2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_extfree_item.h"
32 kmem_zone_t
*xfs_efi_zone
;
33 kmem_zone_t
*xfs_efd_zone
;
35 static inline struct xfs_efi_log_item
*EFI_ITEM(struct xfs_log_item
*lip
)
37 return container_of(lip
, struct xfs_efi_log_item
, efi_item
);
42 struct xfs_efi_log_item
*efip
)
44 if (efip
->efi_format
.efi_nextents
> XFS_EFI_MAX_FAST_EXTENTS
)
47 kmem_zone_free(xfs_efi_zone
, efip
);
51 * Freeing the efi requires that we remove it from the AIL if it has already
52 * been placed there. However, the EFI may not yet have been placed in the AIL
53 * when called by xfs_efi_release() from EFD processing due to the ordering of
54 * committed vs unpin operations in bulk insert operations. Hence the
55 * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees
60 struct xfs_efi_log_item
*efip
)
62 struct xfs_ail
*ailp
= efip
->efi_item
.li_ailp
;
64 if (!test_and_clear_bit(XFS_EFI_COMMITTED
, &efip
->efi_flags
)) {
65 spin_lock(&ailp
->xa_lock
);
66 /* xfs_trans_ail_delete() drops the AIL lock. */
67 xfs_trans_ail_delete(ailp
, &efip
->efi_item
);
68 xfs_efi_item_free(efip
);
73 * This returns the number of iovecs needed to log the given efi item.
74 * We only need 1 iovec for an efi item. It just logs the efi_log_format
79 struct xfs_log_item
*lip
)
85 * This is called to fill in the vector of log iovecs for the
86 * given efi log item. We use only 1 iovec, and we point that
87 * at the efi_log_format structure embedded in the efi item.
88 * It is at this point that we assert that all of the extent
89 * slots in the efi item have been filled.
93 struct xfs_log_item
*lip
,
94 struct xfs_log_iovec
*log_vector
)
96 struct xfs_efi_log_item
*efip
= EFI_ITEM(lip
);
99 ASSERT(atomic_read(&efip
->efi_next_extent
) ==
100 efip
->efi_format
.efi_nextents
);
102 efip
->efi_format
.efi_type
= XFS_LI_EFI
;
104 size
= sizeof(xfs_efi_log_format_t
);
105 size
+= (efip
->efi_format
.efi_nextents
- 1) * sizeof(xfs_extent_t
);
106 efip
->efi_format
.efi_size
= 1;
108 log_vector
->i_addr
= &efip
->efi_format
;
109 log_vector
->i_len
= size
;
110 log_vector
->i_type
= XLOG_REG_TYPE_EFI_FORMAT
;
111 ASSERT(size
>= sizeof(xfs_efi_log_format_t
));
116 * Pinning has no meaning for an efi item, so just return.
120 struct xfs_log_item
*lip
)
125 * While EFIs cannot really be pinned, the unpin operation is the last place at
126 * which the EFI is manipulated during a transaction. If we are being asked to
127 * remove the EFI it's because the transaction has been cancelled and by
128 * definition that means the EFI cannot be in the AIL so remove it from the
129 * transaction and free it. Otherwise coordinate with xfs_efi_release() (via
130 * XFS_EFI_COMMITTED) to determine who gets to free the EFI.
134 struct xfs_log_item
*lip
,
137 struct xfs_efi_log_item
*efip
= EFI_ITEM(lip
);
140 ASSERT(!(lip
->li_flags
& XFS_LI_IN_AIL
));
142 xfs_trans_del_item(lip
);
143 xfs_efi_item_free(efip
);
146 __xfs_efi_release(efip
);
150 * Efi items have no locking or pushing. However, since EFIs are
151 * pulled from the AIL when their corresponding EFDs are committed
152 * to disk, their situation is very similar to being pinned. Return
153 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
154 * This should help in getting the EFI out of the AIL.
157 xfs_efi_item_trylock(
158 struct xfs_log_item
*lip
)
160 return XFS_ITEM_PINNED
;
164 * Efi items have no locking, so just return.
168 struct xfs_log_item
*lip
)
170 if (lip
->li_flags
& XFS_LI_ABORTED
)
171 xfs_efi_item_free(EFI_ITEM(lip
));
175 * The EFI is logged only once and cannot be moved in the log, so simply return
176 * the lsn at which it's been logged. For bulk transaction committed
177 * processing, the EFI may be processed but not yet unpinned prior to the EFD
178 * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected
179 * when processing the EFD.
182 xfs_efi_item_committed(
183 struct xfs_log_item
*lip
,
186 struct xfs_efi_log_item
*efip
= EFI_ITEM(lip
);
188 set_bit(XFS_EFI_COMMITTED
, &efip
->efi_flags
);
193 * There isn't much you can do to push on an efi item. It is simply
194 * stuck waiting for all of its corresponding efd items to be
199 struct xfs_log_item
*lip
)
204 * The EFI dependency tracking op doesn't do squat. It can't because
205 * it doesn't know where the free extent is coming from. The dependency
206 * tracking has to be handled by the "enclosing" metadata object. For
207 * example, for inodes, the inode is locked throughout the extent freeing
208 * so the dependency should be recorded there.
211 xfs_efi_item_committing(
212 struct xfs_log_item
*lip
,
218 * This is the ops vector shared by all efi log items.
220 static struct xfs_item_ops xfs_efi_item_ops
= {
221 .iop_size
= xfs_efi_item_size
,
222 .iop_format
= xfs_efi_item_format
,
223 .iop_pin
= xfs_efi_item_pin
,
224 .iop_unpin
= xfs_efi_item_unpin
,
225 .iop_trylock
= xfs_efi_item_trylock
,
226 .iop_unlock
= xfs_efi_item_unlock
,
227 .iop_committed
= xfs_efi_item_committed
,
228 .iop_push
= xfs_efi_item_push
,
229 .iop_committing
= xfs_efi_item_committing
234 * Allocate and initialize an efi item with the given number of extents.
236 struct xfs_efi_log_item
*
238 struct xfs_mount
*mp
,
242 struct xfs_efi_log_item
*efip
;
245 ASSERT(nextents
> 0);
246 if (nextents
> XFS_EFI_MAX_FAST_EXTENTS
) {
247 size
= (uint
)(sizeof(xfs_efi_log_item_t
) +
248 ((nextents
- 1) * sizeof(xfs_extent_t
)));
249 efip
= kmem_zalloc(size
, KM_SLEEP
);
251 efip
= kmem_zone_zalloc(xfs_efi_zone
, KM_SLEEP
);
254 xfs_log_item_init(mp
, &efip
->efi_item
, XFS_LI_EFI
, &xfs_efi_item_ops
);
255 efip
->efi_format
.efi_nextents
= nextents
;
256 efip
->efi_format
.efi_id
= (__psint_t
)(void*)efip
;
257 atomic_set(&efip
->efi_next_extent
, 0);
263 * Copy an EFI format buffer from the given buf, and into the destination
264 * EFI format structure.
265 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
266 * one of which will be the native format for this kernel.
267 * It will handle the conversion of formats if necessary.
270 xfs_efi_copy_format(xfs_log_iovec_t
*buf
, xfs_efi_log_format_t
*dst_efi_fmt
)
272 xfs_efi_log_format_t
*src_efi_fmt
= buf
->i_addr
;
274 uint len
= sizeof(xfs_efi_log_format_t
) +
275 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_t
);
276 uint len32
= sizeof(xfs_efi_log_format_32_t
) +
277 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_32_t
);
278 uint len64
= sizeof(xfs_efi_log_format_64_t
) +
279 (src_efi_fmt
->efi_nextents
- 1) * sizeof(xfs_extent_64_t
);
281 if (buf
->i_len
== len
) {
282 memcpy((char *)dst_efi_fmt
, (char*)src_efi_fmt
, len
);
284 } else if (buf
->i_len
== len32
) {
285 xfs_efi_log_format_32_t
*src_efi_fmt_32
= buf
->i_addr
;
287 dst_efi_fmt
->efi_type
= src_efi_fmt_32
->efi_type
;
288 dst_efi_fmt
->efi_size
= src_efi_fmt_32
->efi_size
;
289 dst_efi_fmt
->efi_nextents
= src_efi_fmt_32
->efi_nextents
;
290 dst_efi_fmt
->efi_id
= src_efi_fmt_32
->efi_id
;
291 for (i
= 0; i
< dst_efi_fmt
->efi_nextents
; i
++) {
292 dst_efi_fmt
->efi_extents
[i
].ext_start
=
293 src_efi_fmt_32
->efi_extents
[i
].ext_start
;
294 dst_efi_fmt
->efi_extents
[i
].ext_len
=
295 src_efi_fmt_32
->efi_extents
[i
].ext_len
;
298 } else if (buf
->i_len
== len64
) {
299 xfs_efi_log_format_64_t
*src_efi_fmt_64
= buf
->i_addr
;
301 dst_efi_fmt
->efi_type
= src_efi_fmt_64
->efi_type
;
302 dst_efi_fmt
->efi_size
= src_efi_fmt_64
->efi_size
;
303 dst_efi_fmt
->efi_nextents
= src_efi_fmt_64
->efi_nextents
;
304 dst_efi_fmt
->efi_id
= src_efi_fmt_64
->efi_id
;
305 for (i
= 0; i
< dst_efi_fmt
->efi_nextents
; i
++) {
306 dst_efi_fmt
->efi_extents
[i
].ext_start
=
307 src_efi_fmt_64
->efi_extents
[i
].ext_start
;
308 dst_efi_fmt
->efi_extents
[i
].ext_len
=
309 src_efi_fmt_64
->efi_extents
[i
].ext_len
;
317 * This is called by the efd item code below to release references to the given
318 * efi item. Each efd calls this with the number of extents that it has
319 * logged, and when the sum of these reaches the total number of extents logged
320 * by this efi item we can free the efi item.
323 xfs_efi_release(xfs_efi_log_item_t
*efip
,
326 ASSERT(atomic_read(&efip
->efi_next_extent
) >= nextents
);
327 if (atomic_sub_and_test(nextents
, &efip
->efi_next_extent
))
328 __xfs_efi_release(efip
);
331 static inline struct xfs_efd_log_item
*EFD_ITEM(struct xfs_log_item
*lip
)
333 return container_of(lip
, struct xfs_efd_log_item
, efd_item
);
337 xfs_efd_item_free(struct xfs_efd_log_item
*efdp
)
339 if (efdp
->efd_format
.efd_nextents
> XFS_EFD_MAX_FAST_EXTENTS
)
342 kmem_zone_free(xfs_efd_zone
, efdp
);
346 * This returns the number of iovecs needed to log the given efd item.
347 * We only need 1 iovec for an efd item. It just logs the efd_log_format
352 struct xfs_log_item
*lip
)
358 * This is called to fill in the vector of log iovecs for the
359 * given efd log item. We use only 1 iovec, and we point that
360 * at the efd_log_format structure embedded in the efd item.
361 * It is at this point that we assert that all of the extent
362 * slots in the efd item have been filled.
366 struct xfs_log_item
*lip
,
367 struct xfs_log_iovec
*log_vector
)
369 struct xfs_efd_log_item
*efdp
= EFD_ITEM(lip
);
372 ASSERT(efdp
->efd_next_extent
== efdp
->efd_format
.efd_nextents
);
374 efdp
->efd_format
.efd_type
= XFS_LI_EFD
;
376 size
= sizeof(xfs_efd_log_format_t
);
377 size
+= (efdp
->efd_format
.efd_nextents
- 1) * sizeof(xfs_extent_t
);
378 efdp
->efd_format
.efd_size
= 1;
380 log_vector
->i_addr
= &efdp
->efd_format
;
381 log_vector
->i_len
= size
;
382 log_vector
->i_type
= XLOG_REG_TYPE_EFD_FORMAT
;
383 ASSERT(size
>= sizeof(xfs_efd_log_format_t
));
387 * Pinning has no meaning for an efd item, so just return.
391 struct xfs_log_item
*lip
)
396 * Since pinning has no meaning for an efd item, unpinning does
401 struct xfs_log_item
*lip
,
407 * Efd items have no locking, so just return success.
410 xfs_efd_item_trylock(
411 struct xfs_log_item
*lip
)
413 return XFS_ITEM_LOCKED
;
417 * Efd items have no locking or pushing, so return failure
418 * so that the caller doesn't bother with us.
422 struct xfs_log_item
*lip
)
424 if (lip
->li_flags
& XFS_LI_ABORTED
)
425 xfs_efd_item_free(EFD_ITEM(lip
));
429 * When the efd item is committed to disk, all we need to do
430 * is delete our reference to our partner efi item and then
431 * free ourselves. Since we're freeing ourselves we must
432 * return -1 to keep the transaction code from further referencing
436 xfs_efd_item_committed(
437 struct xfs_log_item
*lip
,
440 struct xfs_efd_log_item
*efdp
= EFD_ITEM(lip
);
443 * If we got a log I/O error, it's always the case that the LR with the
444 * EFI got unpinned and freed before the EFD got aborted.
446 if (!(lip
->li_flags
& XFS_LI_ABORTED
))
447 xfs_efi_release(efdp
->efd_efip
, efdp
->efd_format
.efd_nextents
);
449 xfs_efd_item_free(efdp
);
450 return (xfs_lsn_t
)-1;
454 * There isn't much you can do to push on an efd item. It is simply
455 * stuck waiting for the log to be flushed to disk.
459 struct xfs_log_item
*lip
)
464 * The EFD dependency tracking op doesn't do squat. It can't because
465 * it doesn't know where the free extent is coming from. The dependency
466 * tracking has to be handled by the "enclosing" metadata object. For
467 * example, for inodes, the inode is locked throughout the extent freeing
468 * so the dependency should be recorded there.
471 xfs_efd_item_committing(
472 struct xfs_log_item
*lip
,
478 * This is the ops vector shared by all efd log items.
480 static struct xfs_item_ops xfs_efd_item_ops
= {
481 .iop_size
= xfs_efd_item_size
,
482 .iop_format
= xfs_efd_item_format
,
483 .iop_pin
= xfs_efd_item_pin
,
484 .iop_unpin
= xfs_efd_item_unpin
,
485 .iop_trylock
= xfs_efd_item_trylock
,
486 .iop_unlock
= xfs_efd_item_unlock
,
487 .iop_committed
= xfs_efd_item_committed
,
488 .iop_push
= xfs_efd_item_push
,
489 .iop_committing
= xfs_efd_item_committing
493 * Allocate and initialize an efd item with the given number of extents.
495 struct xfs_efd_log_item
*
497 struct xfs_mount
*mp
,
498 struct xfs_efi_log_item
*efip
,
502 struct xfs_efd_log_item
*efdp
;
505 ASSERT(nextents
> 0);
506 if (nextents
> XFS_EFD_MAX_FAST_EXTENTS
) {
507 size
= (uint
)(sizeof(xfs_efd_log_item_t
) +
508 ((nextents
- 1) * sizeof(xfs_extent_t
)));
509 efdp
= kmem_zalloc(size
, KM_SLEEP
);
511 efdp
= kmem_zone_zalloc(xfs_efd_zone
, KM_SLEEP
);
514 xfs_log_item_init(mp
, &efdp
->efd_item
, XFS_LI_EFD
, &xfs_efd_item_ops
);
515 efdp
->efd_efip
= efip
;
516 efdp
->efd_format
.efd_nextents
= nextents
;
517 efdp
->efd_format
.efd_efi_id
= efip
->efi_format
.efi_id
;