2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
40 #include <asm/tlbflush.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
48 * migrate_prep() needs to be called before we start compiling a list of pages
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
52 int migrate_prep(void)
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
77 void putback_lru_pages(struct list_head
*l
)
82 list_for_each_entry_safe(page
, page2
, l
, lru
) {
84 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
85 page_is_file_cache(page
));
86 putback_lru_page(page
);
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 void putback_movable_pages(struct list_head
*l
)
102 list_for_each_entry_safe(page
, page2
, l
, lru
) {
103 if (unlikely(PageHuge(page
))) {
104 putback_active_hugepage(page
);
107 list_del(&page
->lru
);
108 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
109 page_is_file_cache(page
));
110 if (unlikely(isolated_balloon_page(page
)))
111 balloon_page_putback(page
);
113 putback_lru_page(page
);
118 * Restore a potential migration pte to a working pte entry
120 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
121 unsigned long addr
, void *old
)
123 struct mm_struct
*mm
= vma
->vm_mm
;
129 if (unlikely(PageHuge(new))) {
130 ptep
= huge_pte_offset(mm
, addr
);
133 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, ptep
);
135 pmd
= mm_find_pmd(mm
, addr
);
138 if (pmd_trans_huge(*pmd
))
141 ptep
= pte_offset_map(pmd
, addr
);
144 * Peek to check is_swap_pte() before taking ptlock? No, we
145 * can race mremap's move_ptes(), which skips anon_vma lock.
148 ptl
= pte_lockptr(mm
, pmd
);
153 if (!is_swap_pte(pte
))
156 entry
= pte_to_swp_entry(pte
);
158 if (!is_migration_entry(entry
) ||
159 migration_entry_to_page(entry
) != old
)
163 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
164 if (pte_swp_soft_dirty(*ptep
))
165 pte
= pte_mksoft_dirty(pte
);
166 if (is_write_migration_entry(entry
))
167 pte
= pte_mkwrite(pte
);
168 #ifdef CONFIG_HUGETLB_PAGE
170 pte
= pte_mkhuge(pte
);
171 pte
= arch_make_huge_pte(pte
, vma
, new, 0);
174 flush_dcache_page(new);
175 set_pte_at(mm
, addr
, ptep
, pte
);
179 hugepage_add_anon_rmap(new, vma
, addr
);
182 } else if (PageAnon(new))
183 page_add_anon_rmap(new, vma
, addr
);
185 page_add_file_rmap(new);
187 /* No need to invalidate - it was non-present before */
188 update_mmu_cache(vma
, addr
, ptep
);
190 pte_unmap_unlock(ptep
, ptl
);
196 * Get rid of all migration entries and replace them by
197 * references to the indicated page.
199 static void remove_migration_ptes(struct page
*old
, struct page
*new)
201 rmap_walk(new, remove_migration_pte
, old
);
205 * Something used the pte of a page under migration. We need to
206 * get to the page and wait until migration is finished.
207 * When we return from this function the fault will be retried.
209 static void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
218 if (!is_swap_pte(pte
))
221 entry
= pte_to_swp_entry(pte
);
222 if (!is_migration_entry(entry
))
225 page
= migration_entry_to_page(entry
);
228 * Once radix-tree replacement of page migration started, page_count
229 * *must* be zero. And, we don't want to call wait_on_page_locked()
230 * against a page without get_page().
231 * So, we use get_page_unless_zero(), here. Even failed, page fault
234 if (!get_page_unless_zero(page
))
236 pte_unmap_unlock(ptep
, ptl
);
237 wait_on_page_locked(page
);
241 pte_unmap_unlock(ptep
, ptl
);
244 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
245 unsigned long address
)
247 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
248 pte_t
*ptep
= pte_offset_map(pmd
, address
);
249 __migration_entry_wait(mm
, ptep
, ptl
);
252 void migration_entry_wait_huge(struct vm_area_struct
*vma
,
253 struct mm_struct
*mm
, pte_t
*pte
)
255 spinlock_t
*ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, pte
);
256 __migration_entry_wait(mm
, pte
, ptl
);
260 /* Returns true if all buffers are successfully locked */
261 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
262 enum migrate_mode mode
)
264 struct buffer_head
*bh
= head
;
266 /* Simple case, sync compaction */
267 if (mode
!= MIGRATE_ASYNC
) {
271 bh
= bh
->b_this_page
;
273 } while (bh
!= head
);
278 /* async case, we cannot block on lock_buffer so use trylock_buffer */
281 if (!trylock_buffer(bh
)) {
283 * We failed to lock the buffer and cannot stall in
284 * async migration. Release the taken locks
286 struct buffer_head
*failed_bh
= bh
;
289 while (bh
!= failed_bh
) {
292 bh
= bh
->b_this_page
;
297 bh
= bh
->b_this_page
;
298 } while (bh
!= head
);
302 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
303 enum migrate_mode mode
)
307 #endif /* CONFIG_BLOCK */
310 * Replace the page in the mapping.
312 * The number of remaining references must be:
313 * 1 for anonymous pages without a mapping
314 * 2 for pages with a mapping
315 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
317 int migrate_page_move_mapping(struct address_space
*mapping
,
318 struct page
*newpage
, struct page
*page
,
319 struct buffer_head
*head
, enum migrate_mode mode
)
321 int expected_count
= 0;
325 /* Anonymous page without mapping */
326 if (page_count(page
) != 1)
328 return MIGRATEPAGE_SUCCESS
;
331 spin_lock_irq(&mapping
->tree_lock
);
333 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
336 expected_count
= 2 + page_has_private(page
);
337 if (page_count(page
) != expected_count
||
338 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
339 spin_unlock_irq(&mapping
->tree_lock
);
343 if (!page_freeze_refs(page
, expected_count
)) {
344 spin_unlock_irq(&mapping
->tree_lock
);
349 * In the async migration case of moving a page with buffers, lock the
350 * buffers using trylock before the mapping is moved. If the mapping
351 * was moved, we later failed to lock the buffers and could not move
352 * the mapping back due to an elevated page count, we would have to
353 * block waiting on other references to be dropped.
355 if (mode
== MIGRATE_ASYNC
&& head
&&
356 !buffer_migrate_lock_buffers(head
, mode
)) {
357 page_unfreeze_refs(page
, expected_count
);
358 spin_unlock_irq(&mapping
->tree_lock
);
363 * Now we know that no one else is looking at the page.
365 get_page(newpage
); /* add cache reference */
366 if (PageSwapCache(page
)) {
367 SetPageSwapCache(newpage
);
368 set_page_private(newpage
, page_private(page
));
371 radix_tree_replace_slot(pslot
, newpage
);
374 * Drop cache reference from old page by unfreezing
375 * to one less reference.
376 * We know this isn't the last reference.
378 page_unfreeze_refs(page
, expected_count
- 1);
381 * If moved to a different zone then also account
382 * the page for that zone. Other VM counters will be
383 * taken care of when we establish references to the
384 * new page and drop references to the old page.
386 * Note that anonymous pages are accounted for
387 * via NR_FILE_PAGES and NR_ANON_PAGES if they
388 * are mapped to swap space.
390 __dec_zone_page_state(page
, NR_FILE_PAGES
);
391 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
392 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
393 __dec_zone_page_state(page
, NR_SHMEM
);
394 __inc_zone_page_state(newpage
, NR_SHMEM
);
396 spin_unlock_irq(&mapping
->tree_lock
);
398 return MIGRATEPAGE_SUCCESS
;
402 * The expected number of remaining references is the same as that
403 * of migrate_page_move_mapping().
405 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
406 struct page
*newpage
, struct page
*page
)
412 if (page_count(page
) != 1)
414 return MIGRATEPAGE_SUCCESS
;
417 spin_lock_irq(&mapping
->tree_lock
);
419 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
422 expected_count
= 2 + page_has_private(page
);
423 if (page_count(page
) != expected_count
||
424 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
425 spin_unlock_irq(&mapping
->tree_lock
);
429 if (!page_freeze_refs(page
, expected_count
)) {
430 spin_unlock_irq(&mapping
->tree_lock
);
436 radix_tree_replace_slot(pslot
, newpage
);
438 page_unfreeze_refs(page
, expected_count
- 1);
440 spin_unlock_irq(&mapping
->tree_lock
);
441 return MIGRATEPAGE_SUCCESS
;
445 * Gigantic pages are so large that we do not guarantee that page++ pointer
446 * arithmetic will work across the entire page. We need something more
449 static void __copy_gigantic_page(struct page
*dst
, struct page
*src
,
453 struct page
*dst_base
= dst
;
454 struct page
*src_base
= src
;
456 for (i
= 0; i
< nr_pages
; ) {
458 copy_highpage(dst
, src
);
461 dst
= mem_map_next(dst
, dst_base
, i
);
462 src
= mem_map_next(src
, src_base
, i
);
466 static void copy_huge_page(struct page
*dst
, struct page
*src
)
473 struct hstate
*h
= page_hstate(src
);
474 nr_pages
= pages_per_huge_page(h
);
476 if (unlikely(nr_pages
> MAX_ORDER_NR_PAGES
)) {
477 __copy_gigantic_page(dst
, src
, nr_pages
);
482 BUG_ON(!PageTransHuge(src
));
483 nr_pages
= hpage_nr_pages(src
);
486 for (i
= 0; i
< nr_pages
; i
++) {
488 copy_highpage(dst
+ i
, src
+ i
);
493 * Copy the page to its new location
495 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
499 if (PageHuge(page
) || PageTransHuge(page
))
500 copy_huge_page(newpage
, page
);
502 copy_highpage(newpage
, page
);
505 SetPageError(newpage
);
506 if (PageReferenced(page
))
507 SetPageReferenced(newpage
);
508 if (PageUptodate(page
))
509 SetPageUptodate(newpage
);
510 if (TestClearPageActive(page
)) {
511 VM_BUG_ON(PageUnevictable(page
));
512 SetPageActive(newpage
);
513 } else if (TestClearPageUnevictable(page
))
514 SetPageUnevictable(newpage
);
515 if (PageChecked(page
))
516 SetPageChecked(newpage
);
517 if (PageMappedToDisk(page
))
518 SetPageMappedToDisk(newpage
);
520 if (PageDirty(page
)) {
521 clear_page_dirty_for_io(page
);
523 * Want to mark the page and the radix tree as dirty, and
524 * redo the accounting that clear_page_dirty_for_io undid,
525 * but we can't use set_page_dirty because that function
526 * is actually a signal that all of the page has become dirty.
527 * Whereas only part of our page may be dirty.
529 if (PageSwapBacked(page
))
530 SetPageDirty(newpage
);
532 __set_page_dirty_nobuffers(newpage
);
536 * Copy NUMA information to the new page, to prevent over-eager
537 * future migrations of this same page.
539 cpupid
= page_cpupid_xchg_last(page
, -1);
540 page_cpupid_xchg_last(newpage
, cpupid
);
542 mlock_migrate_page(newpage
, page
);
543 ksm_migrate_page(newpage
, page
);
545 * Please do not reorder this without considering how mm/ksm.c's
546 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
548 ClearPageSwapCache(page
);
549 ClearPagePrivate(page
);
550 set_page_private(page
, 0);
553 * If any waiters have accumulated on the new page then
556 if (PageWriteback(newpage
))
557 end_page_writeback(newpage
);
560 /************************************************************
561 * Migration functions
562 ***********************************************************/
564 /* Always fail migration. Used for mappings that are not movable */
565 int fail_migrate_page(struct address_space
*mapping
,
566 struct page
*newpage
, struct page
*page
)
570 EXPORT_SYMBOL(fail_migrate_page
);
573 * Common logic to directly migrate a single page suitable for
574 * pages that do not use PagePrivate/PagePrivate2.
576 * Pages are locked upon entry and exit.
578 int migrate_page(struct address_space
*mapping
,
579 struct page
*newpage
, struct page
*page
,
580 enum migrate_mode mode
)
584 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
586 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
);
588 if (rc
!= MIGRATEPAGE_SUCCESS
)
591 migrate_page_copy(newpage
, page
);
592 return MIGRATEPAGE_SUCCESS
;
594 EXPORT_SYMBOL(migrate_page
);
598 * Migration function for pages with buffers. This function can only be used
599 * if the underlying filesystem guarantees that no other references to "page"
602 int buffer_migrate_page(struct address_space
*mapping
,
603 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
605 struct buffer_head
*bh
, *head
;
608 if (!page_has_buffers(page
))
609 return migrate_page(mapping
, newpage
, page
, mode
);
611 head
= page_buffers(page
);
613 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
);
615 if (rc
!= MIGRATEPAGE_SUCCESS
)
619 * In the async case, migrate_page_move_mapping locked the buffers
620 * with an IRQ-safe spinlock held. In the sync case, the buffers
621 * need to be locked now
623 if (mode
!= MIGRATE_ASYNC
)
624 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
626 ClearPagePrivate(page
);
627 set_page_private(newpage
, page_private(page
));
628 set_page_private(page
, 0);
634 set_bh_page(bh
, newpage
, bh_offset(bh
));
635 bh
= bh
->b_this_page
;
637 } while (bh
!= head
);
639 SetPagePrivate(newpage
);
641 migrate_page_copy(newpage
, page
);
647 bh
= bh
->b_this_page
;
649 } while (bh
!= head
);
651 return MIGRATEPAGE_SUCCESS
;
653 EXPORT_SYMBOL(buffer_migrate_page
);
657 * Writeback a page to clean the dirty state
659 static int writeout(struct address_space
*mapping
, struct page
*page
)
661 struct writeback_control wbc
= {
662 .sync_mode
= WB_SYNC_NONE
,
665 .range_end
= LLONG_MAX
,
670 if (!mapping
->a_ops
->writepage
)
671 /* No write method for the address space */
674 if (!clear_page_dirty_for_io(page
))
675 /* Someone else already triggered a write */
679 * A dirty page may imply that the underlying filesystem has
680 * the page on some queue. So the page must be clean for
681 * migration. Writeout may mean we loose the lock and the
682 * page state is no longer what we checked for earlier.
683 * At this point we know that the migration attempt cannot
686 remove_migration_ptes(page
, page
);
688 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
690 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
691 /* unlocked. Relock */
694 return (rc
< 0) ? -EIO
: -EAGAIN
;
698 * Default handling if a filesystem does not provide a migration function.
700 static int fallback_migrate_page(struct address_space
*mapping
,
701 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
703 if (PageDirty(page
)) {
704 /* Only writeback pages in full synchronous migration */
705 if (mode
!= MIGRATE_SYNC
)
707 return writeout(mapping
, page
);
711 * Buffers may be managed in a filesystem specific way.
712 * We must have no buffers or drop them.
714 if (page_has_private(page
) &&
715 !try_to_release_page(page
, GFP_KERNEL
))
718 return migrate_page(mapping
, newpage
, page
, mode
);
722 * Move a page to a newly allocated page
723 * The page is locked and all ptes have been successfully removed.
725 * The new page will have replaced the old page if this function
730 * MIGRATEPAGE_SUCCESS - success
732 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
733 int remap_swapcache
, enum migrate_mode mode
)
735 struct address_space
*mapping
;
739 * Block others from accessing the page when we get around to
740 * establishing additional references. We are the only one
741 * holding a reference to the new page at this point.
743 if (!trylock_page(newpage
))
746 /* Prepare mapping for the new page.*/
747 newpage
->index
= page
->index
;
748 newpage
->mapping
= page
->mapping
;
749 if (PageSwapBacked(page
))
750 SetPageSwapBacked(newpage
);
752 mapping
= page_mapping(page
);
754 rc
= migrate_page(mapping
, newpage
, page
, mode
);
755 else if (mapping
->a_ops
->migratepage
)
757 * Most pages have a mapping and most filesystems provide a
758 * migratepage callback. Anonymous pages are part of swap
759 * space which also has its own migratepage callback. This
760 * is the most common path for page migration.
762 rc
= mapping
->a_ops
->migratepage(mapping
,
763 newpage
, page
, mode
);
765 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
767 if (rc
!= MIGRATEPAGE_SUCCESS
) {
768 newpage
->mapping
= NULL
;
771 remove_migration_ptes(page
, newpage
);
772 page
->mapping
= NULL
;
775 unlock_page(newpage
);
780 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
781 int force
, enum migrate_mode mode
)
784 int remap_swapcache
= 1;
785 struct mem_cgroup
*mem
;
786 struct anon_vma
*anon_vma
= NULL
;
788 if (!trylock_page(page
)) {
789 if (!force
|| mode
== MIGRATE_ASYNC
)
793 * It's not safe for direct compaction to call lock_page.
794 * For example, during page readahead pages are added locked
795 * to the LRU. Later, when the IO completes the pages are
796 * marked uptodate and unlocked. However, the queueing
797 * could be merging multiple pages for one bio (e.g.
798 * mpage_readpages). If an allocation happens for the
799 * second or third page, the process can end up locking
800 * the same page twice and deadlocking. Rather than
801 * trying to be clever about what pages can be locked,
802 * avoid the use of lock_page for direct compaction
805 if (current
->flags
& PF_MEMALLOC
)
811 /* charge against new page */
812 mem_cgroup_prepare_migration(page
, newpage
, &mem
);
814 if (PageWriteback(page
)) {
816 * Only in the case of a full synchronous migration is it
817 * necessary to wait for PageWriteback. In the async case,
818 * the retry loop is too short and in the sync-light case,
819 * the overhead of stalling is too much
821 if (mode
!= MIGRATE_SYNC
) {
827 wait_on_page_writeback(page
);
830 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
831 * we cannot notice that anon_vma is freed while we migrates a page.
832 * This get_anon_vma() delays freeing anon_vma pointer until the end
833 * of migration. File cache pages are no problem because of page_lock()
834 * File Caches may use write_page() or lock_page() in migration, then,
835 * just care Anon page here.
837 if (PageAnon(page
) && !PageKsm(page
)) {
839 * Only page_lock_anon_vma_read() understands the subtleties of
840 * getting a hold on an anon_vma from outside one of its mms.
842 anon_vma
= page_get_anon_vma(page
);
847 } else if (PageSwapCache(page
)) {
849 * We cannot be sure that the anon_vma of an unmapped
850 * swapcache page is safe to use because we don't
851 * know in advance if the VMA that this page belonged
852 * to still exists. If the VMA and others sharing the
853 * data have been freed, then the anon_vma could
854 * already be invalid.
856 * To avoid this possibility, swapcache pages get
857 * migrated but are not remapped when migration
866 if (unlikely(balloon_page_movable(page
))) {
868 * A ballooned page does not need any special attention from
869 * physical to virtual reverse mapping procedures.
870 * Skip any attempt to unmap PTEs or to remap swap cache,
871 * in order to avoid burning cycles at rmap level, and perform
872 * the page migration right away (proteced by page lock).
874 rc
= balloon_page_migrate(newpage
, page
, mode
);
879 * Corner case handling:
880 * 1. When a new swap-cache page is read into, it is added to the LRU
881 * and treated as swapcache but it has no rmap yet.
882 * Calling try_to_unmap() against a page->mapping==NULL page will
883 * trigger a BUG. So handle it here.
884 * 2. An orphaned page (see truncate_complete_page) might have
885 * fs-private metadata. The page can be picked up due to memory
886 * offlining. Everywhere else except page reclaim, the page is
887 * invisible to the vm, so the page can not be migrated. So try to
888 * free the metadata, so the page can be freed.
890 if (!page
->mapping
) {
891 VM_BUG_ON(PageAnon(page
));
892 if (page_has_private(page
)) {
893 try_to_free_buffers(page
);
899 /* Establish migration ptes or remove ptes */
900 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
903 if (!page_mapped(page
))
904 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
906 if (rc
&& remap_swapcache
)
907 remove_migration_ptes(page
, page
);
909 /* Drop an anon_vma reference if we took one */
911 put_anon_vma(anon_vma
);
914 mem_cgroup_end_migration(mem
, page
, newpage
,
915 (rc
== MIGRATEPAGE_SUCCESS
||
916 rc
== MIGRATEPAGE_BALLOON_SUCCESS
));
923 * Obtain the lock on page, remove all ptes and migrate the page
924 * to the newly allocated page in newpage.
926 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
927 struct page
*page
, int force
, enum migrate_mode mode
)
931 struct page
*newpage
= get_new_page(page
, private, &result
);
936 if (page_count(page
) == 1) {
937 /* page was freed from under us. So we are done. */
941 if (unlikely(PageTransHuge(page
)))
942 if (unlikely(split_huge_page(page
)))
945 rc
= __unmap_and_move(page
, newpage
, force
, mode
);
947 if (unlikely(rc
== MIGRATEPAGE_BALLOON_SUCCESS
)) {
949 * A ballooned page has been migrated already.
950 * Now, it's the time to wrap-up counters,
951 * handle the page back to Buddy and return.
953 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
954 page_is_file_cache(page
));
955 balloon_page_free(page
);
956 return MIGRATEPAGE_SUCCESS
;
961 * A page that has been migrated has all references
962 * removed and will be freed. A page that has not been
963 * migrated will have kepts its references and be
966 list_del(&page
->lru
);
967 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
968 page_is_file_cache(page
));
969 putback_lru_page(page
);
972 * Move the new page to the LRU. If migration was not successful
973 * then this will free the page.
975 putback_lru_page(newpage
);
980 *result
= page_to_nid(newpage
);
986 * Counterpart of unmap_and_move_page() for hugepage migration.
988 * This function doesn't wait the completion of hugepage I/O
989 * because there is no race between I/O and migration for hugepage.
990 * Note that currently hugepage I/O occurs only in direct I/O
991 * where no lock is held and PG_writeback is irrelevant,
992 * and writeback status of all subpages are counted in the reference
993 * count of the head page (i.e. if all subpages of a 2MB hugepage are
994 * under direct I/O, the reference of the head page is 512 and a bit more.)
995 * This means that when we try to migrate hugepage whose subpages are
996 * doing direct I/O, some references remain after try_to_unmap() and
997 * hugepage migration fails without data corruption.
999 * There is also no race when direct I/O is issued on the page under migration,
1000 * because then pte is replaced with migration swap entry and direct I/O code
1001 * will wait in the page fault for migration to complete.
1003 static int unmap_and_move_huge_page(new_page_t get_new_page
,
1004 unsigned long private, struct page
*hpage
,
1005 int force
, enum migrate_mode mode
)
1009 struct page
*new_hpage
= get_new_page(hpage
, private, &result
);
1010 struct anon_vma
*anon_vma
= NULL
;
1013 * Movability of hugepages depends on architectures and hugepage size.
1014 * This check is necessary because some callers of hugepage migration
1015 * like soft offline and memory hotremove don't walk through page
1016 * tables or check whether the hugepage is pmd-based or not before
1017 * kicking migration.
1019 if (!hugepage_migration_support(page_hstate(hpage
)))
1027 if (!trylock_page(hpage
)) {
1028 if (!force
|| mode
!= MIGRATE_SYNC
)
1033 if (PageAnon(hpage
))
1034 anon_vma
= page_get_anon_vma(hpage
);
1036 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
1038 if (!page_mapped(hpage
))
1039 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
1042 remove_migration_ptes(hpage
, hpage
);
1045 put_anon_vma(anon_vma
);
1048 hugetlb_cgroup_migrate(hpage
, new_hpage
);
1053 putback_active_hugepage(hpage
);
1054 put_page(new_hpage
);
1059 *result
= page_to_nid(new_hpage
);
1065 * migrate_pages - migrate the pages specified in a list, to the free pages
1066 * supplied as the target for the page migration
1068 * @from: The list of pages to be migrated.
1069 * @get_new_page: The function used to allocate free pages to be used
1070 * as the target of the page migration.
1071 * @private: Private data to be passed on to get_new_page()
1072 * @mode: The migration mode that specifies the constraints for
1073 * page migration, if any.
1074 * @reason: The reason for page migration.
1076 * The function returns after 10 attempts or if no pages are movable any more
1077 * because the list has become empty or no retryable pages exist any more.
1078 * The caller should call putback_lru_pages() to return pages to the LRU
1079 * or free list only if ret != 0.
1081 * Returns the number of pages that were not migrated, or an error code.
1083 int migrate_pages(struct list_head
*from
, new_page_t get_new_page
,
1084 unsigned long private, enum migrate_mode mode
, int reason
)
1088 int nr_succeeded
= 0;
1092 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1096 current
->flags
|= PF_SWAPWRITE
;
1098 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1101 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1105 rc
= unmap_and_move_huge_page(get_new_page
,
1106 private, page
, pass
> 2, mode
);
1108 rc
= unmap_and_move(get_new_page
, private,
1109 page
, pass
> 2, mode
);
1117 case MIGRATEPAGE_SUCCESS
:
1121 /* Permanent failure */
1127 rc
= nr_failed
+ retry
;
1130 count_vm_events(PGMIGRATE_SUCCESS
, nr_succeeded
);
1132 count_vm_events(PGMIGRATE_FAIL
, nr_failed
);
1133 trace_mm_migrate_pages(nr_succeeded
, nr_failed
, mode
, reason
);
1136 current
->flags
&= ~PF_SWAPWRITE
;
1143 * Move a list of individual pages
1145 struct page_to_node
{
1152 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1155 struct page_to_node
*pm
= (struct page_to_node
*)private;
1157 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1160 if (pm
->node
== MAX_NUMNODES
)
1163 *result
= &pm
->status
;
1166 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1169 return alloc_pages_exact_node(pm
->node
,
1170 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1174 * Move a set of pages as indicated in the pm array. The addr
1175 * field must be set to the virtual address of the page to be moved
1176 * and the node number must contain a valid target node.
1177 * The pm array ends with node = MAX_NUMNODES.
1179 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1180 struct page_to_node
*pm
,
1184 struct page_to_node
*pp
;
1185 LIST_HEAD(pagelist
);
1187 down_read(&mm
->mmap_sem
);
1190 * Build a list of pages to migrate
1192 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1193 struct vm_area_struct
*vma
;
1197 vma
= find_vma(mm
, pp
->addr
);
1198 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1201 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1203 err
= PTR_ERR(page
);
1211 /* Use PageReserved to check for zero page */
1212 if (PageReserved(page
))
1216 err
= page_to_nid(page
);
1218 if (err
== pp
->node
)
1220 * Node already in the right place
1225 if (page_mapcount(page
) > 1 &&
1229 if (PageHuge(page
)) {
1230 isolate_huge_page(page
, &pagelist
);
1234 err
= isolate_lru_page(page
);
1236 list_add_tail(&page
->lru
, &pagelist
);
1237 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1238 page_is_file_cache(page
));
1242 * Either remove the duplicate refcount from
1243 * isolate_lru_page() or drop the page ref if it was
1252 if (!list_empty(&pagelist
)) {
1253 err
= migrate_pages(&pagelist
, new_page_node
,
1254 (unsigned long)pm
, MIGRATE_SYNC
, MR_SYSCALL
);
1256 putback_movable_pages(&pagelist
);
1259 up_read(&mm
->mmap_sem
);
1264 * Migrate an array of page address onto an array of nodes and fill
1265 * the corresponding array of status.
1267 static int do_pages_move(struct mm_struct
*mm
, nodemask_t task_nodes
,
1268 unsigned long nr_pages
,
1269 const void __user
* __user
*pages
,
1270 const int __user
*nodes
,
1271 int __user
*status
, int flags
)
1273 struct page_to_node
*pm
;
1274 unsigned long chunk_nr_pages
;
1275 unsigned long chunk_start
;
1279 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1286 * Store a chunk of page_to_node array in a page,
1287 * but keep the last one as a marker
1289 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1291 for (chunk_start
= 0;
1292 chunk_start
< nr_pages
;
1293 chunk_start
+= chunk_nr_pages
) {
1296 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1297 chunk_nr_pages
= nr_pages
- chunk_start
;
1299 /* fill the chunk pm with addrs and nodes from user-space */
1300 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1301 const void __user
*p
;
1305 if (get_user(p
, pages
+ j
+ chunk_start
))
1307 pm
[j
].addr
= (unsigned long) p
;
1309 if (get_user(node
, nodes
+ j
+ chunk_start
))
1313 if (node
< 0 || node
>= MAX_NUMNODES
)
1316 if (!node_state(node
, N_MEMORY
))
1320 if (!node_isset(node
, task_nodes
))
1326 /* End marker for this chunk */
1327 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1329 /* Migrate this chunk */
1330 err
= do_move_page_to_node_array(mm
, pm
,
1331 flags
& MPOL_MF_MOVE_ALL
);
1335 /* Return status information */
1336 for (j
= 0; j
< chunk_nr_pages
; j
++)
1337 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1345 free_page((unsigned long)pm
);
1351 * Determine the nodes of an array of pages and store it in an array of status.
1353 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1354 const void __user
**pages
, int *status
)
1358 down_read(&mm
->mmap_sem
);
1360 for (i
= 0; i
< nr_pages
; i
++) {
1361 unsigned long addr
= (unsigned long)(*pages
);
1362 struct vm_area_struct
*vma
;
1366 vma
= find_vma(mm
, addr
);
1367 if (!vma
|| addr
< vma
->vm_start
)
1370 page
= follow_page(vma
, addr
, 0);
1372 err
= PTR_ERR(page
);
1377 /* Use PageReserved to check for zero page */
1378 if (!page
|| PageReserved(page
))
1381 err
= page_to_nid(page
);
1389 up_read(&mm
->mmap_sem
);
1393 * Determine the nodes of a user array of pages and store it in
1394 * a user array of status.
1396 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1397 const void __user
* __user
*pages
,
1400 #define DO_PAGES_STAT_CHUNK_NR 16
1401 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1402 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1405 unsigned long chunk_nr
;
1407 chunk_nr
= nr_pages
;
1408 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1409 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1411 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1414 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1416 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1421 nr_pages
-= chunk_nr
;
1423 return nr_pages
? -EFAULT
: 0;
1427 * Move a list of pages in the address space of the currently executing
1430 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1431 const void __user
* __user
*, pages
,
1432 const int __user
*, nodes
,
1433 int __user
*, status
, int, flags
)
1435 const struct cred
*cred
= current_cred(), *tcred
;
1436 struct task_struct
*task
;
1437 struct mm_struct
*mm
;
1439 nodemask_t task_nodes
;
1442 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1445 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1448 /* Find the mm_struct */
1450 task
= pid
? find_task_by_vpid(pid
) : current
;
1455 get_task_struct(task
);
1458 * Check if this process has the right to modify the specified
1459 * process. The right exists if the process has administrative
1460 * capabilities, superuser privileges or the same
1461 * userid as the target process.
1463 tcred
= __task_cred(task
);
1464 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1465 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1466 !capable(CAP_SYS_NICE
)) {
1473 err
= security_task_movememory(task
);
1477 task_nodes
= cpuset_mems_allowed(task
);
1478 mm
= get_task_mm(task
);
1479 put_task_struct(task
);
1485 err
= do_pages_move(mm
, task_nodes
, nr_pages
, pages
,
1486 nodes
, status
, flags
);
1488 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1494 put_task_struct(task
);
1499 * Call migration functions in the vma_ops that may prepare
1500 * memory in a vm for migration. migration functions may perform
1501 * the migration for vmas that do not have an underlying page struct.
1503 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1504 const nodemask_t
*from
, unsigned long flags
)
1506 struct vm_area_struct
*vma
;
1509 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1510 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1511 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);
1519 #ifdef CONFIG_NUMA_BALANCING
1521 * Returns true if this is a safe migration target node for misplaced NUMA
1522 * pages. Currently it only checks the watermarks which crude
1524 static bool migrate_balanced_pgdat(struct pglist_data
*pgdat
,
1525 unsigned long nr_migrate_pages
)
1528 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1529 struct zone
*zone
= pgdat
->node_zones
+ z
;
1531 if (!populated_zone(zone
))
1534 if (!zone_reclaimable(zone
))
1537 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1538 if (!zone_watermark_ok(zone
, 0,
1539 high_wmark_pages(zone
) +
1548 static struct page
*alloc_misplaced_dst_page(struct page
*page
,
1552 int nid
= (int) data
;
1553 struct page
*newpage
;
1555 newpage
= alloc_pages_exact_node(nid
,
1556 (GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
|
1557 __GFP_NOMEMALLOC
| __GFP_NORETRY
|
1561 page_cpupid_xchg_last(newpage
, page_cpupid_last(page
));
1567 * page migration rate limiting control.
1568 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1569 * window of time. Default here says do not migrate more than 1280M per second.
1570 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1571 * as it is faults that reset the window, pte updates will happen unconditionally
1572 * if there has not been a fault since @pteupdate_interval_millisecs after the
1573 * throttle window closed.
1575 static unsigned int migrate_interval_millisecs __read_mostly
= 100;
1576 static unsigned int pteupdate_interval_millisecs __read_mostly
= 1000;
1577 static unsigned int ratelimit_pages __read_mostly
= 128 << (20 - PAGE_SHIFT
);
1579 /* Returns true if NUMA migration is currently rate limited */
1580 bool migrate_ratelimited(int node
)
1582 pg_data_t
*pgdat
= NODE_DATA(node
);
1584 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
+
1585 msecs_to_jiffies(pteupdate_interval_millisecs
)))
1588 if (pgdat
->numabalancing_migrate_nr_pages
< ratelimit_pages
)
1594 /* Returns true if the node is migrate rate-limited after the update */
1595 bool numamigrate_update_ratelimit(pg_data_t
*pgdat
, unsigned long nr_pages
)
1597 bool rate_limited
= false;
1600 * Rate-limit the amount of data that is being migrated to a node.
1601 * Optimal placement is no good if the memory bus is saturated and
1602 * all the time is being spent migrating!
1604 spin_lock(&pgdat
->numabalancing_migrate_lock
);
1605 if (time_after(jiffies
, pgdat
->numabalancing_migrate_next_window
)) {
1606 pgdat
->numabalancing_migrate_nr_pages
= 0;
1607 pgdat
->numabalancing_migrate_next_window
= jiffies
+
1608 msecs_to_jiffies(migrate_interval_millisecs
);
1610 if (pgdat
->numabalancing_migrate_nr_pages
> ratelimit_pages
)
1611 rate_limited
= true;
1613 pgdat
->numabalancing_migrate_nr_pages
+= nr_pages
;
1614 spin_unlock(&pgdat
->numabalancing_migrate_lock
);
1616 return rate_limited
;
1619 int numamigrate_isolate_page(pg_data_t
*pgdat
, struct page
*page
)
1623 VM_BUG_ON(compound_order(page
) && !PageTransHuge(page
));
1625 /* Avoid migrating to a node that is nearly full */
1626 if (!migrate_balanced_pgdat(pgdat
, 1UL << compound_order(page
)))
1629 if (isolate_lru_page(page
))
1633 * migrate_misplaced_transhuge_page() skips page migration's usual
1634 * check on page_count(), so we must do it here, now that the page
1635 * has been isolated: a GUP pin, or any other pin, prevents migration.
1636 * The expected page count is 3: 1 for page's mapcount and 1 for the
1637 * caller's pin and 1 for the reference taken by isolate_lru_page().
1639 if (PageTransHuge(page
) && page_count(page
) != 3) {
1640 putback_lru_page(page
);
1644 page_lru
= page_is_file_cache(page
);
1645 mod_zone_page_state(page_zone(page
), NR_ISOLATED_ANON
+ page_lru
,
1646 hpage_nr_pages(page
));
1649 * Isolating the page has taken another reference, so the
1650 * caller's reference can be safely dropped without the page
1651 * disappearing underneath us during migration.
1658 * Attempt to migrate a misplaced page to the specified destination
1659 * node. Caller is expected to have an elevated reference count on
1660 * the page that will be dropped by this function before returning.
1662 int migrate_misplaced_page(struct page
*page
, struct vm_area_struct
*vma
,
1665 pg_data_t
*pgdat
= NODE_DATA(node
);
1668 LIST_HEAD(migratepages
);
1671 * Don't migrate file pages that are mapped in multiple processes
1672 * with execute permissions as they are probably shared libraries.
1674 if (page_mapcount(page
) != 1 && page_is_file_cache(page
) &&
1675 (vma
->vm_flags
& VM_EXEC
))
1679 * Rate-limit the amount of data that is being migrated to a node.
1680 * Optimal placement is no good if the memory bus is saturated and
1681 * all the time is being spent migrating!
1683 if (numamigrate_update_ratelimit(pgdat
, 1))
1686 isolated
= numamigrate_isolate_page(pgdat
, page
);
1690 list_add(&page
->lru
, &migratepages
);
1691 nr_remaining
= migrate_pages(&migratepages
, alloc_misplaced_dst_page
,
1692 node
, MIGRATE_ASYNC
, MR_NUMA_MISPLACED
);
1694 putback_lru_pages(&migratepages
);
1697 count_vm_numa_event(NUMA_PAGE_MIGRATE
);
1698 BUG_ON(!list_empty(&migratepages
));
1705 #endif /* CONFIG_NUMA_BALANCING */
1707 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1709 * Migrates a THP to a given target node. page must be locked and is unlocked
1712 int migrate_misplaced_transhuge_page(struct mm_struct
*mm
,
1713 struct vm_area_struct
*vma
,
1714 pmd_t
*pmd
, pmd_t entry
,
1715 unsigned long address
,
1716 struct page
*page
, int node
)
1719 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
1720 pg_data_t
*pgdat
= NODE_DATA(node
);
1722 struct page
*new_page
= NULL
;
1723 struct mem_cgroup
*memcg
= NULL
;
1724 int page_lru
= page_is_file_cache(page
);
1727 * Rate-limit the amount of data that is being migrated to a node.
1728 * Optimal placement is no good if the memory bus is saturated and
1729 * all the time is being spent migrating!
1731 if (numamigrate_update_ratelimit(pgdat
, HPAGE_PMD_NR
))
1734 new_page
= alloc_pages_node(node
,
1735 (GFP_TRANSHUGE
| GFP_THISNODE
) & ~__GFP_WAIT
, HPAGE_PMD_ORDER
);
1739 page_cpupid_xchg_last(new_page
, page_cpupid_last(page
));
1741 isolated
= numamigrate_isolate_page(pgdat
, page
);
1747 /* Prepare a page as a migration target */
1748 __set_page_locked(new_page
);
1749 SetPageSwapBacked(new_page
);
1751 /* anon mapping, we can simply copy page->mapping to the new page: */
1752 new_page
->mapping
= page
->mapping
;
1753 new_page
->index
= page
->index
;
1754 migrate_page_copy(new_page
, page
);
1755 WARN_ON(PageLRU(new_page
));
1757 /* Recheck the target PMD */
1758 ptl
= pmd_lock(mm
, pmd
);
1759 if (unlikely(!pmd_same(*pmd
, entry
))) {
1762 /* Reverse changes made by migrate_page_copy() */
1763 if (TestClearPageActive(new_page
))
1764 SetPageActive(page
);
1765 if (TestClearPageUnevictable(new_page
))
1766 SetPageUnevictable(page
);
1767 mlock_migrate_page(page
, new_page
);
1769 unlock_page(new_page
);
1770 put_page(new_page
); /* Free it */
1772 /* Retake the callers reference and putback on LRU */
1774 putback_lru_page(page
);
1775 mod_zone_page_state(page_zone(page
),
1776 NR_ISOLATED_ANON
+ page_lru
, -HPAGE_PMD_NR
);
1781 * Traditional migration needs to prepare the memcg charge
1782 * transaction early to prevent the old page from being
1783 * uncharged when installing migration entries. Here we can
1784 * save the potential rollback and start the charge transfer
1785 * only when migration is already known to end successfully.
1787 mem_cgroup_prepare_migration(page
, new_page
, &memcg
);
1789 entry
= mk_pmd(new_page
, vma
->vm_page_prot
);
1790 entry
= pmd_mknonnuma(entry
);
1791 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1792 entry
= pmd_mkhuge(entry
);
1794 pmdp_clear_flush(vma
, haddr
, pmd
);
1795 set_pmd_at(mm
, haddr
, pmd
, entry
);
1796 page_add_new_anon_rmap(new_page
, vma
, haddr
);
1797 update_mmu_cache_pmd(vma
, address
, &entry
);
1798 page_remove_rmap(page
);
1800 * Finish the charge transaction under the page table lock to
1801 * prevent split_huge_page() from dividing up the charge
1802 * before it's fully transferred to the new page.
1804 mem_cgroup_end_migration(memcg
, page
, new_page
, true);
1807 unlock_page(new_page
);
1809 put_page(page
); /* Drop the rmap reference */
1810 put_page(page
); /* Drop the LRU isolation reference */
1812 count_vm_events(PGMIGRATE_SUCCESS
, HPAGE_PMD_NR
);
1813 count_vm_numa_events(NUMA_PAGE_MIGRATE
, HPAGE_PMD_NR
);
1815 mod_zone_page_state(page_zone(page
),
1816 NR_ISOLATED_ANON
+ page_lru
,
1821 count_vm_events(PGMIGRATE_FAIL
, HPAGE_PMD_NR
);
1823 entry
= pmd_mknonnuma(entry
);
1824 set_pmd_at(mm
, haddr
, pmd
, entry
);
1825 update_mmu_cache_pmd(vma
, address
, &entry
);
1831 #endif /* CONFIG_NUMA_BALANCING */
1833 #endif /* CONFIG_NUMA */