002 spin_unlock(&inode
->i_mapping
->private_lock
);
1004 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1007 page_cache_release(page
);
1012 * Create buffers for the specified block device block's page. If
1013 * that page was dirty, the buffers are set dirty also.
1016 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1024 } while ((size
<< sizebits
) < PAGE_SIZE
);
1026 index
= block
>> sizebits
;
1029 * Check for a block which wants to lie outside our maximum possible
1030 * pagecache index. (this comparison is done using sector_t types).
1032 if (unlikely(index
!= block
>> sizebits
)) {
1033 char b
[BDEVNAME_SIZE
];
1035 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1037 __func__
, (unsigned long long)block
,
1042 /* Create a page with the proper size buffers.. */
1043 return grow_dev_page(bdev
, block
, index
, size
, sizebits
);
1046 static struct buffer_head
*
1047 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1049 /* Size must be multiple of hard sectorsize */
1050 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1051 (size
< 512 || size
> PAGE_SIZE
))) {
1052 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1054 printk(KERN_ERR
"logical block size: %d\n",
1055 bdev_logical_block_size(bdev
));
1062 struct buffer_head
*bh
;
1065 bh
= __find_get_block(bdev
, block
, size
);
1069 ret
= grow_buffers(bdev
, block
, size
);
1078 * The relationship between dirty buffers and dirty pages:
1080 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1081 * the page is tagged dirty in its radix tree.
1083 * At all times, the dirtiness of the buffers represents the dirtiness of
1084 * subsections of the page. If the page has buffers, the page dirty bit is
1085 * merely a hint about the true dirty state.
1087 * When a page is set dirty in its entirety, all its buffers are marked dirty
1088 * (if the page has buffers).
1090 * When a buffer is marked dirty, its page is dirtied, but the page's other
1093 * Also. When blockdev buffers are explicitly read with bread(), they
1094 * individually become uptodate. But their backing page remains not
1095 * uptodate - even if all of its buffers are uptodate. A subsequent
1096 * block_read_full_page() against that page will discover all the uptodate
1097 * buffers, will set the page uptodate and will perform no I/O.
1101 * mark_buffer_dirty - mark a buffer_head as needing writeout
1102 * @bh: the buffer_head to mark dirty
1104 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1105 * backing page dirty, then tag the page as dirty in its address_space's radix
1106 * tree and then attach the address_space's inode to its superblock's dirty
1109 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1110 * mapping->tree_lock and mapping->host->i_lock.
1112 void mark_buffer_dirty(struct buffer_head
*bh
)
1114 WARN_ON_ONCE(!buffer_uptodate(bh
));
1117 * Very *carefully* optimize the it-is-already-dirty case.
1119 * Don't let the final "is it dirty" escape to before we
1120 * perhaps modified the buffer.
1122 if (buffer_dirty(bh
)) {
1124 if (buffer_dirty(bh
))
1128 if (!test_set_buffer_dirty(bh
)) {
1129 struct page
*page
= bh
->b_page
;
1130 if (!TestSetPageDirty(page
)) {
1131 struct address_space
*mapping
= page_mapping(page
);
1133 __set_page_dirty(page
, mapping
, 0);
1137 EXPORT_SYMBOL(mark_buffer_dirty
);
1140 * Decrement a buffer_head's reference count. If all buffers against a page
1141 * have zero reference count, are clean and unlocked, and if the page is clean
1142 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1143 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1144 * a page but it ends up not being freed, and buffers may later be reattached).
1146 void __brelse(struct buffer_head
* buf
)
1148 if (atomic_read(&buf
->b_count
)) {
1152 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1154 EXPORT_SYMBOL(__brelse
);
1157 * bforget() is like brelse(), except it discards any
1158 * potentially dirty data.
1160 void __bforget(struct buffer_head
*bh
)
1162 clear_buffer_dirty(bh
);
1163 if (bh
->b_assoc_map
) {
1164 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1166 spin_lock(&buffer_mapping
->private_lock
);
1167 list_del_init(&bh
->b_assoc_buffers
);
1168 bh
->b_assoc_map
= NULL
;
1169 spin_unlock(&buffer_mapping
->private_lock
);
1173 EXPORT_SYMBOL(__bforget
);
1175 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1178 if (buffer_uptodate(bh
)) {
1183 bh
->b_end_io
= end_buffer_read_sync
;
1184 submit_bh(READ
, bh
);
1186 if (buffer_uptodate(bh
))
1194 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1195 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1196 * refcount elevated by one when they're in an LRU. A buffer can only appear
1197 * once in a particular CPU's LRU. A single buffer can be present in multiple
1198 * CPU's LRUs at the same time.
1200 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1201 * sb_find_get_block().
1203 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1204 * a local interrupt disable for that.
1207 #define BH_LRU_SIZE 8
1210 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1213 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1216 #define bh_lru_lock() local_irq_disable()
1217 #define bh_lru_unlock() local_irq_enable()
1219 #define bh_lru_lock() preempt_disable()
1220 #define bh_lru_unlock() preempt_enable()
1223 static inline void check_irqs_on(void)
1225 #ifdef irqs_disabled
1226 BUG_ON(irqs_disabled());
1231 * The LRU management algorithm is dopey-but-simple. Sorry.
1233 static void bh_lru_install(struct buffer_head
*bh
)
1235 struct buffer_head
*evictee
= NULL
;
1239 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1240 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1246 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1247 struct buffer_head
*bh2
=
1248 __this_cpu_read(bh_lrus
.bhs
[in
]);
1253 if (out
>= BH_LRU_SIZE
) {
1254 BUG_ON(evictee
!= NULL
);
1261 while (out
< BH_LRU_SIZE
)
1263 memcpy(__this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1272 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1274 static struct buffer_head
*
1275 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1277 struct buffer_head
*ret
= NULL
;
1282 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1283 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1285 if (bh
&& bh
->b_bdev
== bdev
&&
1286 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1289 __this_cpu_write(bh_lrus
.bhs
[i
],
1290 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1293 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1305 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1306 * it in the LRU and mark it as accessed. If it is not present then return
1309 struct buffer_head
*
1310 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1312 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1315 bh
= __find_get_block_slow(bdev
, block
);
1323 EXPORT_SYMBOL(__find_get_block
);
1326 * __getblk will locate (and, if necessary, create) the buffer_head
1327 * which corresponds to the passed block_device, block and size. The
1328 * returned buffer has its reference count incremented.
1330 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1331 * attempt is failing. FIXME, perhaps?
1333 struct buffer_head
*
1334 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1336 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1340 bh
= __getblk_slow(bdev
, block
, size
);
1343 EXPORT_SYMBOL(__getblk
);
1346 * Do async read-ahead on a buffer..
1348 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1350 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1352 ll_rw_block(READA
, 1, &bh
);
1356 EXPORT_SYMBOL(__breadahead
);
1359 * __bread() - reads a specified block and returns the bh
1360 * @bdev: the block_device to read from
1361 * @block: number of block
1362 * @size: size (in bytes) to read
1364 * Reads a specified block, and returns buffer head that contains it.
1365 * It returns NULL if the block was unreadable.
1367 struct buffer_head
*
1368 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1370 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1372 if (likely(bh
) && !buffer_uptodate(bh
))
1373 bh
= __bread_slow(bh
);
1376 EXPORT_SYMBOL(__bread
);
1379 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1380 * This doesn't race because it runs in each cpu either in irq
1381 * or with preempt disabled.
1383 static void invalidate_bh_lru(void *arg
)
1385 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1388 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1392 put_cpu_var(bh_lrus
);
1395 static bool has_bh_in_lru(int cpu
, void *dummy
)
1397 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1400 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1408 void invalidate_bh_lrus(void)
1410 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1412 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1414 void set_bh_page(struct buffer_head
*bh
,
1415 struct page
*page
, unsigned long offset
)
1418 BUG_ON(offset
>= PAGE_SIZE
);
1419 if (PageHighMem(page
))
1421 * This catches illegal uses and preserves the offset:
1423 bh
->b_data
= (char *)(0 + offset
);
1425 bh
->b_data
= page_address(page
) + offset
;
1427 EXPORT_SYMBOL(set_bh_page
);
1430 * Called when truncating a buffer on a page completely.
1432 static void discard_buffer(struct buffer_head
* bh
)
1435 clear_buffer_dirty(bh
);
1437 clear_buffer_mapped(bh
);
1438 clear_buffer_req(bh
);
1439 clear_buffer_new(bh
);
1440 clear_buffer_delay(bh
);
1441 clear_buffer_unwritten(bh
);
1446 * block_invalidatepage - invalidate part or all of a buffer-backed page
1448 * @page: the page which is affected
1449 * @offset: the index of the truncation point
1451 * block_invalidatepage() is called when all or part of the page has become
1452 * invalidated by a truncate operation.
1454 * block_invalidatepage() does not have to release all buffers, but it must
1455 * ensure that no dirty buffer is left outside @offset and that no I/O
1456 * is underway against any of the blocks which are outside the truncation
1457 * point. Because the caller is about to free (and possibly reuse) those
1460 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1462 struct buffer_head
*head
, *bh
, *next
;
1463 unsigned int curr_off
= 0;
1465 BUG_ON(!PageLocked(page
));
1466 if (!page_has_buffers(page
))
1469 head
= page_buffers(page
);
1472 unsigned int next_off
= curr_off
+ bh
->b_size
;
1473 next
= bh
->b_this_page
;
1476 * is this block fully invalidated?
1478 if (offset
<= curr_off
)
1480 curr_off
= next_off
;
1482 } while (bh
!= head
);
1485 * We release buffers only if the entire page is being invalidated.
1486 * The get_block cached value has been unconditionally invalidated,
1487 * so real IO is not possible anymore.
1490 try_to_release_page(page
, 0);
1494 EXPORT_SYMBOL(block_invalidatepage
);
1497 * We attach and possibly dirty the buffers atomically wrt
1498 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1499 * is already excluded via the page lock.
1501 void create_empty_buffers(struct page
*page
,
1502 unsigned long blocksize
, unsigned long b_state
)
1504 struct buffer_head
*bh
, *head
, *tail
;
1506 head
= alloc_page_buffers(page
, blocksize
, 1);
1509 bh
->b_state
|= b_state
;
1511 bh
= bh
->b_this_page
;
1513 tail
->b_this_page
= head
;
1515 spin_lock(&page
->mapping
->private_lock
);
1516 if (PageUptodate(page
) || PageDirty(page
)) {
1519 if (PageDirty(page
))
1520 set_buffer_dirty(bh
);
1521 if (PageUptodate(page
))
1522 set_buffer_uptodate(bh
);
1523 bh
= bh
->b_this_page
;
1524 } while (bh
!= head
);
1526 attach_page_buffers(page
, head
);
1527 spin_unlock(&page
->mapping
->private_lock
);
1529 EXPORT_SYMBOL(create_empty_buffers
);
1532 * We are taking a block for data and we don't want any output from any
1533 * buffer-cache aliases starting from return from that function and
1534 * until the moment when something will explicitly mark the buffer
1535 * dirty (hopefully that will not happen until we will free that block ;-)
1536 * We don't even need to mark it not-uptodate - nobody can expect
1537 * anything from a newly allocated buffer anyway. We used to used
1538 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1539 * don't want to mark the alias unmapped, for example - it would confuse
1540 * anyone who might pick it with bread() afterwards...
1542 * Also.. Note that bforget() doesn't lock the buffer. So there can
1543 * be writeout I/O going on against recently-freed buffers. We don't
1544 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1545 * only if we really need to. That happens here.
1547 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1549 struct buffer_head
*old_bh
;
1553 old_bh
= __find_get_block_slow(bdev
, block
);
1555 clear_buffer_dirty(old_bh
);
1556 wait_on_buffer(old_bh
);
1557 clear_buffer_req(old_bh
);
1561 EXPORT_SYMBOL(unmap_underlying_metadata
);
1564 * Size is a power-of-two in the range 512..PAGE_SIZE,
1565 * and the case we care about most is PAGE_SIZE.
1567 * So this *could* possibly be written with those
1568 * constraints in mind (relevant mostly if some
1569 * architecture has a slow bit-scan instruction)
1571 static inline int block_size_bits(unsigned int blocksize
)
1573 return ilog2(blocksize
);
1576 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1578 BUG_ON(!PageLocked(page
));
1580 if (!page_has_buffers(page
))
1581 create_empty_buffers(page
, 1 << ACCESS_ONCE(inode
->i_blkbits
), b_state
);
1582 return page_buffers(page
);
1586 * NOTE! All mapped/uptodate combinations are valid:
1588 * Mapped Uptodate Meaning
1590 * No No "unknown" - must do get_block()
1591 * No Yes "hole" - zero-filled
1592 * Yes No "allocated" - allocated on disk, not read in
1593 * Yes Yes "valid" - allocated and up-to-date in memory.
1595 * "Dirty" is valid only with the last case (mapped+uptodate).
1599 * While block_write_full_page is writing back the dirty buffers under
1600 * the page lock, whoever dirtied the buffers may decide to clean them
1601 * again at any time. We handle that by only looking at the buffer
1602 * state inside lock_buffer().
1604 * If block_write_full_page() is called for regular writeback
1605 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1606 * locked buffer. This only can happen if someone has written the buffer
1607 * directly, with submit_bh(). At the address_space level PageWriteback
1608 * prevents this contention from occurring.
1610 * If block_write_full_page() is called with wbc->sync_mode ==
1611 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1612 * causes the writes to be flagged as synchronous writes.
1614 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1615 get_block_t
*get_block
, struct writeback_control
*wbc
,
1616 bh_end_io_t
*handler
)
1620 sector_t last_block
;
1621 struct buffer_head
*bh
, *head
;
1622 unsigned int blocksize
, bbits
;
1623 int nr_underway
= 0;
1624 int write_op
= (wbc
->sync_mode
== WB_SYNC_ALL
?
1625 WRITE_SYNC
: WRITE
);
1627 head
= create_page_buffers(page
, inode
,
1628 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1631 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1632 * here, and the (potentially unmapped) buffers may become dirty at
1633 * any time. If a buffer becomes dirty here after we've inspected it
1634 * then we just miss that fact, and the page stays dirty.
1636 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1637 * handle that here by just cleaning them.
1641 blocksize
= bh
->b_size
;
1642 bbits
= block_size_bits(blocksize
);
1644 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1645 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1648 * Get all the dirty buffers mapped to disk addresses and
1649 * handle any aliases from the underlying blockdev's mapping.
1652 if (block
> last_block
) {
1654 * mapped buffers outside i_size will occur, because
1655 * this page can be outside i_size when there is a
1656 * truncate in progress.
1659 * The buffer was zeroed by block_write_full_page()
1661 clear_buffer_dirty(bh
);
1662 set_buffer_uptodate(bh
);
1663 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1665 WARN_ON(bh
->b_size
!= blocksize
);
1666 err
= get_block(inode
, block
, bh
, 1);
1669 clear_buffer_delay(bh
);
1670 if (buffer_new(bh
)) {
1671 /* blockdev mappings never come here */
1672 clear_buffer_new(bh
);
1673 unmap_underlying_metadata(bh
->b_bdev
,
1677 bh
= bh
->b_this_page
;
1679 } while (bh
!= head
);
1682 if (!buffer_mapped(bh
))
1685 * If it's a fully non-blocking write attempt and we cannot
1686 * lock the buffer then redirty the page. Note that this can
1687 * potentially cause a busy-wait loop from writeback threads
1688 * and kswapd activity, but those code paths have their own
1689 * higher-level throttling.
1691 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1693 } else if (!trylock_buffer(bh
)) {
1694 redirty_page_for_writepage(wbc
, page
);
1697 if (test_clear_buffer_dirty(bh
)) {
1698 mark_buffer_async_write_endio(bh
, handler
);
1702 } while ((bh
= bh
->b_this_page
) != head
);
1705 * The page and its buffers are protected by PageWriteback(), so we can
1706 * drop the bh refcounts early.
1708 BUG_ON(PageWriteback(page
));
1709 set_page_writeback(page
);
1712 struct buffer_head
*next
= bh
->b_this_page
;
1713 if (buffer_async_write(bh
)) {
1714 submit_bh(write_op
, bh
);
1718 } while (bh
!= head
);
1723 if (nr_underway
== 0) {
1725 * The page was marked dirty, but the buffers were
1726 * clean. Someone wrote them back by hand with
1727 * ll_rw_block/submit_bh. A rare case.
1729 end_page_writeback(page
);
1732 * The page and buffer_heads can be released at any time from
1740 * ENOSPC, or some other error. We may already have added some
1741 * blocks to the file, so we need to write these out to avoid
1742 * exposing stale data.
1743 * The page is currently locked and not marked for writeback
1746 /* Recovery: lock and submit the mapped buffers */
1748 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1749 !buffer_delay(bh
)) {
1751 mark_buffer_async_write_endio(bh
, handler
);
1754 * The buffer may have been set dirty during
1755 * attachment to a dirty page.
1757 clear_buffer_dirty(bh
);
1759 } while ((bh
= bh
->b_this_page
) != head
);
1761 BUG_ON(PageWriteback(page
));
1762 mapping_set_error(page
->mapping
, err
);
1763 set_page_writeback(page
);
1765 struct buffer_head
*next
= bh
->b_this_page
;
1766 if (buffer_async_write(bh
)) {
1767 clear_buffer_dirty(bh
);
1768 submit_bh(write_op
, bh
);
1772 } while (bh
!= head
);
1778 * If a page has any new buffers, zero them out here, and mark them uptodate
1779 * and dirty so they'll be written out (in order to prevent uninitialised
1780 * block data from leaking). And clear the new bit.
1782 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1784 unsigned int block_start
, block_end
;
1785 struct buffer_head
*head
, *bh
;
1787 BUG_ON(!PageLocked(page
));
1788 if (!page_has_buffers(page
))
1791 bh
= head
= page_buffers(page
);
1794 block_end
= block_start
+ bh
->b_size
;
1796 if (buffer_new(bh
)) {
1797 if (block_end
> from
&& block_start
< to
) {
1798 if (!PageUptodate(page
)) {
1799 unsigned start
, size
;
1801 start
= max(from
, block_start
);
1802 size
= min(to
, block_end
) - start
;
1804 zero_user(page
, start
, size
);
1805 set_buffer_uptodate(bh
);
1808 clear_buffer_new(bh
);
1809 mark_buffer_dirty(bh
);
1813 block_start
= block_end
;
1814 bh
= bh
->b_this_page
;
1815 } while (bh
!= head
);
1817 EXPORT_SYMBOL(page_zero_new_buffers
);
1819 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1820 get_block_t
*get_block
)
1822 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1823 unsigned to
= from
+ len
;
1824 struct inode
*inode
= page
->mapping
->host
;
1825 unsigned block_start
, block_end
;
1828 unsigned blocksize
, bbits
;
1829 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1831 BUG_ON(!PageLocked(page
));
1832 BUG_ON(from
> PAGE_CACHE_SIZE
);
1833 BUG_ON(to
> PAGE_CACHE_SIZE
);
1836 head
= create_page_buffers(page
, inode
, 0);
1837 blocksize
= head
->b_size
;
1838 bbits
= block_size_bits(blocksize
);
1840 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1842 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1843 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1844 block_end
= block_start
+ blocksize
;
1845 if (block_end
<= from
|| block_start
>= to
) {
1846 if (PageUptodate(page
)) {
1847 if (!buffer_uptodate(bh
))
1848 set_buffer_uptodate(bh
);
1853 clear_buffer_new(bh
);
1854 if (!buffer_mapped(bh
)) {
1855 WARN_ON(bh
->b_size
!= blocksize
);
1856 err
= get_block(inode
, block
, bh
, 1);
1859 if (buffer_new(bh
)) {
1860 unmap_underlying_metadata(bh
->b_bdev
,
1862 if (PageUptodate(page
)) {
1863 clear_buffer_new(bh
);
1864 set_buffer_uptodate(bh
);
1865 mark_buffer_dirty(bh
);
1868 if (block_end
> to
|| block_start
< from
)
1869 zero_user_segments(page
,
1875 if (PageUptodate(page
)) {
1876 if (!buffer_uptodate(bh
))
1877 set_buffer_uptodate(bh
);
1880 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1881 !buffer_unwritten(bh
) &&
1882 (block_start
< from
|| block_end
> to
)) {
1883 ll_rw_block(READ
, 1, &bh
);
1888 * If we issued read requests - let them complete.
1890 while(wait_bh
> wait
) {
1891 wait_on_buffer(*--wait_bh
);
1892 if (!buffer_uptodate(*wait_bh
))
1896 page_zero_new_buffers(page
, from
, to
);
1899 EXPORT_SYMBOL(__block_write_begin
);
1901 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1902 unsigned from
, unsigned to
)
1904 unsigned block_start
, block_end
;
1907 struct buffer_head
*bh
, *head
;
1909 bh
= head
= page_buffers(page
);
1910 blocksize
= bh
->b_size
;
1914 block_end
= block_start
+ blocksize
;
1915 if (block_end
<= from
|| block_start
>= to
) {
1916 if (!buffer_uptodate(bh
))
1919 set_buffer_uptodate(bh
);
1920 mark_buffer_dirty(bh
);
1922 clear_buffer_new(bh
);
1924 block_start
= block_end
;
1925 bh
= bh
->b_this_page
;
1926 } while (bh
!= head
);
1929 * If this is a partial write which happened to make all buffers
1930 * uptodate then we can optimize away a bogus readpage() for
1931 * the next read(). Here we 'discover' whether the page went
1932 * uptodate as a result of this (potentially partial) write.
1935 SetPageUptodate(page
);
1940 * block_write_begin takes care of the basic task of block allocation and
1941 * bringing partial write blocks uptodate first.
1943 * The filesystem needs to handle block truncation upon failure.
1945 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
1946 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
1948 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1952 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1956 status
= __block_write_begin(page
, pos
, len
, get_block
);
1957 if (unlikely(status
)) {
1959 page_cache_release(page
);
1966 EXPORT_SYMBOL(block_write_begin
);
1968 int block_write_end(struct file
*file
, struct address_space
*mapping
,
1969 loff_t pos
, unsigned len
, unsigned copied
,
1970 struct page
*page
, void *fsdata
)
1972 struct inode
*inode
= mapping
->host
;
1975 start
= pos
& (PAGE_CACHE_SIZE
- 1);
1977 if (unlikely(copied
< len
)) {
1979 * The buffers that were written will now be uptodate, so we
1980 * don't have to worry about a readpage reading them and
1981 * overwriting a partial write. However if we have encountered
1982 * a short write and only partially written into a buffer, it
1983 * will not be marked uptodate, so a readpage might come in and
1984 * destroy our partial write.
1986 * Do the simplest thing, and just treat any short write to a
1987 * non uptodate page as a zero-length write, and force the
1988 * caller to redo the whole thing.
1990 if (!PageUptodate(page
))
1993 page_zero_new_buffers(page
, start
+copied
, start
+len
);
1995 flush_dcache_page(page
);
1997 /* This could be a short (even 0-length) commit */
1998 __block_commit_write(inode
, page
, start
, start
+copied
);
2002 EXPORT_SYMBOL(block_write_end
);
2004 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2005 loff_t pos
, unsigned len
, unsigned copied
,
2006 struct page
*page
, void *fsdata
)
2008 struct inode
*inode
= mapping
->host
;
2009 int i_size_changed
= 0;
2011 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2014 * No need to use i_size_read() here, the i_size
2015 * cannot change under us because we hold i_mutex.
2017 * But it's important to update i_size while still holding page lock:
2018 * page writeout could otherwise come in and zero beyond i_size.
2020 if (pos
+copied
> inode
->i_size
) {
2021 i_size_write(inode
, pos
+copied
);
2026 page_cache_release(page
);
2029 * Don't mark the inode dirty under page lock. First, it unnecessarily
2030 * makes the holding time of page lock longer. Second, it forces lock
2031 * ordering of page lock and transaction start for journaling
2035 mark_inode_dirty(inode
);
2039 EXPORT_SYMBOL(generic_write_end
);
2042 * block_is_partially_uptodate checks whether buffers within a page are
2045 * Returns true if all buffers which correspond to a file portion
2046 * we want to read are uptodate.
2048 int block_is_partially_uptodate(struct page
*page
, read_descriptor_t
*desc
,
2051 unsigned block_start
, block_end
, blocksize
;
2053 struct buffer_head
*bh
, *head
;
2056 if (!page_has_buffers(page
))
2059 head
= page_buffers(page
);
2060 blocksize
= head
->b_size
;
2061 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, desc
->count
);
2063 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
2069 block_end
= block_start
+ blocksize
;
2070 if (block_end
> from
&& block_start
< to
) {
2071 if (!buffer_uptodate(bh
)) {
2075 if (block_end
>= to
)
2078 block_start
= block_end
;
2079 bh
= bh
->b_this_page
;
2080 } while (bh
!= head
);
2084 EXPORT_SYMBOL(block_is_partially_uptodate
);
2087 * Generic "read page" function for block devices that have the normal
2088 * get_block functionality. This is most of the block device filesystems.
2089 * Reads the page asynchronously --- the unlock_buffer() and
2090 * set/clear_buffer_uptodate() functions propagate buffer state into the
2091 * page struct once IO has completed.
2093 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2095 struct inode
*inode
= page
->mapping
->host
;
2096 sector_t iblock
, lblock
;
2097 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2098 unsigned int blocksize
, bbits
;
2100 int fully_mapped
= 1;
2102 head
= create_page_buffers(page
, inode
, 0);
2103 blocksize
= head
->b_size
;
2104 bbits
= block_size_bits(blocksize
);
2106 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
2107 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2113 if (buffer_uptodate(bh
))
2116 if (!buffer_mapped(bh
)) {
2120 if (iblock
< lblock
) {
2121 WARN_ON(bh
->b_size
!= blocksize
);
2122 err
= get_block(inode
, iblock
, bh
, 0);
2126 if (!buffer_mapped(bh
)) {
2127 zero_user(page
, i
* blocksize
, blocksize
);
2129 set_buffer_uptodate(bh
);
2133 * get_block() might have updated the buffer
2136 if (buffer_uptodate(bh
))
2140 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2143 SetPageMappedToDisk(page
);
2147 * All buffers are uptodate - we can set the page uptodate
2148 * as well. But not if get_block() returned an error.
2150 if (!PageError(page
))
2151 SetPageUptodate(page
);
2156 /* Stage two: lock the buffers */
2157 for (i
= 0; i
< nr
; i
++) {
2160 mark_buffer_async_read(bh
);
2164 * Stage 3: start the IO. Check for uptodateness
2165 * inside the buffer lock in case another process reading
2166 * the underlying blockdev brought it uptodate (the sct fix).
2168 for (i
= 0; i
< nr
; i
++) {
2170 if (buffer_uptodate(bh
))
2171 end_buffer_async_read(bh
, 1);
2173 submit_bh(READ
, bh
);
2177 EXPORT_SYMBOL(block_read_full_page
);
2179 /* utility function for filesystems that need to do work on expanding
2180 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2181 * deal with the hole.
2183 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2185 struct address_space
*mapping
= inode
->i_mapping
;
2190 err
= inode_newsize_ok(inode
, size
);
2194 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2195 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2200 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2206 EXPORT_SYMBOL(generic_cont_expand_simple
);
2208 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2209 loff_t pos
, loff_t
*bytes
)
2211 struct inode
*inode
= mapping
->host
;
2212 unsigned blocksize
= 1 << inode
->i_blkbits
;
2215 pgoff_t index
, curidx
;
2217 unsigned zerofrom
, offset
, len
;
2220 index
= pos
>> PAGE_CACHE_SHIFT
;
2221 offset
= pos
& ~PAGE_CACHE_MASK
;
2223 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2224 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2225 if (zerofrom
& (blocksize
-1)) {
2226 *bytes
|= (blocksize
-1);
2229 len
= PAGE_CACHE_SIZE
- zerofrom
;
2231 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2232 AOP_FLAG_UNINTERRUPTIBLE
,
2236 zero_user(page
, zerofrom
, len
);
2237 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2244 balance_dirty_pages_ratelimited(mapping
);
2247 /* page covers the boundary, find the boundary offset */
2248 if (index
== curidx
) {
2249 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2250 /* if we will expand the thing last block will be filled */
2251 if (offset
<= zerofrom
) {
2254 if (zerofrom
& (blocksize
-1)) {
2255 *bytes
|= (blocksize
-1);
2258 len
= offset
- zerofrom
;
2260 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2261 AOP_FLAG_UNINTERRUPTIBLE
,
2265 zero_user(page
, zerofrom
, len
);
2266 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2278 * For moronic filesystems that do not allow holes in file.
2279 * We may have to extend the file.
2281 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2282 loff_t pos
, unsigned len
, unsigned flags
,
2283 struct page
**pagep
, void **fsdata
,
2284 get_block_t
*get_block
, loff_t
*bytes
)
2286 struct inode
*inode
= mapping
->host
;
2287 unsigned blocksize
= 1 << inode
->i_blkbits
;
2291 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2295 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2296 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2297 *bytes
|= (blocksize
-1);
2301 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2303 EXPORT_SYMBOL(cont_write_begin
);
2305 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2307 struct inode
*inode
= page
->mapping
->host
;
2308 __block_commit_write(inode
,page
,from
,to
);
2311 EXPORT_SYMBOL(block_commit_write
);
2314 * block_page_mkwrite() is not allowed to change the file size as it gets
2315 * called from a page fault handler when a page is first dirtied. Hence we must
2316 * be careful to check for EOF conditions here. We set the page up correctly
2317 * for a written page which means we get ENOSPC checking when writing into
2318 * holes and correct delalloc and unwritten extent mapping on filesystems that
2319 * support these features.
2321 * We are not allowed to take the i_mutex here so we have to play games to
2322 * protect against truncate races as the page could now be beyond EOF. Because
2323 * truncate writes the inode size before removing pages, once we have the
2324 * page lock we can determine safely if the page is beyond EOF. If it is not
2325 * beyond EOF, then the page is guaranteed safe against truncation until we
2328 * Direct callers of this function should protect against filesystem freezing
2329 * using sb_start_write() - sb_end_write() functions.
2331 int __block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2332 get_block_t get_block
)
2334 struct page
*page
= vmf
->page
;
2335 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
2341 size
= i_size_read(inode
);
2342 if ((page
->mapping
!= inode
->i_mapping
) ||
2343 (page_offset(page
) > size
)) {
2344 /* We overload EFAULT to mean page got truncated */
2349 /* page is wholly or partially inside EOF */
2350 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2351 end
= size
& ~PAGE_CACHE_MASK
;
2353 end
= PAGE_CACHE_SIZE
;
2355 ret
= __block_write_begin(page
, 0, end
, get_block
);
2357 ret
= block_commit_write(page
, 0, end
);
2359 if (unlikely(ret
< 0))
2361 set_page_dirty(page
);
2362 wait_on_page_writeback(page
);
2368 EXPORT_SYMBOL(__block_page_mkwrite
);
2370 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2371 get_block_t get_block
)
2374 struct super_block
*sb
= vma
->vm_file
->f_path
.dentry
->d_inode
->i_sb
;
2376 sb_start_pagefault(sb
);
2379 * Update file times before taking page lock. We may end up failing the
2380 * fault so this update may be superfluous but who really cares...
2382 file_update_time(vma
->vm_file
);
2384 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
2385 sb_end_pagefault(sb
);
2386 return block_page_mkwrite_return(ret
);
2388 EXPORT_SYMBOL(block_page_mkwrite
);
2391 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2392 * immediately, while under the page lock. So it needs a special end_io
2393 * handler which does not touch the bh after unlocking it.
2395 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2397 __end_buffer_read_notouch(bh
, uptodate
);
2401 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2402 * the page (converting it to circular linked list and taking care of page
2405 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2407 struct buffer_head
*bh
;
2409 BUG_ON(!PageLocked(page
));
2411 spin_lock(&page
->mapping
->private_lock
);
2414 if (PageDirty(page
))
2415 set_buffer_dirty(bh
);
2416 if (!bh
->b_this_page
)
2417 bh
->b_this_page
= head
;
2418 bh
= bh
->b_this_page
;
2419 } while (bh
!= head
);
2420 attach_page_buffers(page
, head
);
2421 spin_unlock(&page
->mapping
->private_lock
);
2425 * On entry, the page is fully not uptodate.
2426 * On exit the page is fully uptodate in the areas outside (from,to)
2427 * The filesystem needs to handle block truncation upon failure.
2429 int nobh_write_begin(struct address_space
*mapping
,
2430 loff_t pos
, unsigned len
, unsigned flags
,
2431 struct page
**pagep
, void **fsdata
,
2432 get_block_t
*get_block
)
2434 struct inode
*inode
= mapping
->host
;
2435 const unsigned blkbits
= inode
->i_blkbits
;
2436 const unsigned blocksize
= 1 << blkbits
;
2437 struct buffer_head
*head
, *bh
;
2441 unsigned block_in_page
;
2442 unsigned block_start
, block_end
;
2443 sector_t block_in_file
;
2446 int is_mapped_to_disk
= 1;
2448 index
= pos
>> PAGE_CACHE_SHIFT
;
2449 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2452 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2458 if (page_has_buffers(page
)) {
2459 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2465 if (PageMappedToDisk(page
))
2469 * Allocate buffers so that we can keep track of state, and potentially
2470 * attach them to the page if an error occurs. In the common case of
2471 * no error, they will just be freed again without ever being attached
2472 * to the page (which is all OK, because we're under the page lock).
2474 * Be careful: the buffer linked list is a NULL terminated one, rather
2475 * than the circular one we're used to.
2477 head
= alloc_page_buffers(page
, blocksize
, 0);
2483 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2486 * We loop across all blocks in the page, whether or not they are
2487 * part of the affected region. This is so we can discover if the
2488 * page is fully mapped-to-disk.
2490 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2491 block_start
< PAGE_CACHE_SIZE
;
2492 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2495 block_end
= block_start
+ blocksize
;
2498 if (block_start
>= to
)
2500 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2504 if (!buffer_mapped(bh
))
2505 is_mapped_to_disk
= 0;
2507 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2508 if (PageUptodate(page
)) {
2509 set_buffer_uptodate(bh
);
2512 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2513 zero_user_segments(page
, block_start
, from
,
2517 if (buffer_uptodate(bh
))
2518 continue; /* reiserfs does this */
2519 if (block_start
< from
|| block_end
> to
) {
2521 bh
->b_end_io
= end_buffer_read_nobh
;
2522 submit_bh(READ
, bh
);
2529 * The page is locked, so these buffers are protected from
2530 * any VM or truncate activity. Hence we don't need to care
2531 * for the buffer_head refcounts.
2533 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2535 if (!buffer_uptodate(bh
))
2542 if (is_mapped_to_disk
)
2543 SetPageMappedToDisk(page
);
2545 *fsdata
= head
; /* to be released by nobh_write_end */
2552 * Error recovery is a bit difficult. We need to zero out blocks that
2553 * were newly allocated, and dirty them to ensure they get written out.
2554 * Buffers need to be attached to the page at this point, otherwise
2555 * the handling of potential IO errors during writeout would be hard
2556 * (could try doing synchronous writeout, but what if that fails too?)
2558 attach_nobh_buffers(page
, head
);
2559 page_zero_new_buffers(page
, from
, to
);
2563 page_cache_release(page
);
2568 EXPORT_SYMBOL(nobh_write_begin
);
2570 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2571 loff_t pos
, unsigned len
, unsigned copied
,
2572 struct page
*page
, void *fsdata
)
2574 struct inode
*inode
= page
->mapping
->host
;
2575 struct buffer_head
*head
= fsdata
;
2576 struct buffer_head
*bh
;
2577 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2579 if (unlikely(copied
< len
) && head
)
2580 attach_nobh_buffers(page
, head
);
2581 if (page_has_buffers(page
))
2582 return generic_write_end(file
, mapping
, pos
, len
,
2583 copied
, page
, fsdata
);
2585 SetPageUptodate(page
);
2586 set_page_dirty(page
);
2587 if (pos
+copied
> inode
->i_size
) {
2588 i_size_write(inode
, pos
+copied
);
2589 mark_inode_dirty(inode
);
2593 page_cache_release(page
);
2597 head
= head
->b_this_page
;
2598 free_buffer_head(bh
);
2603 EXPORT_SYMBOL(nobh_write_end
);
2606 * nobh_writepage() - based on block_full_write_page() except
2607 * that it tries to operate without attaching bufferheads to
2610 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2611 struct writeback_control
*wbc
)
2613 struct inode
* const inode
= page
->mapping
->host
;
2614 loff_t i_size
= i_size_read(inode
);
2615 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2619 /* Is the page fully inside i_size? */
2620 if (page
->index
< end_index
)
2623 /* Is the page fully outside i_size? (truncate in progress) */
2624 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2625 if (page
->index
>= end_index
+1 || !offset
) {
2627 * The page may have dirty, unmapped buffers. For example,
2628 * they may have been added in ext3_writepage(). Make them
2629 * freeable here, so the page does not leak.
2632 /* Not really sure about this - do we need this ? */
2633 if (page
->mapping
->a_ops
->invalidatepage
)
2634 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2637 return 0; /* don't care */
2641 * The page straddles i_size. It must be zeroed out on each and every
2642 * writepage invocation because it may be mmapped. "A file is mapped
2643 * in multiples of the page size. For a file that is not a multiple of
2644 * the page size, the remaining memory is zeroed when mapped, and
2645 * writes to that region are not written out to the file."
2647 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2649 ret
= mpage_writepage(page
, get_block
, wbc
);
2651 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2652 end_buffer_async_write
);
2655 EXPORT_SYMBOL(nobh_writepage
);
2657 int nobh_truncate_page(struct address_space
*mapping
,
2658 loff_t from
, get_block_t
*get_block
)
2660 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2661 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2664 unsigned length
, pos
;
2665 struct inode
*inode
= mapping
->host
;
2667 struct buffer_head map_bh
;
2670 blocksize
= 1 << inode
->i_blkbits
;
2671 length
= offset
& (blocksize
- 1);
2673 /* Block boundary? Nothing to do */
2677 length
= blocksize
- length
;
2678 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2680 page
= grab_cache_page(mapping
, index
);
2685 if (page_has_buffers(page
)) {
2688 page_cache_release(page
);
2689 return block_truncate_page(mapping
, from
, get_block
);
2692 /* Find the buffer that contains "offset" */
2694 while (offset
>= pos
) {
2699 map_bh
.b_size
= blocksize
;
2701 err
= get_block(inode
, iblock
, &map_bh
, 0);
2704 /* unmapped? It's a hole - nothing to do */
2705 if (!buffer_mapped(&map_bh
))
2708 /* Ok, it's mapped. Make sure it's up-to-date */
2709 if (!PageUptodate(page
)) {
2710 err
= mapping
->a_ops
->readpage(NULL
, page
);
2712 page_cache_release(page
);
2716 if (!PageUptodate(page
)) {
2720 if (page_has_buffers(page
))
2723 zero_user(page
, offset
, length
);
2724 set_page_dirty(page
);
2729 page_cache_release(page
);
2733 EXPORT_SYMBOL(nobh_truncate_page
);
2735 int block_truncate_page(struct address_space
*mapping
,
2736 loff_t from
, get_block_t
*get_block
)
2738 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2739 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2742 unsigned length
, pos
;
2743 struct inode
*inode
= mapping
->host
;
2745 struct buffer_head
*bh
;
2748 blocksize
= 1 << inode
->i_blkbits
;
2749 length
= offset
& (blocksize
- 1);
2751 /* Block boundary? Nothing to do */
2755 length
= blocksize
- length
;
2756 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2758 page
= grab_cache_page(mapping
, index
);
2763 if (!page_has_buffers(page
))
2764 create_empty_buffers(page
, blocksize
, 0);
2766 /* Find the buffer that contains "offset" */
2767 bh
= page_buffers(page
);
2769 while (offset
>= pos
) {
2770 bh
= bh
->b_this_page
;
2776 if (!buffer_mapped(bh
)) {
2777 WARN_ON(bh
->b_size
!= blocksize
);
2778 err
= get_block(inode
, iblock
, bh
, 0);
2781 /* unmapped? It's a hole - nothing to do */
2782 if (!buffer_mapped(bh
))
2786 /* Ok, it's mapped. Make sure it's up-to-date */
2787 if (PageUptodate(page
))
2788 set_buffer_uptodate(bh
);
2790 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2792 ll_rw_block(READ
, 1, &bh
);
2794 /* Uhhuh. Read error. Complain and punt. */
2795 if (!buffer_uptodate(bh
))
2799 zero_user(page
, offset
, length
);
2800 mark_buffer_dirty(bh
);
2805 page_cache_release(page
);
2809 EXPORT_SYMBOL(block_truncate_page
);
2812 * The generic ->writepage function for buffer-backed address_spaces
2813 * this form passes in the end_io handler used to finish the IO.
2815 int block_write_full_page_endio(struct page
*page
, get_block_t
*get_block
,
2816 struct writeback_control
*wbc
, bh_end_io_t
*handler
)
2818 struct inode
* const inode
= page
->mapping
->host
;
2819 loff_t i_size
= i_size_read(inode
);
2820 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2823 /* Is the page fully inside i_size? */
2824 if (page
->index
< end_index
)
2825 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2828 /* Is the page fully outside i_size? (truncate in progress) */
2829 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2830 if (page
->index
>= end_index
+1 || !offset
) {
2832 * The page may have dirty, unmapped buffers. For example,
2833 * they may have been added in ext3_writepage(). Make them
2834 * freeable here, so the page does not leak.
2836 do_invalidatepage(page
, 0);
2838 return 0; /* don't care */
2842 * The page straddles i_size. It must be zeroed out on each and every
2843 * writepage invocation because it may be mmapped. "A file is mapped
2844 * in multiples of the page size. For a file that is not a multiple of
2845 * the page size, the remaining memory is zeroed when mapped, and
2846 * writes to that region are not written out to the file."
2848 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2849 return __block_write_full_page(inode
, page
, get_block
, wbc
, handler
);
2851 EXPORT_SYMBOL(block_write_full_page_endio
);
2854 * The generic ->writepage function for buffer-backed address_spaces
2856 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2857 struct writeback_control
*wbc
)
2859 return block_write_full_page_endio(page
, get_block
, wbc
,
2860 end_buffer_async_write
);
2862 EXPORT_SYMBOL(block_write_full_page
);
2864 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2865 get_block_t
*get_block
)
2867 struct buffer_head tmp
;
2868 struct inode
*inode
= mapping
->host
;
2871 tmp
.b_size
= 1 << inode
->i_blkbits
;
2872 get_block(inode
, block
, &tmp
, 0);
2873 return tmp
.b_blocknr
;
2875 EXPORT_SYMBOL(generic_block_bmap
);
2877 static void end_bio_bh_io_sync(struct bio
*bio
, int err
)
2879 struct buffer_head
*bh
= bio
->bi_private
;
2881 if (err
== -EOPNOTSUPP
) {
2882 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2885 if (unlikely (test_bit(BIO_QUIET
,&bio
->bi_flags
)))
2886 set_bit(BH_Quiet
, &bh
->b_state
);
2888 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2893 * This allows us to do IO even on the odd last sectors
2894 * of a device, even if the bh block size is some multiple
2895 * of the physical sector size.
2897 * We'll just truncate the bio to the size of the device,
2898 * and clear the end of the buffer head manually.
2900 * Truly out-of-range accesses will turn into actual IO
2901 * errors, this only handles the "we need to be able to
2902 * do IO at the final sector" case.
2904 static void guard_bh_eod(int rw
, struct bio
*bio
, struct buffer_head
*bh
)
2909 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
2914 * If the *whole* IO is past the end of the device,
2915 * let it through, and the IO layer will turn it into
2918 if (unlikely(bio
->bi_sector
>= maxsector
))
2921 maxsector
-= bio
->bi_sector
;
2922 bytes
= bio
->bi_size
;
2923 if (likely((bytes
>> 9) <= maxsector
))
2926 /* Uhhuh. We've got a bh that straddles the device size! */
2927 bytes
= maxsector
<< 9;
2929 /* Truncate the bio.. */
2930 bio
->bi_size
= bytes
;
2931 bio
->bi_io_vec
[0].bv_len
= bytes
;
2933 /* ..and clear the end of the buffer for reads */
2934 if ((rw
& RW_MASK
) == READ
) {
2935 void *kaddr
= kmap_atomic(bh
->b_page
);
2936 memset(kaddr
+ bh_offset(bh
) + bytes
, 0, bh
->b_size
- bytes
);
2937 kunmap_atomic(kaddr
);
2938 flush_dcache_page(bh
->b_page
);
2942 int submit_bh(int rw
, struct buffer_head
* bh
)
2947 BUG_ON(!buffer_locked(bh
));
2948 BUG_ON(!buffer_mapped(bh
));
2949 BUG_ON(!bh
->b_end_io
);
2950 BUG_ON(buffer_delay(bh
));
2951 BUG_ON(buffer_unwritten(bh
));
2954 * Only clear out a write error when rewriting
2956 if (test_set_buffer_req(bh
) && (rw
& WRITE
))
2957 clear_buffer_write_io_error(bh
);
2960 * from here on down, it's all bio -- do the initial mapping,
2961 * submit_bio -> generic_make_request may further map this bio around
2963 bio
= bio_alloc(GFP_NOIO
, 1);
2965 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2966 bio
->bi_bdev
= bh
->b_bdev
;
2967 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2968 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2969 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2973 bio
->bi_size
= bh
->b_size
;
2975 bio
->bi_end_io
= end_bio_bh_io_sync
;
2976 bio
->bi_private
= bh
;
2978 /* Take care of bh's that straddle the end of the device */
2979 guard_bh_eod(rw
, bio
, bh
);
2982 submit_bio(rw
, bio
);
2984 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2990 EXPORT_SYMBOL(submit_bh
);
2993 * ll_rw_block: low-level access to block devices (DEPRECATED)
2994 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2995 * @nr: number of &struct buffer_heads in the array
2996 * @bhs: array of pointers to &struct buffer_head
2998 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2999 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3000 * %READA option is described in the documentation for generic_make_request()
3001 * which ll_rw_block() calls.
3003 * This function drops any buffer that it cannot get a lock on (with the
3004 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3005 * request, and any buffer that appears to be up-to-date when doing read
3006 * request. Further it marks as clean buffers that are processed for
3007 * writing (the buffer cache won't assume that they are actually clean
3008 * until the buffer gets unlocked).
3010 * ll_rw_block sets b_end_io to simple completion handler that marks
3011 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3014 * All of the buffers must be for the same device, and must also be a
3015 * multiple of the current approved size for the device.
3017 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
3021 for (i
= 0; i
< nr
; i
++) {
3022 struct buffer_head
*bh
= bhs
[i
];
3024 if (!trylock_buffer(bh
))
3027 if (test_clear_buffer_dirty(bh
)) {
3028 bh
->b_end_io
= end_buffer_write_sync
;
3030 submit_bh(WRITE
, bh
);
3034 if (!buffer_uptodate(bh
)) {
3035 bh
->b_end_io
= end_buffer_read_sync
;
3044 EXPORT_SYMBOL(ll_rw_block
);
3046 void write_dirty_buffer(struct buffer_head
*bh
, int rw
)
3049 if (!test_clear_buffer_dirty(bh
)) {
3053 bh
->b_end_io
= end_buffer_write_sync
;
3057 EXPORT_SYMBOL(write_dirty_buffer
);
3060 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3061 * and then start new I/O and then wait upon it. The caller must have a ref on
3064 int __sync_dirty_buffer(struct buffer_head
*bh
, int rw
)
3068 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3070 if (test_clear_buffer_dirty(bh
)) {
3072 bh
->b_end_io
= end_buffer_write_sync
;
3073 ret
= submit_bh(rw
, bh
);
3075 if (!ret
&& !buffer_uptodate(bh
))
3082 EXPORT_SYMBOL(__sync_dirty_buffer
);
3084 int sync_dirty_buffer(struct buffer_head
*bh
)
3086 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3088 EXPORT_SYMBOL(sync_dirty_buffer
);
3091 * try_to_free_buffers() checks if all the buffers on this particular page
3092 * are unused, and releases them if so.
3094 * Exclusion against try_to_free_buffers may be obtained by either
3095 * locking the page or by holding its mapping's private_lock.
3097 * If the page is dirty but all the buffers are clean then we need to
3098 * be sure to mark the page clean as well. This is because the page
3099 * may be against a block device, and a later reattachment of buffers
3100 * to a dirty page will set *all* buffers dirty. Which would corrupt
3101 * filesystem data on the same device.
3103 * The same applies to regular filesystem pages: if all the buffers are
3104 * clean then we set the page clean and proceed. To do that, we require
3105 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3108 * try_to_free_buffers() is non-blocking.
3110 static inline int buffer_busy(struct buffer_head
*bh
)
3112 return atomic_read(&bh
->b_count
) |
3113 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3117 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3119 struct buffer_head
*head
= page_buffers(page
);
3120 struct buffer_head
*bh
;
3124 if (buffer_write_io_error(bh
) && page
->mapping
)
3125 set_bit(AS_EIO
, &page
->mapping
->flags
);
3126 if (buffer_busy(bh
))
3128 bh
= bh
->b_this_page
;
3129 } while (bh
!= head
);
3132 struct buffer_head
*next
= bh
->b_this_page
;
3134 if (bh
->b_assoc_map
)
3135 __remove_assoc_queue(bh
);
3137 } while (bh
!= head
);
3138 *buffers_to_free
= head
;
3139 __clear_page_buffers(page
);
3145 int try_to_free_buffers(struct page
*page
)
3147 struct address_space
* const mapping
= page
->mapping
;
3148 struct buffer_head
*buffers_to_free
= NULL
;
3151 BUG_ON(!PageLocked(page
));
3152 if (PageWriteback(page
))
3155 if (mapping
== NULL
) { /* can this still happen? */
3156 ret
= drop_buffers(page
, &buffers_to_free
);
3160 spin_lock(&mapping
->private_lock
);
3161 ret
= drop_buffers(page
, &buffers_to_free
);
3164 * If the filesystem writes its buffers by hand (eg ext3)
3165 * then we can have clean buffers against a dirty page. We
3166 * clean the page here; otherwise the VM will never notice
3167 * that the filesystem did any IO at all.
3169 * Also, during truncate, discard_buffer will have marked all
3170 * the page's buffers clean. We discover that here and clean
3173 * private_lock must be held over this entire operation in order
3174 * to synchronise against __set_page_dirty_buffers and prevent the
3175 * dirty bit from being lost.
3178 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
3179 spin_unlock(&mapping
->private_lock
);
3181 if (buffers_to_free
) {
3182 struct buffer_head
*bh
= buffers_to_free
;
3185 struct buffer_head
*next
= bh
->b_this_page
;
3186 free_buffer_head(bh
);
3188 } while (bh
!= buffers_to_free
);
3192 EXPORT_SYMBOL(try_to_free_buffers
);
3195 * There are no bdflush tunables left. But distributions are
3196 * still running obsolete flush daemons, so we terminate them here.
3198 * Use of bdflush() is deprecated and will be removed in a future kernel.
3199 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3201 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3203 static int msg_count
;
3205 if (!capable(CAP_SYS_ADMIN
))
3208 if (msg_count
< 5) {
3211 "warning: process `%s' used the obsolete bdflush"
3212 " system call\n", current
->comm
);
3213 printk(KERN_INFO
"Fix your initscripts?\n");
3222 * Buffer-head allocation
3224 static struct kmem_cache
*bh_cachep __read_mostly
;
3227 * Once the number of bh's in the machine exceeds this level, we start
3228 * stripping them in writeback.
3230 static int max_buffer_heads
;
3232 int buffer_heads_over_limit
;
3234 struct bh_accounting
{
3235 int nr
; /* Number of live bh's */
3236 int ratelimit
; /* Limit cacheline bouncing */
3239 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3241 static void recalc_bh_state(void)
3246 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3248 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3249 for_each_online_cpu(i
)
3250 tot
+= per_cpu(bh_accounting
, i
).nr
;
3251 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3254 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3256 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3258 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3260 __this_cpu_inc(bh_accounting
.nr
);
3266 EXPORT_SYMBOL(alloc_buffer_head
);
3268 void free_buffer_head(struct buffer_head
*bh
)
3270 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3271 kmem_cache_free(bh_cachep
, bh
);
3273 __this_cpu_dec(bh_accounting
.nr
);
3277 EXPORT_SYMBOL(free_buffer_head
);
3279 static void buffer_exit_cpu(int cpu
)
3282 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3284 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3288 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3289 per_cpu(bh_accounting
, cpu
).nr
= 0;
3292 static int buffer_cpu_notify(struct notifier_block
*self
,
3293 unsigned long action
, void *hcpu
)
3295 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3296 buffer_exit_cpu((unsigned long)hcpu
);
3301 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3302 * @bh: struct buffer_head
3304 * Return true if the buffer is up-to-date and false,
3305 * with the buffer locked, if not.
3307 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3309 if (!buffer_uptodate(bh
)) {
3311 if (!buffer_uptodate(bh
))
3317 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3320 * bh_submit_read - Submit a locked buffer for reading
3321 * @bh: struct buffer_head
3323 * Returns zero on success and -EIO on error.
3325 int bh_submit_read(struct buffer_head
*bh
)
3327 BUG_ON(!buffer_locked(bh
));
3329 if (buffer_uptodate(bh
)) {
3335 bh
->b_end_io
= end_buffer_read_sync
;
3336 submit_bh(READ
, bh
);
3338 if (buffer_uptodate(bh
))
3342 EXPORT_SYMBOL(bh_submit_read
);
3344 void __init
buffer_init(void)
3348 bh_cachep
= kmem_cache_create("buffer_head",
3349 sizeof(struct buffer_head
), 0,
3350 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3355 * Limit the bh occupancy to 10% of ZONE_NORMAL
3357 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3358 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3359 hotcpu_notifier(buffer_cpu_notify
, 0);