Merge tag 'pci-v3.13-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6.git] / drivers / staging / et131x / et131x.c
blobab8b29d2cb2609d3c19bd5d3dddfdbdbdc0c98e2
1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *------------------------------------------------------------------------------
12 * SOFTWARE LICENSE
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
38 * Disclaimer
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 #include <linux/pci.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
62 #include <linux/sched.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/ctype.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/in.h>
70 #include <linux/delay.h>
71 #include <linux/bitops.h>
72 #include <linux/io.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_arp.h>
78 #include <linux/ioport.h>
79 #include <linux/crc32.h>
80 #include <linux/random.h>
81 #include <linux/phy.h>
83 #include "et131x.h"
85 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
86 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
87 MODULE_LICENSE("Dual BSD/GPL");
88 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
90 /* EEPROM defines */
91 #define MAX_NUM_REGISTER_POLLS 1000
92 #define MAX_NUM_WRITE_RETRIES 2
94 /* MAC defines */
95 #define COUNTER_WRAP_16_BIT 0x10000
96 #define COUNTER_WRAP_12_BIT 0x1000
98 /* PCI defines */
99 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
100 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
102 /* ISR defines */
103 /* For interrupts, normal running is:
104 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
105 * watchdog_interrupt & txdma_xfer_done
107 * In both cases, when flow control is enabled for either Tx or bi-direction,
108 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
109 * buffer rings are running low.
111 #define INT_MASK_DISABLE 0xffffffff
113 /* NOTE: Masking out MAC_STAT Interrupt for now...
114 * #define INT_MASK_ENABLE 0xfff6bf17
115 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
117 #define INT_MASK_ENABLE 0xfffebf17
118 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
120 /* General defines */
121 /* Packet and header sizes */
122 #define NIC_MIN_PACKET_SIZE 60
124 /* Multicast list size */
125 #define NIC_MAX_MCAST_LIST 128
127 /* Supported Filters */
128 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
129 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
130 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
131 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
132 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
134 /* Tx Timeout */
135 #define ET131X_TX_TIMEOUT (1 * HZ)
136 #define NIC_SEND_HANG_THRESHOLD 0
138 /* MP_TCB flags */
139 #define FMP_DEST_MULTI 0x00000001
140 #define FMP_DEST_BROAD 0x00000002
142 /* MP_ADAPTER flags */
143 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
145 /* MP_SHARED flags */
146 #define FMP_ADAPTER_LOWER_POWER 0x00200000
148 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
149 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
151 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
153 /* Some offsets in PCI config space that are actually used. */
154 #define ET1310_PCI_MAC_ADDRESS 0xA4
155 #define ET1310_PCI_EEPROM_STATUS 0xB2
156 #define ET1310_PCI_ACK_NACK 0xC0
157 #define ET1310_PCI_REPLAY 0xC2
158 #define ET1310_PCI_L0L1LATENCY 0xCF
160 /* PCI Product IDs */
161 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
162 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
164 /* Define order of magnitude converter */
165 #define NANO_IN_A_MICRO 1000
167 #define PARM_RX_NUM_BUFS_DEF 4
168 #define PARM_RX_TIME_INT_DEF 10
169 #define PARM_RX_MEM_END_DEF 0x2bc
170 #define PARM_TX_TIME_INT_DEF 40
171 #define PARM_TX_NUM_BUFS_DEF 4
172 #define PARM_DMA_CACHE_DEF 0
174 /* RX defines */
175 #define FBR_CHUNKS 32
176 #define MAX_DESC_PER_RING_RX 1024
178 /* number of RFDs - default and min */
179 #define RFD_LOW_WATER_MARK 40
180 #define NIC_DEFAULT_NUM_RFD 1024
181 #define NUM_FBRS 2
183 #define NUM_PACKETS_HANDLED 256
185 #define ALCATEL_MULTICAST_PKT 0x01000000
186 #define ALCATEL_BROADCAST_PKT 0x02000000
188 /* typedefs for Free Buffer Descriptors */
189 struct fbr_desc {
190 u32 addr_lo;
191 u32 addr_hi;
192 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
195 /* Packet Status Ring Descriptors
197 * Word 0:
199 * top 16 bits are from the Alcatel Status Word as enumerated in
200 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
202 * 0: hp hash pass
203 * 1: ipa IP checksum assist
204 * 2: ipp IP checksum pass
205 * 3: tcpa TCP checksum assist
206 * 4: tcpp TCP checksum pass
207 * 5: wol WOL Event
208 * 6: rxmac_error RXMAC Error Indicator
209 * 7: drop Drop packet
210 * 8: ft Frame Truncated
211 * 9: jp Jumbo Packet
212 * 10: vp VLAN Packet
213 * 11-15: unused
214 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
215 * 17: asw_RX_DV_event short receive event detected
216 * 18: asw_false_carrier_event bad carrier since last good packet
217 * 19: asw_code_err one or more nibbles signalled as errors
218 * 20: asw_CRC_err CRC error
219 * 21: asw_len_chk_err frame length field incorrect
220 * 22: asw_too_long frame length > 1518 bytes
221 * 23: asw_OK valid CRC + no code error
222 * 24: asw_multicast has a multicast address
223 * 25: asw_broadcast has a broadcast address
224 * 26: asw_dribble_nibble spurious bits after EOP
225 * 27: asw_control_frame is a control frame
226 * 28: asw_pause_frame is a pause frame
227 * 29: asw_unsupported_op unsupported OP code
228 * 30: asw_VLAN_tag VLAN tag detected
229 * 31: asw_long_evt Rx long event
231 * Word 1:
232 * 0-15: length length in bytes
233 * 16-25: bi Buffer Index
234 * 26-27: ri Ring Index
235 * 28-31: reserved
238 struct pkt_stat_desc {
239 u32 word0;
240 u32 word1;
243 /* Typedefs for the RX DMA status word */
245 /* rx status word 0 holds part of the status bits of the Rx DMA engine
246 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
247 * which contains the Free Buffer ring 0 and 1 available offset.
249 * bit 0-9 FBR1 offset
250 * bit 10 Wrap flag for FBR1
251 * bit 16-25 FBR0 offset
252 * bit 26 Wrap flag for FBR0
255 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
256 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
257 * which contains the Packet Status Ring available offset.
259 * bit 0-15 reserved
260 * bit 16-27 PSRoffset
261 * bit 28 PSRwrap
262 * bit 29-31 unused
265 /* struct rx_status_block is a structure representing the status of the Rx
266 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
268 struct rx_status_block {
269 u32 word0;
270 u32 word1;
273 /* Structure for look-up table holding free buffer ring pointers, addresses
274 * and state.
276 struct fbr_lookup {
277 void *virt[MAX_DESC_PER_RING_RX];
278 u32 bus_high[MAX_DESC_PER_RING_RX];
279 u32 bus_low[MAX_DESC_PER_RING_RX];
280 void *ring_virtaddr;
281 dma_addr_t ring_physaddr;
282 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
283 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
284 u32 local_full;
285 u32 num_entries;
286 dma_addr_t buffsize;
289 /* struct rx_ring is the sructure representing the adaptor's local
290 * reference(s) to the rings
292 struct rx_ring {
293 struct fbr_lookup *fbr[NUM_FBRS];
294 void *ps_ring_virtaddr;
295 dma_addr_t ps_ring_physaddr;
296 u32 local_psr_full;
297 u32 psr_num_entries;
299 struct rx_status_block *rx_status_block;
300 dma_addr_t rx_status_bus;
302 /* RECV */
303 struct list_head recv_list;
304 u32 num_ready_recv;
306 u32 num_rfd;
308 bool unfinished_receives;
311 /* TX defines */
312 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
314 * 0-15: length of packet
315 * 16-27: VLAN tag
316 * 28: VLAN CFI
317 * 29-31: VLAN priority
319 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
321 * 0: last packet in the sequence
322 * 1: first packet in the sequence
323 * 2: interrupt the processor when this pkt sent
324 * 3: Control word - no packet data
325 * 4: Issue half-duplex backpressure : XON/XOFF
326 * 5: send pause frame
327 * 6: Tx frame has error
328 * 7: append CRC
329 * 8: MAC override
330 * 9: pad packet
331 * 10: Packet is a Huge packet
332 * 11: append VLAN tag
333 * 12: IP checksum assist
334 * 13: TCP checksum assist
335 * 14: UDP checksum assist
338 #define TXDESC_FLAG_LASTPKT 0x0001
339 #define TXDESC_FLAG_FIRSTPKT 0x0002
340 #define TXDESC_FLAG_INTPROC 0x0004
342 /* struct tx_desc represents each descriptor on the ring */
343 struct tx_desc {
344 u32 addr_hi;
345 u32 addr_lo;
346 u32 len_vlan; /* control words how to xmit the */
347 u32 flags; /* data (detailed above) */
350 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
351 * by 0x101c / 0x1020. This is a DMA10 type
354 /* TCB (Transmit Control Block: Host Side) */
355 struct tcb {
356 struct tcb *next; /* Next entry in ring */
357 u32 flags; /* Our flags for the packet */
358 u32 count; /* Used to spot stuck/lost packets */
359 u32 stale; /* Used to spot stuck/lost packets */
360 struct sk_buff *skb; /* Network skb we are tied to */
361 u32 index; /* Ring indexes */
362 u32 index_start;
365 /* Structure representing our local reference(s) to the ring */
366 struct tx_ring {
367 /* TCB (Transmit Control Block) memory and lists */
368 struct tcb *tcb_ring;
370 /* List of TCBs that are ready to be used */
371 struct tcb *tcb_qhead;
372 struct tcb *tcb_qtail;
374 /* list of TCBs that are currently being sent. NOTE that access to all
375 * three of these (including used) are controlled via the
376 * TCBSendQLock. This lock should be secured prior to incementing /
377 * decrementing used, or any queue manipulation on send_head /
378 * tail
380 struct tcb *send_head;
381 struct tcb *send_tail;
382 int used;
384 /* The actual descriptor ring */
385 struct tx_desc *tx_desc_ring;
386 dma_addr_t tx_desc_ring_pa;
388 /* send_idx indicates where we last wrote to in the descriptor ring. */
389 u32 send_idx;
391 /* The location of the write-back status block */
392 u32 *tx_status;
393 dma_addr_t tx_status_pa;
395 /* Packets since the last IRQ: used for interrupt coalescing */
396 int since_irq;
399 /* Do not change these values: if changed, then change also in respective
400 * TXdma and Rxdma engines
402 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
403 #define NUM_TCB 64
405 /* These values are all superseded by registry entries to facilitate tuning.
406 * Once the desired performance has been achieved, the optimal registry values
407 * should be re-populated to these #defines:
409 #define TX_ERROR_PERIOD 1000
411 #define LO_MARK_PERCENT_FOR_PSR 15
412 #define LO_MARK_PERCENT_FOR_RX 15
414 /* RFD (Receive Frame Descriptor) */
415 struct rfd {
416 struct list_head list_node;
417 struct sk_buff *skb;
418 u32 len; /* total size of receive frame */
419 u16 bufferindex;
420 u8 ringindex;
423 /* Flow Control */
424 #define FLOW_BOTH 0
425 #define FLOW_TXONLY 1
426 #define FLOW_RXONLY 2
427 #define FLOW_NONE 3
429 /* Struct to define some device statistics */
430 struct ce_stats {
431 /* MIB II variables
433 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
434 * MUST have 32, then we'll need another way to perform atomic
435 * operations
437 u32 unicast_pkts_rcvd;
438 atomic_t unicast_pkts_xmtd;
439 u32 multicast_pkts_rcvd;
440 atomic_t multicast_pkts_xmtd;
441 u32 broadcast_pkts_rcvd;
442 atomic_t broadcast_pkts_xmtd;
443 u32 rcvd_pkts_dropped;
445 /* Tx Statistics. */
446 u32 tx_underflows;
448 u32 tx_collisions;
449 u32 tx_excessive_collisions;
450 u32 tx_first_collisions;
451 u32 tx_late_collisions;
452 u32 tx_max_pkt_errs;
453 u32 tx_deferred;
455 /* Rx Statistics. */
456 u32 rx_overflows;
458 u32 rx_length_errs;
459 u32 rx_align_errs;
460 u32 rx_crc_errs;
461 u32 rx_code_violations;
462 u32 rx_other_errs;
464 u32 synchronous_iterations;
465 u32 interrupt_status;
468 /* The private adapter structure */
469 struct et131x_adapter {
470 struct net_device *netdev;
471 struct pci_dev *pdev;
472 struct mii_bus *mii_bus;
473 struct phy_device *phydev;
474 struct work_struct task;
476 /* Flags that indicate current state of the adapter */
477 u32 flags;
479 /* local link state, to determine if a state change has occurred */
480 int link;
482 /* Configuration */
483 u8 rom_addr[ETH_ALEN];
484 u8 addr[ETH_ALEN];
485 bool has_eeprom;
486 u8 eeprom_data[2];
488 /* Spinlocks */
489 spinlock_t lock;
491 spinlock_t tcb_send_qlock;
492 spinlock_t tcb_ready_qlock;
493 spinlock_t send_hw_lock;
495 spinlock_t rcv_lock;
496 spinlock_t fbr_lock;
498 /* Packet Filter and look ahead size */
499 u32 packet_filter;
501 /* multicast list */
502 u32 multicast_addr_count;
503 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
505 /* Pointer to the device's PCI register space */
506 struct address_map __iomem *regs;
508 /* Registry parameters */
509 u8 wanted_flow; /* Flow we want for 802.3x flow control */
510 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
512 /* Derived from the registry: */
513 u8 flowcontrol; /* flow control validated by the far-end */
515 /* Minimize init-time */
516 struct timer_list error_timer;
518 /* variable putting the phy into coma mode when boot up with no cable
519 * plugged in after 5 seconds
521 u8 boot_coma;
523 /* Next two used to save power information at power down. This
524 * information will be used during power up to set up parts of Power
525 * Management in JAGCore
527 u16 pdown_speed;
528 u8 pdown_duplex;
530 /* Tx Memory Variables */
531 struct tx_ring tx_ring;
533 /* Rx Memory Variables */
534 struct rx_ring rx_ring;
536 /* Stats */
537 struct ce_stats stats;
539 struct net_device_stats net_stats;
542 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
544 u32 reg;
545 int i;
547 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
548 * bits 7,1:0 both equal to 1, at least once after reset.
549 * Subsequent operations need only to check that bits 1:0 are equal
550 * to 1 prior to starting a single byte read/write
553 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
554 /* Read registers grouped in DWORD1 */
555 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
556 return -EIO;
558 /* I2C idle and Phy Queue Avail both true */
559 if ((reg & 0x3000) == 0x3000) {
560 if (status)
561 *status = reg;
562 return reg & 0xFF;
565 return -ETIMEDOUT;
568 /* eeprom_write - Write a byte to the ET1310's EEPROM
569 * @adapter: pointer to our private adapter structure
570 * @addr: the address to write
571 * @data: the value to write
573 * Returns 1 for a successful write.
575 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
577 struct pci_dev *pdev = adapter->pdev;
578 int index = 0;
579 int retries;
580 int err = 0;
581 int i2c_wack = 0;
582 int writeok = 0;
583 u32 status;
584 u32 val = 0;
586 /* For an EEPROM, an I2C single byte write is defined as a START
587 * condition followed by the device address, EEPROM address, one byte
588 * of data and a STOP condition. The STOP condition will trigger the
589 * EEPROM's internally timed write cycle to the nonvolatile memory.
590 * All inputs are disabled during this write cycle and the EEPROM will
591 * not respond to any access until the internal write is complete.
594 err = eeprom_wait_ready(pdev, NULL);
595 if (err < 0)
596 return err;
598 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
599 * and bits 1:0 both =0. Bit 5 should be set according to the
600 * type of EEPROM being accessed (1=two byte addressing, 0=one
601 * byte addressing).
603 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
604 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
605 return -EIO;
607 i2c_wack = 1;
609 /* Prepare EEPROM address for Step 3 */
611 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
612 /* Write the address to the LBCIF Address Register */
613 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
614 break;
615 /* Write the data to the LBCIF Data Register (the I2C write
616 * will begin).
618 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
619 break;
620 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
621 * 1:0 are both equal to 1, the I2C write has completed and the
622 * internal write cycle of the EEPROM is about to start.
623 * (bits 1:0 = 01 is a legal state while waiting from both
624 * equal to 1, but bits 1:0 = 10 is invalid and implies that
625 * something is broken).
627 err = eeprom_wait_ready(pdev, &status);
628 if (err < 0)
629 return 0;
631 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
632 * an error has occurred.Don't break here if we are revision
633 * 1, this is so we do a blind write for load bug.
635 if ((status & LBCIF_STATUS_GENERAL_ERROR)
636 && adapter->pdev->revision == 0)
637 break;
639 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
640 * ACK error has occurred on the address phase of the write.
641 * This could be due to an actual hardware failure or the
642 * EEPROM may still be in its internal write cycle from a
643 * previous write. This write operation was ignored and must be
644 *repeated later.
646 if (status & LBCIF_STATUS_ACK_ERROR) {
647 /* This could be due to an actual hardware failure
648 * or the EEPROM may still be in its internal write
649 * cycle from a previous write. This write operation
650 * was ignored and must be repeated later.
652 udelay(10);
653 continue;
656 writeok = 1;
657 break;
660 /* Set bit 6 of the LBCIF Control Register = 0.
662 udelay(10);
664 while (i2c_wack) {
665 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
666 LBCIF_CONTROL_LBCIF_ENABLE))
667 writeok = 0;
669 /* Do read until internal ACK_ERROR goes away meaning write
670 * completed
672 do {
673 pci_write_config_dword(pdev,
674 LBCIF_ADDRESS_REGISTER,
675 addr);
676 do {
677 pci_read_config_dword(pdev,
678 LBCIF_DATA_REGISTER, &val);
679 } while ((val & 0x00010000) == 0);
680 } while (val & 0x00040000);
682 if ((val & 0xFF00) != 0xC000 || index == 10000)
683 break;
684 index++;
686 return writeok ? 0 : -EIO;
689 /* eeprom_read - Read a byte from the ET1310's EEPROM
690 * @adapter: pointer to our private adapter structure
691 * @addr: the address from which to read
692 * @pdata: a pointer to a byte in which to store the value of the read
693 * @eeprom_id: the ID of the EEPROM
694 * @addrmode: how the EEPROM is to be accessed
696 * Returns 1 for a successful read
698 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
700 struct pci_dev *pdev = adapter->pdev;
701 int err;
702 u32 status;
704 /* A single byte read is similar to the single byte write, with the
705 * exception of the data flow:
708 err = eeprom_wait_ready(pdev, NULL);
709 if (err < 0)
710 return err;
711 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
712 * and bits 1:0 both =0. Bit 5 should be set according to the type
713 * of EEPROM being accessed (1=two byte addressing, 0=one byte
714 * addressing).
716 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
717 LBCIF_CONTROL_LBCIF_ENABLE))
718 return -EIO;
719 /* Write the address to the LBCIF Address Register (I2C read will
720 * begin).
722 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
723 return -EIO;
724 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
725 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
726 * has occurred).
728 err = eeprom_wait_ready(pdev, &status);
729 if (err < 0)
730 return err;
731 /* Regardless of error status, read data byte from LBCIF Data
732 * Register.
734 *pdata = err;
735 /* Check bit 2 of the LBCIF Status Register. If = 1,
736 * then an error has occurred.
738 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
741 static int et131x_init_eeprom(struct et131x_adapter *adapter)
743 struct pci_dev *pdev = adapter->pdev;
744 u8 eestatus;
746 /* We first need to check the EEPROM Status code located at offset
747 * 0xB2 of config space
749 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
751 /* THIS IS A WORKAROUND:
752 * I need to call this function twice to get my card in a
753 * LG M1 Express Dual running. I tried also a msleep before this
754 * function, because I thought there could be some time conditions
755 * but it didn't work. Call the whole function twice also work.
757 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
758 dev_err(&pdev->dev,
759 "Could not read PCI config space for EEPROM Status\n");
760 return -EIO;
763 /* Determine if the error(s) we care about are present. If they are
764 * present we need to fail.
766 if (eestatus & 0x4C) {
767 int write_failed = 0;
768 if (pdev->revision == 0x01) {
769 int i;
770 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
772 /* Re-write the first 4 bytes if we have an eeprom
773 * present and the revision id is 1, this fixes the
774 * corruption seen with 1310 B Silicon
776 for (i = 0; i < 3; i++)
777 if (eeprom_write(adapter, i, eedata[i]) < 0)
778 write_failed = 1;
780 if (pdev->revision != 0x01 || write_failed) {
781 dev_err(&pdev->dev,
782 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
784 /* This error could mean that there was an error
785 * reading the eeprom or that the eeprom doesn't exist.
786 * We will treat each case the same and not try to
787 * gather additional information that normally would
788 * come from the eeprom, like MAC Address
790 adapter->has_eeprom = 0;
791 return -EIO;
794 adapter->has_eeprom = 1;
796 /* Read the EEPROM for information regarding LED behavior. Refer to
797 * ET1310_phy.c, et131x_xcvr_init(), for its use.
799 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
800 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
802 if (adapter->eeprom_data[0] != 0xcd)
803 /* Disable all optional features */
804 adapter->eeprom_data[1] = 0x00;
806 return 0;
809 /* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
810 * @adapter: pointer to our adapter structure
812 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
814 /* Setup the receive dma configuration register for normal operation */
815 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
817 if (adapter->rx_ring.fbr[1]->buffsize == 4096)
818 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
819 else if (adapter->rx_ring.fbr[1]->buffsize == 8192)
820 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
821 else if (adapter->rx_ring.fbr[1]->buffsize == 16384)
822 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
824 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
825 if (adapter->rx_ring.fbr[0]->buffsize == 256)
826 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
827 else if (adapter->rx_ring.fbr[0]->buffsize == 512)
828 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
829 else if (adapter->rx_ring.fbr[0]->buffsize == 1024)
830 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
831 writel(csr, &adapter->regs->rxdma.csr);
833 csr = readl(&adapter->regs->rxdma.csr);
834 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
835 udelay(5);
836 csr = readl(&adapter->regs->rxdma.csr);
837 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
838 dev_err(&adapter->pdev->dev,
839 "RX Dma failed to exit halt state. CSR 0x%08x\n",
840 csr);
845 /* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
846 * @adapter: pointer to our adapter structure
848 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
850 u32 csr;
851 /* Setup the receive dma configuration register */
852 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
853 &adapter->regs->rxdma.csr);
854 csr = readl(&adapter->regs->rxdma.csr);
855 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
856 udelay(5);
857 csr = readl(&adapter->regs->rxdma.csr);
858 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
859 dev_err(&adapter->pdev->dev,
860 "RX Dma failed to enter halt state. CSR 0x%08x\n",
861 csr);
865 /* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
866 * @adapter: pointer to our adapter structure
868 * Mainly used after a return to the D0 (full-power) state from a lower state.
870 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
872 /* Setup the transmit dma configuration register for normal
873 * operation
875 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
876 &adapter->regs->txdma.csr);
879 static inline void add_10bit(u32 *v, int n)
881 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
884 static inline void add_12bit(u32 *v, int n)
886 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
889 /* et1310_config_mac_regs1 - Initialize the first part of MAC regs
890 * @adapter: pointer to our adapter structure
892 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
894 struct mac_regs __iomem *macregs = &adapter->regs->mac;
895 u32 station1;
896 u32 station2;
897 u32 ipg;
899 /* First we need to reset everything. Write to MAC configuration
900 * register 1 to perform reset.
902 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
903 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
904 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
905 &macregs->cfg1);
907 /* Next lets configure the MAC Inter-packet gap register */
908 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
909 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
910 writel(ipg, &macregs->ipg);
912 /* Next lets configure the MAC Half Duplex register */
913 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
914 writel(0x00A1F037, &macregs->hfdp);
916 /* Next lets configure the MAC Interface Control register */
917 writel(0, &macregs->if_ctrl);
919 /* Let's move on to setting up the mii management configuration */
920 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
922 /* Next lets configure the MAC Station Address register. These
923 * values are read from the EEPROM during initialization and stored
924 * in the adapter structure. We write what is stored in the adapter
925 * structure to the MAC Station Address registers high and low. This
926 * station address is used for generating and checking pause control
927 * packets.
929 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
930 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
931 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
932 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
933 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
934 adapter->addr[2];
935 writel(station1, &macregs->station_addr_1);
936 writel(station2, &macregs->station_addr_2);
938 /* Max ethernet packet in bytes that will be passed by the mac without
939 * being truncated. Allow the MAC to pass 4 more than our max packet
940 * size. This is 4 for the Ethernet CRC.
942 * Packets larger than (registry_jumbo_packet) that do not contain a
943 * VLAN ID will be dropped by the Rx function.
945 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
947 /* clear out MAC config reset */
948 writel(0, &macregs->cfg1);
951 /* et1310_config_mac_regs2 - Initialize the second part of MAC regs
952 * @adapter: pointer to our adapter structure
954 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
956 int32_t delay = 0;
957 struct mac_regs __iomem *mac = &adapter->regs->mac;
958 struct phy_device *phydev = adapter->phydev;
959 u32 cfg1;
960 u32 cfg2;
961 u32 ifctrl;
962 u32 ctl;
964 ctl = readl(&adapter->regs->txmac.ctl);
965 cfg1 = readl(&mac->cfg1);
966 cfg2 = readl(&mac->cfg2);
967 ifctrl = readl(&mac->if_ctrl);
969 /* Set up the if mode bits */
970 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
971 if (phydev && phydev->speed == SPEED_1000) {
972 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
973 /* Phy mode bit */
974 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
975 } else {
976 cfg2 |= ET_MAC_CFG2_IFMODE_100;
977 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
980 /* We need to enable Rx/Tx */
981 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
982 ET_MAC_CFG1_TX_FLOW;
983 /* Initialize loop back to off */
984 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
985 if (adapter->flowcontrol == FLOW_RXONLY ||
986 adapter->flowcontrol == FLOW_BOTH)
987 cfg1 |= ET_MAC_CFG1_RX_FLOW;
988 writel(cfg1, &mac->cfg1);
990 /* Now we need to initialize the MAC Configuration 2 register */
991 /* preamble 7, check length, huge frame off, pad crc, crc enable
992 * full duplex off
994 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
995 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
996 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
997 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
998 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
999 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
1001 /* Turn on duplex if needed */
1002 if (phydev && phydev->duplex == DUPLEX_FULL)
1003 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
1005 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
1006 if (phydev && phydev->duplex == DUPLEX_HALF)
1007 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
1009 writel(ifctrl, &mac->if_ctrl);
1010 writel(cfg2, &mac->cfg2);
1012 do {
1013 udelay(10);
1014 delay++;
1015 cfg1 = readl(&mac->cfg1);
1016 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
1018 if (delay == 100) {
1019 dev_warn(&adapter->pdev->dev,
1020 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1021 cfg1);
1024 /* Enable txmac */
1025 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
1026 writel(ctl, &adapter->regs->txmac.ctl);
1028 /* Ready to start the RXDMA/TXDMA engine */
1029 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
1030 et131x_rx_dma_enable(adapter);
1031 et131x_tx_dma_enable(adapter);
1035 /* et1310_in_phy_coma - check if the device is in phy coma
1036 * @adapter: pointer to our adapter structure
1038 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1040 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1042 u32 pmcsr;
1044 pmcsr = readl(&adapter->regs->global.pm_csr);
1046 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1049 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1051 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1052 u32 hash1 = 0;
1053 u32 hash2 = 0;
1054 u32 hash3 = 0;
1055 u32 hash4 = 0;
1056 u32 pm_csr;
1058 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1059 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1060 * specified) then we should pass NO multi-cast addresses to the
1061 * driver.
1063 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1064 int i;
1066 /* Loop through our multicast array and set up the device */
1067 for (i = 0; i < adapter->multicast_addr_count; i++) {
1068 u32 result;
1070 result = ether_crc(6, adapter->multicast_list[i]);
1072 result = (result & 0x3F800000) >> 23;
1074 if (result < 32) {
1075 hash1 |= (1 << result);
1076 } else if ((31 < result) && (result < 64)) {
1077 result -= 32;
1078 hash2 |= (1 << result);
1079 } else if ((63 < result) && (result < 96)) {
1080 result -= 64;
1081 hash3 |= (1 << result);
1082 } else {
1083 result -= 96;
1084 hash4 |= (1 << result);
1089 /* Write out the new hash to the device */
1090 pm_csr = readl(&adapter->regs->global.pm_csr);
1091 if (!et1310_in_phy_coma(adapter)) {
1092 writel(hash1, &rxmac->multi_hash1);
1093 writel(hash2, &rxmac->multi_hash2);
1094 writel(hash3, &rxmac->multi_hash3);
1095 writel(hash4, &rxmac->multi_hash4);
1099 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1101 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1102 u32 uni_pf1;
1103 u32 uni_pf2;
1104 u32 uni_pf3;
1105 u32 pm_csr;
1107 /* Set up unicast packet filter reg 3 to be the first two octets of
1108 * the MAC address for both address
1110 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1111 * MAC address for second address
1113 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1114 * MAC address for first address
1116 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1117 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1118 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1119 adapter->addr[1];
1121 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1122 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1123 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1124 adapter->addr[5];
1126 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1127 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1128 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1129 adapter->addr[5];
1131 pm_csr = readl(&adapter->regs->global.pm_csr);
1132 if (!et1310_in_phy_coma(adapter)) {
1133 writel(uni_pf1, &rxmac->uni_pf_addr1);
1134 writel(uni_pf2, &rxmac->uni_pf_addr2);
1135 writel(uni_pf3, &rxmac->uni_pf_addr3);
1139 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1141 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1142 struct phy_device *phydev = adapter->phydev;
1143 u32 sa_lo;
1144 u32 sa_hi = 0;
1145 u32 pf_ctrl = 0;
1147 /* Disable the MAC while it is being configured (also disable WOL) */
1148 writel(0x8, &rxmac->ctrl);
1150 /* Initialize WOL to disabled. */
1151 writel(0, &rxmac->crc0);
1152 writel(0, &rxmac->crc12);
1153 writel(0, &rxmac->crc34);
1155 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1156 * its default Values of 0x00000000 because there are not WOL masks
1157 * as of this time.
1159 writel(0, &rxmac->mask0_word0);
1160 writel(0, &rxmac->mask0_word1);
1161 writel(0, &rxmac->mask0_word2);
1162 writel(0, &rxmac->mask0_word3);
1164 writel(0, &rxmac->mask1_word0);
1165 writel(0, &rxmac->mask1_word1);
1166 writel(0, &rxmac->mask1_word2);
1167 writel(0, &rxmac->mask1_word3);
1169 writel(0, &rxmac->mask2_word0);
1170 writel(0, &rxmac->mask2_word1);
1171 writel(0, &rxmac->mask2_word2);
1172 writel(0, &rxmac->mask2_word3);
1174 writel(0, &rxmac->mask3_word0);
1175 writel(0, &rxmac->mask3_word1);
1176 writel(0, &rxmac->mask3_word2);
1177 writel(0, &rxmac->mask3_word3);
1179 writel(0, &rxmac->mask4_word0);
1180 writel(0, &rxmac->mask4_word1);
1181 writel(0, &rxmac->mask4_word2);
1182 writel(0, &rxmac->mask4_word3);
1184 /* Lets setup the WOL Source Address */
1185 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1186 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1187 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1188 adapter->addr[5];
1189 writel(sa_lo, &rxmac->sa_lo);
1191 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1192 adapter->addr[1];
1193 writel(sa_hi, &rxmac->sa_hi);
1195 /* Disable all Packet Filtering */
1196 writel(0, &rxmac->pf_ctrl);
1198 /* Let's initialize the Unicast Packet filtering address */
1199 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1200 et1310_setup_device_for_unicast(adapter);
1201 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1202 } else {
1203 writel(0, &rxmac->uni_pf_addr1);
1204 writel(0, &rxmac->uni_pf_addr2);
1205 writel(0, &rxmac->uni_pf_addr3);
1208 /* Let's initialize the Multicast hash */
1209 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1210 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1211 et1310_setup_device_for_multicast(adapter);
1214 /* Runt packet filtering. Didn't work in version A silicon. */
1215 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1216 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1218 if (adapter->registry_jumbo_packet > 8192)
1219 /* In order to transmit jumbo packets greater than 8k, the
1220 * FIFO between RxMAC and RxDMA needs to be reduced in size
1221 * to (16k - Jumbo packet size). In order to implement this,
1222 * we must use "cut through" mode in the RxMAC, which chops
1223 * packets down into segments which are (max_size * 16). In
1224 * this case we selected 256 bytes, since this is the size of
1225 * the PCI-Express TLP's that the 1310 uses.
1227 * seg_en on, fc_en off, size 0x10
1229 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1230 else
1231 writel(0, &rxmac->mcif_ctrl_max_seg);
1233 /* Initialize the MCIF water marks */
1234 writel(0, &rxmac->mcif_water_mark);
1236 /* Initialize the MIF control */
1237 writel(0, &rxmac->mif_ctrl);
1239 /* Initialize the Space Available Register */
1240 writel(0, &rxmac->space_avail);
1242 /* Initialize the the mif_ctrl register
1243 * bit 3: Receive code error. One or more nibbles were signaled as
1244 * errors during the reception of the packet. Clear this
1245 * bit in Gigabit, set it in 100Mbit. This was derived
1246 * experimentally at UNH.
1247 * bit 4: Receive CRC error. The packet's CRC did not match the
1248 * internally generated CRC.
1249 * bit 5: Receive length check error. Indicates that frame length
1250 * field value in the packet does not match the actual data
1251 * byte length and is not a type field.
1252 * bit 16: Receive frame truncated.
1253 * bit 17: Drop packet enable
1255 if (phydev && phydev->speed == SPEED_100)
1256 writel(0x30038, &rxmac->mif_ctrl);
1257 else
1258 writel(0x30030, &rxmac->mif_ctrl);
1260 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1261 * filter is always enabled since it is where the runt packets are
1262 * supposed to be dropped. For version A silicon, runt packet
1263 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1264 * but we still leave the packet filter on.
1266 writel(pf_ctrl, &rxmac->pf_ctrl);
1267 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1270 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1272 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1274 /* We need to update the Control Frame Parameters
1275 * cfpt - control frame pause timer set to 64 (0x40)
1276 * cfep - control frame extended pause timer set to 0x0
1278 if (adapter->flowcontrol == FLOW_NONE)
1279 writel(0, &txmac->cf_param);
1280 else
1281 writel(0x40, &txmac->cf_param);
1284 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1286 struct macstat_regs __iomem *macstat =
1287 &adapter->regs->macstat;
1289 /* Next we need to initialize all the macstat registers to zero on
1290 * the device.
1292 writel(0, &macstat->txrx_0_64_byte_frames);
1293 writel(0, &macstat->txrx_65_127_byte_frames);
1294 writel(0, &macstat->txrx_128_255_byte_frames);
1295 writel(0, &macstat->txrx_256_511_byte_frames);
1296 writel(0, &macstat->txrx_512_1023_byte_frames);
1297 writel(0, &macstat->txrx_1024_1518_byte_frames);
1298 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1300 writel(0, &macstat->rx_bytes);
1301 writel(0, &macstat->rx_packets);
1302 writel(0, &macstat->rx_fcs_errs);
1303 writel(0, &macstat->rx_multicast_packets);
1304 writel(0, &macstat->rx_broadcast_packets);
1305 writel(0, &macstat->rx_control_frames);
1306 writel(0, &macstat->rx_pause_frames);
1307 writel(0, &macstat->rx_unknown_opcodes);
1308 writel(0, &macstat->rx_align_errs);
1309 writel(0, &macstat->rx_frame_len_errs);
1310 writel(0, &macstat->rx_code_errs);
1311 writel(0, &macstat->rx_carrier_sense_errs);
1312 writel(0, &macstat->rx_undersize_packets);
1313 writel(0, &macstat->rx_oversize_packets);
1314 writel(0, &macstat->rx_fragment_packets);
1315 writel(0, &macstat->rx_jabbers);
1316 writel(0, &macstat->rx_drops);
1318 writel(0, &macstat->tx_bytes);
1319 writel(0, &macstat->tx_packets);
1320 writel(0, &macstat->tx_multicast_packets);
1321 writel(0, &macstat->tx_broadcast_packets);
1322 writel(0, &macstat->tx_pause_frames);
1323 writel(0, &macstat->tx_deferred);
1324 writel(0, &macstat->tx_excessive_deferred);
1325 writel(0, &macstat->tx_single_collisions);
1326 writel(0, &macstat->tx_multiple_collisions);
1327 writel(0, &macstat->tx_late_collisions);
1328 writel(0, &macstat->tx_excessive_collisions);
1329 writel(0, &macstat->tx_total_collisions);
1330 writel(0, &macstat->tx_pause_honored_frames);
1331 writel(0, &macstat->tx_drops);
1332 writel(0, &macstat->tx_jabbers);
1333 writel(0, &macstat->tx_fcs_errs);
1334 writel(0, &macstat->tx_control_frames);
1335 writel(0, &macstat->tx_oversize_frames);
1336 writel(0, &macstat->tx_undersize_frames);
1337 writel(0, &macstat->tx_fragments);
1338 writel(0, &macstat->carry_reg1);
1339 writel(0, &macstat->carry_reg2);
1341 /* Unmask any counters that we want to track the overflow of.
1342 * Initially this will be all counters. It may become clear later
1343 * that we do not need to track all counters.
1345 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1346 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1349 /* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1350 * @adapter: pointer to our private adapter structure
1351 * @addr: the address of the transceiver
1352 * @reg: the register to read
1353 * @value: pointer to a 16-bit value in which the value will be stored
1355 * Returns 0 on success, errno on failure (as defined in errno.h)
1357 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1358 u8 reg, u16 *value)
1360 struct mac_regs __iomem *mac = &adapter->regs->mac;
1361 int status = 0;
1362 u32 delay = 0;
1363 u32 mii_addr;
1364 u32 mii_cmd;
1365 u32 mii_indicator;
1367 /* Save a local copy of the registers we are dealing with so we can
1368 * set them back
1370 mii_addr = readl(&mac->mii_mgmt_addr);
1371 mii_cmd = readl(&mac->mii_mgmt_cmd);
1373 /* Stop the current operation */
1374 writel(0, &mac->mii_mgmt_cmd);
1376 /* Set up the register we need to read from on the correct PHY */
1377 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1379 writel(0x1, &mac->mii_mgmt_cmd);
1381 do {
1382 udelay(50);
1383 delay++;
1384 mii_indicator = readl(&mac->mii_mgmt_indicator);
1385 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1387 /* If we hit the max delay, we could not read the register */
1388 if (delay == 50) {
1389 dev_warn(&adapter->pdev->dev,
1390 "reg 0x%08x could not be read\n", reg);
1391 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1392 mii_indicator);
1394 status = -EIO;
1397 /* If we hit here we were able to read the register and we need to
1398 * return the value to the caller
1400 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1402 /* Stop the read operation */
1403 writel(0, &mac->mii_mgmt_cmd);
1405 /* set the registers we touched back to the state at which we entered
1406 * this function
1408 writel(mii_addr, &mac->mii_mgmt_addr);
1409 writel(mii_cmd, &mac->mii_mgmt_cmd);
1411 return status;
1414 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1416 struct phy_device *phydev = adapter->phydev;
1418 if (!phydev)
1419 return -EIO;
1421 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1424 /* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
1425 * @adapter: pointer to our private adapter structure
1426 * @reg: the register to read
1427 * @value: 16-bit value to write
1429 * FIXME: one caller in netdev still
1431 * Return 0 on success, errno on failure (as defined in errno.h)
1433 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1435 struct mac_regs __iomem *mac = &adapter->regs->mac;
1436 struct phy_device *phydev = adapter->phydev;
1437 int status = 0;
1438 u8 addr;
1439 u32 delay = 0;
1440 u32 mii_addr;
1441 u32 mii_cmd;
1442 u32 mii_indicator;
1444 if (!phydev)
1445 return -EIO;
1447 addr = phydev->addr;
1449 /* Save a local copy of the registers we are dealing with so we can
1450 * set them back
1452 mii_addr = readl(&mac->mii_mgmt_addr);
1453 mii_cmd = readl(&mac->mii_mgmt_cmd);
1455 /* Stop the current operation */
1456 writel(0, &mac->mii_mgmt_cmd);
1458 /* Set up the register we need to write to on the correct PHY */
1459 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1461 /* Add the value to write to the registers to the mac */
1462 writel(value, &mac->mii_mgmt_ctrl);
1464 do {
1465 udelay(50);
1466 delay++;
1467 mii_indicator = readl(&mac->mii_mgmt_indicator);
1468 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1470 /* If we hit the max delay, we could not write the register */
1471 if (delay == 100) {
1472 u16 tmp;
1474 dev_warn(&adapter->pdev->dev,
1475 "reg 0x%08x could not be written", reg);
1476 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1477 mii_indicator);
1478 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1479 readl(&mac->mii_mgmt_cmd));
1481 et131x_mii_read(adapter, reg, &tmp);
1483 status = -EIO;
1485 /* Stop the write operation */
1486 writel(0, &mac->mii_mgmt_cmd);
1488 /* set the registers we touched back to the state at which we entered
1489 * this function
1491 writel(mii_addr, &mac->mii_mgmt_addr);
1492 writel(mii_cmd, &mac->mii_mgmt_cmd);
1494 return status;
1497 /* Still used from _mac for BIT_READ */
1498 static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1499 u16 action, u16 regnum, u16 bitnum,
1500 u8 *value)
1502 u16 reg;
1503 u16 mask = 1 << bitnum;
1505 /* Read the requested register */
1506 et131x_mii_read(adapter, regnum, &reg);
1508 switch (action) {
1509 case TRUEPHY_BIT_READ:
1510 *value = (reg & mask) >> bitnum;
1511 break;
1513 case TRUEPHY_BIT_SET:
1514 et131x_mii_write(adapter, regnum, reg | mask);
1515 break;
1517 case TRUEPHY_BIT_CLEAR:
1518 et131x_mii_write(adapter, regnum, reg & ~mask);
1519 break;
1521 default:
1522 break;
1526 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1528 struct phy_device *phydev = adapter->phydev;
1530 if (phydev->duplex == DUPLEX_HALF) {
1531 adapter->flowcontrol = FLOW_NONE;
1532 } else {
1533 char remote_pause, remote_async_pause;
1535 et1310_phy_access_mii_bit(adapter,
1536 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1537 et1310_phy_access_mii_bit(adapter,
1538 TRUEPHY_BIT_READ, 5, 11,
1539 &remote_async_pause);
1541 if ((remote_pause == TRUEPHY_BIT_SET) &&
1542 (remote_async_pause == TRUEPHY_BIT_SET)) {
1543 adapter->flowcontrol = adapter->wanted_flow;
1544 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1545 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1546 if (adapter->wanted_flow == FLOW_BOTH)
1547 adapter->flowcontrol = FLOW_BOTH;
1548 else
1549 adapter->flowcontrol = FLOW_NONE;
1550 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1551 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1552 adapter->flowcontrol = FLOW_NONE;
1553 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1554 * remote_async_pause == TRUEPHY_SET_BIT)
1556 if (adapter->wanted_flow == FLOW_BOTH)
1557 adapter->flowcontrol = FLOW_RXONLY;
1558 else
1559 adapter->flowcontrol = FLOW_NONE;
1564 /* et1310_update_macstat_host_counters - Update the local copy of the statistics
1565 * @adapter: pointer to the adapter structure
1567 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1569 struct ce_stats *stats = &adapter->stats;
1570 struct macstat_regs __iomem *macstat =
1571 &adapter->regs->macstat;
1573 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1574 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1575 stats->tx_deferred += readl(&macstat->tx_deferred);
1576 stats->tx_excessive_collisions +=
1577 readl(&macstat->tx_multiple_collisions);
1578 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1579 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1580 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1582 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1583 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1584 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1585 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1586 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1587 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1588 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1591 /* et1310_handle_macstat_interrupt
1592 * @adapter: pointer to the adapter structure
1594 * One of the MACSTAT counters has wrapped. Update the local copy of
1595 * the statistics held in the adapter structure, checking the "wrap"
1596 * bit for each counter.
1598 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1600 u32 carry_reg1;
1601 u32 carry_reg2;
1603 /* Read the interrupt bits from the register(s). These are Clear On
1604 * Write.
1606 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1607 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1609 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1610 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1612 /* We need to do update the host copy of all the MAC_STAT counters.
1613 * For each counter, check it's overflow bit. If the overflow bit is
1614 * set, then increment the host version of the count by one complete
1615 * revolution of the counter. This routine is called when the counter
1616 * block indicates that one of the counters has wrapped.
1618 if (carry_reg1 & (1 << 14))
1619 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1620 if (carry_reg1 & (1 << 8))
1621 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1622 if (carry_reg1 & (1 << 7))
1623 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1624 if (carry_reg1 & (1 << 2))
1625 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1626 if (carry_reg1 & (1 << 6))
1627 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1628 if (carry_reg1 & (1 << 3))
1629 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1630 if (carry_reg1 & (1 << 0))
1631 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1632 if (carry_reg2 & (1 << 16))
1633 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1634 if (carry_reg2 & (1 << 15))
1635 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1636 if (carry_reg2 & (1 << 6))
1637 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1638 if (carry_reg2 & (1 << 8))
1639 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1640 if (carry_reg2 & (1 << 5))
1641 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1642 if (carry_reg2 & (1 << 4))
1643 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1644 if (carry_reg2 & (1 << 2))
1645 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1648 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1650 struct net_device *netdev = bus->priv;
1651 struct et131x_adapter *adapter = netdev_priv(netdev);
1652 u16 value;
1653 int ret;
1655 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1657 if (ret < 0)
1658 return ret;
1659 else
1660 return value;
1663 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1664 int reg, u16 value)
1666 struct net_device *netdev = bus->priv;
1667 struct et131x_adapter *adapter = netdev_priv(netdev);
1669 return et131x_mii_write(adapter, reg, value);
1672 static int et131x_mdio_reset(struct mii_bus *bus)
1674 struct net_device *netdev = bus->priv;
1675 struct et131x_adapter *adapter = netdev_priv(netdev);
1677 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1679 return 0;
1682 /* et1310_phy_power_down - PHY power control
1683 * @adapter: device to control
1684 * @down: true for off/false for back on
1686 * one hundred, ten, one thousand megs
1687 * How would you like to have your LAN accessed
1688 * Can't you see that this code processed
1689 * Phy power, phy power..
1691 static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1693 u16 data;
1695 et131x_mii_read(adapter, MII_BMCR, &data);
1696 data &= ~BMCR_PDOWN;
1697 if (down)
1698 data |= BMCR_PDOWN;
1699 et131x_mii_write(adapter, MII_BMCR, data);
1702 /* et131x_xcvr_init - Init the phy if we are setting it into force mode
1703 * @adapter: pointer to our private adapter structure
1706 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1708 u16 lcr2;
1710 /* Set the LED behavior such that LED 1 indicates speed (off =
1711 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1712 * link and activity (on for link, blink off for activity).
1714 * NOTE: Some customizations have been added here for specific
1715 * vendors; The LED behavior is now determined by vendor data in the
1716 * EEPROM. However, the above description is the default.
1718 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1719 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1721 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1722 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1724 if ((adapter->eeprom_data[1] & 0x8) == 0)
1725 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1726 else
1727 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1729 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1733 /* et131x_configure_global_regs - configure JAGCore global regs
1734 * @adapter: pointer to our adapter structure
1736 * Used to configure the global registers on the JAGCore
1738 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1740 struct global_regs __iomem *regs = &adapter->regs->global;
1742 writel(0, &regs->rxq_start_addr);
1743 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1745 if (adapter->registry_jumbo_packet < 2048) {
1746 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1747 * block of RAM that the driver can split between Tx
1748 * and Rx as it desires. Our default is to split it
1749 * 50/50:
1751 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1752 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1753 } else if (adapter->registry_jumbo_packet < 8192) {
1754 /* For jumbo packets > 2k but < 8k, split 50-50. */
1755 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1756 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1757 } else {
1758 /* 9216 is the only packet size greater than 8k that
1759 * is available. The Tx buffer has to be big enough
1760 * for one whole packet on the Tx side. We'll make
1761 * the Tx 9408, and give the rest to Rx
1763 writel(0x01b3, &regs->rxq_end_addr);
1764 writel(0x01b4, &regs->txq_start_addr);
1767 /* Initialize the loopback register. Disable all loopbacks. */
1768 writel(0, &regs->loopback);
1770 /* MSI Register */
1771 writel(0, &regs->msi_config);
1773 /* By default, disable the watchdog timer. It will be enabled when
1774 * a packet is queued.
1776 writel(0, &regs->watchdog_timer);
1779 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1780 * @adapter: pointer to our adapter structure
1782 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1784 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1785 struct rx_ring *rx_local = &adapter->rx_ring;
1786 struct fbr_desc *fbr_entry;
1787 u32 entry;
1788 u32 psr_num_des;
1789 unsigned long flags;
1790 u8 id;
1792 /* Halt RXDMA to perform the reconfigure. */
1793 et131x_rx_dma_disable(adapter);
1795 /* Load the completion writeback physical address */
1796 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1797 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1799 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1801 /* Set the address and parameters of the packet status ring into the
1802 * 1310's registers
1804 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1805 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1806 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1807 writel(0, &rx_dma->psr_full_offset);
1809 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1810 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1811 &rx_dma->psr_min_des);
1813 spin_lock_irqsave(&adapter->rcv_lock, flags);
1815 /* These local variables track the PSR in the adapter structure */
1816 rx_local->local_psr_full = 0;
1818 for (id = 0; id < NUM_FBRS; id++) {
1819 u32 __iomem *num_des;
1820 u32 __iomem *full_offset;
1821 u32 __iomem *min_des;
1822 u32 __iomem *base_hi;
1823 u32 __iomem *base_lo;
1825 if (id == 0) {
1826 num_des = &rx_dma->fbr0_num_des;
1827 full_offset = &rx_dma->fbr0_full_offset;
1828 min_des = &rx_dma->fbr0_min_des;
1829 base_hi = &rx_dma->fbr0_base_hi;
1830 base_lo = &rx_dma->fbr0_base_lo;
1831 } else {
1832 num_des = &rx_dma->fbr1_num_des;
1833 full_offset = &rx_dma->fbr1_full_offset;
1834 min_des = &rx_dma->fbr1_min_des;
1835 base_hi = &rx_dma->fbr1_base_hi;
1836 base_lo = &rx_dma->fbr1_base_lo;
1839 /* Now's the best time to initialize FBR contents */
1840 fbr_entry =
1841 (struct fbr_desc *) rx_local->fbr[id]->ring_virtaddr;
1842 for (entry = 0;
1843 entry < rx_local->fbr[id]->num_entries; entry++) {
1844 fbr_entry->addr_hi = rx_local->fbr[id]->bus_high[entry];
1845 fbr_entry->addr_lo = rx_local->fbr[id]->bus_low[entry];
1846 fbr_entry->word2 = entry;
1847 fbr_entry++;
1850 /* Set the address and parameters of Free buffer ring 1 and 0
1851 * into the 1310's registers
1853 writel(upper_32_bits(rx_local->fbr[id]->ring_physaddr),
1854 base_hi);
1855 writel(lower_32_bits(rx_local->fbr[id]->ring_physaddr),
1856 base_lo);
1857 writel(rx_local->fbr[id]->num_entries - 1, num_des);
1858 writel(ET_DMA10_WRAP, full_offset);
1860 /* This variable tracks the free buffer ring 1 full position,
1861 * so it has to match the above.
1863 rx_local->fbr[id]->local_full = ET_DMA10_WRAP;
1864 writel(((rx_local->fbr[id]->num_entries *
1865 LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1866 min_des);
1869 /* Program the number of packets we will receive before generating an
1870 * interrupt.
1871 * For version B silicon, this value gets updated once autoneg is
1872 *complete.
1874 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1876 /* The "time_done" is not working correctly to coalesce interrupts
1877 * after a given time period, but rather is giving us an interrupt
1878 * regardless of whether we have received packets.
1879 * This value gets updated once autoneg is complete.
1881 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1883 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1886 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1887 * @adapter: pointer to our private adapter structure
1889 * Configure the transmit engine with the ring buffers we have created
1890 * and prepare it for use.
1892 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1894 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1896 /* Load the hardware with the start of the transmit descriptor ring. */
1897 writel(upper_32_bits(adapter->tx_ring.tx_desc_ring_pa),
1898 &txdma->pr_base_hi);
1899 writel(lower_32_bits(adapter->tx_ring.tx_desc_ring_pa),
1900 &txdma->pr_base_lo);
1902 /* Initialise the transmit DMA engine */
1903 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1905 /* Load the completion writeback physical address */
1906 writel(upper_32_bits(adapter->tx_ring.tx_status_pa),
1907 &txdma->dma_wb_base_hi);
1908 writel(lower_32_bits(adapter->tx_ring.tx_status_pa),
1909 &txdma->dma_wb_base_lo);
1911 *adapter->tx_ring.tx_status = 0;
1913 writel(0, &txdma->service_request);
1914 adapter->tx_ring.send_idx = 0;
1917 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1918 * @adapter: pointer to our private adapter structure
1920 * Returns 0 on success, errno on failure (as defined in errno.h)
1922 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1924 /* Configure the JAGCore */
1925 et131x_configure_global_regs(adapter);
1927 et1310_config_mac_regs1(adapter);
1929 /* Configure the MMC registers */
1930 /* All we need to do is initialize the Memory Control Register */
1931 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1933 et1310_config_rxmac_regs(adapter);
1934 et1310_config_txmac_regs(adapter);
1936 et131x_config_rx_dma_regs(adapter);
1937 et131x_config_tx_dma_regs(adapter);
1939 et1310_config_macstat_regs(adapter);
1941 et1310_phy_power_down(adapter, 0);
1942 et131x_xcvr_init(adapter);
1945 /* et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
1946 * @adapter: pointer to our private adapter structure
1948 static void et131x_soft_reset(struct et131x_adapter *adapter)
1950 u32 reg;
1952 /* Disable MAC Core */
1953 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1954 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1955 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1956 writel(reg, &adapter->regs->mac.cfg1);
1958 reg = ET_RESET_ALL;
1959 writel(reg, &adapter->regs->global.sw_reset);
1961 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1962 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1963 writel(reg, &adapter->regs->mac.cfg1);
1964 writel(0, &adapter->regs->mac.cfg1);
1967 /* et131x_enable_interrupts - enable interrupt
1968 * @adapter: et131x device
1970 * Enable the appropriate interrupts on the ET131x according to our
1971 * configuration
1973 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1975 u32 mask;
1977 /* Enable all global interrupts */
1978 if (adapter->flowcontrol == FLOW_TXONLY ||
1979 adapter->flowcontrol == FLOW_BOTH)
1980 mask = INT_MASK_ENABLE;
1981 else
1982 mask = INT_MASK_ENABLE_NO_FLOW;
1984 writel(mask, &adapter->regs->global.int_mask);
1987 /* et131x_disable_interrupts - interrupt disable
1988 * @adapter: et131x device
1990 * Block all interrupts from the et131x device at the device itself
1992 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1994 /* Disable all global interrupts */
1995 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1998 /* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
1999 * @adapter: pointer to our adapter structure
2001 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2003 /* Setup the tramsmit dma configuration register */
2004 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
2005 &adapter->regs->txdma.csr);
2008 /* et131x_enable_txrx - Enable tx/rx queues
2009 * @netdev: device to be enabled
2011 static void et131x_enable_txrx(struct net_device *netdev)
2013 struct et131x_adapter *adapter = netdev_priv(netdev);
2015 /* Enable the Tx and Rx DMA engines (if not already enabled) */
2016 et131x_rx_dma_enable(adapter);
2017 et131x_tx_dma_enable(adapter);
2019 /* Enable device interrupts */
2020 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
2021 et131x_enable_interrupts(adapter);
2023 /* We're ready to move some data, so start the queue */
2024 netif_start_queue(netdev);
2027 /* et131x_disable_txrx - Disable tx/rx queues
2028 * @netdev: device to be disabled
2030 static void et131x_disable_txrx(struct net_device *netdev)
2032 struct et131x_adapter *adapter = netdev_priv(netdev);
2034 /* First thing is to stop the queue */
2035 netif_stop_queue(netdev);
2037 /* Stop the Tx and Rx DMA engines */
2038 et131x_rx_dma_disable(adapter);
2039 et131x_tx_dma_disable(adapter);
2041 /* Disable device interrupts */
2042 et131x_disable_interrupts(adapter);
2045 /* et131x_init_send - Initialize send data structures
2046 * @adapter: pointer to our private adapter structure
2048 static void et131x_init_send(struct et131x_adapter *adapter)
2050 struct tcb *tcb;
2051 u32 ct;
2052 struct tx_ring *tx_ring;
2054 /* Setup some convenience pointers */
2055 tx_ring = &adapter->tx_ring;
2056 tcb = adapter->tx_ring.tcb_ring;
2058 tx_ring->tcb_qhead = tcb;
2060 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2062 /* Go through and set up each TCB */
2063 for (ct = 0; ct++ < NUM_TCB; tcb++)
2064 /* Set the link pointer in HW TCB to the next TCB in the
2065 * chain
2067 tcb->next = tcb + 1;
2069 /* Set the tail pointer */
2070 tcb--;
2071 tx_ring->tcb_qtail = tcb;
2072 tcb->next = NULL;
2073 /* Curr send queue should now be empty */
2074 tx_ring->send_head = NULL;
2075 tx_ring->send_tail = NULL;
2078 /* et1310_enable_phy_coma - called when network cable is unplugged
2079 * @adapter: pointer to our adapter structure
2081 * driver receive an phy status change interrupt while in D0 and check that
2082 * phy_status is down.
2084 * -- gate off JAGCore;
2085 * -- set gigE PHY in Coma mode
2086 * -- wake on phy_interrupt; Perform software reset JAGCore,
2087 * re-initialize jagcore and gigE PHY
2089 * Add D0-ASPM-PhyLinkDown Support:
2090 * -- while in D0, when there is a phy_interrupt indicating phy link
2091 * down status, call the MPSetPhyComa routine to enter this active
2092 * state power saving mode
2093 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2094 * indicating linkup status, call the MPDisablePhyComa routine to
2095 * restore JAGCore and gigE PHY
2097 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2099 unsigned long flags;
2100 u32 pmcsr;
2102 pmcsr = readl(&adapter->regs->global.pm_csr);
2104 /* Save the GbE PHY speed and duplex modes. Need to restore this
2105 * when cable is plugged back in
2107 /* TODO - when PM is re-enabled, check if we need to
2108 * perform a similar task as this -
2109 * adapter->pdown_speed = adapter->ai_force_speed;
2110 * adapter->pdown_duplex = adapter->ai_force_duplex;
2113 /* Stop sending packets. */
2114 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2115 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
2116 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2118 /* Wait for outstanding Receive packets */
2120 et131x_disable_txrx(adapter->netdev);
2122 /* Gate off JAGCore 3 clock domains */
2123 pmcsr &= ~ET_PMCSR_INIT;
2124 writel(pmcsr, &adapter->regs->global.pm_csr);
2126 /* Program gigE PHY in to Coma mode */
2127 pmcsr |= ET_PM_PHY_SW_COMA;
2128 writel(pmcsr, &adapter->regs->global.pm_csr);
2131 /* et1310_disable_phy_coma - Disable the Phy Coma Mode
2132 * @adapter: pointer to our adapter structure
2134 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2136 u32 pmcsr;
2138 pmcsr = readl(&adapter->regs->global.pm_csr);
2140 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2141 pmcsr |= ET_PMCSR_INIT;
2142 pmcsr &= ~ET_PM_PHY_SW_COMA;
2143 writel(pmcsr, &adapter->regs->global.pm_csr);
2145 /* Restore the GbE PHY speed and duplex modes;
2146 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2148 /* TODO - when PM is re-enabled, check if we need to
2149 * perform a similar task as this -
2150 * adapter->ai_force_speed = adapter->pdown_speed;
2151 * adapter->ai_force_duplex = adapter->pdown_duplex;
2154 /* Re-initialize the send structures */
2155 et131x_init_send(adapter);
2157 /* Bring the device back to the state it was during init prior to
2158 * autonegotiation being complete. This way, when we get the auto-neg
2159 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2161 et131x_soft_reset(adapter);
2163 /* setup et1310 as per the documentation ?? */
2164 et131x_adapter_setup(adapter);
2166 /* Allow Tx to restart */
2167 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
2169 et131x_enable_txrx(adapter->netdev);
2172 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2174 u32 tmp_free_buff_ring = *free_buff_ring;
2175 tmp_free_buff_ring++;
2176 /* This works for all cases where limit < 1024. The 1023 case
2177 * works because 1023++ is 1024 which means the if condition is not
2178 * taken but the carry of the bit into the wrap bit toggles the wrap
2179 * value correctly
2181 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2182 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2183 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2185 /* For the 1023 case */
2186 tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2187 *free_buff_ring = tmp_free_buff_ring;
2188 return tmp_free_buff_ring;
2191 /* et131x_rx_dma_memory_alloc
2192 * @adapter: pointer to our private adapter structure
2194 * Returns 0 on success and errno on failure (as defined in errno.h)
2196 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2197 * and the Packet Status Ring.
2199 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2201 u8 id;
2202 u32 i, j;
2203 u32 bufsize;
2204 u32 pktstat_ringsize;
2205 u32 fbr_chunksize;
2206 struct rx_ring *rx_ring;
2208 /* Setup some convenience pointers */
2209 rx_ring = &adapter->rx_ring;
2211 /* Alloc memory for the lookup table */
2212 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2213 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2215 /* The first thing we will do is configure the sizes of the buffer
2216 * rings. These will change based on jumbo packet support. Larger
2217 * jumbo packets increases the size of each entry in FBR0, and the
2218 * number of entries in FBR0, while at the same time decreasing the
2219 * number of entries in FBR1.
2221 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2222 * entries are huge in order to accommodate a "jumbo" frame, then it
2223 * will have less entries. Conversely, FBR1 will now be relied upon
2224 * to carry more "normal" frames, thus it's entry size also increases
2225 * and the number of entries goes up too (since it now carries
2226 * "small" + "regular" packets.
2228 * In this scheme, we try to maintain 512 entries between the two
2229 * rings. Also, FBR1 remains a constant size - when it's size doubles
2230 * the number of entries halves. FBR0 increases in size, however.
2233 if (adapter->registry_jumbo_packet < 2048) {
2234 rx_ring->fbr[0]->buffsize = 256;
2235 rx_ring->fbr[0]->num_entries = 512;
2236 rx_ring->fbr[1]->buffsize = 2048;
2237 rx_ring->fbr[1]->num_entries = 512;
2238 } else if (adapter->registry_jumbo_packet < 4096) {
2239 rx_ring->fbr[0]->buffsize = 512;
2240 rx_ring->fbr[0]->num_entries = 1024;
2241 rx_ring->fbr[1]->buffsize = 4096;
2242 rx_ring->fbr[1]->num_entries = 512;
2243 } else {
2244 rx_ring->fbr[0]->buffsize = 1024;
2245 rx_ring->fbr[0]->num_entries = 768;
2246 rx_ring->fbr[1]->buffsize = 16384;
2247 rx_ring->fbr[1]->num_entries = 128;
2250 adapter->rx_ring.psr_num_entries =
2251 adapter->rx_ring.fbr[0]->num_entries +
2252 adapter->rx_ring.fbr[1]->num_entries;
2254 for (id = 0; id < NUM_FBRS; id++) {
2255 /* Allocate an area of memory for Free Buffer Ring */
2256 bufsize =
2257 (sizeof(struct fbr_desc) * rx_ring->fbr[id]->num_entries);
2258 rx_ring->fbr[id]->ring_virtaddr =
2259 dma_alloc_coherent(&adapter->pdev->dev,
2260 bufsize,
2261 &rx_ring->fbr[id]->ring_physaddr,
2262 GFP_KERNEL);
2263 if (!rx_ring->fbr[id]->ring_virtaddr) {
2264 dev_err(&adapter->pdev->dev,
2265 "Cannot alloc memory for Free Buffer Ring %d\n", id);
2266 return -ENOMEM;
2270 for (id = 0; id < NUM_FBRS; id++) {
2271 fbr_chunksize = (FBR_CHUNKS * rx_ring->fbr[id]->buffsize);
2273 for (i = 0;
2274 i < (rx_ring->fbr[id]->num_entries / FBR_CHUNKS); i++) {
2275 dma_addr_t fbr_tmp_physaddr;
2277 rx_ring->fbr[id]->mem_virtaddrs[i] = dma_alloc_coherent(
2278 &adapter->pdev->dev, fbr_chunksize,
2279 &rx_ring->fbr[id]->mem_physaddrs[i],
2280 GFP_KERNEL);
2282 if (!rx_ring->fbr[id]->mem_virtaddrs[i]) {
2283 dev_err(&adapter->pdev->dev,
2284 "Could not alloc memory\n");
2285 return -ENOMEM;
2288 /* See NOTE in "Save Physical Address" comment above */
2289 fbr_tmp_physaddr = rx_ring->fbr[id]->mem_physaddrs[i];
2291 for (j = 0; j < FBR_CHUNKS; j++) {
2292 u32 index = (i * FBR_CHUNKS) + j;
2294 /* Save the Virtual address of this index for
2295 * quick access later
2297 rx_ring->fbr[id]->virt[index] =
2298 (u8 *) rx_ring->fbr[id]->mem_virtaddrs[i] +
2299 (j * rx_ring->fbr[id]->buffsize);
2301 /* now store the physical address in the
2302 * descriptor so the device can access it
2304 rx_ring->fbr[id]->bus_high[index] =
2305 upper_32_bits(fbr_tmp_physaddr);
2306 rx_ring->fbr[id]->bus_low[index] =
2307 lower_32_bits(fbr_tmp_physaddr);
2309 fbr_tmp_physaddr += rx_ring->fbr[id]->buffsize;
2314 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2315 pktstat_ringsize =
2316 sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2318 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2319 pktstat_ringsize,
2320 &rx_ring->ps_ring_physaddr,
2321 GFP_KERNEL);
2323 if (!rx_ring->ps_ring_virtaddr) {
2324 dev_err(&adapter->pdev->dev,
2325 "Cannot alloc memory for Packet Status Ring\n");
2326 return -ENOMEM;
2328 pr_info("Packet Status Ring %llx\n",
2329 (unsigned long long) rx_ring->ps_ring_physaddr);
2331 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2332 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2333 * are ever returned, make sure the high part is retrieved here before
2334 * storing the adjusted address.
2337 /* Allocate an area of memory for writeback of status information */
2338 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2339 sizeof(struct rx_status_block),
2340 &rx_ring->rx_status_bus,
2341 GFP_KERNEL);
2342 if (!rx_ring->rx_status_block) {
2343 dev_err(&adapter->pdev->dev,
2344 "Cannot alloc memory for Status Block\n");
2345 return -ENOMEM;
2347 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2348 pr_info("PRS %llx\n", (unsigned long long)rx_ring->rx_status_bus);
2350 /* The RFDs are going to be put on lists later on, so initialize the
2351 * lists now.
2353 INIT_LIST_HEAD(&rx_ring->recv_list);
2354 return 0;
2357 /* et131x_rx_dma_memory_free - Free all memory allocated within this module.
2358 * @adapter: pointer to our private adapter structure
2360 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2362 u8 id;
2363 u32 index;
2364 u32 bufsize;
2365 u32 pktstat_ringsize;
2366 struct rfd *rfd;
2367 struct rx_ring *rx_ring;
2369 /* Setup some convenience pointers */
2370 rx_ring = &adapter->rx_ring;
2372 /* Free RFDs and associated packet descriptors */
2373 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2375 while (!list_empty(&rx_ring->recv_list)) {
2376 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2377 struct rfd, list_node);
2379 list_del(&rfd->list_node);
2380 rfd->skb = NULL;
2381 kfree(rfd);
2384 /* Free Free Buffer Rings */
2385 for (id = 0; id < NUM_FBRS; id++) {
2386 if (!rx_ring->fbr[id]->ring_virtaddr)
2387 continue;
2389 /* First the packet memory */
2390 for (index = 0;
2391 index < (rx_ring->fbr[id]->num_entries / FBR_CHUNKS);
2392 index++) {
2393 if (rx_ring->fbr[id]->mem_virtaddrs[index]) {
2394 bufsize =
2395 rx_ring->fbr[id]->buffsize * FBR_CHUNKS;
2397 dma_free_coherent(&adapter->pdev->dev,
2398 bufsize,
2399 rx_ring->fbr[id]->mem_virtaddrs[index],
2400 rx_ring->fbr[id]->mem_physaddrs[index]);
2402 rx_ring->fbr[id]->mem_virtaddrs[index] = NULL;
2406 bufsize =
2407 sizeof(struct fbr_desc) * rx_ring->fbr[id]->num_entries;
2409 dma_free_coherent(&adapter->pdev->dev, bufsize,
2410 rx_ring->fbr[id]->ring_virtaddr,
2411 rx_ring->fbr[id]->ring_physaddr);
2413 rx_ring->fbr[id]->ring_virtaddr = NULL;
2416 /* Free Packet Status Ring */
2417 if (rx_ring->ps_ring_virtaddr) {
2418 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
2419 adapter->rx_ring.psr_num_entries;
2421 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2422 rx_ring->ps_ring_virtaddr,
2423 rx_ring->ps_ring_physaddr);
2425 rx_ring->ps_ring_virtaddr = NULL;
2428 /* Free area of memory for the writeback of status information */
2429 if (rx_ring->rx_status_block) {
2430 dma_free_coherent(&adapter->pdev->dev,
2431 sizeof(struct rx_status_block),
2432 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2433 rx_ring->rx_status_block = NULL;
2436 /* Free the FBR Lookup Table */
2437 kfree(rx_ring->fbr[0]);
2438 kfree(rx_ring->fbr[1]);
2440 /* Reset Counters */
2441 rx_ring->num_ready_recv = 0;
2444 /* et131x_init_recv - Initialize receive data structures.
2445 * @adapter: pointer to our private adapter structure
2447 * Returns 0 on success and errno on failure (as defined in errno.h)
2449 static int et131x_init_recv(struct et131x_adapter *adapter)
2451 struct rfd *rfd;
2452 u32 rfdct;
2453 u32 numrfd = 0;
2454 struct rx_ring *rx_ring;
2456 /* Setup some convenience pointers */
2457 rx_ring = &adapter->rx_ring;
2459 /* Setup each RFD */
2460 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2461 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
2462 if (!rfd)
2463 return -ENOMEM;
2465 rfd->skb = NULL;
2467 /* Add this RFD to the recv_list */
2468 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2470 /* Increment both the available RFD's, and the total RFD's. */
2471 rx_ring->num_ready_recv++;
2472 numrfd++;
2475 return 0;
2478 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2479 * @adapter: pointer to our adapter structure
2481 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2483 struct phy_device *phydev = adapter->phydev;
2485 if (!phydev)
2486 return;
2488 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2489 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2491 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2492 writel(0, &adapter->regs->rxdma.max_pkt_time);
2493 writel(1, &adapter->regs->rxdma.num_pkt_done);
2497 /* NICReturnRFD - Recycle a RFD and put it back onto the receive list
2498 * @adapter: pointer to our adapter
2499 * @rfd: pointer to the RFD
2501 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2503 struct rx_ring *rx_local = &adapter->rx_ring;
2504 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2505 u16 buff_index = rfd->bufferindex;
2506 u8 ring_index = rfd->ringindex;
2507 unsigned long flags;
2509 /* We don't use any of the OOB data besides status. Otherwise, we
2510 * need to clean up OOB data
2512 if (buff_index < rx_local->fbr[ring_index]->num_entries) {
2513 u32 __iomem *offset;
2514 struct fbr_desc *next;
2516 spin_lock_irqsave(&adapter->fbr_lock, flags);
2518 if (ring_index == 0)
2519 offset = &rx_dma->fbr0_full_offset;
2520 else
2521 offset = &rx_dma->fbr1_full_offset;
2523 next = (struct fbr_desc *)
2524 (rx_local->fbr[ring_index]->ring_virtaddr) +
2525 INDEX10(rx_local->fbr[ring_index]->local_full);
2527 /* Handle the Free Buffer Ring advancement here. Write
2528 * the PA / Buffer Index for the returned buffer into
2529 * the oldest (next to be freed)FBR entry
2531 next->addr_hi = rx_local->fbr[ring_index]->bus_high[buff_index];
2532 next->addr_lo = rx_local->fbr[ring_index]->bus_low[buff_index];
2533 next->word2 = buff_index;
2535 writel(bump_free_buff_ring(
2536 &rx_local->fbr[ring_index]->local_full,
2537 rx_local->fbr[ring_index]->num_entries - 1),
2538 offset);
2540 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2541 } else {
2542 dev_err(&adapter->pdev->dev,
2543 "%s illegal Buffer Index returned\n", __func__);
2546 /* The processing on this RFD is done, so put it back on the tail of
2547 * our list
2549 spin_lock_irqsave(&adapter->rcv_lock, flags);
2550 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2551 rx_local->num_ready_recv++;
2552 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2554 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2557 /* nic_rx_pkts - Checks the hardware for available packets
2558 * @adapter: pointer to our adapter
2560 * Returns rfd, a pointer to our MPRFD.
2562 * Checks the hardware for available packets, using completion ring
2563 * If packets are available, it gets an RFD from the recv_list, attaches
2564 * the packet to it, puts the RFD in the RecvPendList, and also returns
2565 * the pointer to the RFD.
2567 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2569 struct rx_ring *rx_local = &adapter->rx_ring;
2570 struct rx_status_block *status;
2571 struct pkt_stat_desc *psr;
2572 struct rfd *rfd;
2573 u32 i;
2574 u8 *buf;
2575 unsigned long flags;
2576 struct list_head *element;
2577 u8 ring_index;
2578 u16 buff_index;
2579 u32 len;
2580 u32 word0;
2581 u32 word1;
2582 struct sk_buff *skb;
2584 /* RX Status block is written by the DMA engine prior to every
2585 * interrupt. It contains the next to be used entry in the Packet
2586 * Status Ring, and also the two Free Buffer rings.
2588 status = rx_local->rx_status_block;
2589 word1 = status->word1 >> 16; /* Get the useful bits */
2591 /* Check the PSR and wrap bits do not match */
2592 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2593 return NULL; /* Looks like this ring is not updated yet */
2595 /* The packet status ring indicates that data is available. */
2596 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2597 (rx_local->local_psr_full & 0xFFF);
2599 /* Grab any information that is required once the PSR is advanced,
2600 * since we can no longer rely on the memory being accurate
2602 len = psr->word1 & 0xFFFF;
2603 ring_index = (psr->word1 >> 26) & 0x03;
2604 buff_index = (psr->word1 >> 16) & 0x3FF;
2605 word0 = psr->word0;
2607 /* Indicate that we have used this PSR entry. */
2608 /* FIXME wrap 12 */
2609 add_12bit(&rx_local->local_psr_full, 1);
2610 if (
2611 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2612 /* Clear psr full and toggle the wrap bit */
2613 rx_local->local_psr_full &= ~0xFFF;
2614 rx_local->local_psr_full ^= 0x1000;
2617 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2619 if (ring_index > 1 ||
2620 buff_index > rx_local->fbr[ring_index]->num_entries - 1) {
2621 /* Illegal buffer or ring index cannot be used by S/W*/
2622 dev_err(&adapter->pdev->dev,
2623 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2624 rx_local->local_psr_full & 0xFFF, len, buff_index);
2625 return NULL;
2628 /* Get and fill the RFD. */
2629 spin_lock_irqsave(&adapter->rcv_lock, flags);
2631 element = rx_local->recv_list.next;
2632 rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2634 if (!rfd) {
2635 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2636 return NULL;
2639 list_del(&rfd->list_node);
2640 rx_local->num_ready_recv--;
2642 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2644 rfd->bufferindex = buff_index;
2645 rfd->ringindex = ring_index;
2647 /* In V1 silicon, there is a bug which screws up filtering of runt
2648 * packets. Therefore runt packet filtering is disabled in the MAC and
2649 * the packets are dropped here. They are also counted here.
2651 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2652 adapter->stats.rx_other_errs++;
2653 len = 0;
2656 if (len == 0) {
2657 rfd->len = 0;
2658 goto out;
2661 /* Determine if this is a multicast packet coming in */
2662 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2663 !(word0 & ALCATEL_BROADCAST_PKT)) {
2664 /* Promiscuous mode and Multicast mode are not mutually
2665 * exclusive as was first thought. I guess Promiscuous is just
2666 * considered a super-set of the other filters. Generally filter
2667 * is 0x2b when in promiscuous mode.
2669 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2670 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2671 && !(adapter->packet_filter &
2672 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
2673 buf = rx_local->fbr[ring_index]->virt[buff_index];
2675 /* Loop through our list to see if the destination
2676 * address of this packet matches one in our list.
2678 for (i = 0; i < adapter->multicast_addr_count; i++) {
2679 if (buf[0] == adapter->multicast_list[i][0]
2680 && buf[1] == adapter->multicast_list[i][1]
2681 && buf[2] == adapter->multicast_list[i][2]
2682 && buf[3] == adapter->multicast_list[i][3]
2683 && buf[4] == adapter->multicast_list[i][4]
2684 && buf[5] == adapter->multicast_list[i][5]) {
2685 break;
2689 /* If our index is equal to the number of Multicast
2690 * address we have, then this means we did not find this
2691 * packet's matching address in our list. Set the len to
2692 * zero, so we free our RFD when we return from this
2693 * function.
2695 if (i == adapter->multicast_addr_count)
2696 len = 0;
2699 if (len > 0)
2700 adapter->stats.multicast_pkts_rcvd++;
2701 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2702 adapter->stats.broadcast_pkts_rcvd++;
2703 } else {
2704 /* Not sure what this counter measures in promiscuous mode.
2705 * Perhaps we should check the MAC address to see if it is
2706 * directed to us in promiscuous mode.
2708 adapter->stats.unicast_pkts_rcvd++;
2711 if (len == 0) {
2712 rfd->len = 0;
2713 goto out;
2716 rfd->len = len;
2718 skb = dev_alloc_skb(rfd->len + 2);
2719 if (!skb) {
2720 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2721 return NULL;
2724 adapter->net_stats.rx_bytes += rfd->len;
2726 memcpy(skb_put(skb, rfd->len),
2727 rx_local->fbr[ring_index]->virt[buff_index],
2728 rfd->len);
2730 skb->protocol = eth_type_trans(skb, adapter->netdev);
2731 skb->ip_summed = CHECKSUM_NONE;
2732 netif_rx_ni(skb);
2734 out:
2735 nic_return_rfd(adapter, rfd);
2736 return rfd;
2739 /* et131x_handle_recv_interrupt - Interrupt handler for receive processing
2740 * @adapter: pointer to our adapter
2742 * Assumption, Rcv spinlock has been acquired.
2744 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
2746 struct rfd *rfd = NULL;
2747 u32 count = 0;
2748 bool done = true;
2750 /* Process up to available RFD's */
2751 while (count < NUM_PACKETS_HANDLED) {
2752 if (list_empty(&adapter->rx_ring.recv_list)) {
2753 WARN_ON(adapter->rx_ring.num_ready_recv != 0);
2754 done = false;
2755 break;
2758 rfd = nic_rx_pkts(adapter);
2760 if (rfd == NULL)
2761 break;
2763 /* Do not receive any packets until a filter has been set.
2764 * Do not receive any packets until we have link.
2765 * If length is zero, return the RFD in order to advance the
2766 * Free buffer ring.
2768 if (!adapter->packet_filter ||
2769 !netif_carrier_ok(adapter->netdev) ||
2770 rfd->len == 0)
2771 continue;
2773 /* Increment the number of packets we received */
2774 adapter->net_stats.rx_packets++;
2776 /* Set the status on the packet, either resources or success */
2777 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK)
2778 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2780 count++;
2783 if (count == NUM_PACKETS_HANDLED || !done) {
2784 adapter->rx_ring.unfinished_receives = true;
2785 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2786 &adapter->regs->global.watchdog_timer);
2787 } else
2788 /* Watchdog timer will disable itself if appropriate. */
2789 adapter->rx_ring.unfinished_receives = false;
2792 /* et131x_tx_dma_memory_alloc
2793 * @adapter: pointer to our private adapter structure
2795 * Returns 0 on success and errno on failure (as defined in errno.h).
2797 * Allocates memory that will be visible both to the device and to the CPU.
2798 * The OS will pass us packets, pointers to which we will insert in the Tx
2799 * Descriptor queue. The device will read this queue to find the packets in
2800 * memory. The device will update the "status" in memory each time it xmits a
2801 * packet.
2803 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2805 int desc_size = 0;
2806 struct tx_ring *tx_ring = &adapter->tx_ring;
2808 /* Allocate memory for the TCB's (Transmit Control Block) */
2809 adapter->tx_ring.tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2810 GFP_ATOMIC | GFP_DMA);
2811 if (!adapter->tx_ring.tcb_ring)
2812 return -ENOMEM;
2814 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2815 tx_ring->tx_desc_ring =
2816 (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
2817 desc_size,
2818 &tx_ring->tx_desc_ring_pa,
2819 GFP_KERNEL);
2820 if (!adapter->tx_ring.tx_desc_ring) {
2821 dev_err(&adapter->pdev->dev,
2822 "Cannot alloc memory for Tx Ring\n");
2823 return -ENOMEM;
2826 /* Save physical address
2828 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2829 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2830 * are ever returned, make sure the high part is retrieved here before
2831 * storing the adjusted address.
2833 /* Allocate memory for the Tx status block */
2834 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2835 sizeof(u32),
2836 &tx_ring->tx_status_pa,
2837 GFP_KERNEL);
2838 if (!adapter->tx_ring.tx_status_pa) {
2839 dev_err(&adapter->pdev->dev,
2840 "Cannot alloc memory for Tx status block\n");
2841 return -ENOMEM;
2843 return 0;
2846 /* et131x_tx_dma_memory_free - Free all memory allocated within this module
2847 * @adapter: pointer to our private adapter structure
2849 * Returns 0 on success and errno on failure (as defined in errno.h).
2851 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2853 int desc_size = 0;
2855 if (adapter->tx_ring.tx_desc_ring) {
2856 /* Free memory relating to Tx rings here */
2857 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2858 dma_free_coherent(&adapter->pdev->dev,
2859 desc_size,
2860 adapter->tx_ring.tx_desc_ring,
2861 adapter->tx_ring.tx_desc_ring_pa);
2862 adapter->tx_ring.tx_desc_ring = NULL;
2865 /* Free memory for the Tx status block */
2866 if (adapter->tx_ring.tx_status) {
2867 dma_free_coherent(&adapter->pdev->dev,
2868 sizeof(u32),
2869 adapter->tx_ring.tx_status,
2870 adapter->tx_ring.tx_status_pa);
2872 adapter->tx_ring.tx_status = NULL;
2874 /* Free the memory for the tcb structures */
2875 kfree(adapter->tx_ring.tcb_ring);
2878 /* nic_send_packet - NIC specific send handler for version B silicon.
2879 * @adapter: pointer to our adapter
2880 * @tcb: pointer to struct tcb
2882 * Returns 0 or errno.
2884 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2886 u32 i;
2887 struct tx_desc desc[24]; /* 24 x 16 byte */
2888 u32 frag = 0;
2889 u32 thiscopy, remainder;
2890 struct sk_buff *skb = tcb->skb;
2891 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2892 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2893 unsigned long flags;
2894 struct phy_device *phydev = adapter->phydev;
2895 dma_addr_t dma_addr;
2897 /* Part of the optimizations of this send routine restrict us to
2898 * sending 24 fragments at a pass. In practice we should never see
2899 * more than 5 fragments.
2901 * NOTE: The older version of this function (below) can handle any
2902 * number of fragments. If needed, we can call this function,
2903 * although it is less efficient.
2906 /* nr_frags should be no more than 18. */
2907 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2909 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2911 for (i = 0; i < nr_frags; i++) {
2912 /* If there is something in this element, lets get a
2913 * descriptor from the ring and get the necessary data
2915 if (i == 0) {
2916 /* If the fragments are smaller than a standard MTU,
2917 * then map them to a single descriptor in the Tx
2918 * Desc ring. However, if they're larger, as is
2919 * possible with support for jumbo packets, then
2920 * split them each across 2 descriptors.
2922 * This will work until we determine why the hardware
2923 * doesn't seem to like large fragments.
2925 if (skb_headlen(skb) <= 1514) {
2926 /* Low 16bits are length, high is vlan and
2927 * unused currently so zero
2929 desc[frag].len_vlan = skb_headlen(skb);
2930 dma_addr = dma_map_single(&adapter->pdev->dev,
2931 skb->data,
2932 skb_headlen(skb),
2933 DMA_TO_DEVICE);
2934 desc[frag].addr_lo = lower_32_bits(dma_addr);
2935 desc[frag].addr_hi = upper_32_bits(dma_addr);
2936 frag++;
2937 } else {
2938 desc[frag].len_vlan = skb_headlen(skb) / 2;
2939 dma_addr = dma_map_single(&adapter->pdev->dev,
2940 skb->data,
2941 (skb_headlen(skb) / 2),
2942 DMA_TO_DEVICE);
2943 desc[frag].addr_lo = lower_32_bits(dma_addr);
2944 desc[frag].addr_hi = upper_32_bits(dma_addr);
2945 frag++;
2947 desc[frag].len_vlan = skb_headlen(skb) / 2;
2948 dma_addr = dma_map_single(&adapter->pdev->dev,
2949 skb->data +
2950 (skb_headlen(skb) / 2),
2951 (skb_headlen(skb) / 2),
2952 DMA_TO_DEVICE);
2953 desc[frag].addr_lo = lower_32_bits(dma_addr);
2954 desc[frag].addr_hi = upper_32_bits(dma_addr);
2955 frag++;
2957 } else {
2958 desc[frag].len_vlan = frags[i - 1].size;
2959 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2960 &frags[i - 1],
2962 frags[i - 1].size,
2963 DMA_TO_DEVICE);
2964 desc[frag].addr_lo = lower_32_bits(dma_addr);
2965 desc[frag].addr_hi = upper_32_bits(dma_addr);
2966 frag++;
2970 if (phydev && phydev->speed == SPEED_1000) {
2971 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
2972 /* Last element & Interrupt flag */
2973 desc[frag - 1].flags =
2974 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2975 adapter->tx_ring.since_irq = 0;
2976 } else { /* Last element */
2977 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2979 } else
2980 desc[frag - 1].flags =
2981 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2983 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2985 tcb->index_start = adapter->tx_ring.send_idx;
2986 tcb->stale = 0;
2988 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2990 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(adapter->tx_ring.send_idx);
2992 if (thiscopy >= frag) {
2993 remainder = 0;
2994 thiscopy = frag;
2995 } else {
2996 remainder = frag - thiscopy;
2999 memcpy(adapter->tx_ring.tx_desc_ring +
3000 INDEX10(adapter->tx_ring.send_idx), desc,
3001 sizeof(struct tx_desc) * thiscopy);
3003 add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3005 if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3006 INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3007 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3008 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3011 if (remainder) {
3012 memcpy(adapter->tx_ring.tx_desc_ring,
3013 desc + thiscopy,
3014 sizeof(struct tx_desc) * remainder);
3016 add_10bit(&adapter->tx_ring.send_idx, remainder);
3019 if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3020 if (adapter->tx_ring.send_idx)
3021 tcb->index = NUM_DESC_PER_RING_TX - 1;
3022 else
3023 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3024 } else
3025 tcb->index = adapter->tx_ring.send_idx - 1;
3027 spin_lock(&adapter->tcb_send_qlock);
3029 if (adapter->tx_ring.send_tail)
3030 adapter->tx_ring.send_tail->next = tcb;
3031 else
3032 adapter->tx_ring.send_head = tcb;
3034 adapter->tx_ring.send_tail = tcb;
3036 WARN_ON(tcb->next != NULL);
3038 adapter->tx_ring.used++;
3040 spin_unlock(&adapter->tcb_send_qlock);
3042 /* Write the new write pointer back to the device. */
3043 writel(adapter->tx_ring.send_idx,
3044 &adapter->regs->txdma.service_request);
3046 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
3047 * timer to wake us up if this packet isn't followed by N more.
3049 if (phydev && phydev->speed == SPEED_1000) {
3050 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3051 &adapter->regs->global.watchdog_timer);
3053 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3055 return 0;
3058 /* send_packet - Do the work to send a packet
3059 * @skb: the packet(s) to send
3060 * @adapter: a pointer to the device's private adapter structure
3062 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3064 * Assumption: Send spinlock has been acquired
3066 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3068 int status;
3069 struct tcb *tcb = NULL;
3070 u16 *shbufva;
3071 unsigned long flags;
3073 /* All packets must have at least a MAC address and a protocol type */
3074 if (skb->len < ETH_HLEN)
3075 return -EIO;
3077 /* Get a TCB for this packet */
3078 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3080 tcb = adapter->tx_ring.tcb_qhead;
3082 if (tcb == NULL) {
3083 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3084 return -ENOMEM;
3087 adapter->tx_ring.tcb_qhead = tcb->next;
3089 if (adapter->tx_ring.tcb_qhead == NULL)
3090 adapter->tx_ring.tcb_qtail = NULL;
3092 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3094 tcb->skb = skb;
3096 if (skb->data != NULL && skb_headlen(skb) >= 6) {
3097 shbufva = (u16 *) skb->data;
3099 if ((shbufva[0] == 0xffff) &&
3100 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
3101 tcb->flags |= FMP_DEST_BROAD;
3102 else if ((shbufva[0] & 0x3) == 0x0001)
3103 tcb->flags |= FMP_DEST_MULTI;
3106 tcb->next = NULL;
3108 /* Call the NIC specific send handler. */
3109 status = nic_send_packet(adapter, tcb);
3111 if (status != 0) {
3112 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3114 if (adapter->tx_ring.tcb_qtail)
3115 adapter->tx_ring.tcb_qtail->next = tcb;
3116 else
3117 /* Apparently ready Q is empty. */
3118 adapter->tx_ring.tcb_qhead = tcb;
3120 adapter->tx_ring.tcb_qtail = tcb;
3121 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3122 return status;
3124 WARN_ON(adapter->tx_ring.used > NUM_TCB);
3125 return 0;
3128 /* et131x_send_packets - This function is called by the OS to send packets
3129 * @skb: the packet(s) to send
3130 * @netdev:device on which to TX the above packet(s)
3132 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3134 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3136 int status = 0;
3137 struct et131x_adapter *adapter = netdev_priv(netdev);
3139 /* Send these packets
3141 * NOTE: The Linux Tx entry point is only given one packet at a time
3142 * to Tx, so the PacketCount and it's array used makes no sense here
3145 /* TCB is not available */
3146 if (adapter->tx_ring.used >= NUM_TCB) {
3147 /* NOTE: If there's an error on send, no need to queue the
3148 * packet under Linux; if we just send an error up to the
3149 * netif layer, it will resend the skb to us.
3151 status = -ENOMEM;
3152 } else {
3153 /* We need to see if the link is up; if it's not, make the
3154 * netif layer think we're good and drop the packet
3156 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3157 !netif_carrier_ok(netdev)) {
3158 dev_kfree_skb_any(skb);
3159 skb = NULL;
3161 adapter->net_stats.tx_dropped++;
3162 } else {
3163 status = send_packet(skb, adapter);
3164 if (status != 0 && status != -ENOMEM) {
3165 /* On any other error, make netif think we're
3166 * OK and drop the packet
3168 dev_kfree_skb_any(skb);
3169 skb = NULL;
3170 adapter->net_stats.tx_dropped++;
3174 return status;
3177 /* free_send_packet - Recycle a struct tcb
3178 * @adapter: pointer to our adapter
3179 * @tcb: pointer to struct tcb
3181 * Complete the packet if necessary
3182 * Assumption - Send spinlock has been acquired
3184 static inline void free_send_packet(struct et131x_adapter *adapter,
3185 struct tcb *tcb)
3187 unsigned long flags;
3188 struct tx_desc *desc = NULL;
3189 struct net_device_stats *stats = &adapter->net_stats;
3190 u64 dma_addr;
3192 if (tcb->flags & FMP_DEST_BROAD)
3193 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3194 else if (tcb->flags & FMP_DEST_MULTI)
3195 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3196 else
3197 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3199 if (tcb->skb) {
3200 stats->tx_bytes += tcb->skb->len;
3202 /* Iterate through the TX descriptors on the ring
3203 * corresponding to this packet and umap the fragments
3204 * they point to
3206 do {
3207 desc = (struct tx_desc *)
3208 (adapter->tx_ring.tx_desc_ring +
3209 INDEX10(tcb->index_start));
3211 dma_addr = desc->addr_lo;
3212 dma_addr |= (u64)desc->addr_hi << 32;
3214 dma_unmap_single(&adapter->pdev->dev,
3215 dma_addr,
3216 desc->len_vlan, DMA_TO_DEVICE);
3218 add_10bit(&tcb->index_start, 1);
3219 if (INDEX10(tcb->index_start) >=
3220 NUM_DESC_PER_RING_TX) {
3221 tcb->index_start &= ~ET_DMA10_MASK;
3222 tcb->index_start ^= ET_DMA10_WRAP;
3224 } while (desc != (adapter->tx_ring.tx_desc_ring +
3225 INDEX10(tcb->index)));
3227 dev_kfree_skb_any(tcb->skb);
3230 memset(tcb, 0, sizeof(struct tcb));
3232 /* Add the TCB to the Ready Q */
3233 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3235 adapter->net_stats.tx_packets++;
3237 if (adapter->tx_ring.tcb_qtail)
3238 adapter->tx_ring.tcb_qtail->next = tcb;
3239 else
3240 /* Apparently ready Q is empty. */
3241 adapter->tx_ring.tcb_qhead = tcb;
3243 adapter->tx_ring.tcb_qtail = tcb;
3245 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3246 WARN_ON(adapter->tx_ring.used < 0);
3249 /* et131x_free_busy_send_packets - Free and complete the stopped active sends
3250 * @adapter: pointer to our adapter
3252 * Assumption - Send spinlock has been acquired
3254 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3256 struct tcb *tcb;
3257 unsigned long flags;
3258 u32 freed = 0;
3260 /* Any packets being sent? Check the first TCB on the send list */
3261 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3263 tcb = adapter->tx_ring.send_head;
3265 while (tcb != NULL && freed < NUM_TCB) {
3266 struct tcb *next = tcb->next;
3268 adapter->tx_ring.send_head = next;
3270 if (next == NULL)
3271 adapter->tx_ring.send_tail = NULL;
3273 adapter->tx_ring.used--;
3275 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3277 freed++;
3278 free_send_packet(adapter, tcb);
3280 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3282 tcb = adapter->tx_ring.send_head;
3285 WARN_ON(freed == NUM_TCB);
3287 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3289 adapter->tx_ring.used = 0;
3292 /* et131x_handle_send_interrupt - Interrupt handler for sending processing
3293 * @adapter: pointer to our adapter
3295 * Re-claim the send resources, complete sends and get more to send from
3296 * the send wait queue.
3298 * Assumption - Send spinlock has been acquired
3300 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3302 unsigned long flags;
3303 u32 serviced;
3304 struct tcb *tcb;
3305 u32 index;
3307 serviced = readl(&adapter->regs->txdma.new_service_complete);
3308 index = INDEX10(serviced);
3310 /* Has the ring wrapped? Process any descriptors that do not have
3311 * the same "wrap" indicator as the current completion indicator
3313 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3315 tcb = adapter->tx_ring.send_head;
3317 while (tcb &&
3318 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3319 index < INDEX10(tcb->index)) {
3320 adapter->tx_ring.used--;
3321 adapter->tx_ring.send_head = tcb->next;
3322 if (tcb->next == NULL)
3323 adapter->tx_ring.send_tail = NULL;
3325 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3326 free_send_packet(adapter, tcb);
3327 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3329 /* Goto the next packet */
3330 tcb = adapter->tx_ring.send_head;
3332 while (tcb &&
3333 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3334 && index > (tcb->index & ET_DMA10_MASK)) {
3335 adapter->tx_ring.used--;
3336 adapter->tx_ring.send_head = tcb->next;
3337 if (tcb->next == NULL)
3338 adapter->tx_ring.send_tail = NULL;
3340 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3341 free_send_packet(adapter, tcb);
3342 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3344 /* Goto the next packet */
3345 tcb = adapter->tx_ring.send_head;
3348 /* Wake up the queue when we hit a low-water mark */
3349 if (adapter->tx_ring.used <= NUM_TCB / 3)
3350 netif_wake_queue(adapter->netdev);
3352 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3355 static int et131x_get_settings(struct net_device *netdev,
3356 struct ethtool_cmd *cmd)
3358 struct et131x_adapter *adapter = netdev_priv(netdev);
3360 return phy_ethtool_gset(adapter->phydev, cmd);
3363 static int et131x_set_settings(struct net_device *netdev,
3364 struct ethtool_cmd *cmd)
3366 struct et131x_adapter *adapter = netdev_priv(netdev);
3368 return phy_ethtool_sset(adapter->phydev, cmd);
3371 static int et131x_get_regs_len(struct net_device *netdev)
3373 #define ET131X_REGS_LEN 256
3374 return ET131X_REGS_LEN * sizeof(u32);
3377 static void et131x_get_regs(struct net_device *netdev,
3378 struct ethtool_regs *regs, void *regs_data)
3380 struct et131x_adapter *adapter = netdev_priv(netdev);
3381 struct address_map __iomem *aregs = adapter->regs;
3382 u32 *regs_buff = regs_data;
3383 u32 num = 0;
3384 u16 tmp;
3386 memset(regs_data, 0, et131x_get_regs_len(netdev));
3388 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3389 adapter->pdev->device;
3391 /* PHY regs */
3392 et131x_mii_read(adapter, MII_BMCR, &tmp);
3393 regs_buff[num++] = tmp;
3394 et131x_mii_read(adapter, MII_BMSR, &tmp);
3395 regs_buff[num++] = tmp;
3396 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3397 regs_buff[num++] = tmp;
3398 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3399 regs_buff[num++] = tmp;
3400 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3401 regs_buff[num++] = tmp;
3402 et131x_mii_read(adapter, MII_LPA, &tmp);
3403 regs_buff[num++] = tmp;
3404 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3405 regs_buff[num++] = tmp;
3406 /* Autoneg next page transmit reg */
3407 et131x_mii_read(adapter, 0x07, &tmp);
3408 regs_buff[num++] = tmp;
3409 /* Link partner next page reg */
3410 et131x_mii_read(adapter, 0x08, &tmp);
3411 regs_buff[num++] = tmp;
3412 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3413 regs_buff[num++] = tmp;
3414 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3415 regs_buff[num++] = tmp;
3416 et131x_mii_read(adapter, 0x0b, &tmp);
3417 regs_buff[num++] = tmp;
3418 et131x_mii_read(adapter, 0x0c, &tmp);
3419 regs_buff[num++] = tmp;
3420 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3421 regs_buff[num++] = tmp;
3422 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3423 regs_buff[num++] = tmp;
3424 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3425 regs_buff[num++] = tmp;
3427 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3428 regs_buff[num++] = tmp;
3429 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3430 regs_buff[num++] = tmp;
3431 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3432 regs_buff[num++] = tmp;
3433 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3434 regs_buff[num++] = tmp;
3435 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3436 regs_buff[num++] = tmp;
3438 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3439 regs_buff[num++] = tmp;
3440 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3441 regs_buff[num++] = tmp;
3442 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3443 regs_buff[num++] = tmp;
3444 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3445 regs_buff[num++] = tmp;
3446 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3447 regs_buff[num++] = tmp;
3448 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3449 regs_buff[num++] = tmp;
3450 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3451 regs_buff[num++] = tmp;
3452 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3453 regs_buff[num++] = tmp;
3455 /* Global regs */
3456 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3457 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3458 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3459 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3460 regs_buff[num++] = readl(&aregs->global.pm_csr);
3461 regs_buff[num++] = adapter->stats.interrupt_status;
3462 regs_buff[num++] = readl(&aregs->global.int_mask);
3463 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3464 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3465 regs_buff[num++] = readl(&aregs->global.sw_reset);
3466 regs_buff[num++] = readl(&aregs->global.slv_timer);
3467 regs_buff[num++] = readl(&aregs->global.msi_config);
3468 regs_buff[num++] = readl(&aregs->global.loopback);
3469 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3471 /* TXDMA regs */
3472 regs_buff[num++] = readl(&aregs->txdma.csr);
3473 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3474 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3475 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3476 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3477 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3478 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3479 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3480 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3481 regs_buff[num++] = readl(&aregs->txdma.service_request);
3482 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3483 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3484 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3485 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3486 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3487 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3488 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3489 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3490 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3491 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3492 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3493 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3494 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3495 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3496 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3497 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3499 /* RXDMA regs */
3500 regs_buff[num++] = readl(&aregs->rxdma.csr);
3501 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3502 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3503 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3504 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3505 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3506 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3507 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3508 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3509 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3510 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3511 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3512 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3513 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3514 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3515 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3516 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3517 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3518 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3519 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3520 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3521 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3522 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3523 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3524 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3525 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3526 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3527 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3528 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3531 static void et131x_get_drvinfo(struct net_device *netdev,
3532 struct ethtool_drvinfo *info)
3534 struct et131x_adapter *adapter = netdev_priv(netdev);
3536 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3537 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3538 strlcpy(info->bus_info, pci_name(adapter->pdev),
3539 sizeof(info->bus_info));
3542 static struct ethtool_ops et131x_ethtool_ops = {
3543 .get_settings = et131x_get_settings,
3544 .set_settings = et131x_set_settings,
3545 .get_drvinfo = et131x_get_drvinfo,
3546 .get_regs_len = et131x_get_regs_len,
3547 .get_regs = et131x_get_regs,
3548 .get_link = ethtool_op_get_link,
3551 /* et131x_hwaddr_init - set up the MAC Address on the ET1310
3552 * @adapter: pointer to our private adapter structure
3554 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3556 /* If have our default mac from init and no mac address from
3557 * EEPROM then we need to generate the last octet and set it on the
3558 * device
3560 if (is_zero_ether_addr(adapter->rom_addr)) {
3561 /* We need to randomly generate the last octet so we
3562 * decrease our chances of setting the mac address to
3563 * same as another one of our cards in the system
3565 get_random_bytes(&adapter->addr[5], 1);
3566 /* We have the default value in the register we are
3567 * working with so we need to copy the current
3568 * address into the permanent address
3570 memcpy(adapter->rom_addr,
3571 adapter->addr, ETH_ALEN);
3572 } else {
3573 /* We do not have an override address, so set the
3574 * current address to the permanent address and add
3575 * it to the device
3577 memcpy(adapter->addr,
3578 adapter->rom_addr, ETH_ALEN);
3582 /* et131x_pci_init - initial PCI setup
3583 * @adapter: pointer to our private adapter structure
3584 * @pdev: our PCI device
3586 * Perform the initial setup of PCI registers and if possible initialise
3587 * the MAC address. At this point the I/O registers have yet to be mapped
3589 static int et131x_pci_init(struct et131x_adapter *adapter,
3590 struct pci_dev *pdev)
3592 u16 max_payload;
3593 int i, rc;
3595 rc = et131x_init_eeprom(adapter);
3596 if (rc < 0)
3597 goto out;
3599 if (!pci_is_pcie(pdev)) {
3600 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3601 goto err_out;
3604 /* Let's set up the PORT LOGIC Register. */
3606 /* Program the Ack/Nak latency and replay timers */
3607 max_payload = pdev->pcie_mpss;
3609 if (max_payload < 2) {
3610 static const u16 acknak[2] = { 0x76, 0xD0 };
3611 static const u16 replay[2] = { 0x1E0, 0x2ED };
3613 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3614 acknak[max_payload])) {
3615 dev_err(&pdev->dev,
3616 "Could not write PCI config space for ACK/NAK\n");
3617 goto err_out;
3619 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3620 replay[max_payload])) {
3621 dev_err(&pdev->dev,
3622 "Could not write PCI config space for Replay Timer\n");
3623 goto err_out;
3627 /* l0s and l1 latency timers. We are using default values.
3628 * Representing 001 for L0s and 010 for L1
3630 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3631 dev_err(&pdev->dev,
3632 "Could not write PCI config space for Latency Timers\n");
3633 goto err_out;
3636 /* Change the max read size to 2k */
3637 if (pcie_set_readrq(pdev, 2048)) {
3638 dev_err(&pdev->dev,
3639 "Couldn't change PCI config space for Max read size\n");
3640 goto err_out;
3643 /* Get MAC address from config space if an eeprom exists, otherwise
3644 * the MAC address there will not be valid
3646 if (!adapter->has_eeprom) {
3647 et131x_hwaddr_init(adapter);
3648 return 0;
3651 for (i = 0; i < ETH_ALEN; i++) {
3652 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3653 adapter->rom_addr + i)) {
3654 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3655 goto err_out;
3658 memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
3659 out:
3660 return rc;
3661 err_out:
3662 rc = -EIO;
3663 goto out;
3666 /* et131x_error_timer_handler
3667 * @data: timer-specific variable; here a pointer to our adapter structure
3669 * The routine called when the error timer expires, to track the number of
3670 * recurring errors.
3672 static void et131x_error_timer_handler(unsigned long data)
3674 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3675 struct phy_device *phydev = adapter->phydev;
3677 if (et1310_in_phy_coma(adapter)) {
3678 /* Bring the device immediately out of coma, to
3679 * prevent it from sleeping indefinitely, this
3680 * mechanism could be improved!
3682 et1310_disable_phy_coma(adapter);
3683 adapter->boot_coma = 20;
3684 } else {
3685 et1310_update_macstat_host_counters(adapter);
3688 if (!phydev->link && adapter->boot_coma < 11)
3689 adapter->boot_coma++;
3691 if (adapter->boot_coma == 10) {
3692 if (!phydev->link) {
3693 if (!et1310_in_phy_coma(adapter)) {
3694 /* NOTE - This was originally a 'sync with
3695 * interrupt'. How to do that under Linux?
3697 et131x_enable_interrupts(adapter);
3698 et1310_enable_phy_coma(adapter);
3703 /* This is a periodic timer, so reschedule */
3704 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
3707 /* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
3708 * @adapter: pointer to our private adapter structure
3710 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3712 /* Free DMA memory */
3713 et131x_tx_dma_memory_free(adapter);
3714 et131x_rx_dma_memory_free(adapter);
3717 /* et131x_adapter_memory_alloc
3718 * @adapter: pointer to our private adapter structure
3720 * Returns 0 on success, errno on failure (as defined in errno.h).
3722 * Allocate all the memory blocks for send, receive and others.
3724 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3726 int status;
3728 /* Allocate memory for the Tx Ring */
3729 status = et131x_tx_dma_memory_alloc(adapter);
3730 if (status != 0) {
3731 dev_err(&adapter->pdev->dev,
3732 "et131x_tx_dma_memory_alloc FAILED\n");
3733 return status;
3735 /* Receive buffer memory allocation */
3736 status = et131x_rx_dma_memory_alloc(adapter);
3737 if (status != 0) {
3738 dev_err(&adapter->pdev->dev,
3739 "et131x_rx_dma_memory_alloc FAILED\n");
3740 et131x_tx_dma_memory_free(adapter);
3741 return status;
3744 /* Init receive data structures */
3745 status = et131x_init_recv(adapter);
3746 if (status) {
3747 dev_err(&adapter->pdev->dev,
3748 "et131x_init_recv FAILED\n");
3749 et131x_adapter_memory_free(adapter);
3751 return status;
3754 static void et131x_adjust_link(struct net_device *netdev)
3756 struct et131x_adapter *adapter = netdev_priv(netdev);
3757 struct phy_device *phydev = adapter->phydev;
3759 if (phydev && phydev->link != adapter->link) {
3760 /* Check to see if we are in coma mode and if
3761 * so, disable it because we will not be able
3762 * to read PHY values until we are out.
3764 if (et1310_in_phy_coma(adapter))
3765 et1310_disable_phy_coma(adapter);
3767 adapter->link = phydev->link;
3768 phy_print_status(phydev);
3770 if (phydev->link) {
3771 adapter->boot_coma = 20;
3772 if (phydev && phydev->speed == SPEED_10) {
3773 /* NOTE - Is there a way to query this without
3774 * TruePHY?
3775 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
3776 * EMI_TRUEPHY_A13O) {
3778 u16 register18;
3780 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3781 &register18);
3782 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3783 register18 | 0x4);
3784 et131x_mii_write(adapter, PHY_INDEX_REG,
3785 register18 | 0x8402);
3786 et131x_mii_write(adapter, PHY_DATA_REG,
3787 register18 | 511);
3788 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3789 register18);
3792 et1310_config_flow_control(adapter);
3794 if (phydev && phydev->speed == SPEED_1000 &&
3795 adapter->registry_jumbo_packet > 2048) {
3796 u16 reg;
3798 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3799 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3800 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3801 et131x_mii_write(adapter, PHY_CONFIG, reg);
3804 et131x_set_rx_dma_timer(adapter);
3805 et1310_config_mac_regs2(adapter);
3806 } else {
3807 adapter->boot_coma = 0;
3809 if (phydev->speed == SPEED_10) {
3810 /* NOTE - Is there a way to query this without
3811 * TruePHY?
3812 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
3813 * EMI_TRUEPHY_A13O)
3815 u16 register18;
3817 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3818 &register18);
3819 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3820 register18 | 0x4);
3821 et131x_mii_write(adapter, PHY_INDEX_REG,
3822 register18 | 0x8402);
3823 et131x_mii_write(adapter, PHY_DATA_REG,
3824 register18 | 511);
3825 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3826 register18);
3829 /* Free the packets being actively sent & stopped */
3830 et131x_free_busy_send_packets(adapter);
3832 /* Re-initialize the send structures */
3833 et131x_init_send(adapter);
3835 /* Bring the device back to the state it was during
3836 * init prior to autonegotiation being complete. This
3837 * way, when we get the auto-neg complete interrupt,
3838 * we can complete init by calling config_mac_regs2.
3840 et131x_soft_reset(adapter);
3842 /* Setup ET1310 as per the documentation */
3843 et131x_adapter_setup(adapter);
3845 /* perform reset of tx/rx */
3846 et131x_disable_txrx(netdev);
3847 et131x_enable_txrx(netdev);
3853 static int et131x_mii_probe(struct net_device *netdev)
3855 struct et131x_adapter *adapter = netdev_priv(netdev);
3856 struct phy_device *phydev = NULL;
3858 phydev = phy_find_first(adapter->mii_bus);
3859 if (!phydev) {
3860 dev_err(&adapter->pdev->dev, "no PHY found\n");
3861 return -ENODEV;
3864 phydev = phy_connect(netdev, dev_name(&phydev->dev),
3865 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3867 if (IS_ERR(phydev)) {
3868 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3869 return PTR_ERR(phydev);
3872 phydev->supported &= (SUPPORTED_10baseT_Half
3873 | SUPPORTED_10baseT_Full
3874 | SUPPORTED_100baseT_Half
3875 | SUPPORTED_100baseT_Full
3876 | SUPPORTED_Autoneg
3877 | SUPPORTED_MII
3878 | SUPPORTED_TP);
3880 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3881 phydev->supported |= SUPPORTED_1000baseT_Full;
3883 phydev->advertising = phydev->supported;
3884 adapter->phydev = phydev;
3886 dev_info(&adapter->pdev->dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3887 phydev->drv->name, dev_name(&phydev->dev));
3889 return 0;
3892 /* et131x_adapter_init
3893 * @adapter: pointer to the private adapter struct
3894 * @pdev: pointer to the PCI device
3896 * Initialize the data structures for the et131x_adapter object and link
3897 * them together with the platform provided device structures.
3899 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3900 struct pci_dev *pdev)
3902 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3904 struct et131x_adapter *adapter;
3906 /* Allocate private adapter struct and copy in relevant information */
3907 adapter = netdev_priv(netdev);
3908 adapter->pdev = pci_dev_get(pdev);
3909 adapter->netdev = netdev;
3911 /* Initialize spinlocks here */
3912 spin_lock_init(&adapter->lock);
3913 spin_lock_init(&adapter->tcb_send_qlock);
3914 spin_lock_init(&adapter->tcb_ready_qlock);
3915 spin_lock_init(&adapter->send_hw_lock);
3916 spin_lock_init(&adapter->rcv_lock);
3917 spin_lock_init(&adapter->fbr_lock);
3919 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3921 /* Set the MAC address to a default */
3922 memcpy(adapter->addr, default_mac, ETH_ALEN);
3924 return adapter;
3927 /* et131x_pci_remove
3928 * @pdev: a pointer to the device's pci_dev structure
3930 * Registered in the pci_driver structure, this function is called when the
3931 * PCI subsystem detects that a PCI device which matches the information
3932 * contained in the pci_device_id table has been removed.
3934 static void et131x_pci_remove(struct pci_dev *pdev)
3936 struct net_device *netdev = pci_get_drvdata(pdev);
3937 struct et131x_adapter *adapter = netdev_priv(netdev);
3939 unregister_netdev(netdev);
3940 phy_disconnect(adapter->phydev);
3941 mdiobus_unregister(adapter->mii_bus);
3942 cancel_work_sync(&adapter->task);
3943 kfree(adapter->mii_bus->irq);
3944 mdiobus_free(adapter->mii_bus);
3946 et131x_adapter_memory_free(adapter);
3947 iounmap(adapter->regs);
3948 pci_dev_put(pdev);
3950 free_netdev(netdev);
3951 pci_release_regions(pdev);
3952 pci_disable_device(pdev);
3955 /* et131x_up - Bring up a device for use.
3956 * @netdev: device to be opened
3958 static void et131x_up(struct net_device *netdev)
3960 struct et131x_adapter *adapter = netdev_priv(netdev);
3962 et131x_enable_txrx(netdev);
3963 phy_start(adapter->phydev);
3966 /* et131x_down - Bring down the device
3967 * @netdev: device to be brought down
3969 static void et131x_down(struct net_device *netdev)
3971 struct et131x_adapter *adapter = netdev_priv(netdev);
3973 /* Save the timestamp for the TX watchdog, prevent a timeout */
3974 netdev->trans_start = jiffies;
3976 phy_stop(adapter->phydev);
3977 et131x_disable_txrx(netdev);
3980 #ifdef CONFIG_PM_SLEEP
3981 static int et131x_suspend(struct device *dev)
3983 struct pci_dev *pdev = to_pci_dev(dev);
3984 struct net_device *netdev = pci_get_drvdata(pdev);
3986 if (netif_running(netdev)) {
3987 netif_device_detach(netdev);
3988 et131x_down(netdev);
3989 pci_save_state(pdev);
3992 return 0;
3995 static int et131x_resume(struct device *dev)
3997 struct pci_dev *pdev = to_pci_dev(dev);
3998 struct net_device *netdev = pci_get_drvdata(pdev);
4000 if (netif_running(netdev)) {
4001 pci_restore_state(pdev);
4002 et131x_up(netdev);
4003 netif_device_attach(netdev);
4006 return 0;
4009 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4010 #define ET131X_PM_OPS (&et131x_pm_ops)
4011 #else
4012 #define ET131X_PM_OPS NULL
4013 #endif
4015 /* et131x_isr - The Interrupt Service Routine for the driver.
4016 * @irq: the IRQ on which the interrupt was received.
4017 * @dev_id: device-specific info (here a pointer to a net_device struct)
4019 * Returns a value indicating if the interrupt was handled.
4021 static irqreturn_t et131x_isr(int irq, void *dev_id)
4023 bool handled = true;
4024 struct net_device *netdev = (struct net_device *)dev_id;
4025 struct et131x_adapter *adapter = NULL;
4026 u32 status;
4028 if (!netif_device_present(netdev)) {
4029 handled = false;
4030 goto out;
4033 adapter = netdev_priv(netdev);
4035 /* If the adapter is in low power state, then it should not
4036 * recognize any interrupt
4039 /* Disable Device Interrupts */
4040 et131x_disable_interrupts(adapter);
4042 /* Get a copy of the value in the interrupt status register
4043 * so we can process the interrupting section
4045 status = readl(&adapter->regs->global.int_status);
4047 if (adapter->flowcontrol == FLOW_TXONLY ||
4048 adapter->flowcontrol == FLOW_BOTH) {
4049 status &= ~INT_MASK_ENABLE;
4050 } else {
4051 status &= ~INT_MASK_ENABLE_NO_FLOW;
4054 /* Make sure this is our interrupt */
4055 if (!status) {
4056 handled = false;
4057 et131x_enable_interrupts(adapter);
4058 goto out;
4061 /* This is our interrupt, so process accordingly */
4063 if (status & ET_INTR_WATCHDOG) {
4064 struct tcb *tcb = adapter->tx_ring.send_head;
4066 if (tcb)
4067 if (++tcb->stale > 1)
4068 status |= ET_INTR_TXDMA_ISR;
4070 if (adapter->rx_ring.unfinished_receives)
4071 status |= ET_INTR_RXDMA_XFR_DONE;
4072 else if (tcb == NULL)
4073 writel(0, &adapter->regs->global.watchdog_timer);
4075 status &= ~ET_INTR_WATCHDOG;
4078 if (status == 0) {
4079 /* This interrupt has in some way been "handled" by
4080 * the ISR. Either it was a spurious Rx interrupt, or
4081 * it was a Tx interrupt that has been filtered by
4082 * the ISR.
4084 et131x_enable_interrupts(adapter);
4085 goto out;
4088 /* We need to save the interrupt status value for use in our
4089 * DPC. We will clear the software copy of that in that
4090 * routine.
4092 adapter->stats.interrupt_status = status;
4094 /* Schedule the ISR handler as a bottom-half task in the
4095 * kernel's tq_immediate queue, and mark the queue for
4096 * execution
4098 schedule_work(&adapter->task);
4099 out:
4100 return IRQ_RETVAL(handled);
4103 /* et131x_isr_handler - The ISR handler
4104 * @p_adapter, a pointer to the device's private adapter structure
4106 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4107 * work actually gets done.
4109 static void et131x_isr_handler(struct work_struct *work)
4111 struct et131x_adapter *adapter =
4112 container_of(work, struct et131x_adapter, task);
4113 u32 status = adapter->stats.interrupt_status;
4114 struct address_map __iomem *iomem = adapter->regs;
4116 /* These first two are by far the most common. Once handled, we clear
4117 * their two bits in the status word. If the word is now zero, we
4118 * exit.
4120 /* Handle all the completed Transmit interrupts */
4121 if (status & ET_INTR_TXDMA_ISR)
4122 et131x_handle_send_interrupt(adapter);
4124 /* Handle all the completed Receives interrupts */
4125 if (status & ET_INTR_RXDMA_XFR_DONE)
4126 et131x_handle_recv_interrupt(adapter);
4128 status &= 0xffffffd7;
4130 if (!status)
4131 goto out;
4133 /* Handle the TXDMA Error interrupt */
4134 if (status & ET_INTR_TXDMA_ERR) {
4135 u32 txdma_err;
4137 /* Following read also clears the register (COR) */
4138 txdma_err = readl(&iomem->txdma.tx_dma_error);
4140 dev_warn(&adapter->pdev->dev,
4141 "TXDMA_ERR interrupt, error = %d\n",
4142 txdma_err);
4145 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4146 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4147 /* This indicates the number of unused buffers in RXDMA free
4148 * buffer ring 0 is <= the limit you programmed. Free buffer
4149 * resources need to be returned. Free buffers are consumed as
4150 * packets are passed from the network to the host. The host
4151 * becomes aware of the packets from the contents of the packet
4152 * status ring. This ring is queried when the packet done
4153 * interrupt occurs. Packets are then passed to the OS. When
4154 * the OS is done with the packets the resources can be
4155 * returned to the ET1310 for re-use. This interrupt is one
4156 * method of returning resources.
4159 /* If the user has flow control on, then we will
4160 * send a pause packet, otherwise just exit
4162 if (adapter->flowcontrol == FLOW_TXONLY ||
4163 adapter->flowcontrol == FLOW_BOTH) {
4164 u32 pm_csr;
4166 /* Tell the device to send a pause packet via the back
4167 * pressure register (bp req and bp xon/xoff)
4169 pm_csr = readl(&iomem->global.pm_csr);
4170 if (!et1310_in_phy_coma(adapter))
4171 writel(3, &iomem->txmac.bp_ctrl);
4175 /* Handle Packet Status Ring Low Interrupt */
4176 if (status & ET_INTR_RXDMA_STAT_LOW) {
4177 /* Same idea as with the two Free Buffer Rings. Packets going
4178 * from the network to the host each consume a free buffer
4179 * resource and a packet status resource. These resoures are
4180 * passed to the OS. When the OS is done with the resources,
4181 * they need to be returned to the ET1310. This is one method
4182 * of returning the resources.
4186 /* Handle RXDMA Error Interrupt */
4187 if (status & ET_INTR_RXDMA_ERR) {
4188 /* The rxdma_error interrupt is sent when a time-out on a
4189 * request issued by the JAGCore has occurred or a completion is
4190 * returned with an un-successful status. In both cases the
4191 * request is considered complete. The JAGCore will
4192 * automatically re-try the request in question. Normally
4193 * information on events like these are sent to the host using
4194 * the "Advanced Error Reporting" capability. This interrupt is
4195 * another way of getting similar information. The only thing
4196 * required is to clear the interrupt by reading the ISR in the
4197 * global resources. The JAGCore will do a re-try on the
4198 * request. Normally you should never see this interrupt. If
4199 * you start to see this interrupt occurring frequently then
4200 * something bad has occurred. A reset might be the thing to do.
4202 /* TRAP();*/
4204 dev_warn(&adapter->pdev->dev,
4205 "RxDMA_ERR interrupt, error %x\n",
4206 readl(&iomem->txmac.tx_test));
4209 /* Handle the Wake on LAN Event */
4210 if (status & ET_INTR_WOL) {
4211 /* This is a secondary interrupt for wake on LAN. The driver
4212 * should never see this, if it does, something serious is
4213 * wrong. We will TRAP the message when we are in DBG mode,
4214 * otherwise we will ignore it.
4216 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4219 /* Let's move on to the TxMac */
4220 if (status & ET_INTR_TXMAC) {
4221 u32 err = readl(&iomem->txmac.err);
4223 /* When any of the errors occur and TXMAC generates an
4224 * interrupt to report these errors, it usually means that
4225 * TXMAC has detected an error in the data stream retrieved
4226 * from the on-chip Tx Q. All of these errors are catastrophic
4227 * and TXMAC won't be able to recover data when these errors
4228 * occur. In a nutshell, the whole Tx path will have to be reset
4229 * and re-configured afterwards.
4231 dev_warn(&adapter->pdev->dev,
4232 "TXMAC interrupt, error 0x%08x\n",
4233 err);
4235 /* If we are debugging, we want to see this error, otherwise we
4236 * just want the device to be reset and continue
4240 /* Handle RXMAC Interrupt */
4241 if (status & ET_INTR_RXMAC) {
4242 /* These interrupts are catastrophic to the device, what we need
4243 * to do is disable the interrupts and set the flag to cause us
4244 * to reset so we can solve this issue.
4246 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
4248 dev_warn(&adapter->pdev->dev,
4249 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4250 readl(&iomem->rxmac.err_reg));
4252 dev_warn(&adapter->pdev->dev,
4253 "Enable 0x%08x, Diag 0x%08x\n",
4254 readl(&iomem->rxmac.ctrl),
4255 readl(&iomem->rxmac.rxq_diag));
4257 /* If we are debugging, we want to see this error, otherwise we
4258 * just want the device to be reset and continue
4262 /* Handle MAC_STAT Interrupt */
4263 if (status & ET_INTR_MAC_STAT) {
4264 /* This means at least one of the un-masked counters in the
4265 * MAC_STAT block has rolled over. Use this to maintain the top,
4266 * software managed bits of the counter(s).
4268 et1310_handle_macstat_interrupt(adapter);
4271 /* Handle SLV Timeout Interrupt */
4272 if (status & ET_INTR_SLV_TIMEOUT) {
4273 /* This means a timeout has occurred on a read or write request
4274 * to one of the JAGCore registers. The Global Resources block
4275 * has terminated the request and on a read request, returned a
4276 * "fake" value. The most likely reasons are: Bad Address or the
4277 * addressed module is in a power-down state and can't respond.
4280 out:
4281 et131x_enable_interrupts(adapter);
4284 /* et131x_stats - Return the current device statistics.
4285 * @netdev: device whose stats are being queried
4287 * Returns 0 on success, errno on failure (as defined in errno.h)
4289 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4291 struct et131x_adapter *adapter = netdev_priv(netdev);
4292 struct net_device_stats *stats = &adapter->net_stats;
4293 struct ce_stats *devstat = &adapter->stats;
4295 stats->rx_errors = devstat->rx_length_errs +
4296 devstat->rx_align_errs +
4297 devstat->rx_crc_errs +
4298 devstat->rx_code_violations +
4299 devstat->rx_other_errs;
4300 stats->tx_errors = devstat->tx_max_pkt_errs;
4301 stats->multicast = devstat->multicast_pkts_rcvd;
4302 stats->collisions = devstat->tx_collisions;
4304 stats->rx_length_errors = devstat->rx_length_errs;
4305 stats->rx_over_errors = devstat->rx_overflows;
4306 stats->rx_crc_errors = devstat->rx_crc_errs;
4308 /* NOTE: These stats don't have corresponding values in CE_STATS,
4309 * so we're going to have to update these directly from within the
4310 * TX/RX code
4312 /* stats->rx_bytes = 20; devstat->; */
4313 /* stats->tx_bytes = 20; devstat->; */
4314 /* stats->rx_dropped = devstat->; */
4315 /* stats->tx_dropped = devstat->; */
4317 /* NOTE: Not used, can't find analogous statistics */
4318 /* stats->rx_frame_errors = devstat->; */
4319 /* stats->rx_fifo_errors = devstat->; */
4320 /* stats->rx_missed_errors = devstat->; */
4322 /* stats->tx_aborted_errors = devstat->; */
4323 /* stats->tx_carrier_errors = devstat->; */
4324 /* stats->tx_fifo_errors = devstat->; */
4325 /* stats->tx_heartbeat_errors = devstat->; */
4326 /* stats->tx_window_errors = devstat->; */
4327 return stats;
4330 /* et131x_open - Open the device for use.
4331 * @netdev: device to be opened
4333 * Returns 0 on success, errno on failure (as defined in errno.h)
4335 static int et131x_open(struct net_device *netdev)
4337 struct et131x_adapter *adapter = netdev_priv(netdev);
4338 struct pci_dev *pdev = adapter->pdev;
4339 unsigned int irq = pdev->irq;
4340 int result;
4342 /* Start the timer to track NIC errors */
4343 init_timer(&adapter->error_timer);
4344 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4345 adapter->error_timer.function = et131x_error_timer_handler;
4346 adapter->error_timer.data = (unsigned long)adapter;
4347 add_timer(&adapter->error_timer);
4349 result = request_irq(irq, et131x_isr,
4350 IRQF_SHARED, netdev->name, netdev);
4351 if (result) {
4352 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4353 return result;
4356 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
4358 et131x_up(netdev);
4360 return result;
4363 /* et131x_close - Close the device
4364 * @netdev: device to be closed
4366 * Returns 0 on success, errno on failure (as defined in errno.h)
4368 static int et131x_close(struct net_device *netdev)
4370 struct et131x_adapter *adapter = netdev_priv(netdev);
4372 et131x_down(netdev);
4374 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
4375 free_irq(adapter->pdev->irq, netdev);
4377 /* Stop the error timer */
4378 return del_timer_sync(&adapter->error_timer);
4381 /* et131x_ioctl - The I/O Control handler for the driver
4382 * @netdev: device on which the control request is being made
4383 * @reqbuf: a pointer to the IOCTL request buffer
4384 * @cmd: the IOCTL command code
4386 * Returns 0 on success, errno on failure (as defined in errno.h)
4388 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4389 int cmd)
4391 struct et131x_adapter *adapter = netdev_priv(netdev);
4393 if (!adapter->phydev)
4394 return -EINVAL;
4396 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4399 /* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4400 * @adapter: pointer to our private adapter structure
4402 * FIXME: lot of dups with MAC code
4404 * Returns 0 on success, errno on failure
4406 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4408 int filter = adapter->packet_filter;
4409 int status = 0;
4410 u32 ctrl;
4411 u32 pf_ctrl;
4413 ctrl = readl(&adapter->regs->rxmac.ctrl);
4414 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4416 /* Default to disabled packet filtering. Enable it in the individual
4417 * case statements that require the device to filter something
4419 ctrl |= 0x04;
4421 /* Set us to be in promiscuous mode so we receive everything, this
4422 * is also true when we get a packet filter of 0
4424 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4425 pf_ctrl &= ~7; /* Clear filter bits */
4426 else {
4427 /* Set us up with Multicast packet filtering. Three cases are
4428 * possible - (1) we have a multi-cast list, (2) we receive ALL
4429 * multicast entries or (3) we receive none.
4431 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4432 pf_ctrl &= ~2; /* Multicast filter bit */
4433 else {
4434 et1310_setup_device_for_multicast(adapter);
4435 pf_ctrl |= 2;
4436 ctrl &= ~0x04;
4439 /* Set us up with Unicast packet filtering */
4440 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4441 et1310_setup_device_for_unicast(adapter);
4442 pf_ctrl |= 4;
4443 ctrl &= ~0x04;
4446 /* Set us up with Broadcast packet filtering */
4447 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4448 pf_ctrl |= 1; /* Broadcast filter bit */
4449 ctrl &= ~0x04;
4450 } else
4451 pf_ctrl &= ~1;
4453 /* Setup the receive mac configuration registers - Packet
4454 * Filter control + the enable / disable for packet filter
4455 * in the control reg.
4457 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4458 writel(ctrl, &adapter->regs->rxmac.ctrl);
4460 return status;
4463 /* et131x_multicast - The handler to configure multicasting on the interface
4464 * @netdev: a pointer to a net_device struct representing the device
4466 static void et131x_multicast(struct net_device *netdev)
4468 struct et131x_adapter *adapter = netdev_priv(netdev);
4469 int packet_filter;
4470 unsigned long flags;
4471 struct netdev_hw_addr *ha;
4472 int i;
4474 spin_lock_irqsave(&adapter->lock, flags);
4476 /* Before we modify the platform-independent filter flags, store them
4477 * locally. This allows us to determine if anything's changed and if
4478 * we even need to bother the hardware
4480 packet_filter = adapter->packet_filter;
4482 /* Clear the 'multicast' flag locally; because we only have a single
4483 * flag to check multicast, and multiple multicast addresses can be
4484 * set, this is the easiest way to determine if more than one
4485 * multicast address is being set.
4487 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4489 /* Check the net_device flags and set the device independent flags
4490 * accordingly
4493 if (netdev->flags & IFF_PROMISC)
4494 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4495 else
4496 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4498 if (netdev->flags & IFF_ALLMULTI)
4499 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4501 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4502 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4504 if (netdev_mc_count(netdev) < 1) {
4505 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4506 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4507 } else
4508 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4510 /* Set values in the private adapter struct */
4511 i = 0;
4512 netdev_for_each_mc_addr(ha, netdev) {
4513 if (i == NIC_MAX_MCAST_LIST)
4514 break;
4515 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4517 adapter->multicast_addr_count = i;
4519 /* Are the new flags different from the previous ones? If not, then no
4520 * action is required
4522 * NOTE - This block will always update the multicast_list with the
4523 * hardware, even if the addresses aren't the same.
4525 if (packet_filter != adapter->packet_filter) {
4526 /* Call the device's filter function */
4527 et131x_set_packet_filter(adapter);
4529 spin_unlock_irqrestore(&adapter->lock, flags);
4532 /* et131x_tx - The handler to tx a packet on the device
4533 * @skb: data to be Tx'd
4534 * @netdev: device on which data is to be Tx'd
4536 * Returns 0 on success, errno on failure (as defined in errno.h)
4538 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4540 int status = 0;
4541 struct et131x_adapter *adapter = netdev_priv(netdev);
4543 /* stop the queue if it's getting full */
4544 if (adapter->tx_ring.used >= NUM_TCB - 1 &&
4545 !netif_queue_stopped(netdev))
4546 netif_stop_queue(netdev);
4548 /* Save the timestamp for the TX timeout watchdog */
4549 netdev->trans_start = jiffies;
4551 /* Call the device-specific data Tx routine */
4552 status = et131x_send_packets(skb, netdev);
4554 /* Check status and manage the netif queue if necessary */
4555 if (status != 0) {
4556 if (status == -ENOMEM)
4557 status = NETDEV_TX_BUSY;
4558 else
4559 status = NETDEV_TX_OK;
4561 return status;
4564 /* et131x_tx_timeout - Timeout handler
4565 * @netdev: a pointer to a net_device struct representing the device
4567 * The handler called when a Tx request times out. The timeout period is
4568 * specified by the 'tx_timeo" element in the net_device structure (see
4569 * et131x_alloc_device() to see how this value is set).
4571 static void et131x_tx_timeout(struct net_device *netdev)
4573 struct et131x_adapter *adapter = netdev_priv(netdev);
4574 struct tcb *tcb;
4575 unsigned long flags;
4577 /* If the device is closed, ignore the timeout */
4578 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
4579 return;
4581 /* Any nonrecoverable hardware error?
4582 * Checks adapter->flags for any failure in phy reading
4584 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
4585 return;
4587 /* Hardware failure? */
4588 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
4589 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4590 return;
4593 /* Is send stuck? */
4594 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4596 tcb = adapter->tx_ring.send_head;
4598 if (tcb != NULL) {
4599 tcb->count++;
4601 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4602 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4603 flags);
4605 dev_warn(&adapter->pdev->dev,
4606 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4607 tcb->index,
4608 tcb->flags);
4610 adapter->net_stats.tx_errors++;
4612 /* perform reset of tx/rx */
4613 et131x_disable_txrx(netdev);
4614 et131x_enable_txrx(netdev);
4615 return;
4619 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4622 /* et131x_change_mtu - The handler called to change the MTU for the device
4623 * @netdev: device whose MTU is to be changed
4624 * @new_mtu: the desired MTU
4626 * Returns 0 on success, errno on failure (as defined in errno.h)
4628 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4630 int result = 0;
4631 struct et131x_adapter *adapter = netdev_priv(netdev);
4633 /* Make sure the requested MTU is valid */
4634 if (new_mtu < 64 || new_mtu > 9216)
4635 return -EINVAL;
4637 et131x_disable_txrx(netdev);
4638 et131x_handle_send_interrupt(adapter);
4639 et131x_handle_recv_interrupt(adapter);
4641 /* Set the new MTU */
4642 netdev->mtu = new_mtu;
4644 /* Free Rx DMA memory */
4645 et131x_adapter_memory_free(adapter);
4647 /* Set the config parameter for Jumbo Packet support */
4648 adapter->registry_jumbo_packet = new_mtu + 14;
4649 et131x_soft_reset(adapter);
4651 /* Alloc and init Rx DMA memory */
4652 result = et131x_adapter_memory_alloc(adapter);
4653 if (result != 0) {
4654 dev_warn(&adapter->pdev->dev,
4655 "Change MTU failed; couldn't re-alloc DMA memory\n");
4656 return result;
4659 et131x_init_send(adapter);
4661 et131x_hwaddr_init(adapter);
4662 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4664 /* Init the device with the new settings */
4665 et131x_adapter_setup(adapter);
4667 et131x_enable_txrx(netdev);
4669 return result;
4672 /* et131x_set_mac_addr - handler to change the MAC address for the device
4673 * @netdev: device whose MAC is to be changed
4674 * @new_mac: the desired MAC address
4676 * Returns 0 on success, errno on failure (as defined in errno.h)
4678 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
4680 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
4682 int result = 0;
4683 struct et131x_adapter *adapter = netdev_priv(netdev);
4684 struct sockaddr *address = new_mac;
4686 /* begin blux */
4688 if (adapter == NULL)
4689 return -ENODEV;
4691 /* Make sure the requested MAC is valid */
4692 if (!is_valid_ether_addr(address->sa_data))
4693 return -EADDRNOTAVAIL;
4695 et131x_disable_txrx(netdev);
4696 et131x_handle_send_interrupt(adapter);
4697 et131x_handle_recv_interrupt(adapter);
4699 /* Set the new MAC */
4700 /* netdev->set_mac_address = &new_mac; */
4702 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
4704 netdev_info(netdev, "Setting MAC address to %pM\n",
4705 netdev->dev_addr);
4707 /* Free Rx DMA memory */
4708 et131x_adapter_memory_free(adapter);
4710 et131x_soft_reset(adapter);
4712 /* Alloc and init Rx DMA memory */
4713 result = et131x_adapter_memory_alloc(adapter);
4714 if (result != 0) {
4715 dev_err(&adapter->pdev->dev,
4716 "Change MAC failed; couldn't re-alloc DMA memory\n");
4717 return result;
4720 et131x_init_send(adapter);
4722 et131x_hwaddr_init(adapter);
4724 /* Init the device with the new settings */
4725 et131x_adapter_setup(adapter);
4727 et131x_enable_txrx(netdev);
4729 return result;
4732 static const struct net_device_ops et131x_netdev_ops = {
4733 .ndo_open = et131x_open,
4734 .ndo_stop = et131x_close,
4735 .ndo_start_xmit = et131x_tx,
4736 .ndo_set_rx_mode = et131x_multicast,
4737 .ndo_tx_timeout = et131x_tx_timeout,
4738 .ndo_change_mtu = et131x_change_mtu,
4739 .ndo_set_mac_address = et131x_set_mac_addr,
4740 .ndo_validate_addr = eth_validate_addr,
4741 .ndo_get_stats = et131x_stats,
4742 .ndo_do_ioctl = et131x_ioctl,
4745 /* et131x_pci_setup - Perform device initialization
4746 * @pdev: a pointer to the device's pci_dev structure
4747 * @ent: this device's entry in the pci_device_id table
4749 * Returns 0 on success, errno on failure (as defined in errno.h)
4751 * Registered in the pci_driver structure, this function is called when the
4752 * PCI subsystem finds a new PCI device which matches the information
4753 * contained in the pci_device_id table. This routine is the equivalent to
4754 * a device insertion routine.
4756 static int et131x_pci_setup(struct pci_dev *pdev,
4757 const struct pci_device_id *ent)
4759 struct net_device *netdev;
4760 struct et131x_adapter *adapter;
4761 int rc;
4762 int ii;
4764 rc = pci_enable_device(pdev);
4765 if (rc < 0) {
4766 dev_err(&pdev->dev, "pci_enable_device() failed\n");
4767 goto out;
4770 /* Perform some basic PCI checks */
4771 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4772 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
4773 rc = -ENODEV;
4774 goto err_disable;
4777 rc = pci_request_regions(pdev, DRIVER_NAME);
4778 if (rc < 0) {
4779 dev_err(&pdev->dev, "Can't get PCI resources\n");
4780 goto err_disable;
4783 pci_set_master(pdev);
4785 /* Check the DMA addressing support of this device */
4786 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4787 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
4788 dev_err(&pdev->dev, "No usable DMA addressing method\n");
4789 rc = -EIO;
4790 goto err_release_res;
4793 /* Allocate netdev and private adapter structs */
4794 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
4795 if (!netdev) {
4796 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
4797 rc = -ENOMEM;
4798 goto err_release_res;
4801 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4802 netdev->netdev_ops = &et131x_netdev_ops;
4804 SET_NETDEV_DEV(netdev, &pdev->dev);
4805 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
4807 adapter = et131x_adapter_init(netdev, pdev);
4809 rc = et131x_pci_init(adapter, pdev);
4810 if (rc < 0)
4811 goto err_free_dev;
4813 /* Map the bus-relative registers to system virtual memory */
4814 adapter->regs = pci_ioremap_bar(pdev, 0);
4815 if (!adapter->regs) {
4816 dev_err(&pdev->dev, "Cannot map device registers\n");
4817 rc = -ENOMEM;
4818 goto err_free_dev;
4821 /* If Phy COMA mode was enabled when we went down, disable it here. */
4822 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4824 /* Issue a global reset to the et1310 */
4825 et131x_soft_reset(adapter);
4827 /* Disable all interrupts (paranoid) */
4828 et131x_disable_interrupts(adapter);
4830 /* Allocate DMA memory */
4831 rc = et131x_adapter_memory_alloc(adapter);
4832 if (rc < 0) {
4833 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
4834 goto err_iounmap;
4837 /* Init send data structures */
4838 et131x_init_send(adapter);
4840 /* Set up the task structure for the ISR's deferred handler */
4841 INIT_WORK(&adapter->task, et131x_isr_handler);
4843 /* Copy address into the net_device struct */
4844 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4846 /* Init variable for counting how long we do not have link status */
4847 adapter->boot_coma = 0;
4848 et1310_disable_phy_coma(adapter);
4850 rc = -ENOMEM;
4852 /* Setup the mii_bus struct */
4853 adapter->mii_bus = mdiobus_alloc();
4854 if (!adapter->mii_bus) {
4855 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4856 goto err_mem_free;
4859 adapter->mii_bus->name = "et131x_eth_mii";
4860 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4861 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4862 adapter->mii_bus->priv = netdev;
4863 adapter->mii_bus->read = et131x_mdio_read;
4864 adapter->mii_bus->write = et131x_mdio_write;
4865 adapter->mii_bus->reset = et131x_mdio_reset;
4866 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4867 GFP_KERNEL);
4868 if (!adapter->mii_bus->irq)
4869 goto err_mdio_free;
4871 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4872 adapter->mii_bus->irq[ii] = PHY_POLL;
4874 rc = mdiobus_register(adapter->mii_bus);
4875 if (rc < 0) {
4876 dev_err(&pdev->dev, "failed to register MII bus\n");
4877 goto err_mdio_free_irq;
4880 rc = et131x_mii_probe(netdev);
4881 if (rc < 0) {
4882 dev_err(&pdev->dev, "failed to probe MII bus\n");
4883 goto err_mdio_unregister;
4886 /* Setup et1310 as per the documentation */
4887 et131x_adapter_setup(adapter);
4889 /* We can enable interrupts now
4891 * NOTE - Because registration of interrupt handler is done in the
4892 * device's open(), defer enabling device interrupts to that
4893 * point
4896 /* Register the net_device struct with the Linux network layer */
4897 rc = register_netdev(netdev);
4898 if (rc < 0) {
4899 dev_err(&pdev->dev, "register_netdev() failed\n");
4900 goto err_phy_disconnect;
4903 /* Register the net_device struct with the PCI subsystem. Save a copy
4904 * of the PCI config space for this device now that the device has
4905 * been initialized, just in case it needs to be quickly restored.
4907 pci_set_drvdata(pdev, netdev);
4908 out:
4909 return rc;
4911 err_phy_disconnect:
4912 phy_disconnect(adapter->phydev);
4913 err_mdio_unregister:
4914 mdiobus_unregister(adapter->mii_bus);
4915 err_mdio_free_irq:
4916 kfree(adapter->mii_bus->irq);
4917 err_mdio_free:
4918 mdiobus_free(adapter->mii_bus);
4919 err_mem_free:
4920 et131x_adapter_memory_free(adapter);
4921 err_iounmap:
4922 iounmap(adapter->regs);
4923 err_free_dev:
4924 pci_dev_put(pdev);
4925 free_netdev(netdev);
4926 err_release_res:
4927 pci_release_regions(pdev);
4928 err_disable:
4929 pci_disable_device(pdev);
4930 goto out;
4933 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
4934 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4935 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4936 {0,}
4938 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4940 static struct pci_driver et131x_driver = {
4941 .name = DRIVER_NAME,
4942 .id_table = et131x_pci_table,
4943 .probe = et131x_pci_setup,
4944 .remove = et131x_pci_remove,
4945 .driver.pm = ET131X_PM_OPS,
4948 module_pci_driver(et131x_driver);