ARM: EXYNOS: Detect power domain state on registration from DT
[linux-2.6.git] / fs / xfs / xfs_trans_buf.c
blob6311b99c267f69fe3ac1e7cc4d72a7681e96415d
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_alloc_btree.h"
28 #include "xfs_ialloc_btree.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_buf_item.h"
32 #include "xfs_trans_priv.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
37 * Check to see if a buffer matching the given parameters is already
38 * a part of the given transaction.
40 STATIC struct xfs_buf *
41 xfs_trans_buf_item_match(
42 struct xfs_trans *tp,
43 struct xfs_buftarg *target,
44 struct xfs_buf_map *map,
45 int nmaps)
47 struct xfs_log_item_desc *lidp;
48 struct xfs_buf_log_item *blip;
49 int len = 0;
50 int i;
52 for (i = 0; i < nmaps; i++)
53 len += map[i].bm_len;
55 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
56 blip = (struct xfs_buf_log_item *)lidp->lid_item;
57 if (blip->bli_item.li_type == XFS_LI_BUF &&
58 blip->bli_buf->b_target == target &&
59 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
60 blip->bli_buf->b_length == len) {
61 ASSERT(blip->bli_buf->b_map_count == nmaps);
62 return blip->bli_buf;
66 return NULL;
70 * Add the locked buffer to the transaction.
72 * The buffer must be locked, and it cannot be associated with any
73 * transaction.
75 * If the buffer does not yet have a buf log item associated with it,
76 * then allocate one for it. Then add the buf item to the transaction.
78 STATIC void
79 _xfs_trans_bjoin(
80 struct xfs_trans *tp,
81 struct xfs_buf *bp,
82 int reset_recur)
84 struct xfs_buf_log_item *bip;
86 ASSERT(bp->b_transp == NULL);
89 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
90 * it doesn't have one yet, then allocate one and initialize it.
91 * The checks to see if one is there are in xfs_buf_item_init().
93 xfs_buf_item_init(bp, tp->t_mountp);
94 bip = bp->b_fspriv;
95 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
96 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
97 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
98 if (reset_recur)
99 bip->bli_recur = 0;
102 * Take a reference for this transaction on the buf item.
104 atomic_inc(&bip->bli_refcount);
107 * Get a log_item_desc to point at the new item.
109 xfs_trans_add_item(tp, &bip->bli_item);
112 * Initialize b_fsprivate2 so we can find it with incore_match()
113 * in xfs_trans_get_buf() and friends above.
115 bp->b_transp = tp;
119 void
120 xfs_trans_bjoin(
121 struct xfs_trans *tp,
122 struct xfs_buf *bp)
124 _xfs_trans_bjoin(tp, bp, 0);
125 trace_xfs_trans_bjoin(bp->b_fspriv);
129 * Get and lock the buffer for the caller if it is not already
130 * locked within the given transaction. If it is already locked
131 * within the transaction, just increment its lock recursion count
132 * and return a pointer to it.
134 * If the transaction pointer is NULL, make this just a normal
135 * get_buf() call.
137 struct xfs_buf *
138 xfs_trans_get_buf_map(
139 struct xfs_trans *tp,
140 struct xfs_buftarg *target,
141 struct xfs_buf_map *map,
142 int nmaps,
143 xfs_buf_flags_t flags)
145 xfs_buf_t *bp;
146 xfs_buf_log_item_t *bip;
148 if (!tp)
149 return xfs_buf_get_map(target, map, nmaps, flags);
152 * If we find the buffer in the cache with this transaction
153 * pointer in its b_fsprivate2 field, then we know we already
154 * have it locked. In this case we just increment the lock
155 * recursion count and return the buffer to the caller.
157 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
158 if (bp != NULL) {
159 ASSERT(xfs_buf_islocked(bp));
160 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
161 xfs_buf_stale(bp);
162 XFS_BUF_DONE(bp);
165 ASSERT(bp->b_transp == tp);
166 bip = bp->b_fspriv;
167 ASSERT(bip != NULL);
168 ASSERT(atomic_read(&bip->bli_refcount) > 0);
169 bip->bli_recur++;
170 trace_xfs_trans_get_buf_recur(bip);
171 return (bp);
174 bp = xfs_buf_get_map(target, map, nmaps, flags);
175 if (bp == NULL) {
176 return NULL;
179 ASSERT(!bp->b_error);
181 _xfs_trans_bjoin(tp, bp, 1);
182 trace_xfs_trans_get_buf(bp->b_fspriv);
183 return (bp);
187 * Get and lock the superblock buffer of this file system for the
188 * given transaction.
190 * We don't need to use incore_match() here, because the superblock
191 * buffer is a private buffer which we keep a pointer to in the
192 * mount structure.
194 xfs_buf_t *
195 xfs_trans_getsb(xfs_trans_t *tp,
196 struct xfs_mount *mp,
197 int flags)
199 xfs_buf_t *bp;
200 xfs_buf_log_item_t *bip;
203 * Default to just trying to lock the superblock buffer
204 * if tp is NULL.
206 if (tp == NULL) {
207 return (xfs_getsb(mp, flags));
211 * If the superblock buffer already has this transaction
212 * pointer in its b_fsprivate2 field, then we know we already
213 * have it locked. In this case we just increment the lock
214 * recursion count and return the buffer to the caller.
216 bp = mp->m_sb_bp;
217 if (bp->b_transp == tp) {
218 bip = bp->b_fspriv;
219 ASSERT(bip != NULL);
220 ASSERT(atomic_read(&bip->bli_refcount) > 0);
221 bip->bli_recur++;
222 trace_xfs_trans_getsb_recur(bip);
223 return (bp);
226 bp = xfs_getsb(mp, flags);
227 if (bp == NULL)
228 return NULL;
230 _xfs_trans_bjoin(tp, bp, 1);
231 trace_xfs_trans_getsb(bp->b_fspriv);
232 return (bp);
235 #ifdef DEBUG
236 xfs_buftarg_t *xfs_error_target;
237 int xfs_do_error;
238 int xfs_req_num;
239 int xfs_error_mod = 33;
240 #endif
243 * Get and lock the buffer for the caller if it is not already
244 * locked within the given transaction. If it has not yet been
245 * read in, read it from disk. If it is already locked
246 * within the transaction and already read in, just increment its
247 * lock recursion count and return a pointer to it.
249 * If the transaction pointer is NULL, make this just a normal
250 * read_buf() call.
253 xfs_trans_read_buf_map(
254 struct xfs_mount *mp,
255 struct xfs_trans *tp,
256 struct xfs_buftarg *target,
257 struct xfs_buf_map *map,
258 int nmaps,
259 xfs_buf_flags_t flags,
260 struct xfs_buf **bpp)
262 xfs_buf_t *bp;
263 xfs_buf_log_item_t *bip;
264 int error;
266 *bpp = NULL;
267 if (!tp) {
268 bp = xfs_buf_read_map(target, map, nmaps, flags);
269 if (!bp)
270 return (flags & XBF_TRYLOCK) ?
271 EAGAIN : XFS_ERROR(ENOMEM);
273 if (bp->b_error) {
274 error = bp->b_error;
275 xfs_buf_ioerror_alert(bp, __func__);
276 XFS_BUF_UNDONE(bp);
277 xfs_buf_stale(bp);
278 xfs_buf_relse(bp);
279 return error;
281 #ifdef DEBUG
282 if (xfs_do_error) {
283 if (xfs_error_target == target) {
284 if (((xfs_req_num++) % xfs_error_mod) == 0) {
285 xfs_buf_relse(bp);
286 xfs_debug(mp, "Returning error!");
287 return XFS_ERROR(EIO);
291 #endif
292 if (XFS_FORCED_SHUTDOWN(mp))
293 goto shutdown_abort;
294 *bpp = bp;
295 return 0;
299 * If we find the buffer in the cache with this transaction
300 * pointer in its b_fsprivate2 field, then we know we already
301 * have it locked. If it is already read in we just increment
302 * the lock recursion count and return the buffer to the caller.
303 * If the buffer is not yet read in, then we read it in, increment
304 * the lock recursion count, and return it to the caller.
306 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
307 if (bp != NULL) {
308 ASSERT(xfs_buf_islocked(bp));
309 ASSERT(bp->b_transp == tp);
310 ASSERT(bp->b_fspriv != NULL);
311 ASSERT(!bp->b_error);
312 if (!(XFS_BUF_ISDONE(bp))) {
313 trace_xfs_trans_read_buf_io(bp, _RET_IP_);
314 ASSERT(!XFS_BUF_ISASYNC(bp));
315 XFS_BUF_READ(bp);
316 xfsbdstrat(tp->t_mountp, bp);
317 error = xfs_buf_iowait(bp);
318 if (error) {
319 xfs_buf_ioerror_alert(bp, __func__);
320 xfs_buf_relse(bp);
322 * We can gracefully recover from most read
323 * errors. Ones we can't are those that happen
324 * after the transaction's already dirty.
326 if (tp->t_flags & XFS_TRANS_DIRTY)
327 xfs_force_shutdown(tp->t_mountp,
328 SHUTDOWN_META_IO_ERROR);
329 return error;
333 * We never locked this buf ourselves, so we shouldn't
334 * brelse it either. Just get out.
336 if (XFS_FORCED_SHUTDOWN(mp)) {
337 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
338 *bpp = NULL;
339 return XFS_ERROR(EIO);
343 bip = bp->b_fspriv;
344 bip->bli_recur++;
346 ASSERT(atomic_read(&bip->bli_refcount) > 0);
347 trace_xfs_trans_read_buf_recur(bip);
348 *bpp = bp;
349 return 0;
352 bp = xfs_buf_read_map(target, map, nmaps, flags);
353 if (bp == NULL) {
354 *bpp = NULL;
355 return (flags & XBF_TRYLOCK) ?
356 0 : XFS_ERROR(ENOMEM);
358 if (bp->b_error) {
359 error = bp->b_error;
360 xfs_buf_stale(bp);
361 XFS_BUF_DONE(bp);
362 xfs_buf_ioerror_alert(bp, __func__);
363 if (tp->t_flags & XFS_TRANS_DIRTY)
364 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
365 xfs_buf_relse(bp);
366 return error;
368 #ifdef DEBUG
369 if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
370 if (xfs_error_target == target) {
371 if (((xfs_req_num++) % xfs_error_mod) == 0) {
372 xfs_force_shutdown(tp->t_mountp,
373 SHUTDOWN_META_IO_ERROR);
374 xfs_buf_relse(bp);
375 xfs_debug(mp, "Returning trans error!");
376 return XFS_ERROR(EIO);
380 #endif
381 if (XFS_FORCED_SHUTDOWN(mp))
382 goto shutdown_abort;
384 _xfs_trans_bjoin(tp, bp, 1);
385 trace_xfs_trans_read_buf(bp->b_fspriv);
387 *bpp = bp;
388 return 0;
390 shutdown_abort:
391 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
392 xfs_buf_relse(bp);
393 *bpp = NULL;
394 return XFS_ERROR(EIO);
399 * Release the buffer bp which was previously acquired with one of the
400 * xfs_trans_... buffer allocation routines if the buffer has not
401 * been modified within this transaction. If the buffer is modified
402 * within this transaction, do decrement the recursion count but do
403 * not release the buffer even if the count goes to 0. If the buffer is not
404 * modified within the transaction, decrement the recursion count and
405 * release the buffer if the recursion count goes to 0.
407 * If the buffer is to be released and it was not modified before
408 * this transaction began, then free the buf_log_item associated with it.
410 * If the transaction pointer is NULL, make this just a normal
411 * brelse() call.
413 void
414 xfs_trans_brelse(xfs_trans_t *tp,
415 xfs_buf_t *bp)
417 xfs_buf_log_item_t *bip;
420 * Default to a normal brelse() call if the tp is NULL.
422 if (tp == NULL) {
423 ASSERT(bp->b_transp == NULL);
424 xfs_buf_relse(bp);
425 return;
428 ASSERT(bp->b_transp == tp);
429 bip = bp->b_fspriv;
430 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
431 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
432 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
433 ASSERT(atomic_read(&bip->bli_refcount) > 0);
435 trace_xfs_trans_brelse(bip);
438 * If the release is just for a recursive lock,
439 * then decrement the count and return.
441 if (bip->bli_recur > 0) {
442 bip->bli_recur--;
443 return;
447 * If the buffer is dirty within this transaction, we can't
448 * release it until we commit.
450 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
451 return;
454 * If the buffer has been invalidated, then we can't release
455 * it until the transaction commits to disk unless it is re-dirtied
456 * as part of this transaction. This prevents us from pulling
457 * the item from the AIL before we should.
459 if (bip->bli_flags & XFS_BLI_STALE)
460 return;
462 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
465 * Free up the log item descriptor tracking the released item.
467 xfs_trans_del_item(&bip->bli_item);
470 * Clear the hold flag in the buf log item if it is set.
471 * We wouldn't want the next user of the buffer to
472 * get confused.
474 if (bip->bli_flags & XFS_BLI_HOLD) {
475 bip->bli_flags &= ~XFS_BLI_HOLD;
479 * Drop our reference to the buf log item.
481 atomic_dec(&bip->bli_refcount);
484 * If the buf item is not tracking data in the log, then
485 * we must free it before releasing the buffer back to the
486 * free pool. Before releasing the buffer to the free pool,
487 * clear the transaction pointer in b_fsprivate2 to dissolve
488 * its relation to this transaction.
490 if (!xfs_buf_item_dirty(bip)) {
491 /***
492 ASSERT(bp->b_pincount == 0);
493 ***/
494 ASSERT(atomic_read(&bip->bli_refcount) == 0);
495 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
496 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
497 xfs_buf_item_relse(bp);
500 bp->b_transp = NULL;
501 xfs_buf_relse(bp);
505 * Mark the buffer as not needing to be unlocked when the buf item's
506 * IOP_UNLOCK() routine is called. The buffer must already be locked
507 * and associated with the given transaction.
509 /* ARGSUSED */
510 void
511 xfs_trans_bhold(xfs_trans_t *tp,
512 xfs_buf_t *bp)
514 xfs_buf_log_item_t *bip = bp->b_fspriv;
516 ASSERT(bp->b_transp == tp);
517 ASSERT(bip != NULL);
518 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
519 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
520 ASSERT(atomic_read(&bip->bli_refcount) > 0);
522 bip->bli_flags |= XFS_BLI_HOLD;
523 trace_xfs_trans_bhold(bip);
527 * Cancel the previous buffer hold request made on this buffer
528 * for this transaction.
530 void
531 xfs_trans_bhold_release(xfs_trans_t *tp,
532 xfs_buf_t *bp)
534 xfs_buf_log_item_t *bip = bp->b_fspriv;
536 ASSERT(bp->b_transp == tp);
537 ASSERT(bip != NULL);
538 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
539 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
540 ASSERT(atomic_read(&bip->bli_refcount) > 0);
541 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
543 bip->bli_flags &= ~XFS_BLI_HOLD;
544 trace_xfs_trans_bhold_release(bip);
548 * This is called to mark bytes first through last inclusive of the given
549 * buffer as needing to be logged when the transaction is committed.
550 * The buffer must already be associated with the given transaction.
552 * First and last are numbers relative to the beginning of this buffer,
553 * so the first byte in the buffer is numbered 0 regardless of the
554 * value of b_blkno.
556 void
557 xfs_trans_log_buf(xfs_trans_t *tp,
558 xfs_buf_t *bp,
559 uint first,
560 uint last)
562 xfs_buf_log_item_t *bip = bp->b_fspriv;
564 ASSERT(bp->b_transp == tp);
565 ASSERT(bip != NULL);
566 ASSERT(first <= last && last < BBTOB(bp->b_length));
567 ASSERT(bp->b_iodone == NULL ||
568 bp->b_iodone == xfs_buf_iodone_callbacks);
571 * Mark the buffer as needing to be written out eventually,
572 * and set its iodone function to remove the buffer's buf log
573 * item from the AIL and free it when the buffer is flushed
574 * to disk. See xfs_buf_attach_iodone() for more details
575 * on li_cb and xfs_buf_iodone_callbacks().
576 * If we end up aborting this transaction, we trap this buffer
577 * inside the b_bdstrat callback so that this won't get written to
578 * disk.
580 XFS_BUF_DONE(bp);
582 ASSERT(atomic_read(&bip->bli_refcount) > 0);
583 bp->b_iodone = xfs_buf_iodone_callbacks;
584 bip->bli_item.li_cb = xfs_buf_iodone;
586 trace_xfs_trans_log_buf(bip);
589 * If we invalidated the buffer within this transaction, then
590 * cancel the invalidation now that we're dirtying the buffer
591 * again. There are no races with the code in xfs_buf_item_unpin(),
592 * because we have a reference to the buffer this entire time.
594 if (bip->bli_flags & XFS_BLI_STALE) {
595 bip->bli_flags &= ~XFS_BLI_STALE;
596 ASSERT(XFS_BUF_ISSTALE(bp));
597 XFS_BUF_UNSTALE(bp);
598 bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
601 tp->t_flags |= XFS_TRANS_DIRTY;
602 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
603 bip->bli_flags |= XFS_BLI_LOGGED;
604 xfs_buf_item_log(bip, first, last);
609 * Invalidate a buffer that is being used within a transaction.
611 * Typically this is because the blocks in the buffer are being freed, so we
612 * need to prevent it from being written out when we're done. Allowing it
613 * to be written again might overwrite data in the free blocks if they are
614 * reallocated to a file.
616 * We prevent the buffer from being written out by marking it stale. We can't
617 * get rid of the buf log item at this point because the buffer may still be
618 * pinned by another transaction. If that is the case, then we'll wait until
619 * the buffer is committed to disk for the last time (we can tell by the ref
620 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
621 * keep the buffer locked so that the buffer and buf log item are not reused.
623 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
624 * the buf item. This will be used at recovery time to determine that copies
625 * of the buffer in the log before this should not be replayed.
627 * We mark the item descriptor and the transaction dirty so that we'll hold
628 * the buffer until after the commit.
630 * Since we're invalidating the buffer, we also clear the state about which
631 * parts of the buffer have been logged. We also clear the flag indicating
632 * that this is an inode buffer since the data in the buffer will no longer
633 * be valid.
635 * We set the stale bit in the buffer as well since we're getting rid of it.
637 void
638 xfs_trans_binval(
639 xfs_trans_t *tp,
640 xfs_buf_t *bp)
642 xfs_buf_log_item_t *bip = bp->b_fspriv;
644 ASSERT(bp->b_transp == tp);
645 ASSERT(bip != NULL);
646 ASSERT(atomic_read(&bip->bli_refcount) > 0);
648 trace_xfs_trans_binval(bip);
650 if (bip->bli_flags & XFS_BLI_STALE) {
652 * If the buffer is already invalidated, then
653 * just return.
655 ASSERT(XFS_BUF_ISSTALE(bp));
656 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
657 ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
658 ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
659 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
660 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
661 return;
664 xfs_buf_stale(bp);
666 bip->bli_flags |= XFS_BLI_STALE;
667 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
668 bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
669 bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
670 memset((char *)(bip->bli_format.blf_data_map), 0,
671 (bip->bli_format.blf_map_size * sizeof(uint)));
672 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
673 tp->t_flags |= XFS_TRANS_DIRTY;
677 * This call is used to indicate that the buffer contains on-disk inodes which
678 * must be handled specially during recovery. They require special handling
679 * because only the di_next_unlinked from the inodes in the buffer should be
680 * recovered. The rest of the data in the buffer is logged via the inodes
681 * themselves.
683 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
684 * transferred to the buffer's log format structure so that we'll know what to
685 * do at recovery time.
687 void
688 xfs_trans_inode_buf(
689 xfs_trans_t *tp,
690 xfs_buf_t *bp)
692 xfs_buf_log_item_t *bip = bp->b_fspriv;
694 ASSERT(bp->b_transp == tp);
695 ASSERT(bip != NULL);
696 ASSERT(atomic_read(&bip->bli_refcount) > 0);
698 bip->bli_flags |= XFS_BLI_INODE_BUF;
702 * This call is used to indicate that the buffer is going to
703 * be staled and was an inode buffer. This means it gets
704 * special processing during unpin - where any inodes
705 * associated with the buffer should be removed from ail.
706 * There is also special processing during recovery,
707 * any replay of the inodes in the buffer needs to be
708 * prevented as the buffer may have been reused.
710 void
711 xfs_trans_stale_inode_buf(
712 xfs_trans_t *tp,
713 xfs_buf_t *bp)
715 xfs_buf_log_item_t *bip = bp->b_fspriv;
717 ASSERT(bp->b_transp == tp);
718 ASSERT(bip != NULL);
719 ASSERT(atomic_read(&bip->bli_refcount) > 0);
721 bip->bli_flags |= XFS_BLI_STALE_INODE;
722 bip->bli_item.li_cb = xfs_buf_iodone;
726 * Mark the buffer as being one which contains newly allocated
727 * inodes. We need to make sure that even if this buffer is
728 * relogged as an 'inode buf' we still recover all of the inode
729 * images in the face of a crash. This works in coordination with
730 * xfs_buf_item_committed() to ensure that the buffer remains in the
731 * AIL at its original location even after it has been relogged.
733 /* ARGSUSED */
734 void
735 xfs_trans_inode_alloc_buf(
736 xfs_trans_t *tp,
737 xfs_buf_t *bp)
739 xfs_buf_log_item_t *bip = bp->b_fspriv;
741 ASSERT(bp->b_transp == tp);
742 ASSERT(bip != NULL);
743 ASSERT(atomic_read(&bip->bli_refcount) > 0);
745 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
750 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
751 * dquots. However, unlike in inode buffer recovery, dquot buffers get
752 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
753 * The only thing that makes dquot buffers different from regular
754 * buffers is that we must not replay dquot bufs when recovering
755 * if a _corresponding_ quotaoff has happened. We also have to distinguish
756 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
757 * can be turned off independently.
759 /* ARGSUSED */
760 void
761 xfs_trans_dquot_buf(
762 xfs_trans_t *tp,
763 xfs_buf_t *bp,
764 uint type)
766 xfs_buf_log_item_t *bip = bp->b_fspriv;
768 ASSERT(bp->b_transp == tp);
769 ASSERT(bip != NULL);
770 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
771 type == XFS_BLF_PDQUOT_BUF ||
772 type == XFS_BLF_GDQUOT_BUF);
773 ASSERT(atomic_read(&bip->bli_refcount) > 0);
775 bip->bli_format.blf_flags |= type;