arm64: delay: don't bother reporting bogomips in /proc/cpuinfo
[linux-2.6.git] / fs / xfs / xfs_buf_item.c
blobbfc4e0c26fd3404fb36f007da344be79543aea4c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
33 kmem_zone_t *xfs_buf_item_zone;
35 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 return container_of(lip, struct xfs_buf_log_item, bli_item);
40 STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
43 * This returns the number of log iovecs needed to log the
44 * given buf log item.
46 * It calculates this as 1 iovec for the buf log format structure
47 * and 1 for each stretch of non-contiguous chunks to be logged.
48 * Contiguous chunks are logged in a single iovec.
50 * If the XFS_BLI_STALE flag has been set, then log nothing.
52 STATIC uint
53 xfs_buf_item_size_segment(
54 struct xfs_buf_log_item *bip,
55 struct xfs_buf_log_format *blfp)
57 struct xfs_buf *bp = bip->bli_buf;
58 uint nvecs;
59 int next_bit;
60 int last_bit;
62 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
63 if (last_bit == -1)
64 return 0;
67 * initial count for a dirty buffer is 2 vectors - the format structure
68 * and the first dirty region.
70 nvecs = 2;
72 while (last_bit != -1) {
74 * This takes the bit number to start looking from and
75 * returns the next set bit from there. It returns -1
76 * if there are no more bits set or the start bit is
77 * beyond the end of the bitmap.
79 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 last_bit + 1);
82 * If we run out of bits, leave the loop,
83 * else if we find a new set of bits bump the number of vecs,
84 * else keep scanning the current set of bits.
86 if (next_bit == -1) {
87 break;
88 } else if (next_bit != last_bit + 1) {
89 last_bit = next_bit;
90 nvecs++;
91 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 XFS_BLF_CHUNK)) {
94 last_bit = next_bit;
95 nvecs++;
96 } else {
97 last_bit++;
101 return nvecs;
105 * This returns the number of log iovecs needed to log the given buf log item.
107 * It calculates this as 1 iovec for the buf log format structure and 1 for each
108 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
109 * in a single iovec.
111 * Discontiguous buffers need a format structure per region that that is being
112 * logged. This makes the changes in the buffer appear to log recovery as though
113 * they came from separate buffers, just like would occur if multiple buffers
114 * were used instead of a single discontiguous buffer. This enables
115 * discontiguous buffers to be in-memory constructs, completely transparent to
116 * what ends up on disk.
118 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
119 * format structures.
121 STATIC uint
122 xfs_buf_item_size(
123 struct xfs_log_item *lip)
125 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
126 uint nvecs;
127 int i;
129 ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 if (bip->bli_flags & XFS_BLI_STALE) {
132 * The buffer is stale, so all we need to log
133 * is the buf log format structure with the
134 * cancel flag in it.
136 trace_xfs_buf_item_size_stale(bip);
137 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
138 return bip->bli_format_count;
141 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
143 if (bip->bli_flags & XFS_BLI_ORDERED) {
145 * The buffer has been logged just to order it.
146 * It is not being included in the transaction
147 * commit, so no vectors are used at all.
149 trace_xfs_buf_item_size_ordered(bip);
150 return XFS_LOG_VEC_ORDERED;
154 * the vector count is based on the number of buffer vectors we have
155 * dirty bits in. This will only be greater than one when we have a
156 * compound buffer with more than one segment dirty. Hence for compound
157 * buffers we need to track which segment the dirty bits correspond to,
158 * and when we move from one segment to the next increment the vector
159 * count for the extra buf log format structure that will need to be
160 * written.
162 nvecs = 0;
163 for (i = 0; i < bip->bli_format_count; i++) {
164 nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
167 trace_xfs_buf_item_size(bip);
168 return nvecs;
171 static struct xfs_log_iovec *
172 xfs_buf_item_format_segment(
173 struct xfs_buf_log_item *bip,
174 struct xfs_log_iovec *vecp,
175 uint offset,
176 struct xfs_buf_log_format *blfp)
178 struct xfs_buf *bp = bip->bli_buf;
179 uint base_size;
180 uint nvecs;
181 int first_bit;
182 int last_bit;
183 int next_bit;
184 uint nbits;
185 uint buffer_offset;
187 /* copy the flags across from the base format item */
188 blfp->blf_flags = bip->__bli_format.blf_flags;
191 * Base size is the actual size of the ondisk structure - it reflects
192 * the actual size of the dirty bitmap rather than the size of the in
193 * memory structure.
195 base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
196 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
198 nvecs = 0;
199 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
200 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
202 * If the map is not be dirty in the transaction, mark
203 * the size as zero and do not advance the vector pointer.
205 goto out;
208 vecp->i_addr = blfp;
209 vecp->i_len = base_size;
210 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
211 vecp++;
212 nvecs = 1;
214 if (bip->bli_flags & XFS_BLI_STALE) {
216 * The buffer is stale, so all we need to log
217 * is the buf log format structure with the
218 * cancel flag in it.
220 trace_xfs_buf_item_format_stale(bip);
221 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
222 goto out;
227 * Fill in an iovec for each set of contiguous chunks.
230 last_bit = first_bit;
231 nbits = 1;
232 for (;;) {
234 * This takes the bit number to start looking from and
235 * returns the next set bit from there. It returns -1
236 * if there are no more bits set or the start bit is
237 * beyond the end of the bitmap.
239 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
240 (uint)last_bit + 1);
242 * If we run out of bits fill in the last iovec and get
243 * out of the loop.
244 * Else if we start a new set of bits then fill in the
245 * iovec for the series we were looking at and start
246 * counting the bits in the new one.
247 * Else we're still in the same set of bits so just
248 * keep counting and scanning.
250 if (next_bit == -1) {
251 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
252 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
253 vecp->i_len = nbits * XFS_BLF_CHUNK;
254 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
255 nvecs++;
256 break;
257 } else if (next_bit != last_bit + 1) {
258 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
259 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
260 vecp->i_len = nbits * XFS_BLF_CHUNK;
261 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
262 nvecs++;
263 vecp++;
264 first_bit = next_bit;
265 last_bit = next_bit;
266 nbits = 1;
267 } else if (xfs_buf_offset(bp, offset +
268 (next_bit << XFS_BLF_SHIFT)) !=
269 (xfs_buf_offset(bp, offset +
270 (last_bit << XFS_BLF_SHIFT)) +
271 XFS_BLF_CHUNK)) {
272 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
273 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
274 vecp->i_len = nbits * XFS_BLF_CHUNK;
275 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
276 nvecs++;
277 vecp++;
278 first_bit = next_bit;
279 last_bit = next_bit;
280 nbits = 1;
281 } else {
282 last_bit++;
283 nbits++;
286 out:
287 blfp->blf_size = nvecs;
288 return vecp;
292 * This is called to fill in the vector of log iovecs for the
293 * given log buf item. It fills the first entry with a buf log
294 * format structure, and the rest point to contiguous chunks
295 * within the buffer.
297 STATIC void
298 xfs_buf_item_format(
299 struct xfs_log_item *lip,
300 struct xfs_log_iovec *vecp)
302 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
303 struct xfs_buf *bp = bip->bli_buf;
304 uint offset = 0;
305 int i;
307 ASSERT(atomic_read(&bip->bli_refcount) > 0);
308 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
309 (bip->bli_flags & XFS_BLI_STALE));
312 * If it is an inode buffer, transfer the in-memory state to the
313 * format flags and clear the in-memory state.
315 * For buffer based inode allocation, we do not transfer
316 * this state if the inode buffer allocation has not yet been committed
317 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
318 * correct replay of the inode allocation.
320 * For icreate item based inode allocation, the buffers aren't written
321 * to the journal during allocation, and hence we should always tag the
322 * buffer as an inode buffer so that the correct unlinked list replay
323 * occurs during recovery.
325 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
326 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
327 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
328 xfs_log_item_in_current_chkpt(lip)))
329 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
330 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
333 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
334 XFS_BLI_ORDERED) {
336 * The buffer has been logged just to order it. It is not being
337 * included in the transaction commit, so don't format it.
339 trace_xfs_buf_item_format_ordered(bip);
340 return;
343 for (i = 0; i < bip->bli_format_count; i++) {
344 vecp = xfs_buf_item_format_segment(bip, vecp, offset,
345 &bip->bli_formats[i]);
346 offset += bp->b_maps[i].bm_len;
350 * Check to make sure everything is consistent.
352 trace_xfs_buf_item_format(bip);
356 * This is called to pin the buffer associated with the buf log item in memory
357 * so it cannot be written out.
359 * We also always take a reference to the buffer log item here so that the bli
360 * is held while the item is pinned in memory. This means that we can
361 * unconditionally drop the reference count a transaction holds when the
362 * transaction is completed.
364 STATIC void
365 xfs_buf_item_pin(
366 struct xfs_log_item *lip)
368 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
370 ASSERT(atomic_read(&bip->bli_refcount) > 0);
371 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
372 (bip->bli_flags & XFS_BLI_ORDERED) ||
373 (bip->bli_flags & XFS_BLI_STALE));
375 trace_xfs_buf_item_pin(bip);
377 atomic_inc(&bip->bli_refcount);
378 atomic_inc(&bip->bli_buf->b_pin_count);
382 * This is called to unpin the buffer associated with the buf log
383 * item which was previously pinned with a call to xfs_buf_item_pin().
385 * Also drop the reference to the buf item for the current transaction.
386 * If the XFS_BLI_STALE flag is set and we are the last reference,
387 * then free up the buf log item and unlock the buffer.
389 * If the remove flag is set we are called from uncommit in the
390 * forced-shutdown path. If that is true and the reference count on
391 * the log item is going to drop to zero we need to free the item's
392 * descriptor in the transaction.
394 STATIC void
395 xfs_buf_item_unpin(
396 struct xfs_log_item *lip,
397 int remove)
399 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
400 xfs_buf_t *bp = bip->bli_buf;
401 struct xfs_ail *ailp = lip->li_ailp;
402 int stale = bip->bli_flags & XFS_BLI_STALE;
403 int freed;
405 ASSERT(bp->b_fspriv == bip);
406 ASSERT(atomic_read(&bip->bli_refcount) > 0);
408 trace_xfs_buf_item_unpin(bip);
410 freed = atomic_dec_and_test(&bip->bli_refcount);
412 if (atomic_dec_and_test(&bp->b_pin_count))
413 wake_up_all(&bp->b_waiters);
415 if (freed && stale) {
416 ASSERT(bip->bli_flags & XFS_BLI_STALE);
417 ASSERT(xfs_buf_islocked(bp));
418 ASSERT(XFS_BUF_ISSTALE(bp));
419 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
421 trace_xfs_buf_item_unpin_stale(bip);
423 if (remove) {
425 * If we are in a transaction context, we have to
426 * remove the log item from the transaction as we are
427 * about to release our reference to the buffer. If we
428 * don't, the unlock that occurs later in
429 * xfs_trans_uncommit() will try to reference the
430 * buffer which we no longer have a hold on.
432 if (lip->li_desc)
433 xfs_trans_del_item(lip);
436 * Since the transaction no longer refers to the buffer,
437 * the buffer should no longer refer to the transaction.
439 bp->b_transp = NULL;
443 * If we get called here because of an IO error, we may
444 * or may not have the item on the AIL. xfs_trans_ail_delete()
445 * will take care of that situation.
446 * xfs_trans_ail_delete() drops the AIL lock.
448 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
449 xfs_buf_do_callbacks(bp);
450 bp->b_fspriv = NULL;
451 bp->b_iodone = NULL;
452 } else {
453 spin_lock(&ailp->xa_lock);
454 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
455 xfs_buf_item_relse(bp);
456 ASSERT(bp->b_fspriv == NULL);
458 xfs_buf_relse(bp);
459 } else if (freed && remove) {
461 * There are currently two references to the buffer - the active
462 * LRU reference and the buf log item. What we are about to do
463 * here - simulate a failed IO completion - requires 3
464 * references.
466 * The LRU reference is removed by the xfs_buf_stale() call. The
467 * buf item reference is removed by the xfs_buf_iodone()
468 * callback that is run by xfs_buf_do_callbacks() during ioend
469 * processing (via the bp->b_iodone callback), and then finally
470 * the ioend processing will drop the IO reference if the buffer
471 * is marked XBF_ASYNC.
473 * Hence we need to take an additional reference here so that IO
474 * completion processing doesn't free the buffer prematurely.
476 xfs_buf_lock(bp);
477 xfs_buf_hold(bp);
478 bp->b_flags |= XBF_ASYNC;
479 xfs_buf_ioerror(bp, EIO);
480 XFS_BUF_UNDONE(bp);
481 xfs_buf_stale(bp);
482 xfs_buf_ioend(bp, 0);
486 STATIC uint
487 xfs_buf_item_push(
488 struct xfs_log_item *lip,
489 struct list_head *buffer_list)
491 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
492 struct xfs_buf *bp = bip->bli_buf;
493 uint rval = XFS_ITEM_SUCCESS;
495 if (xfs_buf_ispinned(bp))
496 return XFS_ITEM_PINNED;
497 if (!xfs_buf_trylock(bp)) {
499 * If we have just raced with a buffer being pinned and it has
500 * been marked stale, we could end up stalling until someone else
501 * issues a log force to unpin the stale buffer. Check for the
502 * race condition here so xfsaild recognizes the buffer is pinned
503 * and queues a log force to move it along.
505 if (xfs_buf_ispinned(bp))
506 return XFS_ITEM_PINNED;
507 return XFS_ITEM_LOCKED;
510 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
512 trace_xfs_buf_item_push(bip);
514 if (!xfs_buf_delwri_queue(bp, buffer_list))
515 rval = XFS_ITEM_FLUSHING;
516 xfs_buf_unlock(bp);
517 return rval;
521 * Release the buffer associated with the buf log item. If there is no dirty
522 * logged data associated with the buffer recorded in the buf log item, then
523 * free the buf log item and remove the reference to it in the buffer.
525 * This call ignores the recursion count. It is only called when the buffer
526 * should REALLY be unlocked, regardless of the recursion count.
528 * We unconditionally drop the transaction's reference to the log item. If the
529 * item was logged, then another reference was taken when it was pinned, so we
530 * can safely drop the transaction reference now. This also allows us to avoid
531 * potential races with the unpin code freeing the bli by not referencing the
532 * bli after we've dropped the reference count.
534 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
535 * if necessary but do not unlock the buffer. This is for support of
536 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
537 * free the item.
539 STATIC void
540 xfs_buf_item_unlock(
541 struct xfs_log_item *lip)
543 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
544 struct xfs_buf *bp = bip->bli_buf;
545 bool clean;
546 bool aborted;
547 int flags;
549 /* Clear the buffer's association with this transaction. */
550 bp->b_transp = NULL;
553 * If this is a transaction abort, don't return early. Instead, allow
554 * the brelse to happen. Normally it would be done for stale
555 * (cancelled) buffers at unpin time, but we'll never go through the
556 * pin/unpin cycle if we abort inside commit.
558 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
560 * Before possibly freeing the buf item, copy the per-transaction state
561 * so we can reference it safely later after clearing it from the
562 * buffer log item.
564 flags = bip->bli_flags;
565 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
568 * If the buf item is marked stale, then don't do anything. We'll
569 * unlock the buffer and free the buf item when the buffer is unpinned
570 * for the last time.
572 if (flags & XFS_BLI_STALE) {
573 trace_xfs_buf_item_unlock_stale(bip);
574 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
575 if (!aborted) {
576 atomic_dec(&bip->bli_refcount);
577 return;
581 trace_xfs_buf_item_unlock(bip);
584 * If the buf item isn't tracking any data, free it, otherwise drop the
585 * reference we hold to it. If we are aborting the transaction, this may
586 * be the only reference to the buf item, so we free it anyway
587 * regardless of whether it is dirty or not. A dirty abort implies a
588 * shutdown, anyway.
590 * Ordered buffers are dirty but may have no recorded changes, so ensure
591 * we only release clean items here.
593 clean = (flags & XFS_BLI_DIRTY) ? false : true;
594 if (clean) {
595 int i;
596 for (i = 0; i < bip->bli_format_count; i++) {
597 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
598 bip->bli_formats[i].blf_map_size)) {
599 clean = false;
600 break;
604 if (clean)
605 xfs_buf_item_relse(bp);
606 else if (aborted) {
607 if (atomic_dec_and_test(&bip->bli_refcount)) {
608 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
609 xfs_buf_item_relse(bp);
611 } else
612 atomic_dec(&bip->bli_refcount);
614 if (!(flags & XFS_BLI_HOLD))
615 xfs_buf_relse(bp);
619 * This is called to find out where the oldest active copy of the
620 * buf log item in the on disk log resides now that the last log
621 * write of it completed at the given lsn.
622 * We always re-log all the dirty data in a buffer, so usually the
623 * latest copy in the on disk log is the only one that matters. For
624 * those cases we simply return the given lsn.
626 * The one exception to this is for buffers full of newly allocated
627 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
628 * flag set, indicating that only the di_next_unlinked fields from the
629 * inodes in the buffers will be replayed during recovery. If the
630 * original newly allocated inode images have not yet been flushed
631 * when the buffer is so relogged, then we need to make sure that we
632 * keep the old images in the 'active' portion of the log. We do this
633 * by returning the original lsn of that transaction here rather than
634 * the current one.
636 STATIC xfs_lsn_t
637 xfs_buf_item_committed(
638 struct xfs_log_item *lip,
639 xfs_lsn_t lsn)
641 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
643 trace_xfs_buf_item_committed(bip);
645 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
646 return lip->li_lsn;
647 return lsn;
650 STATIC void
651 xfs_buf_item_committing(
652 struct xfs_log_item *lip,
653 xfs_lsn_t commit_lsn)
658 * This is the ops vector shared by all buf log items.
660 static const struct xfs_item_ops xfs_buf_item_ops = {
661 .iop_size = xfs_buf_item_size,
662 .iop_format = xfs_buf_item_format,
663 .iop_pin = xfs_buf_item_pin,
664 .iop_unpin = xfs_buf_item_unpin,
665 .iop_unlock = xfs_buf_item_unlock,
666 .iop_committed = xfs_buf_item_committed,
667 .iop_push = xfs_buf_item_push,
668 .iop_committing = xfs_buf_item_committing
671 STATIC int
672 xfs_buf_item_get_format(
673 struct xfs_buf_log_item *bip,
674 int count)
676 ASSERT(bip->bli_formats == NULL);
677 bip->bli_format_count = count;
679 if (count == 1) {
680 bip->bli_formats = &bip->__bli_format;
681 return 0;
684 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
685 KM_SLEEP);
686 if (!bip->bli_formats)
687 return ENOMEM;
688 return 0;
691 STATIC void
692 xfs_buf_item_free_format(
693 struct xfs_buf_log_item *bip)
695 if (bip->bli_formats != &bip->__bli_format) {
696 kmem_free(bip->bli_formats);
697 bip->bli_formats = NULL;
702 * Allocate a new buf log item to go with the given buffer.
703 * Set the buffer's b_fsprivate field to point to the new
704 * buf log item. If there are other item's attached to the
705 * buffer (see xfs_buf_attach_iodone() below), then put the
706 * buf log item at the front.
708 void
709 xfs_buf_item_init(
710 xfs_buf_t *bp,
711 xfs_mount_t *mp)
713 xfs_log_item_t *lip = bp->b_fspriv;
714 xfs_buf_log_item_t *bip;
715 int chunks;
716 int map_size;
717 int error;
718 int i;
721 * Check to see if there is already a buf log item for
722 * this buffer. If there is, it is guaranteed to be
723 * the first. If we do already have one, there is
724 * nothing to do here so return.
726 ASSERT(bp->b_target->bt_mount == mp);
727 if (lip != NULL && lip->li_type == XFS_LI_BUF)
728 return;
730 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
731 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
732 bip->bli_buf = bp;
733 xfs_buf_hold(bp);
736 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
737 * can be divided into. Make sure not to truncate any pieces.
738 * map_size is the size of the bitmap needed to describe the
739 * chunks of the buffer.
741 * Discontiguous buffer support follows the layout of the underlying
742 * buffer. This makes the implementation as simple as possible.
744 error = xfs_buf_item_get_format(bip, bp->b_map_count);
745 ASSERT(error == 0);
747 for (i = 0; i < bip->bli_format_count; i++) {
748 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
749 XFS_BLF_CHUNK);
750 map_size = DIV_ROUND_UP(chunks, NBWORD);
752 bip->bli_formats[i].blf_type = XFS_LI_BUF;
753 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
754 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
755 bip->bli_formats[i].blf_map_size = map_size;
758 #ifdef XFS_TRANS_DEBUG
760 * Allocate the arrays for tracking what needs to be logged
761 * and what our callers request to be logged. bli_orig
762 * holds a copy of the original, clean buffer for comparison
763 * against, and bli_logged keeps a 1 bit flag per byte in
764 * the buffer to indicate which bytes the callers have asked
765 * to have logged.
767 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
768 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
769 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
770 #endif
773 * Put the buf item into the list of items attached to the
774 * buffer at the front.
776 if (bp->b_fspriv)
777 bip->bli_item.li_bio_list = bp->b_fspriv;
778 bp->b_fspriv = bip;
783 * Mark bytes first through last inclusive as dirty in the buf
784 * item's bitmap.
786 void
787 xfs_buf_item_log_segment(
788 struct xfs_buf_log_item *bip,
789 uint first,
790 uint last,
791 uint *map)
793 uint first_bit;
794 uint last_bit;
795 uint bits_to_set;
796 uint bits_set;
797 uint word_num;
798 uint *wordp;
799 uint bit;
800 uint end_bit;
801 uint mask;
804 * Convert byte offsets to bit numbers.
806 first_bit = first >> XFS_BLF_SHIFT;
807 last_bit = last >> XFS_BLF_SHIFT;
810 * Calculate the total number of bits to be set.
812 bits_to_set = last_bit - first_bit + 1;
815 * Get a pointer to the first word in the bitmap
816 * to set a bit in.
818 word_num = first_bit >> BIT_TO_WORD_SHIFT;
819 wordp = &map[word_num];
822 * Calculate the starting bit in the first word.
824 bit = first_bit & (uint)(NBWORD - 1);
827 * First set any bits in the first word of our range.
828 * If it starts at bit 0 of the word, it will be
829 * set below rather than here. That is what the variable
830 * bit tells us. The variable bits_set tracks the number
831 * of bits that have been set so far. End_bit is the number
832 * of the last bit to be set in this word plus one.
834 if (bit) {
835 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
836 mask = ((1 << (end_bit - bit)) - 1) << bit;
837 *wordp |= mask;
838 wordp++;
839 bits_set = end_bit - bit;
840 } else {
841 bits_set = 0;
845 * Now set bits a whole word at a time that are between
846 * first_bit and last_bit.
848 while ((bits_to_set - bits_set) >= NBWORD) {
849 *wordp |= 0xffffffff;
850 bits_set += NBWORD;
851 wordp++;
855 * Finally, set any bits left to be set in one last partial word.
857 end_bit = bits_to_set - bits_set;
858 if (end_bit) {
859 mask = (1 << end_bit) - 1;
860 *wordp |= mask;
865 * Mark bytes first through last inclusive as dirty in the buf
866 * item's bitmap.
868 void
869 xfs_buf_item_log(
870 xfs_buf_log_item_t *bip,
871 uint first,
872 uint last)
874 int i;
875 uint start;
876 uint end;
877 struct xfs_buf *bp = bip->bli_buf;
880 * walk each buffer segment and mark them dirty appropriately.
882 start = 0;
883 for (i = 0; i < bip->bli_format_count; i++) {
884 if (start > last)
885 break;
886 end = start + BBTOB(bp->b_maps[i].bm_len);
887 if (first > end) {
888 start += BBTOB(bp->b_maps[i].bm_len);
889 continue;
891 if (first < start)
892 first = start;
893 if (end > last)
894 end = last;
896 xfs_buf_item_log_segment(bip, first, end,
897 &bip->bli_formats[i].blf_data_map[0]);
899 start += bp->b_maps[i].bm_len;
905 * Return 1 if the buffer has been logged or ordered in a transaction (at any
906 * point, not just the current transaction) and 0 if not.
908 uint
909 xfs_buf_item_dirty(
910 xfs_buf_log_item_t *bip)
912 return (bip->bli_flags & XFS_BLI_DIRTY);
915 STATIC void
916 xfs_buf_item_free(
917 xfs_buf_log_item_t *bip)
919 #ifdef XFS_TRANS_DEBUG
920 kmem_free(bip->bli_orig);
921 kmem_free(bip->bli_logged);
922 #endif /* XFS_TRANS_DEBUG */
924 xfs_buf_item_free_format(bip);
925 kmem_zone_free(xfs_buf_item_zone, bip);
929 * This is called when the buf log item is no longer needed. It should
930 * free the buf log item associated with the given buffer and clear
931 * the buffer's pointer to the buf log item. If there are no more
932 * items in the list, clear the b_iodone field of the buffer (see
933 * xfs_buf_attach_iodone() below).
935 void
936 xfs_buf_item_relse(
937 xfs_buf_t *bp)
939 xfs_buf_log_item_t *bip = bp->b_fspriv;
941 trace_xfs_buf_item_relse(bp, _RET_IP_);
942 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
944 bp->b_fspriv = bip->bli_item.li_bio_list;
945 if (bp->b_fspriv == NULL)
946 bp->b_iodone = NULL;
948 xfs_buf_rele(bp);
949 xfs_buf_item_free(bip);
954 * Add the given log item with its callback to the list of callbacks
955 * to be called when the buffer's I/O completes. If it is not set
956 * already, set the buffer's b_iodone() routine to be
957 * xfs_buf_iodone_callbacks() and link the log item into the list of
958 * items rooted at b_fsprivate. Items are always added as the second
959 * entry in the list if there is a first, because the buf item code
960 * assumes that the buf log item is first.
962 void
963 xfs_buf_attach_iodone(
964 xfs_buf_t *bp,
965 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
966 xfs_log_item_t *lip)
968 xfs_log_item_t *head_lip;
970 ASSERT(xfs_buf_islocked(bp));
972 lip->li_cb = cb;
973 head_lip = bp->b_fspriv;
974 if (head_lip) {
975 lip->li_bio_list = head_lip->li_bio_list;
976 head_lip->li_bio_list = lip;
977 } else {
978 bp->b_fspriv = lip;
981 ASSERT(bp->b_iodone == NULL ||
982 bp->b_iodone == xfs_buf_iodone_callbacks);
983 bp->b_iodone = xfs_buf_iodone_callbacks;
987 * We can have many callbacks on a buffer. Running the callbacks individually
988 * can cause a lot of contention on the AIL lock, so we allow for a single
989 * callback to be able to scan the remaining lip->li_bio_list for other items
990 * of the same type and callback to be processed in the first call.
992 * As a result, the loop walking the callback list below will also modify the
993 * list. it removes the first item from the list and then runs the callback.
994 * The loop then restarts from the new head of the list. This allows the
995 * callback to scan and modify the list attached to the buffer and we don't
996 * have to care about maintaining a next item pointer.
998 STATIC void
999 xfs_buf_do_callbacks(
1000 struct xfs_buf *bp)
1002 struct xfs_log_item *lip;
1004 while ((lip = bp->b_fspriv) != NULL) {
1005 bp->b_fspriv = lip->li_bio_list;
1006 ASSERT(lip->li_cb != NULL);
1008 * Clear the next pointer so we don't have any
1009 * confusion if the item is added to another buf.
1010 * Don't touch the log item after calling its
1011 * callback, because it could have freed itself.
1013 lip->li_bio_list = NULL;
1014 lip->li_cb(bp, lip);
1019 * This is the iodone() function for buffers which have had callbacks
1020 * attached to them by xfs_buf_attach_iodone(). It should remove each
1021 * log item from the buffer's list and call the callback of each in turn.
1022 * When done, the buffer's fsprivate field is set to NULL and the buffer
1023 * is unlocked with a call to iodone().
1025 void
1026 xfs_buf_iodone_callbacks(
1027 struct xfs_buf *bp)
1029 struct xfs_log_item *lip = bp->b_fspriv;
1030 struct xfs_mount *mp = lip->li_mountp;
1031 static ulong lasttime;
1032 static xfs_buftarg_t *lasttarg;
1034 if (likely(!xfs_buf_geterror(bp)))
1035 goto do_callbacks;
1038 * If we've already decided to shutdown the filesystem because of
1039 * I/O errors, there's no point in giving this a retry.
1041 if (XFS_FORCED_SHUTDOWN(mp)) {
1042 xfs_buf_stale(bp);
1043 XFS_BUF_DONE(bp);
1044 trace_xfs_buf_item_iodone(bp, _RET_IP_);
1045 goto do_callbacks;
1048 if (bp->b_target != lasttarg ||
1049 time_after(jiffies, (lasttime + 5*HZ))) {
1050 lasttime = jiffies;
1051 xfs_buf_ioerror_alert(bp, __func__);
1053 lasttarg = bp->b_target;
1056 * If the write was asynchronous then no one will be looking for the
1057 * error. Clear the error state and write the buffer out again.
1059 * XXX: This helps against transient write errors, but we need to find
1060 * a way to shut the filesystem down if the writes keep failing.
1062 * In practice we'll shut the filesystem down soon as non-transient
1063 * erorrs tend to affect the whole device and a failing log write
1064 * will make us give up. But we really ought to do better here.
1066 if (XFS_BUF_ISASYNC(bp)) {
1067 ASSERT(bp->b_iodone != NULL);
1069 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1071 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
1073 if (!XFS_BUF_ISSTALE(bp)) {
1074 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
1075 xfs_buf_iorequest(bp);
1076 } else {
1077 xfs_buf_relse(bp);
1080 return;
1084 * If the write of the buffer was synchronous, we want to make
1085 * sure to return the error to the caller of xfs_bwrite().
1087 xfs_buf_stale(bp);
1088 XFS_BUF_DONE(bp);
1090 trace_xfs_buf_error_relse(bp, _RET_IP_);
1092 do_callbacks:
1093 xfs_buf_do_callbacks(bp);
1094 bp->b_fspriv = NULL;
1095 bp->b_iodone = NULL;
1096 xfs_buf_ioend(bp, 0);
1100 * This is the iodone() function for buffers which have been
1101 * logged. It is called when they are eventually flushed out.
1102 * It should remove the buf item from the AIL, and free the buf item.
1103 * It is called by xfs_buf_iodone_callbacks() above which will take
1104 * care of cleaning up the buffer itself.
1106 void
1107 xfs_buf_iodone(
1108 struct xfs_buf *bp,
1109 struct xfs_log_item *lip)
1111 struct xfs_ail *ailp = lip->li_ailp;
1113 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1115 xfs_buf_rele(bp);
1118 * If we are forcibly shutting down, this may well be
1119 * off the AIL already. That's because we simulate the
1120 * log-committed callbacks to unpin these buffers. Or we may never
1121 * have put this item on AIL because of the transaction was
1122 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1124 * Either way, AIL is useless if we're forcing a shutdown.
1126 spin_lock(&ailp->xa_lock);
1127 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
1128 xfs_buf_item_free(BUF_ITEM(lip));