[PARISC] Make Serial MUX depend on a specific bus type.
[linux-2.6.git] / kernel / sys.c
blobbce933ebb29f458908806101dae497332004b2e2
1 /*
2 * linux/kernel/sys.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
33 #include <linux/compat.h>
34 #include <linux/syscalls.h>
36 #include <asm/uaccess.h>
37 #include <asm/io.h>
38 #include <asm/unistd.h>
40 #ifndef SET_UNALIGN_CTL
41 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
42 #endif
43 #ifndef GET_UNALIGN_CTL
44 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
45 #endif
46 #ifndef SET_FPEMU_CTL
47 # define SET_FPEMU_CTL(a,b) (-EINVAL)
48 #endif
49 #ifndef GET_FPEMU_CTL
50 # define GET_FPEMU_CTL(a,b) (-EINVAL)
51 #endif
52 #ifndef SET_FPEXC_CTL
53 # define SET_FPEXC_CTL(a,b) (-EINVAL)
54 #endif
55 #ifndef GET_FPEXC_CTL
56 # define GET_FPEXC_CTL(a,b) (-EINVAL)
57 #endif
60 * this is where the system-wide overflow UID and GID are defined, for
61 * architectures that now have 32-bit UID/GID but didn't in the past
64 int overflowuid = DEFAULT_OVERFLOWUID;
65 int overflowgid = DEFAULT_OVERFLOWGID;
67 #ifdef CONFIG_UID16
68 EXPORT_SYMBOL(overflowuid);
69 EXPORT_SYMBOL(overflowgid);
70 #endif
73 * the same as above, but for filesystems which can only store a 16-bit
74 * UID and GID. as such, this is needed on all architectures
77 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
78 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
80 EXPORT_SYMBOL(fs_overflowuid);
81 EXPORT_SYMBOL(fs_overflowgid);
84 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
87 int C_A_D = 1;
88 int cad_pid = 1;
91 * Notifier list for kernel code which wants to be called
92 * at shutdown. This is used to stop any idling DMA operations
93 * and the like.
96 static struct notifier_block *reboot_notifier_list;
97 static DEFINE_RWLOCK(notifier_lock);
99 /**
100 * notifier_chain_register - Add notifier to a notifier chain
101 * @list: Pointer to root list pointer
102 * @n: New entry in notifier chain
104 * Adds a notifier to a notifier chain.
106 * Currently always returns zero.
109 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
111 write_lock(&notifier_lock);
112 while(*list)
114 if(n->priority > (*list)->priority)
115 break;
116 list= &((*list)->next);
118 n->next = *list;
119 *list=n;
120 write_unlock(&notifier_lock);
121 return 0;
124 EXPORT_SYMBOL(notifier_chain_register);
127 * notifier_chain_unregister - Remove notifier from a notifier chain
128 * @nl: Pointer to root list pointer
129 * @n: New entry in notifier chain
131 * Removes a notifier from a notifier chain.
133 * Returns zero on success, or %-ENOENT on failure.
136 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
138 write_lock(&notifier_lock);
139 while((*nl)!=NULL)
141 if((*nl)==n)
143 *nl=n->next;
144 write_unlock(&notifier_lock);
145 return 0;
147 nl=&((*nl)->next);
149 write_unlock(&notifier_lock);
150 return -ENOENT;
153 EXPORT_SYMBOL(notifier_chain_unregister);
156 * notifier_call_chain - Call functions in a notifier chain
157 * @n: Pointer to root pointer of notifier chain
158 * @val: Value passed unmodified to notifier function
159 * @v: Pointer passed unmodified to notifier function
161 * Calls each function in a notifier chain in turn.
163 * If the return value of the notifier can be and'd
164 * with %NOTIFY_STOP_MASK, then notifier_call_chain
165 * will return immediately, with the return value of
166 * the notifier function which halted execution.
167 * Otherwise, the return value is the return value
168 * of the last notifier function called.
171 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
173 int ret=NOTIFY_DONE;
174 struct notifier_block *nb = *n;
176 while(nb)
178 ret=nb->notifier_call(nb,val,v);
179 if(ret&NOTIFY_STOP_MASK)
181 return ret;
183 nb=nb->next;
185 return ret;
188 EXPORT_SYMBOL(notifier_call_chain);
191 * register_reboot_notifier - Register function to be called at reboot time
192 * @nb: Info about notifier function to be called
194 * Registers a function with the list of functions
195 * to be called at reboot time.
197 * Currently always returns zero, as notifier_chain_register
198 * always returns zero.
201 int register_reboot_notifier(struct notifier_block * nb)
203 return notifier_chain_register(&reboot_notifier_list, nb);
206 EXPORT_SYMBOL(register_reboot_notifier);
209 * unregister_reboot_notifier - Unregister previously registered reboot notifier
210 * @nb: Hook to be unregistered
212 * Unregisters a previously registered reboot
213 * notifier function.
215 * Returns zero on success, or %-ENOENT on failure.
218 int unregister_reboot_notifier(struct notifier_block * nb)
220 return notifier_chain_unregister(&reboot_notifier_list, nb);
223 EXPORT_SYMBOL(unregister_reboot_notifier);
225 static int set_one_prio(struct task_struct *p, int niceval, int error)
227 int no_nice;
229 if (p->uid != current->euid &&
230 p->euid != current->euid && !capable(CAP_SYS_NICE)) {
231 error = -EPERM;
232 goto out;
234 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
235 error = -EACCES;
236 goto out;
238 no_nice = security_task_setnice(p, niceval);
239 if (no_nice) {
240 error = no_nice;
241 goto out;
243 if (error == -ESRCH)
244 error = 0;
245 set_user_nice(p, niceval);
246 out:
247 return error;
250 asmlinkage long sys_setpriority(int which, int who, int niceval)
252 struct task_struct *g, *p;
253 struct user_struct *user;
254 int error = -EINVAL;
256 if (which > 2 || which < 0)
257 goto out;
259 /* normalize: avoid signed division (rounding problems) */
260 error = -ESRCH;
261 if (niceval < -20)
262 niceval = -20;
263 if (niceval > 19)
264 niceval = 19;
266 read_lock(&tasklist_lock);
267 switch (which) {
268 case PRIO_PROCESS:
269 if (!who)
270 who = current->pid;
271 p = find_task_by_pid(who);
272 if (p)
273 error = set_one_prio(p, niceval, error);
274 break;
275 case PRIO_PGRP:
276 if (!who)
277 who = process_group(current);
278 do_each_task_pid(who, PIDTYPE_PGID, p) {
279 error = set_one_prio(p, niceval, error);
280 } while_each_task_pid(who, PIDTYPE_PGID, p);
281 break;
282 case PRIO_USER:
283 user = current->user;
284 if (!who)
285 who = current->uid;
286 else
287 if ((who != current->uid) && !(user = find_user(who)))
288 goto out_unlock; /* No processes for this user */
290 do_each_thread(g, p)
291 if (p->uid == who)
292 error = set_one_prio(p, niceval, error);
293 while_each_thread(g, p);
294 if (who != current->uid)
295 free_uid(user); /* For find_user() */
296 break;
298 out_unlock:
299 read_unlock(&tasklist_lock);
300 out:
301 return error;
305 * Ugh. To avoid negative return values, "getpriority()" will
306 * not return the normal nice-value, but a negated value that
307 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
308 * to stay compatible.
310 asmlinkage long sys_getpriority(int which, int who)
312 struct task_struct *g, *p;
313 struct user_struct *user;
314 long niceval, retval = -ESRCH;
316 if (which > 2 || which < 0)
317 return -EINVAL;
319 read_lock(&tasklist_lock);
320 switch (which) {
321 case PRIO_PROCESS:
322 if (!who)
323 who = current->pid;
324 p = find_task_by_pid(who);
325 if (p) {
326 niceval = 20 - task_nice(p);
327 if (niceval > retval)
328 retval = niceval;
330 break;
331 case PRIO_PGRP:
332 if (!who)
333 who = process_group(current);
334 do_each_task_pid(who, PIDTYPE_PGID, p) {
335 niceval = 20 - task_nice(p);
336 if (niceval > retval)
337 retval = niceval;
338 } while_each_task_pid(who, PIDTYPE_PGID, p);
339 break;
340 case PRIO_USER:
341 user = current->user;
342 if (!who)
343 who = current->uid;
344 else
345 if ((who != current->uid) && !(user = find_user(who)))
346 goto out_unlock; /* No processes for this user */
348 do_each_thread(g, p)
349 if (p->uid == who) {
350 niceval = 20 - task_nice(p);
351 if (niceval > retval)
352 retval = niceval;
354 while_each_thread(g, p);
355 if (who != current->uid)
356 free_uid(user); /* for find_user() */
357 break;
359 out_unlock:
360 read_unlock(&tasklist_lock);
362 return retval;
366 * emergency_restart - reboot the system
368 * Without shutting down any hardware or taking any locks
369 * reboot the system. This is called when we know we are in
370 * trouble so this is our best effort to reboot. This is
371 * safe to call in interrupt context.
373 void emergency_restart(void)
375 machine_emergency_restart();
377 EXPORT_SYMBOL_GPL(emergency_restart);
379 void kernel_restart_prepare(char *cmd)
381 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
382 system_state = SYSTEM_RESTART;
383 device_shutdown();
387 * kernel_restart - reboot the system
388 * @cmd: pointer to buffer containing command to execute for restart
389 * or %NULL
391 * Shutdown everything and perform a clean reboot.
392 * This is not safe to call in interrupt context.
394 void kernel_restart(char *cmd)
396 kernel_restart_prepare(cmd);
397 if (!cmd) {
398 printk(KERN_EMERG "Restarting system.\n");
399 } else {
400 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
402 printk(".\n");
403 machine_restart(cmd);
405 EXPORT_SYMBOL_GPL(kernel_restart);
408 * kernel_kexec - reboot the system
410 * Move into place and start executing a preloaded standalone
411 * executable. If nothing was preloaded return an error.
413 void kernel_kexec(void)
415 #ifdef CONFIG_KEXEC
416 struct kimage *image;
417 image = xchg(&kexec_image, 0);
418 if (!image) {
419 return;
421 kernel_restart_prepare(NULL);
422 printk(KERN_EMERG "Starting new kernel\n");
423 machine_shutdown();
424 machine_kexec(image);
425 #endif
427 EXPORT_SYMBOL_GPL(kernel_kexec);
430 * kernel_halt - halt the system
432 * Shutdown everything and perform a clean system halt.
434 void kernel_halt_prepare(void)
436 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
437 system_state = SYSTEM_HALT;
438 device_shutdown();
440 void kernel_halt(void)
442 kernel_halt_prepare();
443 printk(KERN_EMERG "System halted.\n");
444 machine_halt();
446 EXPORT_SYMBOL_GPL(kernel_halt);
449 * kernel_power_off - power_off the system
451 * Shutdown everything and perform a clean system power_off.
453 void kernel_power_off_prepare(void)
455 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
456 system_state = SYSTEM_POWER_OFF;
457 device_shutdown();
459 void kernel_power_off(void)
461 kernel_power_off_prepare();
462 printk(KERN_EMERG "Power down.\n");
463 machine_power_off();
465 EXPORT_SYMBOL_GPL(kernel_power_off);
468 * Reboot system call: for obvious reasons only root may call it,
469 * and even root needs to set up some magic numbers in the registers
470 * so that some mistake won't make this reboot the whole machine.
471 * You can also set the meaning of the ctrl-alt-del-key here.
473 * reboot doesn't sync: do that yourself before calling this.
475 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
477 char buffer[256];
479 /* We only trust the superuser with rebooting the system. */
480 if (!capable(CAP_SYS_BOOT))
481 return -EPERM;
483 /* For safety, we require "magic" arguments. */
484 if (magic1 != LINUX_REBOOT_MAGIC1 ||
485 (magic2 != LINUX_REBOOT_MAGIC2 &&
486 magic2 != LINUX_REBOOT_MAGIC2A &&
487 magic2 != LINUX_REBOOT_MAGIC2B &&
488 magic2 != LINUX_REBOOT_MAGIC2C))
489 return -EINVAL;
491 lock_kernel();
492 switch (cmd) {
493 case LINUX_REBOOT_CMD_RESTART:
494 kernel_restart(NULL);
495 break;
497 case LINUX_REBOOT_CMD_CAD_ON:
498 C_A_D = 1;
499 break;
501 case LINUX_REBOOT_CMD_CAD_OFF:
502 C_A_D = 0;
503 break;
505 case LINUX_REBOOT_CMD_HALT:
506 kernel_halt();
507 unlock_kernel();
508 do_exit(0);
509 break;
511 case LINUX_REBOOT_CMD_POWER_OFF:
512 kernel_power_off();
513 unlock_kernel();
514 do_exit(0);
515 break;
517 case LINUX_REBOOT_CMD_RESTART2:
518 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
519 unlock_kernel();
520 return -EFAULT;
522 buffer[sizeof(buffer) - 1] = '\0';
524 kernel_restart(buffer);
525 break;
527 case LINUX_REBOOT_CMD_KEXEC:
528 kernel_kexec();
529 unlock_kernel();
530 return -EINVAL;
532 #ifdef CONFIG_SOFTWARE_SUSPEND
533 case LINUX_REBOOT_CMD_SW_SUSPEND:
535 int ret = software_suspend();
536 unlock_kernel();
537 return ret;
539 #endif
541 default:
542 unlock_kernel();
543 return -EINVAL;
545 unlock_kernel();
546 return 0;
549 static void deferred_cad(void *dummy)
551 kernel_restart(NULL);
555 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
556 * As it's called within an interrupt, it may NOT sync: the only choice
557 * is whether to reboot at once, or just ignore the ctrl-alt-del.
559 void ctrl_alt_del(void)
561 static DECLARE_WORK(cad_work, deferred_cad, NULL);
563 if (C_A_D)
564 schedule_work(&cad_work);
565 else
566 kill_proc(cad_pid, SIGINT, 1);
571 * Unprivileged users may change the real gid to the effective gid
572 * or vice versa. (BSD-style)
574 * If you set the real gid at all, or set the effective gid to a value not
575 * equal to the real gid, then the saved gid is set to the new effective gid.
577 * This makes it possible for a setgid program to completely drop its
578 * privileges, which is often a useful assertion to make when you are doing
579 * a security audit over a program.
581 * The general idea is that a program which uses just setregid() will be
582 * 100% compatible with BSD. A program which uses just setgid() will be
583 * 100% compatible with POSIX with saved IDs.
585 * SMP: There are not races, the GIDs are checked only by filesystem
586 * operations (as far as semantic preservation is concerned).
588 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
590 int old_rgid = current->gid;
591 int old_egid = current->egid;
592 int new_rgid = old_rgid;
593 int new_egid = old_egid;
594 int retval;
596 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
597 if (retval)
598 return retval;
600 if (rgid != (gid_t) -1) {
601 if ((old_rgid == rgid) ||
602 (current->egid==rgid) ||
603 capable(CAP_SETGID))
604 new_rgid = rgid;
605 else
606 return -EPERM;
608 if (egid != (gid_t) -1) {
609 if ((old_rgid == egid) ||
610 (current->egid == egid) ||
611 (current->sgid == egid) ||
612 capable(CAP_SETGID))
613 new_egid = egid;
614 else {
615 return -EPERM;
618 if (new_egid != old_egid)
620 current->mm->dumpable = suid_dumpable;
621 smp_wmb();
623 if (rgid != (gid_t) -1 ||
624 (egid != (gid_t) -1 && egid != old_rgid))
625 current->sgid = new_egid;
626 current->fsgid = new_egid;
627 current->egid = new_egid;
628 current->gid = new_rgid;
629 key_fsgid_changed(current);
630 proc_id_connector(current, PROC_EVENT_GID);
631 return 0;
635 * setgid() is implemented like SysV w/ SAVED_IDS
637 * SMP: Same implicit races as above.
639 asmlinkage long sys_setgid(gid_t gid)
641 int old_egid = current->egid;
642 int retval;
644 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
645 if (retval)
646 return retval;
648 if (capable(CAP_SETGID))
650 if(old_egid != gid)
652 current->mm->dumpable = suid_dumpable;
653 smp_wmb();
655 current->gid = current->egid = current->sgid = current->fsgid = gid;
657 else if ((gid == current->gid) || (gid == current->sgid))
659 if(old_egid != gid)
661 current->mm->dumpable = suid_dumpable;
662 smp_wmb();
664 current->egid = current->fsgid = gid;
666 else
667 return -EPERM;
669 key_fsgid_changed(current);
670 proc_id_connector(current, PROC_EVENT_GID);
671 return 0;
674 static int set_user(uid_t new_ruid, int dumpclear)
676 struct user_struct *new_user;
678 new_user = alloc_uid(new_ruid);
679 if (!new_user)
680 return -EAGAIN;
682 if (atomic_read(&new_user->processes) >=
683 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
684 new_user != &root_user) {
685 free_uid(new_user);
686 return -EAGAIN;
689 switch_uid(new_user);
691 if(dumpclear)
693 current->mm->dumpable = suid_dumpable;
694 smp_wmb();
696 current->uid = new_ruid;
697 return 0;
701 * Unprivileged users may change the real uid to the effective uid
702 * or vice versa. (BSD-style)
704 * If you set the real uid at all, or set the effective uid to a value not
705 * equal to the real uid, then the saved uid is set to the new effective uid.
707 * This makes it possible for a setuid program to completely drop its
708 * privileges, which is often a useful assertion to make when you are doing
709 * a security audit over a program.
711 * The general idea is that a program which uses just setreuid() will be
712 * 100% compatible with BSD. A program which uses just setuid() will be
713 * 100% compatible with POSIX with saved IDs.
715 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
717 int old_ruid, old_euid, old_suid, new_ruid, new_euid;
718 int retval;
720 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
721 if (retval)
722 return retval;
724 new_ruid = old_ruid = current->uid;
725 new_euid = old_euid = current->euid;
726 old_suid = current->suid;
728 if (ruid != (uid_t) -1) {
729 new_ruid = ruid;
730 if ((old_ruid != ruid) &&
731 (current->euid != ruid) &&
732 !capable(CAP_SETUID))
733 return -EPERM;
736 if (euid != (uid_t) -1) {
737 new_euid = euid;
738 if ((old_ruid != euid) &&
739 (current->euid != euid) &&
740 (current->suid != euid) &&
741 !capable(CAP_SETUID))
742 return -EPERM;
745 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
746 return -EAGAIN;
748 if (new_euid != old_euid)
750 current->mm->dumpable = suid_dumpable;
751 smp_wmb();
753 current->fsuid = current->euid = new_euid;
754 if (ruid != (uid_t) -1 ||
755 (euid != (uid_t) -1 && euid != old_ruid))
756 current->suid = current->euid;
757 current->fsuid = current->euid;
759 key_fsuid_changed(current);
760 proc_id_connector(current, PROC_EVENT_UID);
762 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
768 * setuid() is implemented like SysV with SAVED_IDS
770 * Note that SAVED_ID's is deficient in that a setuid root program
771 * like sendmail, for example, cannot set its uid to be a normal
772 * user and then switch back, because if you're root, setuid() sets
773 * the saved uid too. If you don't like this, blame the bright people
774 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
775 * will allow a root program to temporarily drop privileges and be able to
776 * regain them by swapping the real and effective uid.
778 asmlinkage long sys_setuid(uid_t uid)
780 int old_euid = current->euid;
781 int old_ruid, old_suid, new_ruid, new_suid;
782 int retval;
784 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
785 if (retval)
786 return retval;
788 old_ruid = new_ruid = current->uid;
789 old_suid = current->suid;
790 new_suid = old_suid;
792 if (capable(CAP_SETUID)) {
793 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
794 return -EAGAIN;
795 new_suid = uid;
796 } else if ((uid != current->uid) && (uid != new_suid))
797 return -EPERM;
799 if (old_euid != uid)
801 current->mm->dumpable = suid_dumpable;
802 smp_wmb();
804 current->fsuid = current->euid = uid;
805 current->suid = new_suid;
807 key_fsuid_changed(current);
808 proc_id_connector(current, PROC_EVENT_UID);
810 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
815 * This function implements a generic ability to update ruid, euid,
816 * and suid. This allows you to implement the 4.4 compatible seteuid().
818 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
820 int old_ruid = current->uid;
821 int old_euid = current->euid;
822 int old_suid = current->suid;
823 int retval;
825 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
826 if (retval)
827 return retval;
829 if (!capable(CAP_SETUID)) {
830 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
831 (ruid != current->euid) && (ruid != current->suid))
832 return -EPERM;
833 if ((euid != (uid_t) -1) && (euid != current->uid) &&
834 (euid != current->euid) && (euid != current->suid))
835 return -EPERM;
836 if ((suid != (uid_t) -1) && (suid != current->uid) &&
837 (suid != current->euid) && (suid != current->suid))
838 return -EPERM;
840 if (ruid != (uid_t) -1) {
841 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
842 return -EAGAIN;
844 if (euid != (uid_t) -1) {
845 if (euid != current->euid)
847 current->mm->dumpable = suid_dumpable;
848 smp_wmb();
850 current->euid = euid;
852 current->fsuid = current->euid;
853 if (suid != (uid_t) -1)
854 current->suid = suid;
856 key_fsuid_changed(current);
857 proc_id_connector(current, PROC_EVENT_UID);
859 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
862 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
864 int retval;
866 if (!(retval = put_user(current->uid, ruid)) &&
867 !(retval = put_user(current->euid, euid)))
868 retval = put_user(current->suid, suid);
870 return retval;
874 * Same as above, but for rgid, egid, sgid.
876 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
878 int retval;
880 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
881 if (retval)
882 return retval;
884 if (!capable(CAP_SETGID)) {
885 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
886 (rgid != current->egid) && (rgid != current->sgid))
887 return -EPERM;
888 if ((egid != (gid_t) -1) && (egid != current->gid) &&
889 (egid != current->egid) && (egid != current->sgid))
890 return -EPERM;
891 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
892 (sgid != current->egid) && (sgid != current->sgid))
893 return -EPERM;
895 if (egid != (gid_t) -1) {
896 if (egid != current->egid)
898 current->mm->dumpable = suid_dumpable;
899 smp_wmb();
901 current->egid = egid;
903 current->fsgid = current->egid;
904 if (rgid != (gid_t) -1)
905 current->gid = rgid;
906 if (sgid != (gid_t) -1)
907 current->sgid = sgid;
909 key_fsgid_changed(current);
910 proc_id_connector(current, PROC_EVENT_GID);
911 return 0;
914 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
916 int retval;
918 if (!(retval = put_user(current->gid, rgid)) &&
919 !(retval = put_user(current->egid, egid)))
920 retval = put_user(current->sgid, sgid);
922 return retval;
927 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
928 * is used for "access()" and for the NFS daemon (letting nfsd stay at
929 * whatever uid it wants to). It normally shadows "euid", except when
930 * explicitly set by setfsuid() or for access..
932 asmlinkage long sys_setfsuid(uid_t uid)
934 int old_fsuid;
936 old_fsuid = current->fsuid;
937 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
938 return old_fsuid;
940 if (uid == current->uid || uid == current->euid ||
941 uid == current->suid || uid == current->fsuid ||
942 capable(CAP_SETUID))
944 if (uid != old_fsuid)
946 current->mm->dumpable = suid_dumpable;
947 smp_wmb();
949 current->fsuid = uid;
952 key_fsuid_changed(current);
953 proc_id_connector(current, PROC_EVENT_UID);
955 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
957 return old_fsuid;
961 * Samma på svenska..
963 asmlinkage long sys_setfsgid(gid_t gid)
965 int old_fsgid;
967 old_fsgid = current->fsgid;
968 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
969 return old_fsgid;
971 if (gid == current->gid || gid == current->egid ||
972 gid == current->sgid || gid == current->fsgid ||
973 capable(CAP_SETGID))
975 if (gid != old_fsgid)
977 current->mm->dumpable = suid_dumpable;
978 smp_wmb();
980 current->fsgid = gid;
981 key_fsgid_changed(current);
982 proc_id_connector(current, PROC_EVENT_GID);
984 return old_fsgid;
987 asmlinkage long sys_times(struct tms __user * tbuf)
990 * In the SMP world we might just be unlucky and have one of
991 * the times increment as we use it. Since the value is an
992 * atomically safe type this is just fine. Conceptually its
993 * as if the syscall took an instant longer to occur.
995 if (tbuf) {
996 struct tms tmp;
997 cputime_t utime, stime, cutime, cstime;
999 #ifdef CONFIG_SMP
1000 if (thread_group_empty(current)) {
1002 * Single thread case without the use of any locks.
1004 * We may race with release_task if two threads are
1005 * executing. However, release task first adds up the
1006 * counters (__exit_signal) before removing the task
1007 * from the process tasklist (__unhash_process).
1008 * __exit_signal also acquires and releases the
1009 * siglock which results in the proper memory ordering
1010 * so that the list modifications are always visible
1011 * after the counters have been updated.
1013 * If the counters have been updated by the second thread
1014 * but the thread has not yet been removed from the list
1015 * then the other branch will be executing which will
1016 * block on tasklist_lock until the exit handling of the
1017 * other task is finished.
1019 * This also implies that the sighand->siglock cannot
1020 * be held by another processor. So we can also
1021 * skip acquiring that lock.
1023 utime = cputime_add(current->signal->utime, current->utime);
1024 stime = cputime_add(current->signal->utime, current->stime);
1025 cutime = current->signal->cutime;
1026 cstime = current->signal->cstime;
1027 } else
1028 #endif
1031 /* Process with multiple threads */
1032 struct task_struct *tsk = current;
1033 struct task_struct *t;
1035 read_lock(&tasklist_lock);
1036 utime = tsk->signal->utime;
1037 stime = tsk->signal->stime;
1038 t = tsk;
1039 do {
1040 utime = cputime_add(utime, t->utime);
1041 stime = cputime_add(stime, t->stime);
1042 t = next_thread(t);
1043 } while (t != tsk);
1046 * While we have tasklist_lock read-locked, no dying thread
1047 * can be updating current->signal->[us]time. Instead,
1048 * we got their counts included in the live thread loop.
1049 * However, another thread can come in right now and
1050 * do a wait call that updates current->signal->c[us]time.
1051 * To make sure we always see that pair updated atomically,
1052 * we take the siglock around fetching them.
1054 spin_lock_irq(&tsk->sighand->siglock);
1055 cutime = tsk->signal->cutime;
1056 cstime = tsk->signal->cstime;
1057 spin_unlock_irq(&tsk->sighand->siglock);
1058 read_unlock(&tasklist_lock);
1060 tmp.tms_utime = cputime_to_clock_t(utime);
1061 tmp.tms_stime = cputime_to_clock_t(stime);
1062 tmp.tms_cutime = cputime_to_clock_t(cutime);
1063 tmp.tms_cstime = cputime_to_clock_t(cstime);
1064 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1065 return -EFAULT;
1067 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1071 * This needs some heavy checking ...
1072 * I just haven't the stomach for it. I also don't fully
1073 * understand sessions/pgrp etc. Let somebody who does explain it.
1075 * OK, I think I have the protection semantics right.... this is really
1076 * only important on a multi-user system anyway, to make sure one user
1077 * can't send a signal to a process owned by another. -TYT, 12/12/91
1079 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1080 * LBT 04.03.94
1083 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
1085 struct task_struct *p;
1086 int err = -EINVAL;
1088 if (!pid)
1089 pid = current->pid;
1090 if (!pgid)
1091 pgid = pid;
1092 if (pgid < 0)
1093 return -EINVAL;
1095 /* From this point forward we keep holding onto the tasklist lock
1096 * so that our parent does not change from under us. -DaveM
1098 write_lock_irq(&tasklist_lock);
1100 err = -ESRCH;
1101 p = find_task_by_pid(pid);
1102 if (!p)
1103 goto out;
1105 err = -EINVAL;
1106 if (!thread_group_leader(p))
1107 goto out;
1109 if (p->parent == current || p->real_parent == current) {
1110 err = -EPERM;
1111 if (p->signal->session != current->signal->session)
1112 goto out;
1113 err = -EACCES;
1114 if (p->did_exec)
1115 goto out;
1116 } else {
1117 err = -ESRCH;
1118 if (p != current)
1119 goto out;
1122 err = -EPERM;
1123 if (p->signal->leader)
1124 goto out;
1126 if (pgid != pid) {
1127 struct task_struct *p;
1129 do_each_task_pid(pgid, PIDTYPE_PGID, p) {
1130 if (p->signal->session == current->signal->session)
1131 goto ok_pgid;
1132 } while_each_task_pid(pgid, PIDTYPE_PGID, p);
1133 goto out;
1136 ok_pgid:
1137 err = security_task_setpgid(p, pgid);
1138 if (err)
1139 goto out;
1141 if (process_group(p) != pgid) {
1142 detach_pid(p, PIDTYPE_PGID);
1143 p->signal->pgrp = pgid;
1144 attach_pid(p, PIDTYPE_PGID, pgid);
1147 err = 0;
1148 out:
1149 /* All paths lead to here, thus we are safe. -DaveM */
1150 write_unlock_irq(&tasklist_lock);
1151 return err;
1154 asmlinkage long sys_getpgid(pid_t pid)
1156 if (!pid) {
1157 return process_group(current);
1158 } else {
1159 int retval;
1160 struct task_struct *p;
1162 read_lock(&tasklist_lock);
1163 p = find_task_by_pid(pid);
1165 retval = -ESRCH;
1166 if (p) {
1167 retval = security_task_getpgid(p);
1168 if (!retval)
1169 retval = process_group(p);
1171 read_unlock(&tasklist_lock);
1172 return retval;
1176 #ifdef __ARCH_WANT_SYS_GETPGRP
1178 asmlinkage long sys_getpgrp(void)
1180 /* SMP - assuming writes are word atomic this is fine */
1181 return process_group(current);
1184 #endif
1186 asmlinkage long sys_getsid(pid_t pid)
1188 if (!pid) {
1189 return current->signal->session;
1190 } else {
1191 int retval;
1192 struct task_struct *p;
1194 read_lock(&tasklist_lock);
1195 p = find_task_by_pid(pid);
1197 retval = -ESRCH;
1198 if(p) {
1199 retval = security_task_getsid(p);
1200 if (!retval)
1201 retval = p->signal->session;
1203 read_unlock(&tasklist_lock);
1204 return retval;
1208 asmlinkage long sys_setsid(void)
1210 struct pid *pid;
1211 int err = -EPERM;
1213 if (!thread_group_leader(current))
1214 return -EINVAL;
1216 down(&tty_sem);
1217 write_lock_irq(&tasklist_lock);
1219 pid = find_pid(PIDTYPE_PGID, current->pid);
1220 if (pid)
1221 goto out;
1223 current->signal->leader = 1;
1224 __set_special_pids(current->pid, current->pid);
1225 current->signal->tty = NULL;
1226 current->signal->tty_old_pgrp = 0;
1227 err = process_group(current);
1228 out:
1229 write_unlock_irq(&tasklist_lock);
1230 up(&tty_sem);
1231 return err;
1235 * Supplementary group IDs
1238 /* init to 2 - one for init_task, one to ensure it is never freed */
1239 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1241 struct group_info *groups_alloc(int gidsetsize)
1243 struct group_info *group_info;
1244 int nblocks;
1245 int i;
1247 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1248 /* Make sure we always allocate at least one indirect block pointer */
1249 nblocks = nblocks ? : 1;
1250 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1251 if (!group_info)
1252 return NULL;
1253 group_info->ngroups = gidsetsize;
1254 group_info->nblocks = nblocks;
1255 atomic_set(&group_info->usage, 1);
1257 if (gidsetsize <= NGROUPS_SMALL) {
1258 group_info->blocks[0] = group_info->small_block;
1259 } else {
1260 for (i = 0; i < nblocks; i++) {
1261 gid_t *b;
1262 b = (void *)__get_free_page(GFP_USER);
1263 if (!b)
1264 goto out_undo_partial_alloc;
1265 group_info->blocks[i] = b;
1268 return group_info;
1270 out_undo_partial_alloc:
1271 while (--i >= 0) {
1272 free_page((unsigned long)group_info->blocks[i]);
1274 kfree(group_info);
1275 return NULL;
1278 EXPORT_SYMBOL(groups_alloc);
1280 void groups_free(struct group_info *group_info)
1282 if (group_info->blocks[0] != group_info->small_block) {
1283 int i;
1284 for (i = 0; i < group_info->nblocks; i++)
1285 free_page((unsigned long)group_info->blocks[i]);
1287 kfree(group_info);
1290 EXPORT_SYMBOL(groups_free);
1292 /* export the group_info to a user-space array */
1293 static int groups_to_user(gid_t __user *grouplist,
1294 struct group_info *group_info)
1296 int i;
1297 int count = group_info->ngroups;
1299 for (i = 0; i < group_info->nblocks; i++) {
1300 int cp_count = min(NGROUPS_PER_BLOCK, count);
1301 int off = i * NGROUPS_PER_BLOCK;
1302 int len = cp_count * sizeof(*grouplist);
1304 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1305 return -EFAULT;
1307 count -= cp_count;
1309 return 0;
1312 /* fill a group_info from a user-space array - it must be allocated already */
1313 static int groups_from_user(struct group_info *group_info,
1314 gid_t __user *grouplist)
1316 int i;
1317 int count = group_info->ngroups;
1319 for (i = 0; i < group_info->nblocks; i++) {
1320 int cp_count = min(NGROUPS_PER_BLOCK, count);
1321 int off = i * NGROUPS_PER_BLOCK;
1322 int len = cp_count * sizeof(*grouplist);
1324 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1325 return -EFAULT;
1327 count -= cp_count;
1329 return 0;
1332 /* a simple Shell sort */
1333 static void groups_sort(struct group_info *group_info)
1335 int base, max, stride;
1336 int gidsetsize = group_info->ngroups;
1338 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1339 ; /* nothing */
1340 stride /= 3;
1342 while (stride) {
1343 max = gidsetsize - stride;
1344 for (base = 0; base < max; base++) {
1345 int left = base;
1346 int right = left + stride;
1347 gid_t tmp = GROUP_AT(group_info, right);
1349 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1350 GROUP_AT(group_info, right) =
1351 GROUP_AT(group_info, left);
1352 right = left;
1353 left -= stride;
1355 GROUP_AT(group_info, right) = tmp;
1357 stride /= 3;
1361 /* a simple bsearch */
1362 int groups_search(struct group_info *group_info, gid_t grp)
1364 int left, right;
1366 if (!group_info)
1367 return 0;
1369 left = 0;
1370 right = group_info->ngroups;
1371 while (left < right) {
1372 int mid = (left+right)/2;
1373 int cmp = grp - GROUP_AT(group_info, mid);
1374 if (cmp > 0)
1375 left = mid + 1;
1376 else if (cmp < 0)
1377 right = mid;
1378 else
1379 return 1;
1381 return 0;
1384 /* validate and set current->group_info */
1385 int set_current_groups(struct group_info *group_info)
1387 int retval;
1388 struct group_info *old_info;
1390 retval = security_task_setgroups(group_info);
1391 if (retval)
1392 return retval;
1394 groups_sort(group_info);
1395 get_group_info(group_info);
1397 task_lock(current);
1398 old_info = current->group_info;
1399 current->group_info = group_info;
1400 task_unlock(current);
1402 put_group_info(old_info);
1404 return 0;
1407 EXPORT_SYMBOL(set_current_groups);
1409 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1411 int i = 0;
1414 * SMP: Nobody else can change our grouplist. Thus we are
1415 * safe.
1418 if (gidsetsize < 0)
1419 return -EINVAL;
1421 /* no need to grab task_lock here; it cannot change */
1422 get_group_info(current->group_info);
1423 i = current->group_info->ngroups;
1424 if (gidsetsize) {
1425 if (i > gidsetsize) {
1426 i = -EINVAL;
1427 goto out;
1429 if (groups_to_user(grouplist, current->group_info)) {
1430 i = -EFAULT;
1431 goto out;
1434 out:
1435 put_group_info(current->group_info);
1436 return i;
1440 * SMP: Our groups are copy-on-write. We can set them safely
1441 * without another task interfering.
1444 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1446 struct group_info *group_info;
1447 int retval;
1449 if (!capable(CAP_SETGID))
1450 return -EPERM;
1451 if ((unsigned)gidsetsize > NGROUPS_MAX)
1452 return -EINVAL;
1454 group_info = groups_alloc(gidsetsize);
1455 if (!group_info)
1456 return -ENOMEM;
1457 retval = groups_from_user(group_info, grouplist);
1458 if (retval) {
1459 put_group_info(group_info);
1460 return retval;
1463 retval = set_current_groups(group_info);
1464 put_group_info(group_info);
1466 return retval;
1470 * Check whether we're fsgid/egid or in the supplemental group..
1472 int in_group_p(gid_t grp)
1474 int retval = 1;
1475 if (grp != current->fsgid) {
1476 get_group_info(current->group_info);
1477 retval = groups_search(current->group_info, grp);
1478 put_group_info(current->group_info);
1480 return retval;
1483 EXPORT_SYMBOL(in_group_p);
1485 int in_egroup_p(gid_t grp)
1487 int retval = 1;
1488 if (grp != current->egid) {
1489 get_group_info(current->group_info);
1490 retval = groups_search(current->group_info, grp);
1491 put_group_info(current->group_info);
1493 return retval;
1496 EXPORT_SYMBOL(in_egroup_p);
1498 DECLARE_RWSEM(uts_sem);
1500 EXPORT_SYMBOL(uts_sem);
1502 asmlinkage long sys_newuname(struct new_utsname __user * name)
1504 int errno = 0;
1506 down_read(&uts_sem);
1507 if (copy_to_user(name,&system_utsname,sizeof *name))
1508 errno = -EFAULT;
1509 up_read(&uts_sem);
1510 return errno;
1513 asmlinkage long sys_sethostname(char __user *name, int len)
1515 int errno;
1516 char tmp[__NEW_UTS_LEN];
1518 if (!capable(CAP_SYS_ADMIN))
1519 return -EPERM;
1520 if (len < 0 || len > __NEW_UTS_LEN)
1521 return -EINVAL;
1522 down_write(&uts_sem);
1523 errno = -EFAULT;
1524 if (!copy_from_user(tmp, name, len)) {
1525 memcpy(system_utsname.nodename, tmp, len);
1526 system_utsname.nodename[len] = 0;
1527 errno = 0;
1529 up_write(&uts_sem);
1530 return errno;
1533 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1535 asmlinkage long sys_gethostname(char __user *name, int len)
1537 int i, errno;
1539 if (len < 0)
1540 return -EINVAL;
1541 down_read(&uts_sem);
1542 i = 1 + strlen(system_utsname.nodename);
1543 if (i > len)
1544 i = len;
1545 errno = 0;
1546 if (copy_to_user(name, system_utsname.nodename, i))
1547 errno = -EFAULT;
1548 up_read(&uts_sem);
1549 return errno;
1552 #endif
1555 * Only setdomainname; getdomainname can be implemented by calling
1556 * uname()
1558 asmlinkage long sys_setdomainname(char __user *name, int len)
1560 int errno;
1561 char tmp[__NEW_UTS_LEN];
1563 if (!capable(CAP_SYS_ADMIN))
1564 return -EPERM;
1565 if (len < 0 || len > __NEW_UTS_LEN)
1566 return -EINVAL;
1568 down_write(&uts_sem);
1569 errno = -EFAULT;
1570 if (!copy_from_user(tmp, name, len)) {
1571 memcpy(system_utsname.domainname, tmp, len);
1572 system_utsname.domainname[len] = 0;
1573 errno = 0;
1575 up_write(&uts_sem);
1576 return errno;
1579 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1581 if (resource >= RLIM_NLIMITS)
1582 return -EINVAL;
1583 else {
1584 struct rlimit value;
1585 task_lock(current->group_leader);
1586 value = current->signal->rlim[resource];
1587 task_unlock(current->group_leader);
1588 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1592 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1595 * Back compatibility for getrlimit. Needed for some apps.
1598 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1600 struct rlimit x;
1601 if (resource >= RLIM_NLIMITS)
1602 return -EINVAL;
1604 task_lock(current->group_leader);
1605 x = current->signal->rlim[resource];
1606 task_unlock(current->group_leader);
1607 if(x.rlim_cur > 0x7FFFFFFF)
1608 x.rlim_cur = 0x7FFFFFFF;
1609 if(x.rlim_max > 0x7FFFFFFF)
1610 x.rlim_max = 0x7FFFFFFF;
1611 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1614 #endif
1616 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1618 struct rlimit new_rlim, *old_rlim;
1619 int retval;
1621 if (resource >= RLIM_NLIMITS)
1622 return -EINVAL;
1623 if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1624 return -EFAULT;
1625 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1626 return -EINVAL;
1627 old_rlim = current->signal->rlim + resource;
1628 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1629 !capable(CAP_SYS_RESOURCE))
1630 return -EPERM;
1631 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN)
1632 return -EPERM;
1634 retval = security_task_setrlimit(resource, &new_rlim);
1635 if (retval)
1636 return retval;
1638 task_lock(current->group_leader);
1639 *old_rlim = new_rlim;
1640 task_unlock(current->group_leader);
1642 if (resource == RLIMIT_CPU && new_rlim.rlim_cur != RLIM_INFINITY &&
1643 (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
1644 new_rlim.rlim_cur <= cputime_to_secs(
1645 current->signal->it_prof_expires))) {
1646 cputime_t cputime = secs_to_cputime(new_rlim.rlim_cur);
1647 read_lock(&tasklist_lock);
1648 spin_lock_irq(&current->sighand->siglock);
1649 set_process_cpu_timer(current, CPUCLOCK_PROF,
1650 &cputime, NULL);
1651 spin_unlock_irq(&current->sighand->siglock);
1652 read_unlock(&tasklist_lock);
1655 return 0;
1659 * It would make sense to put struct rusage in the task_struct,
1660 * except that would make the task_struct be *really big*. After
1661 * task_struct gets moved into malloc'ed memory, it would
1662 * make sense to do this. It will make moving the rest of the information
1663 * a lot simpler! (Which we're not doing right now because we're not
1664 * measuring them yet).
1666 * This expects to be called with tasklist_lock read-locked or better,
1667 * and the siglock not locked. It may momentarily take the siglock.
1669 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1670 * races with threads incrementing their own counters. But since word
1671 * reads are atomic, we either get new values or old values and we don't
1672 * care which for the sums. We always take the siglock to protect reading
1673 * the c* fields from p->signal from races with exit.c updating those
1674 * fields when reaping, so a sample either gets all the additions of a
1675 * given child after it's reaped, or none so this sample is before reaping.
1678 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1680 struct task_struct *t;
1681 unsigned long flags;
1682 cputime_t utime, stime;
1684 memset((char *) r, 0, sizeof *r);
1686 if (unlikely(!p->signal))
1687 return;
1689 switch (who) {
1690 case RUSAGE_CHILDREN:
1691 spin_lock_irqsave(&p->sighand->siglock, flags);
1692 utime = p->signal->cutime;
1693 stime = p->signal->cstime;
1694 r->ru_nvcsw = p->signal->cnvcsw;
1695 r->ru_nivcsw = p->signal->cnivcsw;
1696 r->ru_minflt = p->signal->cmin_flt;
1697 r->ru_majflt = p->signal->cmaj_flt;
1698 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1699 cputime_to_timeval(utime, &r->ru_utime);
1700 cputime_to_timeval(stime, &r->ru_stime);
1701 break;
1702 case RUSAGE_SELF:
1703 spin_lock_irqsave(&p->sighand->siglock, flags);
1704 utime = stime = cputime_zero;
1705 goto sum_group;
1706 case RUSAGE_BOTH:
1707 spin_lock_irqsave(&p->sighand->siglock, flags);
1708 utime = p->signal->cutime;
1709 stime = p->signal->cstime;
1710 r->ru_nvcsw = p->signal->cnvcsw;
1711 r->ru_nivcsw = p->signal->cnivcsw;
1712 r->ru_minflt = p->signal->cmin_flt;
1713 r->ru_majflt = p->signal->cmaj_flt;
1714 sum_group:
1715 utime = cputime_add(utime, p->signal->utime);
1716 stime = cputime_add(stime, p->signal->stime);
1717 r->ru_nvcsw += p->signal->nvcsw;
1718 r->ru_nivcsw += p->signal->nivcsw;
1719 r->ru_minflt += p->signal->min_flt;
1720 r->ru_majflt += p->signal->maj_flt;
1721 t = p;
1722 do {
1723 utime = cputime_add(utime, t->utime);
1724 stime = cputime_add(stime, t->stime);
1725 r->ru_nvcsw += t->nvcsw;
1726 r->ru_nivcsw += t->nivcsw;
1727 r->ru_minflt += t->min_flt;
1728 r->ru_majflt += t->maj_flt;
1729 t = next_thread(t);
1730 } while (t != p);
1731 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1732 cputime_to_timeval(utime, &r->ru_utime);
1733 cputime_to_timeval(stime, &r->ru_stime);
1734 break;
1735 default:
1736 BUG();
1740 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1742 struct rusage r;
1743 read_lock(&tasklist_lock);
1744 k_getrusage(p, who, &r);
1745 read_unlock(&tasklist_lock);
1746 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1749 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1751 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1752 return -EINVAL;
1753 return getrusage(current, who, ru);
1756 asmlinkage long sys_umask(int mask)
1758 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1759 return mask;
1762 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1763 unsigned long arg4, unsigned long arg5)
1765 long error;
1767 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1768 if (error)
1769 return error;
1771 switch (option) {
1772 case PR_SET_PDEATHSIG:
1773 if (!valid_signal(arg2)) {
1774 error = -EINVAL;
1775 break;
1777 current->pdeath_signal = arg2;
1778 break;
1779 case PR_GET_PDEATHSIG:
1780 error = put_user(current->pdeath_signal, (int __user *)arg2);
1781 break;
1782 case PR_GET_DUMPABLE:
1783 error = current->mm->dumpable;
1784 break;
1785 case PR_SET_DUMPABLE:
1786 if (arg2 < 0 || arg2 > 2) {
1787 error = -EINVAL;
1788 break;
1790 current->mm->dumpable = arg2;
1791 break;
1793 case PR_SET_UNALIGN:
1794 error = SET_UNALIGN_CTL(current, arg2);
1795 break;
1796 case PR_GET_UNALIGN:
1797 error = GET_UNALIGN_CTL(current, arg2);
1798 break;
1799 case PR_SET_FPEMU:
1800 error = SET_FPEMU_CTL(current, arg2);
1801 break;
1802 case PR_GET_FPEMU:
1803 error = GET_FPEMU_CTL(current, arg2);
1804 break;
1805 case PR_SET_FPEXC:
1806 error = SET_FPEXC_CTL(current, arg2);
1807 break;
1808 case PR_GET_FPEXC:
1809 error = GET_FPEXC_CTL(current, arg2);
1810 break;
1811 case PR_GET_TIMING:
1812 error = PR_TIMING_STATISTICAL;
1813 break;
1814 case PR_SET_TIMING:
1815 if (arg2 == PR_TIMING_STATISTICAL)
1816 error = 0;
1817 else
1818 error = -EINVAL;
1819 break;
1821 case PR_GET_KEEPCAPS:
1822 if (current->keep_capabilities)
1823 error = 1;
1824 break;
1825 case PR_SET_KEEPCAPS:
1826 if (arg2 != 0 && arg2 != 1) {
1827 error = -EINVAL;
1828 break;
1830 current->keep_capabilities = arg2;
1831 break;
1832 case PR_SET_NAME: {
1833 struct task_struct *me = current;
1834 unsigned char ncomm[sizeof(me->comm)];
1836 ncomm[sizeof(me->comm)-1] = 0;
1837 if (strncpy_from_user(ncomm, (char __user *)arg2,
1838 sizeof(me->comm)-1) < 0)
1839 return -EFAULT;
1840 set_task_comm(me, ncomm);
1841 return 0;
1843 case PR_GET_NAME: {
1844 struct task_struct *me = current;
1845 unsigned char tcomm[sizeof(me->comm)];
1847 get_task_comm(tcomm, me);
1848 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm)))
1849 return -EFAULT;
1850 return 0;
1852 default:
1853 error = -EINVAL;
1854 break;
1856 return error;