2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
54 struct btrfs_iget_args
{
56 struct btrfs_root
*root
;
59 static const struct inode_operations btrfs_dir_inode_operations
;
60 static const struct inode_operations btrfs_symlink_inode_operations
;
61 static const struct inode_operations btrfs_dir_ro_inode_operations
;
62 static const struct inode_operations btrfs_special_inode_operations
;
63 static const struct inode_operations btrfs_file_inode_operations
;
64 static const struct address_space_operations btrfs_aops
;
65 static const struct address_space_operations btrfs_symlink_aops
;
66 static const struct file_operations btrfs_dir_file_operations
;
67 static struct extent_io_ops btrfs_extent_io_ops
;
69 static struct kmem_cache
*btrfs_inode_cachep
;
70 struct kmem_cache
*btrfs_trans_handle_cachep
;
71 struct kmem_cache
*btrfs_transaction_cachep
;
72 struct kmem_cache
*btrfs_path_cachep
;
75 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
76 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
77 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
78 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
79 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
80 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
81 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
82 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
85 static void btrfs_truncate(struct inode
*inode
);
86 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
87 static noinline
int cow_file_range(struct inode
*inode
,
88 struct page
*locked_page
,
89 u64 start
, u64 end
, int *page_started
,
90 unsigned long *nr_written
, int unlock
);
92 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
93 struct inode
*inode
, struct inode
*dir
)
97 err
= btrfs_init_acl(trans
, inode
, dir
);
99 err
= btrfs_xattr_security_init(trans
, inode
, dir
);
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
109 struct btrfs_root
*root
, struct inode
*inode
,
110 u64 start
, size_t size
, size_t compressed_size
,
111 struct page
**compressed_pages
)
113 struct btrfs_key key
;
114 struct btrfs_path
*path
;
115 struct extent_buffer
*leaf
;
116 struct page
*page
= NULL
;
119 struct btrfs_file_extent_item
*ei
;
122 size_t cur_size
= size
;
124 unsigned long offset
;
125 int compress_type
= BTRFS_COMPRESS_NONE
;
127 if (compressed_size
&& compressed_pages
) {
128 compress_type
= root
->fs_info
->compress_type
;
129 cur_size
= compressed_size
;
132 path
= btrfs_alloc_path();
136 path
->leave_spinning
= 1;
137 btrfs_set_trans_block_group(trans
, inode
);
139 key
.objectid
= inode
->i_ino
;
141 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
142 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
144 inode_add_bytes(inode
, size
);
145 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
152 leaf
= path
->nodes
[0];
153 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
154 struct btrfs_file_extent_item
);
155 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
156 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
157 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
158 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
159 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
160 ptr
= btrfs_file_extent_inline_start(ei
);
162 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
165 while (compressed_size
> 0) {
166 cpage
= compressed_pages
[i
];
167 cur_size
= min_t(unsigned long, compressed_size
,
170 kaddr
= kmap_atomic(cpage
, KM_USER0
);
171 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
172 kunmap_atomic(kaddr
, KM_USER0
);
176 compressed_size
-= cur_size
;
178 btrfs_set_file_extent_compression(leaf
, ei
,
181 page
= find_get_page(inode
->i_mapping
,
182 start
>> PAGE_CACHE_SHIFT
);
183 btrfs_set_file_extent_compression(leaf
, ei
, 0);
184 kaddr
= kmap_atomic(page
, KM_USER0
);
185 offset
= start
& (PAGE_CACHE_SIZE
- 1);
186 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
187 kunmap_atomic(kaddr
, KM_USER0
);
188 page_cache_release(page
);
190 btrfs_mark_buffer_dirty(leaf
);
191 btrfs_free_path(path
);
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
202 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
203 btrfs_update_inode(trans
, root
, inode
);
207 btrfs_free_path(path
);
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
217 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
218 struct btrfs_root
*root
,
219 struct inode
*inode
, u64 start
, u64 end
,
220 size_t compressed_size
,
221 struct page
**compressed_pages
)
223 u64 isize
= i_size_read(inode
);
224 u64 actual_end
= min(end
+ 1, isize
);
225 u64 inline_len
= actual_end
- start
;
226 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
227 ~((u64
)root
->sectorsize
- 1);
229 u64 data_len
= inline_len
;
233 data_len
= compressed_size
;
236 actual_end
>= PAGE_CACHE_SIZE
||
237 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
239 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
241 data_len
> root
->fs_info
->max_inline
) {
245 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
249 if (isize
> actual_end
)
250 inline_len
= min_t(u64
, isize
, actual_end
);
251 ret
= insert_inline_extent(trans
, root
, inode
, start
,
252 inline_len
, compressed_size
,
255 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
256 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
260 struct async_extent
{
265 unsigned long nr_pages
;
267 struct list_head list
;
272 struct btrfs_root
*root
;
273 struct page
*locked_page
;
276 struct list_head extents
;
277 struct btrfs_work work
;
280 static noinline
int add_async_extent(struct async_cow
*cow
,
281 u64 start
, u64 ram_size
,
284 unsigned long nr_pages
,
287 struct async_extent
*async_extent
;
289 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
290 async_extent
->start
= start
;
291 async_extent
->ram_size
= ram_size
;
292 async_extent
->compressed_size
= compressed_size
;
293 async_extent
->pages
= pages
;
294 async_extent
->nr_pages
= nr_pages
;
295 async_extent
->compress_type
= compress_type
;
296 list_add_tail(&async_extent
->list
, &cow
->extents
);
301 * we create compressed extents in two phases. The first
302 * phase compresses a range of pages that have already been
303 * locked (both pages and state bits are locked).
305 * This is done inside an ordered work queue, and the compression
306 * is spread across many cpus. The actual IO submission is step
307 * two, and the ordered work queue takes care of making sure that
308 * happens in the same order things were put onto the queue by
309 * writepages and friends.
311 * If this code finds it can't get good compression, it puts an
312 * entry onto the work queue to write the uncompressed bytes. This
313 * makes sure that both compressed inodes and uncompressed inodes
314 * are written in the same order that pdflush sent them down.
316 static noinline
int compress_file_range(struct inode
*inode
,
317 struct page
*locked_page
,
319 struct async_cow
*async_cow
,
322 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
323 struct btrfs_trans_handle
*trans
;
325 u64 blocksize
= root
->sectorsize
;
327 u64 isize
= i_size_read(inode
);
329 struct page
**pages
= NULL
;
330 unsigned long nr_pages
;
331 unsigned long nr_pages_ret
= 0;
332 unsigned long total_compressed
= 0;
333 unsigned long total_in
= 0;
334 unsigned long max_compressed
= 128 * 1024;
335 unsigned long max_uncompressed
= 128 * 1024;
338 int compress_type
= root
->fs_info
->compress_type
;
340 actual_end
= min_t(u64
, isize
, end
+ 1);
343 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
344 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
356 if (actual_end
<= start
)
357 goto cleanup_and_bail_uncompressed
;
359 total_compressed
= actual_end
- start
;
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
371 total_compressed
= min(total_compressed
, max_uncompressed
);
372 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
373 num_bytes
= max(blocksize
, num_bytes
);
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
382 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
383 (btrfs_test_opt(root
, COMPRESS
) ||
384 (BTRFS_I(inode
)->force_compress
))) {
386 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
388 if (BTRFS_I(inode
)->force_compress
)
389 compress_type
= BTRFS_I(inode
)->force_compress
;
391 ret
= btrfs_compress_pages(compress_type
,
392 inode
->i_mapping
, start
,
393 total_compressed
, pages
,
394 nr_pages
, &nr_pages_ret
,
400 unsigned long offset
= total_compressed
&
401 (PAGE_CACHE_SIZE
- 1);
402 struct page
*page
= pages
[nr_pages_ret
- 1];
405 /* zero the tail end of the last page, we might be
406 * sending it down to disk
409 kaddr
= kmap_atomic(page
, KM_USER0
);
410 memset(kaddr
+ offset
, 0,
411 PAGE_CACHE_SIZE
- offset
);
412 kunmap_atomic(kaddr
, KM_USER0
);
418 trans
= btrfs_join_transaction(root
, 1);
419 BUG_ON(IS_ERR(trans
));
420 btrfs_set_trans_block_group(trans
, inode
);
421 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
423 /* lets try to make an inline extent */
424 if (ret
|| total_in
< (actual_end
- start
)) {
425 /* we didn't compress the entire range, try
426 * to make an uncompressed inline extent.
428 ret
= cow_file_range_inline(trans
, root
, inode
,
429 start
, end
, 0, NULL
);
431 /* try making a compressed inline extent */
432 ret
= cow_file_range_inline(trans
, root
, inode
,
434 total_compressed
, pages
);
438 * inline extent creation worked, we don't need
439 * to create any more async work items. Unlock
440 * and free up our temp pages.
442 extent_clear_unlock_delalloc(inode
,
443 &BTRFS_I(inode
)->io_tree
,
445 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
446 EXTENT_CLEAR_DELALLOC
|
447 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
449 btrfs_end_transaction(trans
, root
);
452 btrfs_end_transaction(trans
, root
);
457 * we aren't doing an inline extent round the compressed size
458 * up to a block size boundary so the allocator does sane
461 total_compressed
= (total_compressed
+ blocksize
- 1) &
465 * one last check to make sure the compression is really a
466 * win, compare the page count read with the blocks on disk
468 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
469 ~(PAGE_CACHE_SIZE
- 1);
470 if (total_compressed
>= total_in
) {
473 num_bytes
= total_in
;
476 if (!will_compress
&& pages
) {
478 * the compression code ran but failed to make things smaller,
479 * free any pages it allocated and our page pointer array
481 for (i
= 0; i
< nr_pages_ret
; i
++) {
482 WARN_ON(pages
[i
]->mapping
);
483 page_cache_release(pages
[i
]);
487 total_compressed
= 0;
490 /* flag the file so we don't compress in the future */
491 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
492 !(BTRFS_I(inode
)->force_compress
)) {
493 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
499 /* the async work queues will take care of doing actual
500 * allocation on disk for these compressed pages,
501 * and will submit them to the elevator.
503 add_async_extent(async_cow
, start
, num_bytes
,
504 total_compressed
, pages
, nr_pages_ret
,
507 if (start
+ num_bytes
< end
) {
514 cleanup_and_bail_uncompressed
:
516 * No compression, but we still need to write the pages in
517 * the file we've been given so far. redirty the locked
518 * page if it corresponds to our extent and set things up
519 * for the async work queue to run cow_file_range to do
520 * the normal delalloc dance
522 if (page_offset(locked_page
) >= start
&&
523 page_offset(locked_page
) <= end
) {
524 __set_page_dirty_nobuffers(locked_page
);
525 /* unlocked later on in the async handlers */
527 add_async_extent(async_cow
, start
, end
- start
+ 1,
528 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
536 for (i
= 0; i
< nr_pages_ret
; i
++) {
537 WARN_ON(pages
[i
]->mapping
);
538 page_cache_release(pages
[i
]);
546 * phase two of compressed writeback. This is the ordered portion
547 * of the code, which only gets called in the order the work was
548 * queued. We walk all the async extents created by compress_file_range
549 * and send them down to the disk.
551 static noinline
int submit_compressed_extents(struct inode
*inode
,
552 struct async_cow
*async_cow
)
554 struct async_extent
*async_extent
;
556 struct btrfs_trans_handle
*trans
;
557 struct btrfs_key ins
;
558 struct extent_map
*em
;
559 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
560 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
561 struct extent_io_tree
*io_tree
;
564 if (list_empty(&async_cow
->extents
))
568 while (!list_empty(&async_cow
->extents
)) {
569 async_extent
= list_entry(async_cow
->extents
.next
,
570 struct async_extent
, list
);
571 list_del(&async_extent
->list
);
573 io_tree
= &BTRFS_I(inode
)->io_tree
;
576 /* did the compression code fall back to uncompressed IO? */
577 if (!async_extent
->pages
) {
578 int page_started
= 0;
579 unsigned long nr_written
= 0;
581 lock_extent(io_tree
, async_extent
->start
,
582 async_extent
->start
+
583 async_extent
->ram_size
- 1, GFP_NOFS
);
585 /* allocate blocks */
586 ret
= cow_file_range(inode
, async_cow
->locked_page
,
588 async_extent
->start
+
589 async_extent
->ram_size
- 1,
590 &page_started
, &nr_written
, 0);
593 * if page_started, cow_file_range inserted an
594 * inline extent and took care of all the unlocking
595 * and IO for us. Otherwise, we need to submit
596 * all those pages down to the drive.
598 if (!page_started
&& !ret
)
599 extent_write_locked_range(io_tree
,
600 inode
, async_extent
->start
,
601 async_extent
->start
+
602 async_extent
->ram_size
- 1,
610 lock_extent(io_tree
, async_extent
->start
,
611 async_extent
->start
+ async_extent
->ram_size
- 1,
614 trans
= btrfs_join_transaction(root
, 1);
615 BUG_ON(IS_ERR(trans
));
616 ret
= btrfs_reserve_extent(trans
, root
,
617 async_extent
->compressed_size
,
618 async_extent
->compressed_size
,
621 btrfs_end_transaction(trans
, root
);
625 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
626 WARN_ON(async_extent
->pages
[i
]->mapping
);
627 page_cache_release(async_extent
->pages
[i
]);
629 kfree(async_extent
->pages
);
630 async_extent
->nr_pages
= 0;
631 async_extent
->pages
= NULL
;
632 unlock_extent(io_tree
, async_extent
->start
,
633 async_extent
->start
+
634 async_extent
->ram_size
- 1, GFP_NOFS
);
639 * here we're doing allocation and writeback of the
642 btrfs_drop_extent_cache(inode
, async_extent
->start
,
643 async_extent
->start
+
644 async_extent
->ram_size
- 1, 0);
646 em
= alloc_extent_map(GFP_NOFS
);
648 em
->start
= async_extent
->start
;
649 em
->len
= async_extent
->ram_size
;
650 em
->orig_start
= em
->start
;
652 em
->block_start
= ins
.objectid
;
653 em
->block_len
= ins
.offset
;
654 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
655 em
->compress_type
= async_extent
->compress_type
;
656 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
657 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
660 write_lock(&em_tree
->lock
);
661 ret
= add_extent_mapping(em_tree
, em
);
662 write_unlock(&em_tree
->lock
);
663 if (ret
!= -EEXIST
) {
667 btrfs_drop_extent_cache(inode
, async_extent
->start
,
668 async_extent
->start
+
669 async_extent
->ram_size
- 1, 0);
672 ret
= btrfs_add_ordered_extent_compress(inode
,
675 async_extent
->ram_size
,
677 BTRFS_ORDERED_COMPRESSED
,
678 async_extent
->compress_type
);
682 * clear dirty, set writeback and unlock the pages.
684 extent_clear_unlock_delalloc(inode
,
685 &BTRFS_I(inode
)->io_tree
,
687 async_extent
->start
+
688 async_extent
->ram_size
- 1,
689 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
690 EXTENT_CLEAR_UNLOCK
|
691 EXTENT_CLEAR_DELALLOC
|
692 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
694 ret
= btrfs_submit_compressed_write(inode
,
696 async_extent
->ram_size
,
698 ins
.offset
, async_extent
->pages
,
699 async_extent
->nr_pages
);
702 alloc_hint
= ins
.objectid
+ ins
.offset
;
710 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
713 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
714 struct extent_map
*em
;
717 read_lock(&em_tree
->lock
);
718 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
721 * if block start isn't an actual block number then find the
722 * first block in this inode and use that as a hint. If that
723 * block is also bogus then just don't worry about it.
725 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
727 em
= search_extent_mapping(em_tree
, 0, 0);
728 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
729 alloc_hint
= em
->block_start
;
733 alloc_hint
= em
->block_start
;
737 read_unlock(&em_tree
->lock
);
743 * when extent_io.c finds a delayed allocation range in the file,
744 * the call backs end up in this code. The basic idea is to
745 * allocate extents on disk for the range, and create ordered data structs
746 * in ram to track those extents.
748 * locked_page is the page that writepage had locked already. We use
749 * it to make sure we don't do extra locks or unlocks.
751 * *page_started is set to one if we unlock locked_page and do everything
752 * required to start IO on it. It may be clean and already done with
755 static noinline
int cow_file_range(struct inode
*inode
,
756 struct page
*locked_page
,
757 u64 start
, u64 end
, int *page_started
,
758 unsigned long *nr_written
,
761 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
762 struct btrfs_trans_handle
*trans
;
765 unsigned long ram_size
;
768 u64 blocksize
= root
->sectorsize
;
769 struct btrfs_key ins
;
770 struct extent_map
*em
;
771 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
774 BUG_ON(root
== root
->fs_info
->tree_root
);
775 trans
= btrfs_join_transaction(root
, 1);
776 BUG_ON(IS_ERR(trans
));
777 btrfs_set_trans_block_group(trans
, inode
);
778 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
780 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
781 num_bytes
= max(blocksize
, num_bytes
);
782 disk_num_bytes
= num_bytes
;
786 /* lets try to make an inline extent */
787 ret
= cow_file_range_inline(trans
, root
, inode
,
788 start
, end
, 0, NULL
);
790 extent_clear_unlock_delalloc(inode
,
791 &BTRFS_I(inode
)->io_tree
,
793 EXTENT_CLEAR_UNLOCK_PAGE
|
794 EXTENT_CLEAR_UNLOCK
|
795 EXTENT_CLEAR_DELALLOC
|
797 EXTENT_SET_WRITEBACK
|
798 EXTENT_END_WRITEBACK
);
800 *nr_written
= *nr_written
+
801 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
808 BUG_ON(disk_num_bytes
>
809 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
811 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
812 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
814 while (disk_num_bytes
> 0) {
817 cur_alloc_size
= disk_num_bytes
;
818 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
819 root
->sectorsize
, 0, alloc_hint
,
823 em
= alloc_extent_map(GFP_NOFS
);
826 em
->orig_start
= em
->start
;
827 ram_size
= ins
.offset
;
828 em
->len
= ins
.offset
;
830 em
->block_start
= ins
.objectid
;
831 em
->block_len
= ins
.offset
;
832 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
833 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
836 write_lock(&em_tree
->lock
);
837 ret
= add_extent_mapping(em_tree
, em
);
838 write_unlock(&em_tree
->lock
);
839 if (ret
!= -EEXIST
) {
843 btrfs_drop_extent_cache(inode
, start
,
844 start
+ ram_size
- 1, 0);
847 cur_alloc_size
= ins
.offset
;
848 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
849 ram_size
, cur_alloc_size
, 0);
852 if (root
->root_key
.objectid
==
853 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
854 ret
= btrfs_reloc_clone_csums(inode
, start
,
859 if (disk_num_bytes
< cur_alloc_size
)
862 /* we're not doing compressed IO, don't unlock the first
863 * page (which the caller expects to stay locked), don't
864 * clear any dirty bits and don't set any writeback bits
866 * Do set the Private2 bit so we know this page was properly
867 * setup for writepage
869 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
870 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
873 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
874 start
, start
+ ram_size
- 1,
876 disk_num_bytes
-= cur_alloc_size
;
877 num_bytes
-= cur_alloc_size
;
878 alloc_hint
= ins
.objectid
+ ins
.offset
;
879 start
+= cur_alloc_size
;
883 btrfs_end_transaction(trans
, root
);
889 * work queue call back to started compression on a file and pages
891 static noinline
void async_cow_start(struct btrfs_work
*work
)
893 struct async_cow
*async_cow
;
895 async_cow
= container_of(work
, struct async_cow
, work
);
897 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
898 async_cow
->start
, async_cow
->end
, async_cow
,
901 async_cow
->inode
= NULL
;
905 * work queue call back to submit previously compressed pages
907 static noinline
void async_cow_submit(struct btrfs_work
*work
)
909 struct async_cow
*async_cow
;
910 struct btrfs_root
*root
;
911 unsigned long nr_pages
;
913 async_cow
= container_of(work
, struct async_cow
, work
);
915 root
= async_cow
->root
;
916 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
919 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
921 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
923 waitqueue_active(&root
->fs_info
->async_submit_wait
))
924 wake_up(&root
->fs_info
->async_submit_wait
);
926 if (async_cow
->inode
)
927 submit_compressed_extents(async_cow
->inode
, async_cow
);
930 static noinline
void async_cow_free(struct btrfs_work
*work
)
932 struct async_cow
*async_cow
;
933 async_cow
= container_of(work
, struct async_cow
, work
);
937 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
938 u64 start
, u64 end
, int *page_started
,
939 unsigned long *nr_written
)
941 struct async_cow
*async_cow
;
942 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
943 unsigned long nr_pages
;
945 int limit
= 10 * 1024 * 1042;
947 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
948 1, 0, NULL
, GFP_NOFS
);
949 while (start
< end
) {
950 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
951 async_cow
->inode
= inode
;
952 async_cow
->root
= root
;
953 async_cow
->locked_page
= locked_page
;
954 async_cow
->start
= start
;
956 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
959 cur_end
= min(end
, start
+ 512 * 1024 - 1);
961 async_cow
->end
= cur_end
;
962 INIT_LIST_HEAD(&async_cow
->extents
);
964 async_cow
->work
.func
= async_cow_start
;
965 async_cow
->work
.ordered_func
= async_cow_submit
;
966 async_cow
->work
.ordered_free
= async_cow_free
;
967 async_cow
->work
.flags
= 0;
969 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
971 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
973 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
976 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
977 wait_event(root
->fs_info
->async_submit_wait
,
978 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
982 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
983 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
984 wait_event(root
->fs_info
->async_submit_wait
,
985 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
989 *nr_written
+= nr_pages
;
996 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
997 u64 bytenr
, u64 num_bytes
)
1000 struct btrfs_ordered_sum
*sums
;
1003 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1004 bytenr
+ num_bytes
- 1, &list
);
1005 if (ret
== 0 && list_empty(&list
))
1008 while (!list_empty(&list
)) {
1009 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1010 list_del(&sums
->list
);
1017 * when nowcow writeback call back. This checks for snapshots or COW copies
1018 * of the extents that exist in the file, and COWs the file as required.
1020 * If no cow copies or snapshots exist, we write directly to the existing
1023 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1024 struct page
*locked_page
,
1025 u64 start
, u64 end
, int *page_started
, int force
,
1026 unsigned long *nr_written
)
1028 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1029 struct btrfs_trans_handle
*trans
;
1030 struct extent_buffer
*leaf
;
1031 struct btrfs_path
*path
;
1032 struct btrfs_file_extent_item
*fi
;
1033 struct btrfs_key found_key
;
1045 bool nolock
= false;
1047 path
= btrfs_alloc_path();
1049 if (root
== root
->fs_info
->tree_root
) {
1051 trans
= btrfs_join_transaction_nolock(root
, 1);
1053 trans
= btrfs_join_transaction(root
, 1);
1055 BUG_ON(IS_ERR(trans
));
1057 cow_start
= (u64
)-1;
1060 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
1063 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1064 leaf
= path
->nodes
[0];
1065 btrfs_item_key_to_cpu(leaf
, &found_key
,
1066 path
->slots
[0] - 1);
1067 if (found_key
.objectid
== inode
->i_ino
&&
1068 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1073 leaf
= path
->nodes
[0];
1074 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1075 ret
= btrfs_next_leaf(root
, path
);
1080 leaf
= path
->nodes
[0];
1086 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1088 if (found_key
.objectid
> inode
->i_ino
||
1089 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1090 found_key
.offset
> end
)
1093 if (found_key
.offset
> cur_offset
) {
1094 extent_end
= found_key
.offset
;
1099 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1100 struct btrfs_file_extent_item
);
1101 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1103 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1104 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1105 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1106 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1107 extent_end
= found_key
.offset
+
1108 btrfs_file_extent_num_bytes(leaf
, fi
);
1109 if (extent_end
<= start
) {
1113 if (disk_bytenr
== 0)
1115 if (btrfs_file_extent_compression(leaf
, fi
) ||
1116 btrfs_file_extent_encryption(leaf
, fi
) ||
1117 btrfs_file_extent_other_encoding(leaf
, fi
))
1119 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1121 if (btrfs_extent_readonly(root
, disk_bytenr
))
1123 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1125 extent_offset
, disk_bytenr
))
1127 disk_bytenr
+= extent_offset
;
1128 disk_bytenr
+= cur_offset
- found_key
.offset
;
1129 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1131 * force cow if csum exists in the range.
1132 * this ensure that csum for a given extent are
1133 * either valid or do not exist.
1135 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1138 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1139 extent_end
= found_key
.offset
+
1140 btrfs_file_extent_inline_len(leaf
, fi
);
1141 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1146 if (extent_end
<= start
) {
1151 if (cow_start
== (u64
)-1)
1152 cow_start
= cur_offset
;
1153 cur_offset
= extent_end
;
1154 if (cur_offset
> end
)
1160 btrfs_release_path(root
, path
);
1161 if (cow_start
!= (u64
)-1) {
1162 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1163 found_key
.offset
- 1, page_started
,
1166 cow_start
= (u64
)-1;
1169 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1170 struct extent_map
*em
;
1171 struct extent_map_tree
*em_tree
;
1172 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1173 em
= alloc_extent_map(GFP_NOFS
);
1175 em
->start
= cur_offset
;
1176 em
->orig_start
= em
->start
;
1177 em
->len
= num_bytes
;
1178 em
->block_len
= num_bytes
;
1179 em
->block_start
= disk_bytenr
;
1180 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1181 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1183 write_lock(&em_tree
->lock
);
1184 ret
= add_extent_mapping(em_tree
, em
);
1185 write_unlock(&em_tree
->lock
);
1186 if (ret
!= -EEXIST
) {
1187 free_extent_map(em
);
1190 btrfs_drop_extent_cache(inode
, em
->start
,
1191 em
->start
+ em
->len
- 1, 0);
1193 type
= BTRFS_ORDERED_PREALLOC
;
1195 type
= BTRFS_ORDERED_NOCOW
;
1198 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1199 num_bytes
, num_bytes
, type
);
1202 if (root
->root_key
.objectid
==
1203 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1204 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1209 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1210 cur_offset
, cur_offset
+ num_bytes
- 1,
1211 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1212 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1213 EXTENT_SET_PRIVATE2
);
1214 cur_offset
= extent_end
;
1215 if (cur_offset
> end
)
1218 btrfs_release_path(root
, path
);
1220 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1221 cow_start
= cur_offset
;
1222 if (cow_start
!= (u64
)-1) {
1223 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1224 page_started
, nr_written
, 1);
1229 ret
= btrfs_end_transaction_nolock(trans
, root
);
1232 ret
= btrfs_end_transaction(trans
, root
);
1235 btrfs_free_path(path
);
1240 * extent_io.c call back to do delayed allocation processing
1242 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1243 u64 start
, u64 end
, int *page_started
,
1244 unsigned long *nr_written
)
1247 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1249 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1250 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1251 page_started
, 1, nr_written
);
1252 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1253 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1254 page_started
, 0, nr_written
);
1255 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1256 !(BTRFS_I(inode
)->force_compress
))
1257 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1258 page_started
, nr_written
, 1);
1260 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1261 page_started
, nr_written
);
1265 static int btrfs_split_extent_hook(struct inode
*inode
,
1266 struct extent_state
*orig
, u64 split
)
1268 /* not delalloc, ignore it */
1269 if (!(orig
->state
& EXTENT_DELALLOC
))
1272 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1277 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1278 * extents so we can keep track of new extents that are just merged onto old
1279 * extents, such as when we are doing sequential writes, so we can properly
1280 * account for the metadata space we'll need.
1282 static int btrfs_merge_extent_hook(struct inode
*inode
,
1283 struct extent_state
*new,
1284 struct extent_state
*other
)
1286 /* not delalloc, ignore it */
1287 if (!(other
->state
& EXTENT_DELALLOC
))
1290 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1295 * extent_io.c set_bit_hook, used to track delayed allocation
1296 * bytes in this file, and to maintain the list of inodes that
1297 * have pending delalloc work to be done.
1299 static int btrfs_set_bit_hook(struct inode
*inode
,
1300 struct extent_state
*state
, int *bits
)
1304 * set_bit and clear bit hooks normally require _irqsave/restore
1305 * but in this case, we are only testeing for the DELALLOC
1306 * bit, which is only set or cleared with irqs on
1308 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1309 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1310 u64 len
= state
->end
+ 1 - state
->start
;
1311 int do_list
= (root
->root_key
.objectid
!=
1312 BTRFS_ROOT_TREE_OBJECTID
);
1314 if (*bits
& EXTENT_FIRST_DELALLOC
)
1315 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1317 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1319 spin_lock(&root
->fs_info
->delalloc_lock
);
1320 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1321 root
->fs_info
->delalloc_bytes
+= len
;
1322 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1323 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1324 &root
->fs_info
->delalloc_inodes
);
1326 spin_unlock(&root
->fs_info
->delalloc_lock
);
1332 * extent_io.c clear_bit_hook, see set_bit_hook for why
1334 static int btrfs_clear_bit_hook(struct inode
*inode
,
1335 struct extent_state
*state
, int *bits
)
1338 * set_bit and clear bit hooks normally require _irqsave/restore
1339 * but in this case, we are only testeing for the DELALLOC
1340 * bit, which is only set or cleared with irqs on
1342 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1343 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1344 u64 len
= state
->end
+ 1 - state
->start
;
1345 int do_list
= (root
->root_key
.objectid
!=
1346 BTRFS_ROOT_TREE_OBJECTID
);
1348 if (*bits
& EXTENT_FIRST_DELALLOC
)
1349 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1350 else if (!(*bits
& EXTENT_DO_ACCOUNTING
))
1351 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1353 if (*bits
& EXTENT_DO_ACCOUNTING
)
1354 btrfs_delalloc_release_metadata(inode
, len
);
1356 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1358 btrfs_free_reserved_data_space(inode
, len
);
1360 spin_lock(&root
->fs_info
->delalloc_lock
);
1361 root
->fs_info
->delalloc_bytes
-= len
;
1362 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1364 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1365 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1366 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1368 spin_unlock(&root
->fs_info
->delalloc_lock
);
1374 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1375 * we don't create bios that span stripes or chunks
1377 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1378 size_t size
, struct bio
*bio
,
1379 unsigned long bio_flags
)
1381 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1382 struct btrfs_mapping_tree
*map_tree
;
1383 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1388 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1391 length
= bio
->bi_size
;
1392 map_tree
= &root
->fs_info
->mapping_tree
;
1393 map_length
= length
;
1394 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1395 &map_length
, NULL
, 0);
1397 if (map_length
< length
+ size
)
1403 * in order to insert checksums into the metadata in large chunks,
1404 * we wait until bio submission time. All the pages in the bio are
1405 * checksummed and sums are attached onto the ordered extent record.
1407 * At IO completion time the cums attached on the ordered extent record
1408 * are inserted into the btree
1410 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1411 struct bio
*bio
, int mirror_num
,
1412 unsigned long bio_flags
,
1415 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1418 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1424 * in order to insert checksums into the metadata in large chunks,
1425 * we wait until bio submission time. All the pages in the bio are
1426 * checksummed and sums are attached onto the ordered extent record.
1428 * At IO completion time the cums attached on the ordered extent record
1429 * are inserted into the btree
1431 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1432 int mirror_num
, unsigned long bio_flags
,
1435 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1436 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1440 * extent_io.c submission hook. This does the right thing for csum calculation
1441 * on write, or reading the csums from the tree before a read
1443 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1444 int mirror_num
, unsigned long bio_flags
,
1447 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1451 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1453 if (root
== root
->fs_info
->tree_root
)
1454 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1456 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1459 if (!(rw
& REQ_WRITE
)) {
1460 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1461 return btrfs_submit_compressed_read(inode
, bio
,
1462 mirror_num
, bio_flags
);
1463 } else if (!skip_sum
)
1464 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1466 } else if (!skip_sum
) {
1467 /* csum items have already been cloned */
1468 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1470 /* we're doing a write, do the async checksumming */
1471 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1472 inode
, rw
, bio
, mirror_num
,
1473 bio_flags
, bio_offset
,
1474 __btrfs_submit_bio_start
,
1475 __btrfs_submit_bio_done
);
1479 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1483 * given a list of ordered sums record them in the inode. This happens
1484 * at IO completion time based on sums calculated at bio submission time.
1486 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1487 struct inode
*inode
, u64 file_offset
,
1488 struct list_head
*list
)
1490 struct btrfs_ordered_sum
*sum
;
1492 btrfs_set_trans_block_group(trans
, inode
);
1494 list_for_each_entry(sum
, list
, list
) {
1495 btrfs_csum_file_blocks(trans
,
1496 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1501 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1502 struct extent_state
**cached_state
)
1504 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1506 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1507 cached_state
, GFP_NOFS
);
1510 /* see btrfs_writepage_start_hook for details on why this is required */
1511 struct btrfs_writepage_fixup
{
1513 struct btrfs_work work
;
1516 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1518 struct btrfs_writepage_fixup
*fixup
;
1519 struct btrfs_ordered_extent
*ordered
;
1520 struct extent_state
*cached_state
= NULL
;
1522 struct inode
*inode
;
1526 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1530 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1531 ClearPageChecked(page
);
1535 inode
= page
->mapping
->host
;
1536 page_start
= page_offset(page
);
1537 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1539 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1540 &cached_state
, GFP_NOFS
);
1542 /* already ordered? We're done */
1543 if (PagePrivate2(page
))
1546 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1548 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1549 page_end
, &cached_state
, GFP_NOFS
);
1551 btrfs_start_ordered_extent(inode
, ordered
, 1);
1556 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1557 ClearPageChecked(page
);
1559 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1560 &cached_state
, GFP_NOFS
);
1563 page_cache_release(page
);
1568 * There are a few paths in the higher layers of the kernel that directly
1569 * set the page dirty bit without asking the filesystem if it is a
1570 * good idea. This causes problems because we want to make sure COW
1571 * properly happens and the data=ordered rules are followed.
1573 * In our case any range that doesn't have the ORDERED bit set
1574 * hasn't been properly setup for IO. We kick off an async process
1575 * to fix it up. The async helper will wait for ordered extents, set
1576 * the delalloc bit and make it safe to write the page.
1578 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1580 struct inode
*inode
= page
->mapping
->host
;
1581 struct btrfs_writepage_fixup
*fixup
;
1582 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1584 /* this page is properly in the ordered list */
1585 if (TestClearPagePrivate2(page
))
1588 if (PageChecked(page
))
1591 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1595 SetPageChecked(page
);
1596 page_cache_get(page
);
1597 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1599 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1603 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1604 struct inode
*inode
, u64 file_pos
,
1605 u64 disk_bytenr
, u64 disk_num_bytes
,
1606 u64 num_bytes
, u64 ram_bytes
,
1607 u8 compression
, u8 encryption
,
1608 u16 other_encoding
, int extent_type
)
1610 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1611 struct btrfs_file_extent_item
*fi
;
1612 struct btrfs_path
*path
;
1613 struct extent_buffer
*leaf
;
1614 struct btrfs_key ins
;
1618 path
= btrfs_alloc_path();
1621 path
->leave_spinning
= 1;
1624 * we may be replacing one extent in the tree with another.
1625 * The new extent is pinned in the extent map, and we don't want
1626 * to drop it from the cache until it is completely in the btree.
1628 * So, tell btrfs_drop_extents to leave this extent in the cache.
1629 * the caller is expected to unpin it and allow it to be merged
1632 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1636 ins
.objectid
= inode
->i_ino
;
1637 ins
.offset
= file_pos
;
1638 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1639 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1641 leaf
= path
->nodes
[0];
1642 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1643 struct btrfs_file_extent_item
);
1644 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1645 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1646 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1647 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1648 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1649 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1650 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1651 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1652 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1653 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1655 btrfs_unlock_up_safe(path
, 1);
1656 btrfs_set_lock_blocking(leaf
);
1658 btrfs_mark_buffer_dirty(leaf
);
1660 inode_add_bytes(inode
, num_bytes
);
1662 ins
.objectid
= disk_bytenr
;
1663 ins
.offset
= disk_num_bytes
;
1664 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1665 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1666 root
->root_key
.objectid
,
1667 inode
->i_ino
, file_pos
, &ins
);
1669 btrfs_free_path(path
);
1675 * helper function for btrfs_finish_ordered_io, this
1676 * just reads in some of the csum leaves to prime them into ram
1677 * before we start the transaction. It limits the amount of btree
1678 * reads required while inside the transaction.
1680 /* as ordered data IO finishes, this gets called so we can finish
1681 * an ordered extent if the range of bytes in the file it covers are
1684 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1686 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1687 struct btrfs_trans_handle
*trans
= NULL
;
1688 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1689 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1690 struct extent_state
*cached_state
= NULL
;
1691 int compress_type
= 0;
1693 bool nolock
= false;
1695 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1699 BUG_ON(!ordered_extent
);
1701 nolock
= (root
== root
->fs_info
->tree_root
);
1703 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1704 BUG_ON(!list_empty(&ordered_extent
->list
));
1705 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1708 trans
= btrfs_join_transaction_nolock(root
, 1);
1710 trans
= btrfs_join_transaction(root
, 1);
1711 BUG_ON(IS_ERR(trans
));
1712 btrfs_set_trans_block_group(trans
, inode
);
1713 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1714 ret
= btrfs_update_inode(trans
, root
, inode
);
1720 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1721 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1722 0, &cached_state
, GFP_NOFS
);
1725 trans
= btrfs_join_transaction_nolock(root
, 1);
1727 trans
= btrfs_join_transaction(root
, 1);
1728 BUG_ON(IS_ERR(trans
));
1729 btrfs_set_trans_block_group(trans
, inode
);
1730 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1732 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1733 compress_type
= ordered_extent
->compress_type
;
1734 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1735 BUG_ON(compress_type
);
1736 ret
= btrfs_mark_extent_written(trans
, inode
,
1737 ordered_extent
->file_offset
,
1738 ordered_extent
->file_offset
+
1739 ordered_extent
->len
);
1742 BUG_ON(root
== root
->fs_info
->tree_root
);
1743 ret
= insert_reserved_file_extent(trans
, inode
,
1744 ordered_extent
->file_offset
,
1745 ordered_extent
->start
,
1746 ordered_extent
->disk_len
,
1747 ordered_extent
->len
,
1748 ordered_extent
->len
,
1749 compress_type
, 0, 0,
1750 BTRFS_FILE_EXTENT_REG
);
1751 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1752 ordered_extent
->file_offset
,
1753 ordered_extent
->len
);
1756 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1757 ordered_extent
->file_offset
+
1758 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1760 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1761 &ordered_extent
->list
);
1763 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1764 ret
= btrfs_update_inode(trans
, root
, inode
);
1769 btrfs_end_transaction_nolock(trans
, root
);
1771 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1773 btrfs_end_transaction(trans
, root
);
1777 btrfs_put_ordered_extent(ordered_extent
);
1778 /* once for the tree */
1779 btrfs_put_ordered_extent(ordered_extent
);
1784 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1785 struct extent_state
*state
, int uptodate
)
1787 ClearPagePrivate2(page
);
1788 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1792 * When IO fails, either with EIO or csum verification fails, we
1793 * try other mirrors that might have a good copy of the data. This
1794 * io_failure_record is used to record state as we go through all the
1795 * mirrors. If another mirror has good data, the page is set up to date
1796 * and things continue. If a good mirror can't be found, the original
1797 * bio end_io callback is called to indicate things have failed.
1799 struct io_failure_record
{
1804 unsigned long bio_flags
;
1808 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1809 struct page
*page
, u64 start
, u64 end
,
1810 struct extent_state
*state
)
1812 struct io_failure_record
*failrec
= NULL
;
1814 struct extent_map
*em
;
1815 struct inode
*inode
= page
->mapping
->host
;
1816 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1817 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1824 ret
= get_state_private(failure_tree
, start
, &private);
1826 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1829 failrec
->start
= start
;
1830 failrec
->len
= end
- start
+ 1;
1831 failrec
->last_mirror
= 0;
1832 failrec
->bio_flags
= 0;
1834 read_lock(&em_tree
->lock
);
1835 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1836 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1837 free_extent_map(em
);
1840 read_unlock(&em_tree
->lock
);
1842 if (!em
|| IS_ERR(em
)) {
1846 logical
= start
- em
->start
;
1847 logical
= em
->block_start
+ logical
;
1848 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1849 logical
= em
->block_start
;
1850 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1851 extent_set_compress_type(&failrec
->bio_flags
,
1854 failrec
->logical
= logical
;
1855 free_extent_map(em
);
1856 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1857 EXTENT_DIRTY
, GFP_NOFS
);
1858 set_state_private(failure_tree
, start
,
1859 (u64
)(unsigned long)failrec
);
1861 failrec
= (struct io_failure_record
*)(unsigned long)private;
1863 num_copies
= btrfs_num_copies(
1864 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1865 failrec
->logical
, failrec
->len
);
1866 failrec
->last_mirror
++;
1868 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1869 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1872 if (state
&& state
->start
!= failrec
->start
)
1874 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1876 if (!state
|| failrec
->last_mirror
> num_copies
) {
1877 set_state_private(failure_tree
, failrec
->start
, 0);
1878 clear_extent_bits(failure_tree
, failrec
->start
,
1879 failrec
->start
+ failrec
->len
- 1,
1880 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1884 bio
= bio_alloc(GFP_NOFS
, 1);
1885 bio
->bi_private
= state
;
1886 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1887 bio
->bi_sector
= failrec
->logical
>> 9;
1888 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1891 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1892 if (failed_bio
->bi_rw
& REQ_WRITE
)
1897 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1898 failrec
->last_mirror
,
1899 failrec
->bio_flags
, 0);
1904 * each time an IO finishes, we do a fast check in the IO failure tree
1905 * to see if we need to process or clean up an io_failure_record
1907 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1910 u64 private_failure
;
1911 struct io_failure_record
*failure
;
1915 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1916 (u64
)-1, 1, EXTENT_DIRTY
)) {
1917 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1918 start
, &private_failure
);
1920 failure
= (struct io_failure_record
*)(unsigned long)
1922 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1924 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1926 failure
->start
+ failure
->len
- 1,
1927 EXTENT_DIRTY
| EXTENT_LOCKED
,
1936 * when reads are done, we need to check csums to verify the data is correct
1937 * if there's a match, we allow the bio to finish. If not, we go through
1938 * the io_failure_record routines to find good copies
1940 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1941 struct extent_state
*state
)
1943 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1944 struct inode
*inode
= page
->mapping
->host
;
1945 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1947 u64
private = ~(u32
)0;
1949 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1952 if (PageChecked(page
)) {
1953 ClearPageChecked(page
);
1957 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1960 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1961 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1962 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1967 if (state
&& state
->start
== start
) {
1968 private = state
->private;
1971 ret
= get_state_private(io_tree
, start
, &private);
1973 kaddr
= kmap_atomic(page
, KM_USER0
);
1977 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1978 btrfs_csum_final(csum
, (char *)&csum
);
1979 if (csum
!= private)
1982 kunmap_atomic(kaddr
, KM_USER0
);
1984 /* if the io failure tree for this inode is non-empty,
1985 * check to see if we've recovered from a failed IO
1987 btrfs_clean_io_failures(inode
, start
);
1991 if (printk_ratelimit()) {
1992 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1993 "private %llu\n", page
->mapping
->host
->i_ino
,
1994 (unsigned long long)start
, csum
,
1995 (unsigned long long)private);
1997 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1998 flush_dcache_page(page
);
1999 kunmap_atomic(kaddr
, KM_USER0
);
2005 struct delayed_iput
{
2006 struct list_head list
;
2007 struct inode
*inode
;
2010 void btrfs_add_delayed_iput(struct inode
*inode
)
2012 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2013 struct delayed_iput
*delayed
;
2015 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2018 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2019 delayed
->inode
= inode
;
2021 spin_lock(&fs_info
->delayed_iput_lock
);
2022 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2023 spin_unlock(&fs_info
->delayed_iput_lock
);
2026 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2029 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2030 struct delayed_iput
*delayed
;
2033 spin_lock(&fs_info
->delayed_iput_lock
);
2034 empty
= list_empty(&fs_info
->delayed_iputs
);
2035 spin_unlock(&fs_info
->delayed_iput_lock
);
2039 down_read(&root
->fs_info
->cleanup_work_sem
);
2040 spin_lock(&fs_info
->delayed_iput_lock
);
2041 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2042 spin_unlock(&fs_info
->delayed_iput_lock
);
2044 while (!list_empty(&list
)) {
2045 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2046 list_del(&delayed
->list
);
2047 iput(delayed
->inode
);
2050 up_read(&root
->fs_info
->cleanup_work_sem
);
2054 * calculate extra metadata reservation when snapshotting a subvolume
2055 * contains orphan files.
2057 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle
*trans
,
2058 struct btrfs_pending_snapshot
*pending
,
2059 u64
*bytes_to_reserve
)
2061 struct btrfs_root
*root
;
2062 struct btrfs_block_rsv
*block_rsv
;
2066 root
= pending
->root
;
2067 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2070 block_rsv
= root
->orphan_block_rsv
;
2072 /* orphan block reservation for the snapshot */
2073 num_bytes
= block_rsv
->size
;
2076 * after the snapshot is created, COWing tree blocks may use more
2077 * space than it frees. So we should make sure there is enough
2080 index
= trans
->transid
& 0x1;
2081 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2082 num_bytes
+= block_rsv
->size
-
2083 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2086 *bytes_to_reserve
+= num_bytes
;
2089 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle
*trans
,
2090 struct btrfs_pending_snapshot
*pending
)
2092 struct btrfs_root
*root
= pending
->root
;
2093 struct btrfs_root
*snap
= pending
->snap
;
2094 struct btrfs_block_rsv
*block_rsv
;
2099 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2102 /* refill source subvolume's orphan block reservation */
2103 block_rsv
= root
->orphan_block_rsv
;
2104 index
= trans
->transid
& 0x1;
2105 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2106 num_bytes
= block_rsv
->size
-
2107 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2108 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2109 root
->orphan_block_rsv
,
2114 /* setup orphan block reservation for the snapshot */
2115 block_rsv
= btrfs_alloc_block_rsv(snap
);
2118 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2119 snap
->orphan_block_rsv
= block_rsv
;
2121 num_bytes
= root
->orphan_block_rsv
->size
;
2122 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2123 block_rsv
, num_bytes
);
2127 /* insert orphan item for the snapshot */
2128 WARN_ON(!root
->orphan_item_inserted
);
2129 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2130 snap
->root_key
.objectid
);
2132 snap
->orphan_item_inserted
= 1;
2136 enum btrfs_orphan_cleanup_state
{
2137 ORPHAN_CLEANUP_STARTED
= 1,
2138 ORPHAN_CLEANUP_DONE
= 2,
2142 * This is called in transaction commmit time. If there are no orphan
2143 * files in the subvolume, it removes orphan item and frees block_rsv
2146 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2147 struct btrfs_root
*root
)
2151 if (!list_empty(&root
->orphan_list
) ||
2152 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2155 if (root
->orphan_item_inserted
&&
2156 btrfs_root_refs(&root
->root_item
) > 0) {
2157 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2158 root
->root_key
.objectid
);
2160 root
->orphan_item_inserted
= 0;
2163 if (root
->orphan_block_rsv
) {
2164 WARN_ON(root
->orphan_block_rsv
->size
> 0);
2165 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
2166 root
->orphan_block_rsv
= NULL
;
2171 * This creates an orphan entry for the given inode in case something goes
2172 * wrong in the middle of an unlink/truncate.
2174 * NOTE: caller of this function should reserve 5 units of metadata for
2177 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2179 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2180 struct btrfs_block_rsv
*block_rsv
= NULL
;
2185 if (!root
->orphan_block_rsv
) {
2186 block_rsv
= btrfs_alloc_block_rsv(root
);
2190 spin_lock(&root
->orphan_lock
);
2191 if (!root
->orphan_block_rsv
) {
2192 root
->orphan_block_rsv
= block_rsv
;
2193 } else if (block_rsv
) {
2194 btrfs_free_block_rsv(root
, block_rsv
);
2198 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2199 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2202 * For proper ENOSPC handling, we should do orphan
2203 * cleanup when mounting. But this introduces backward
2204 * compatibility issue.
2206 if (!xchg(&root
->orphan_item_inserted
, 1))
2213 WARN_ON(!BTRFS_I(inode
)->orphan_meta_reserved
);
2216 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2217 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2220 spin_unlock(&root
->orphan_lock
);
2223 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2225 /* grab metadata reservation from transaction handle */
2227 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2231 /* insert an orphan item to track this unlinked/truncated file */
2233 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
2237 /* insert an orphan item to track subvolume contains orphan files */
2239 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2240 root
->root_key
.objectid
);
2247 * We have done the truncate/delete so we can go ahead and remove the orphan
2248 * item for this particular inode.
2250 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2252 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2253 int delete_item
= 0;
2254 int release_rsv
= 0;
2257 spin_lock(&root
->orphan_lock
);
2258 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2259 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2263 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2264 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2267 spin_unlock(&root
->orphan_lock
);
2269 if (trans
&& delete_item
) {
2270 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
2275 btrfs_orphan_release_metadata(inode
);
2281 * this cleans up any orphans that may be left on the list from the last use
2284 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
2286 struct btrfs_path
*path
;
2287 struct extent_buffer
*leaf
;
2288 struct btrfs_key key
, found_key
;
2289 struct btrfs_trans_handle
*trans
;
2290 struct inode
*inode
;
2291 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2293 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2296 path
= btrfs_alloc_path();
2300 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2301 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2302 key
.offset
= (u64
)-1;
2305 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2307 printk(KERN_ERR
"Error searching slot for orphan: %d"
2313 * if ret == 0 means we found what we were searching for, which
2314 * is weird, but possible, so only screw with path if we didnt
2315 * find the key and see if we have stuff that matches
2318 if (path
->slots
[0] == 0)
2323 /* pull out the item */
2324 leaf
= path
->nodes
[0];
2325 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2327 /* make sure the item matches what we want */
2328 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2330 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2333 /* release the path since we're done with it */
2334 btrfs_release_path(root
, path
);
2337 * this is where we are basically btrfs_lookup, without the
2338 * crossing root thing. we store the inode number in the
2339 * offset of the orphan item.
2341 found_key
.objectid
= found_key
.offset
;
2342 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2343 found_key
.offset
= 0;
2344 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2345 BUG_ON(IS_ERR(inode
));
2348 * add this inode to the orphan list so btrfs_orphan_del does
2349 * the proper thing when we hit it
2351 spin_lock(&root
->orphan_lock
);
2352 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2353 spin_unlock(&root
->orphan_lock
);
2356 * if this is a bad inode, means we actually succeeded in
2357 * removing the inode, but not the orphan record, which means
2358 * we need to manually delete the orphan since iput will just
2359 * do a destroy_inode
2361 if (is_bad_inode(inode
)) {
2362 trans
= btrfs_start_transaction(root
, 0);
2363 BUG_ON(IS_ERR(trans
));
2364 btrfs_orphan_del(trans
, inode
);
2365 btrfs_end_transaction(trans
, root
);
2370 /* if we have links, this was a truncate, lets do that */
2371 if (inode
->i_nlink
) {
2373 btrfs_truncate(inode
);
2378 /* this will do delete_inode and everything for us */
2381 btrfs_free_path(path
);
2383 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2385 if (root
->orphan_block_rsv
)
2386 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2389 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2390 trans
= btrfs_join_transaction(root
, 1);
2391 BUG_ON(IS_ERR(trans
));
2392 btrfs_end_transaction(trans
, root
);
2396 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2398 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2402 * very simple check to peek ahead in the leaf looking for xattrs. If we
2403 * don't find any xattrs, we know there can't be any acls.
2405 * slot is the slot the inode is in, objectid is the objectid of the inode
2407 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2408 int slot
, u64 objectid
)
2410 u32 nritems
= btrfs_header_nritems(leaf
);
2411 struct btrfs_key found_key
;
2415 while (slot
< nritems
) {
2416 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2418 /* we found a different objectid, there must not be acls */
2419 if (found_key
.objectid
!= objectid
)
2422 /* we found an xattr, assume we've got an acl */
2423 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2427 * we found a key greater than an xattr key, there can't
2428 * be any acls later on
2430 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2437 * it goes inode, inode backrefs, xattrs, extents,
2438 * so if there are a ton of hard links to an inode there can
2439 * be a lot of backrefs. Don't waste time searching too hard,
2440 * this is just an optimization
2445 /* we hit the end of the leaf before we found an xattr or
2446 * something larger than an xattr. We have to assume the inode
2453 * read an inode from the btree into the in-memory inode
2455 static void btrfs_read_locked_inode(struct inode
*inode
)
2457 struct btrfs_path
*path
;
2458 struct extent_buffer
*leaf
;
2459 struct btrfs_inode_item
*inode_item
;
2460 struct btrfs_timespec
*tspec
;
2461 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2462 struct btrfs_key location
;
2464 u64 alloc_group_block
;
2468 path
= btrfs_alloc_path();
2470 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2472 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2476 leaf
= path
->nodes
[0];
2477 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2478 struct btrfs_inode_item
);
2480 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2481 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2482 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2483 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2484 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2486 tspec
= btrfs_inode_atime(inode_item
);
2487 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2488 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2490 tspec
= btrfs_inode_mtime(inode_item
);
2491 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2492 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2494 tspec
= btrfs_inode_ctime(inode_item
);
2495 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2496 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2498 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2499 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2500 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2501 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2503 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2505 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2506 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2508 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2511 * try to precache a NULL acl entry for files that don't have
2512 * any xattrs or acls
2514 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2516 cache_no_acl(inode
);
2518 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2519 alloc_group_block
, 0);
2520 btrfs_free_path(path
);
2523 switch (inode
->i_mode
& S_IFMT
) {
2525 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2526 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2527 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2528 inode
->i_fop
= &btrfs_file_operations
;
2529 inode
->i_op
= &btrfs_file_inode_operations
;
2532 inode
->i_fop
= &btrfs_dir_file_operations
;
2533 if (root
== root
->fs_info
->tree_root
)
2534 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2536 inode
->i_op
= &btrfs_dir_inode_operations
;
2539 inode
->i_op
= &btrfs_symlink_inode_operations
;
2540 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2541 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2544 inode
->i_op
= &btrfs_special_inode_operations
;
2545 init_special_inode(inode
, inode
->i_mode
, rdev
);
2549 btrfs_update_iflags(inode
);
2553 btrfs_free_path(path
);
2554 make_bad_inode(inode
);
2558 * given a leaf and an inode, copy the inode fields into the leaf
2560 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2561 struct extent_buffer
*leaf
,
2562 struct btrfs_inode_item
*item
,
2563 struct inode
*inode
)
2565 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2566 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2567 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2568 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2569 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2571 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2572 inode
->i_atime
.tv_sec
);
2573 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2574 inode
->i_atime
.tv_nsec
);
2576 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2577 inode
->i_mtime
.tv_sec
);
2578 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2579 inode
->i_mtime
.tv_nsec
);
2581 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2582 inode
->i_ctime
.tv_sec
);
2583 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2584 inode
->i_ctime
.tv_nsec
);
2586 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2587 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2588 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2589 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2590 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2591 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2592 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2596 * copy everything in the in-memory inode into the btree.
2598 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2599 struct btrfs_root
*root
, struct inode
*inode
)
2601 struct btrfs_inode_item
*inode_item
;
2602 struct btrfs_path
*path
;
2603 struct extent_buffer
*leaf
;
2606 path
= btrfs_alloc_path();
2608 path
->leave_spinning
= 1;
2609 ret
= btrfs_lookup_inode(trans
, root
, path
,
2610 &BTRFS_I(inode
)->location
, 1);
2617 btrfs_unlock_up_safe(path
, 1);
2618 leaf
= path
->nodes
[0];
2619 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2620 struct btrfs_inode_item
);
2622 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2623 btrfs_mark_buffer_dirty(leaf
);
2624 btrfs_set_inode_last_trans(trans
, inode
);
2627 btrfs_free_path(path
);
2633 * unlink helper that gets used here in inode.c and in the tree logging
2634 * recovery code. It remove a link in a directory with a given name, and
2635 * also drops the back refs in the inode to the directory
2637 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2638 struct btrfs_root
*root
,
2639 struct inode
*dir
, struct inode
*inode
,
2640 const char *name
, int name_len
)
2642 struct btrfs_path
*path
;
2644 struct extent_buffer
*leaf
;
2645 struct btrfs_dir_item
*di
;
2646 struct btrfs_key key
;
2649 path
= btrfs_alloc_path();
2655 path
->leave_spinning
= 1;
2656 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2657 name
, name_len
, -1);
2666 leaf
= path
->nodes
[0];
2667 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2668 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2671 btrfs_release_path(root
, path
);
2673 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2675 dir
->i_ino
, &index
);
2677 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2678 "inode %lu parent %lu\n", name_len
, name
,
2679 inode
->i_ino
, dir
->i_ino
);
2683 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2684 index
, name
, name_len
, -1);
2693 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2694 btrfs_release_path(root
, path
);
2696 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2698 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2700 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2705 btrfs_free_path(path
);
2709 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2710 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2711 btrfs_update_inode(trans
, root
, dir
);
2712 btrfs_drop_nlink(inode
);
2713 ret
= btrfs_update_inode(trans
, root
, inode
);
2718 /* helper to check if there is any shared block in the path */
2719 static int check_path_shared(struct btrfs_root
*root
,
2720 struct btrfs_path
*path
)
2722 struct extent_buffer
*eb
;
2726 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2729 if (!path
->nodes
[level
])
2731 eb
= path
->nodes
[level
];
2732 if (!btrfs_block_can_be_shared(root
, eb
))
2734 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2743 * helper to start transaction for unlink and rmdir.
2745 * unlink and rmdir are special in btrfs, they do not always free space.
2746 * so in enospc case, we should make sure they will free space before
2747 * allowing them to use the global metadata reservation.
2749 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2750 struct dentry
*dentry
)
2752 struct btrfs_trans_handle
*trans
;
2753 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2754 struct btrfs_path
*path
;
2755 struct btrfs_inode_ref
*ref
;
2756 struct btrfs_dir_item
*di
;
2757 struct inode
*inode
= dentry
->d_inode
;
2763 trans
= btrfs_start_transaction(root
, 10);
2764 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2767 if (inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2768 return ERR_PTR(-ENOSPC
);
2770 /* check if there is someone else holds reference */
2771 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2772 return ERR_PTR(-ENOSPC
);
2774 if (atomic_read(&inode
->i_count
) > 2)
2775 return ERR_PTR(-ENOSPC
);
2777 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2778 return ERR_PTR(-ENOSPC
);
2780 path
= btrfs_alloc_path();
2782 root
->fs_info
->enospc_unlink
= 0;
2783 return ERR_PTR(-ENOMEM
);
2786 trans
= btrfs_start_transaction(root
, 0);
2787 if (IS_ERR(trans
)) {
2788 btrfs_free_path(path
);
2789 root
->fs_info
->enospc_unlink
= 0;
2793 path
->skip_locking
= 1;
2794 path
->search_commit_root
= 1;
2796 ret
= btrfs_lookup_inode(trans
, root
, path
,
2797 &BTRFS_I(dir
)->location
, 0);
2803 if (check_path_shared(root
, path
))
2808 btrfs_release_path(root
, path
);
2810 ret
= btrfs_lookup_inode(trans
, root
, path
,
2811 &BTRFS_I(inode
)->location
, 0);
2817 if (check_path_shared(root
, path
))
2822 btrfs_release_path(root
, path
);
2824 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2825 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2826 inode
->i_ino
, (u64
)-1, 0);
2832 if (check_path_shared(root
, path
))
2834 btrfs_release_path(root
, path
);
2842 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2843 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2849 if (check_path_shared(root
, path
))
2855 btrfs_release_path(root
, path
);
2857 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2858 dentry
->d_name
.name
, dentry
->d_name
.len
,
2859 inode
->i_ino
, dir
->i_ino
, 0);
2865 if (check_path_shared(root
, path
))
2867 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2868 btrfs_release_path(root
, path
);
2870 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
, index
,
2871 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2876 BUG_ON(ret
== -ENOENT
);
2877 if (check_path_shared(root
, path
))
2882 btrfs_free_path(path
);
2884 btrfs_end_transaction(trans
, root
);
2885 root
->fs_info
->enospc_unlink
= 0;
2886 return ERR_PTR(err
);
2889 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2893 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2894 struct btrfs_root
*root
)
2896 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2897 BUG_ON(!root
->fs_info
->enospc_unlink
);
2898 root
->fs_info
->enospc_unlink
= 0;
2900 btrfs_end_transaction_throttle(trans
, root
);
2903 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2905 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2906 struct btrfs_trans_handle
*trans
;
2907 struct inode
*inode
= dentry
->d_inode
;
2909 unsigned long nr
= 0;
2911 trans
= __unlink_start_trans(dir
, dentry
);
2913 return PTR_ERR(trans
);
2915 btrfs_set_trans_block_group(trans
, dir
);
2917 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2919 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2920 dentry
->d_name
.name
, dentry
->d_name
.len
);
2923 if (inode
->i_nlink
== 0) {
2924 ret
= btrfs_orphan_add(trans
, inode
);
2928 nr
= trans
->blocks_used
;
2929 __unlink_end_trans(trans
, root
);
2930 btrfs_btree_balance_dirty(root
, nr
);
2934 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2935 struct btrfs_root
*root
,
2936 struct inode
*dir
, u64 objectid
,
2937 const char *name
, int name_len
)
2939 struct btrfs_path
*path
;
2940 struct extent_buffer
*leaf
;
2941 struct btrfs_dir_item
*di
;
2942 struct btrfs_key key
;
2946 path
= btrfs_alloc_path();
2950 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2951 name
, name_len
, -1);
2952 BUG_ON(!di
|| IS_ERR(di
));
2954 leaf
= path
->nodes
[0];
2955 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2956 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2957 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2959 btrfs_release_path(root
, path
);
2961 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2962 objectid
, root
->root_key
.objectid
,
2963 dir
->i_ino
, &index
, name
, name_len
);
2965 BUG_ON(ret
!= -ENOENT
);
2966 di
= btrfs_search_dir_index_item(root
, path
, dir
->i_ino
,
2968 BUG_ON(!di
|| IS_ERR(di
));
2970 leaf
= path
->nodes
[0];
2971 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2972 btrfs_release_path(root
, path
);
2976 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2977 index
, name
, name_len
, -1);
2978 BUG_ON(!di
|| IS_ERR(di
));
2980 leaf
= path
->nodes
[0];
2981 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2982 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2983 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2985 btrfs_release_path(root
, path
);
2987 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2988 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2989 ret
= btrfs_update_inode(trans
, root
, dir
);
2992 btrfs_free_path(path
);
2996 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2998 struct inode
*inode
= dentry
->d_inode
;
3000 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3001 struct btrfs_trans_handle
*trans
;
3002 unsigned long nr
= 0;
3004 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
3005 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
3008 trans
= __unlink_start_trans(dir
, dentry
);
3010 return PTR_ERR(trans
);
3012 btrfs_set_trans_block_group(trans
, dir
);
3014 if (unlikely(inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3015 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3016 BTRFS_I(inode
)->location
.objectid
,
3017 dentry
->d_name
.name
,
3018 dentry
->d_name
.len
);
3022 err
= btrfs_orphan_add(trans
, inode
);
3026 /* now the directory is empty */
3027 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3028 dentry
->d_name
.name
, dentry
->d_name
.len
);
3030 btrfs_i_size_write(inode
, 0);
3032 nr
= trans
->blocks_used
;
3033 __unlink_end_trans(trans
, root
);
3034 btrfs_btree_balance_dirty(root
, nr
);
3041 * when truncating bytes in a file, it is possible to avoid reading
3042 * the leaves that contain only checksum items. This can be the
3043 * majority of the IO required to delete a large file, but it must
3044 * be done carefully.
3046 * The keys in the level just above the leaves are checked to make sure
3047 * the lowest key in a given leaf is a csum key, and starts at an offset
3048 * after the new size.
3050 * Then the key for the next leaf is checked to make sure it also has
3051 * a checksum item for the same file. If it does, we know our target leaf
3052 * contains only checksum items, and it can be safely freed without reading
3055 * This is just an optimization targeted at large files. It may do
3056 * nothing. It will return 0 unless things went badly.
3058 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
3059 struct btrfs_root
*root
,
3060 struct btrfs_path
*path
,
3061 struct inode
*inode
, u64 new_size
)
3063 struct btrfs_key key
;
3066 struct btrfs_key found_key
;
3067 struct btrfs_key other_key
;
3068 struct btrfs_leaf_ref
*ref
;
3072 path
->lowest_level
= 1;
3073 key
.objectid
= inode
->i_ino
;
3074 key
.type
= BTRFS_CSUM_ITEM_KEY
;
3075 key
.offset
= new_size
;
3077 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3081 if (path
->nodes
[1] == NULL
) {
3086 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
3087 nritems
= btrfs_header_nritems(path
->nodes
[1]);
3092 if (path
->slots
[1] >= nritems
)
3095 /* did we find a key greater than anything we want to delete? */
3096 if (found_key
.objectid
> inode
->i_ino
||
3097 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
3100 /* we check the next key in the node to make sure the leave contains
3101 * only checksum items. This comparison doesn't work if our
3102 * leaf is the last one in the node
3104 if (path
->slots
[1] + 1 >= nritems
) {
3106 /* search forward from the last key in the node, this
3107 * will bring us into the next node in the tree
3109 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
3111 /* unlikely, but we inc below, so check to be safe */
3112 if (found_key
.offset
== (u64
)-1)
3115 /* search_forward needs a path with locks held, do the
3116 * search again for the original key. It is possible
3117 * this will race with a balance and return a path that
3118 * we could modify, but this drop is just an optimization
3119 * and is allowed to miss some leaves.
3121 btrfs_release_path(root
, path
);
3124 /* setup a max key for search_forward */
3125 other_key
.offset
= (u64
)-1;
3126 other_key
.type
= key
.type
;
3127 other_key
.objectid
= key
.objectid
;
3129 path
->keep_locks
= 1;
3130 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
3132 path
->keep_locks
= 0;
3133 if (ret
|| found_key
.objectid
!= key
.objectid
||
3134 found_key
.type
!= key
.type
) {
3139 key
.offset
= found_key
.offset
;
3140 btrfs_release_path(root
, path
);
3145 /* we know there's one more slot after us in the tree,
3146 * read that key so we can verify it is also a checksum item
3148 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
3150 if (found_key
.objectid
< inode
->i_ino
)
3153 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
3157 * if the key for the next leaf isn't a csum key from this objectid,
3158 * we can't be sure there aren't good items inside this leaf.
3161 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
3164 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
3165 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
3167 * it is safe to delete this leaf, it contains only
3168 * csum items from this inode at an offset >= new_size
3170 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
3173 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
3174 ref
= btrfs_alloc_leaf_ref(root
, 0);
3176 ref
->root_gen
= root
->root_key
.offset
;
3177 ref
->bytenr
= leaf_start
;
3179 ref
->generation
= leaf_gen
;
3182 btrfs_sort_leaf_ref(ref
);
3184 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
3186 btrfs_free_leaf_ref(root
, ref
);
3192 btrfs_release_path(root
, path
);
3194 if (other_key
.objectid
== inode
->i_ino
&&
3195 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
3196 key
.offset
= other_key
.offset
;
3202 /* fixup any changes we've made to the path */
3203 path
->lowest_level
= 0;
3204 path
->keep_locks
= 0;
3205 btrfs_release_path(root
, path
);
3212 * this can truncate away extent items, csum items and directory items.
3213 * It starts at a high offset and removes keys until it can't find
3214 * any higher than new_size
3216 * csum items that cross the new i_size are truncated to the new size
3219 * min_type is the minimum key type to truncate down to. If set to 0, this
3220 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3222 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3223 struct btrfs_root
*root
,
3224 struct inode
*inode
,
3225 u64 new_size
, u32 min_type
)
3227 struct btrfs_path
*path
;
3228 struct extent_buffer
*leaf
;
3229 struct btrfs_file_extent_item
*fi
;
3230 struct btrfs_key key
;
3231 struct btrfs_key found_key
;
3232 u64 extent_start
= 0;
3233 u64 extent_num_bytes
= 0;
3234 u64 extent_offset
= 0;
3236 u64 mask
= root
->sectorsize
- 1;
3237 u32 found_type
= (u8
)-1;
3240 int pending_del_nr
= 0;
3241 int pending_del_slot
= 0;
3242 int extent_type
= -1;
3247 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3249 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3250 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3252 path
= btrfs_alloc_path();
3256 key
.objectid
= inode
->i_ino
;
3257 key
.offset
= (u64
)-1;
3261 path
->leave_spinning
= 1;
3262 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3269 /* there are no items in the tree for us to truncate, we're
3272 if (path
->slots
[0] == 0)
3279 leaf
= path
->nodes
[0];
3280 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3281 found_type
= btrfs_key_type(&found_key
);
3284 if (found_key
.objectid
!= inode
->i_ino
)
3287 if (found_type
< min_type
)
3290 item_end
= found_key
.offset
;
3291 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3292 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3293 struct btrfs_file_extent_item
);
3294 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3295 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3296 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3297 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3299 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3301 btrfs_file_extent_num_bytes(leaf
, fi
);
3302 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3303 item_end
+= btrfs_file_extent_inline_len(leaf
,
3308 if (found_type
> min_type
) {
3311 if (item_end
< new_size
)
3313 if (found_key
.offset
>= new_size
)
3319 /* FIXME, shrink the extent if the ref count is only 1 */
3320 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3323 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3325 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3326 if (!del_item
&& !encoding
) {
3327 u64 orig_num_bytes
=
3328 btrfs_file_extent_num_bytes(leaf
, fi
);
3329 extent_num_bytes
= new_size
-
3330 found_key
.offset
+ root
->sectorsize
- 1;
3331 extent_num_bytes
= extent_num_bytes
&
3332 ~((u64
)root
->sectorsize
- 1);
3333 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3335 num_dec
= (orig_num_bytes
-
3337 if (root
->ref_cows
&& extent_start
!= 0)
3338 inode_sub_bytes(inode
, num_dec
);
3339 btrfs_mark_buffer_dirty(leaf
);
3342 btrfs_file_extent_disk_num_bytes(leaf
,
3344 extent_offset
= found_key
.offset
-
3345 btrfs_file_extent_offset(leaf
, fi
);
3347 /* FIXME blocksize != 4096 */
3348 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3349 if (extent_start
!= 0) {
3352 inode_sub_bytes(inode
, num_dec
);
3355 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3357 * we can't truncate inline items that have had
3361 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3362 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3363 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3364 u32 size
= new_size
- found_key
.offset
;
3366 if (root
->ref_cows
) {
3367 inode_sub_bytes(inode
, item_end
+ 1 -
3371 btrfs_file_extent_calc_inline_size(size
);
3372 ret
= btrfs_truncate_item(trans
, root
, path
,
3375 } else if (root
->ref_cows
) {
3376 inode_sub_bytes(inode
, item_end
+ 1 -
3382 if (!pending_del_nr
) {
3383 /* no pending yet, add ourselves */
3384 pending_del_slot
= path
->slots
[0];
3386 } else if (pending_del_nr
&&
3387 path
->slots
[0] + 1 == pending_del_slot
) {
3388 /* hop on the pending chunk */
3390 pending_del_slot
= path
->slots
[0];
3397 if (found_extent
&& (root
->ref_cows
||
3398 root
== root
->fs_info
->tree_root
)) {
3399 btrfs_set_path_blocking(path
);
3400 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3401 extent_num_bytes
, 0,
3402 btrfs_header_owner(leaf
),
3403 inode
->i_ino
, extent_offset
);
3407 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3410 if (path
->slots
[0] == 0 ||
3411 path
->slots
[0] != pending_del_slot
) {
3412 if (root
->ref_cows
) {
3416 if (pending_del_nr
) {
3417 ret
= btrfs_del_items(trans
, root
, path
,
3423 btrfs_release_path(root
, path
);
3430 if (pending_del_nr
) {
3431 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3435 btrfs_free_path(path
);
3440 * taken from block_truncate_page, but does cow as it zeros out
3441 * any bytes left in the last page in the file.
3443 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3445 struct inode
*inode
= mapping
->host
;
3446 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3447 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3448 struct btrfs_ordered_extent
*ordered
;
3449 struct extent_state
*cached_state
= NULL
;
3451 u32 blocksize
= root
->sectorsize
;
3452 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3453 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3459 if ((offset
& (blocksize
- 1)) == 0)
3461 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3467 page
= grab_cache_page(mapping
, index
);
3469 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3473 page_start
= page_offset(page
);
3474 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3476 if (!PageUptodate(page
)) {
3477 ret
= btrfs_readpage(NULL
, page
);
3479 if (page
->mapping
!= mapping
) {
3481 page_cache_release(page
);
3484 if (!PageUptodate(page
)) {
3489 wait_on_page_writeback(page
);
3491 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3493 set_page_extent_mapped(page
);
3495 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3497 unlock_extent_cached(io_tree
, page_start
, page_end
,
3498 &cached_state
, GFP_NOFS
);
3500 page_cache_release(page
);
3501 btrfs_start_ordered_extent(inode
, ordered
, 1);
3502 btrfs_put_ordered_extent(ordered
);
3506 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3507 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3508 0, 0, &cached_state
, GFP_NOFS
);
3510 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3513 unlock_extent_cached(io_tree
, page_start
, page_end
,
3514 &cached_state
, GFP_NOFS
);
3519 if (offset
!= PAGE_CACHE_SIZE
) {
3521 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3522 flush_dcache_page(page
);
3525 ClearPageChecked(page
);
3526 set_page_dirty(page
);
3527 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3532 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3534 page_cache_release(page
);
3539 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
3541 struct btrfs_trans_handle
*trans
;
3542 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3543 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3544 struct extent_map
*em
= NULL
;
3545 struct extent_state
*cached_state
= NULL
;
3546 u64 mask
= root
->sectorsize
- 1;
3547 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
3548 u64 block_end
= (size
+ mask
) & ~mask
;
3554 if (size
<= hole_start
)
3558 struct btrfs_ordered_extent
*ordered
;
3559 btrfs_wait_ordered_range(inode
, hole_start
,
3560 block_end
- hole_start
);
3561 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3562 &cached_state
, GFP_NOFS
);
3563 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3566 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3567 &cached_state
, GFP_NOFS
);
3568 btrfs_put_ordered_extent(ordered
);
3571 cur_offset
= hole_start
;
3573 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3574 block_end
- cur_offset
, 0);
3575 BUG_ON(IS_ERR(em
) || !em
);
3576 last_byte
= min(extent_map_end(em
), block_end
);
3577 last_byte
= (last_byte
+ mask
) & ~mask
;
3578 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3580 hole_size
= last_byte
- cur_offset
;
3582 trans
= btrfs_start_transaction(root
, 2);
3583 if (IS_ERR(trans
)) {
3584 err
= PTR_ERR(trans
);
3587 btrfs_set_trans_block_group(trans
, inode
);
3589 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3590 cur_offset
+ hole_size
,
3594 err
= btrfs_insert_file_extent(trans
, root
,
3595 inode
->i_ino
, cur_offset
, 0,
3596 0, hole_size
, 0, hole_size
,
3600 btrfs_drop_extent_cache(inode
, hole_start
,
3603 btrfs_end_transaction(trans
, root
);
3605 free_extent_map(em
);
3607 cur_offset
= last_byte
;
3608 if (cur_offset
>= block_end
)
3612 free_extent_map(em
);
3613 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3618 static int btrfs_setattr_size(struct inode
*inode
, struct iattr
*attr
)
3620 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3621 struct btrfs_trans_handle
*trans
;
3625 if (attr
->ia_size
== inode
->i_size
)
3628 if (attr
->ia_size
> inode
->i_size
) {
3629 unsigned long limit
;
3630 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
3631 if (attr
->ia_size
> inode
->i_sb
->s_maxbytes
)
3633 if (limit
!= RLIM_INFINITY
&& attr
->ia_size
> limit
) {
3634 send_sig(SIGXFSZ
, current
, 0);
3639 trans
= btrfs_start_transaction(root
, 5);
3641 return PTR_ERR(trans
);
3643 btrfs_set_trans_block_group(trans
, inode
);
3645 ret
= btrfs_orphan_add(trans
, inode
);
3648 nr
= trans
->blocks_used
;
3649 btrfs_end_transaction(trans
, root
);
3650 btrfs_btree_balance_dirty(root
, nr
);
3652 if (attr
->ia_size
> inode
->i_size
) {
3653 ret
= btrfs_cont_expand(inode
, attr
->ia_size
);
3655 btrfs_truncate(inode
);
3659 i_size_write(inode
, attr
->ia_size
);
3660 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
3662 trans
= btrfs_start_transaction(root
, 0);
3663 BUG_ON(IS_ERR(trans
));
3664 btrfs_set_trans_block_group(trans
, inode
);
3665 trans
->block_rsv
= root
->orphan_block_rsv
;
3666 BUG_ON(!trans
->block_rsv
);
3668 ret
= btrfs_update_inode(trans
, root
, inode
);
3670 if (inode
->i_nlink
> 0) {
3671 ret
= btrfs_orphan_del(trans
, inode
);
3674 nr
= trans
->blocks_used
;
3675 btrfs_end_transaction(trans
, root
);
3676 btrfs_btree_balance_dirty(root
, nr
);
3681 * We're truncating a file that used to have good data down to
3682 * zero. Make sure it gets into the ordered flush list so that
3683 * any new writes get down to disk quickly.
3685 if (attr
->ia_size
== 0)
3686 BTRFS_I(inode
)->ordered_data_close
= 1;
3688 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3689 ret
= vmtruncate(inode
, attr
->ia_size
);
3695 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3697 struct inode
*inode
= dentry
->d_inode
;
3698 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3701 if (btrfs_root_readonly(root
))
3704 err
= inode_change_ok(inode
, attr
);
3708 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3709 err
= btrfs_setattr_size(inode
, attr
);
3714 if (attr
->ia_valid
) {
3715 setattr_copy(inode
, attr
);
3716 mark_inode_dirty(inode
);
3718 if (attr
->ia_valid
& ATTR_MODE
)
3719 err
= btrfs_acl_chmod(inode
);
3725 void btrfs_evict_inode(struct inode
*inode
)
3727 struct btrfs_trans_handle
*trans
;
3728 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3732 truncate_inode_pages(&inode
->i_data
, 0);
3733 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3734 root
== root
->fs_info
->tree_root
))
3737 if (is_bad_inode(inode
)) {
3738 btrfs_orphan_del(NULL
, inode
);
3741 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3742 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3744 if (root
->fs_info
->log_root_recovering
) {
3745 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3749 if (inode
->i_nlink
> 0) {
3750 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3754 btrfs_i_size_write(inode
, 0);
3757 trans
= btrfs_start_transaction(root
, 0);
3758 BUG_ON(IS_ERR(trans
));
3759 btrfs_set_trans_block_group(trans
, inode
);
3760 trans
->block_rsv
= root
->orphan_block_rsv
;
3762 ret
= btrfs_block_rsv_check(trans
, root
,
3763 root
->orphan_block_rsv
, 0, 5);
3765 BUG_ON(ret
!= -EAGAIN
);
3766 ret
= btrfs_commit_transaction(trans
, root
);
3771 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3775 nr
= trans
->blocks_used
;
3776 btrfs_end_transaction(trans
, root
);
3778 btrfs_btree_balance_dirty(root
, nr
);
3783 ret
= btrfs_orphan_del(trans
, inode
);
3787 nr
= trans
->blocks_used
;
3788 btrfs_end_transaction(trans
, root
);
3789 btrfs_btree_balance_dirty(root
, nr
);
3791 end_writeback(inode
);
3796 * this returns the key found in the dir entry in the location pointer.
3797 * If no dir entries were found, location->objectid is 0.
3799 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3800 struct btrfs_key
*location
)
3802 const char *name
= dentry
->d_name
.name
;
3803 int namelen
= dentry
->d_name
.len
;
3804 struct btrfs_dir_item
*di
;
3805 struct btrfs_path
*path
;
3806 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3809 path
= btrfs_alloc_path();
3812 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3817 if (!di
|| IS_ERR(di
))
3820 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3822 btrfs_free_path(path
);
3825 location
->objectid
= 0;
3830 * when we hit a tree root in a directory, the btrfs part of the inode
3831 * needs to be changed to reflect the root directory of the tree root. This
3832 * is kind of like crossing a mount point.
3834 static int fixup_tree_root_location(struct btrfs_root
*root
,
3836 struct dentry
*dentry
,
3837 struct btrfs_key
*location
,
3838 struct btrfs_root
**sub_root
)
3840 struct btrfs_path
*path
;
3841 struct btrfs_root
*new_root
;
3842 struct btrfs_root_ref
*ref
;
3843 struct extent_buffer
*leaf
;
3847 path
= btrfs_alloc_path();
3854 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3855 BTRFS_I(dir
)->root
->root_key
.objectid
,
3856 location
->objectid
);
3863 leaf
= path
->nodes
[0];
3864 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3865 if (btrfs_root_ref_dirid(leaf
, ref
) != dir
->i_ino
||
3866 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3869 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3870 (unsigned long)(ref
+ 1),
3871 dentry
->d_name
.len
);
3875 btrfs_release_path(root
->fs_info
->tree_root
, path
);
3877 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3878 if (IS_ERR(new_root
)) {
3879 err
= PTR_ERR(new_root
);
3883 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3888 *sub_root
= new_root
;
3889 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3890 location
->type
= BTRFS_INODE_ITEM_KEY
;
3891 location
->offset
= 0;
3894 btrfs_free_path(path
);
3898 static void inode_tree_add(struct inode
*inode
)
3900 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3901 struct btrfs_inode
*entry
;
3903 struct rb_node
*parent
;
3905 p
= &root
->inode_tree
.rb_node
;
3908 if (inode_unhashed(inode
))
3911 spin_lock(&root
->inode_lock
);
3914 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3916 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3917 p
= &parent
->rb_left
;
3918 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3919 p
= &parent
->rb_right
;
3921 WARN_ON(!(entry
->vfs_inode
.i_state
&
3922 (I_WILL_FREE
| I_FREEING
)));
3923 rb_erase(parent
, &root
->inode_tree
);
3924 RB_CLEAR_NODE(parent
);
3925 spin_unlock(&root
->inode_lock
);
3929 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3930 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3931 spin_unlock(&root
->inode_lock
);
3934 static void inode_tree_del(struct inode
*inode
)
3936 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3939 spin_lock(&root
->inode_lock
);
3940 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3941 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3942 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3943 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3945 spin_unlock(&root
->inode_lock
);
3948 * Free space cache has inodes in the tree root, but the tree root has a
3949 * root_refs of 0, so this could end up dropping the tree root as a
3950 * snapshot, so we need the extra !root->fs_info->tree_root check to
3951 * make sure we don't drop it.
3953 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3954 root
!= root
->fs_info
->tree_root
) {
3955 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3956 spin_lock(&root
->inode_lock
);
3957 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3958 spin_unlock(&root
->inode_lock
);
3960 btrfs_add_dead_root(root
);
3964 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3966 struct rb_node
*node
;
3967 struct rb_node
*prev
;
3968 struct btrfs_inode
*entry
;
3969 struct inode
*inode
;
3972 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3974 spin_lock(&root
->inode_lock
);
3976 node
= root
->inode_tree
.rb_node
;
3980 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3982 if (objectid
< entry
->vfs_inode
.i_ino
)
3983 node
= node
->rb_left
;
3984 else if (objectid
> entry
->vfs_inode
.i_ino
)
3985 node
= node
->rb_right
;
3991 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3992 if (objectid
<= entry
->vfs_inode
.i_ino
) {
3996 prev
= rb_next(prev
);
4000 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4001 objectid
= entry
->vfs_inode
.i_ino
+ 1;
4002 inode
= igrab(&entry
->vfs_inode
);
4004 spin_unlock(&root
->inode_lock
);
4005 if (atomic_read(&inode
->i_count
) > 1)
4006 d_prune_aliases(inode
);
4008 * btrfs_drop_inode will have it removed from
4009 * the inode cache when its usage count
4014 spin_lock(&root
->inode_lock
);
4018 if (cond_resched_lock(&root
->inode_lock
))
4021 node
= rb_next(node
);
4023 spin_unlock(&root
->inode_lock
);
4027 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4029 struct btrfs_iget_args
*args
= p
;
4030 inode
->i_ino
= args
->ino
;
4031 BTRFS_I(inode
)->root
= args
->root
;
4032 btrfs_set_inode_space_info(args
->root
, inode
);
4036 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4038 struct btrfs_iget_args
*args
= opaque
;
4039 return args
->ino
== inode
->i_ino
&&
4040 args
->root
== BTRFS_I(inode
)->root
;
4043 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4045 struct btrfs_root
*root
)
4047 struct inode
*inode
;
4048 struct btrfs_iget_args args
;
4049 args
.ino
= objectid
;
4052 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4053 btrfs_init_locked_inode
,
4058 /* Get an inode object given its location and corresponding root.
4059 * Returns in *is_new if the inode was read from disk
4061 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4062 struct btrfs_root
*root
, int *new)
4064 struct inode
*inode
;
4066 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4068 return ERR_PTR(-ENOMEM
);
4070 if (inode
->i_state
& I_NEW
) {
4071 BTRFS_I(inode
)->root
= root
;
4072 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4073 btrfs_read_locked_inode(inode
);
4075 inode_tree_add(inode
);
4076 unlock_new_inode(inode
);
4084 static struct inode
*new_simple_dir(struct super_block
*s
,
4085 struct btrfs_key
*key
,
4086 struct btrfs_root
*root
)
4088 struct inode
*inode
= new_inode(s
);
4091 return ERR_PTR(-ENOMEM
);
4093 BTRFS_I(inode
)->root
= root
;
4094 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4095 BTRFS_I(inode
)->dummy_inode
= 1;
4097 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4098 inode
->i_op
= &simple_dir_inode_operations
;
4099 inode
->i_fop
= &simple_dir_operations
;
4100 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4101 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4106 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4108 struct inode
*inode
;
4109 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4110 struct btrfs_root
*sub_root
= root
;
4111 struct btrfs_key location
;
4115 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4116 return ERR_PTR(-ENAMETOOLONG
);
4118 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4121 return ERR_PTR(ret
);
4123 if (location
.objectid
== 0)
4126 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4127 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4131 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4133 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4134 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4135 &location
, &sub_root
);
4138 inode
= ERR_PTR(ret
);
4140 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4142 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4144 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4146 if (!IS_ERR(inode
) && root
!= sub_root
) {
4147 down_read(&root
->fs_info
->cleanup_work_sem
);
4148 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4149 btrfs_orphan_cleanup(sub_root
);
4150 up_read(&root
->fs_info
->cleanup_work_sem
);
4156 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4158 struct btrfs_root
*root
;
4160 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
4161 dentry
= dentry
->d_parent
;
4163 if (dentry
->d_inode
) {
4164 root
= BTRFS_I(dentry
->d_inode
)->root
;
4165 if (btrfs_root_refs(&root
->root_item
) == 0)
4171 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4172 struct nameidata
*nd
)
4174 struct inode
*inode
;
4176 inode
= btrfs_lookup_dentry(dir
, dentry
);
4178 return ERR_CAST(inode
);
4180 return d_splice_alias(inode
, dentry
);
4183 static unsigned char btrfs_filetype_table
[] = {
4184 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4187 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4190 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4191 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4192 struct btrfs_item
*item
;
4193 struct btrfs_dir_item
*di
;
4194 struct btrfs_key key
;
4195 struct btrfs_key found_key
;
4196 struct btrfs_path
*path
;
4199 struct extent_buffer
*leaf
;
4202 unsigned char d_type
;
4207 int key_type
= BTRFS_DIR_INDEX_KEY
;
4212 /* FIXME, use a real flag for deciding about the key type */
4213 if (root
->fs_info
->tree_root
== root
)
4214 key_type
= BTRFS_DIR_ITEM_KEY
;
4216 /* special case for "." */
4217 if (filp
->f_pos
== 0) {
4218 over
= filldir(dirent
, ".", 1,
4225 /* special case for .., just use the back ref */
4226 if (filp
->f_pos
== 1) {
4227 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4228 over
= filldir(dirent
, "..", 2,
4234 path
= btrfs_alloc_path();
4237 btrfs_set_key_type(&key
, key_type
);
4238 key
.offset
= filp
->f_pos
;
4239 key
.objectid
= inode
->i_ino
;
4241 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4247 leaf
= path
->nodes
[0];
4248 nritems
= btrfs_header_nritems(leaf
);
4249 slot
= path
->slots
[0];
4250 if (advance
|| slot
>= nritems
) {
4251 if (slot
>= nritems
- 1) {
4252 ret
= btrfs_next_leaf(root
, path
);
4255 leaf
= path
->nodes
[0];
4256 nritems
= btrfs_header_nritems(leaf
);
4257 slot
= path
->slots
[0];
4265 item
= btrfs_item_nr(leaf
, slot
);
4266 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4268 if (found_key
.objectid
!= key
.objectid
)
4270 if (btrfs_key_type(&found_key
) != key_type
)
4272 if (found_key
.offset
< filp
->f_pos
)
4275 filp
->f_pos
= found_key
.offset
;
4277 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4279 di_total
= btrfs_item_size(leaf
, item
);
4281 while (di_cur
< di_total
) {
4282 struct btrfs_key location
;
4284 name_len
= btrfs_dir_name_len(leaf
, di
);
4285 if (name_len
<= sizeof(tmp_name
)) {
4286 name_ptr
= tmp_name
;
4288 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4294 read_extent_buffer(leaf
, name_ptr
,
4295 (unsigned long)(di
+ 1), name_len
);
4297 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4298 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4300 /* is this a reference to our own snapshot? If so
4303 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4304 location
.objectid
== root
->root_key
.objectid
) {
4308 over
= filldir(dirent
, name_ptr
, name_len
,
4309 found_key
.offset
, location
.objectid
,
4313 if (name_ptr
!= tmp_name
)
4318 di_len
= btrfs_dir_name_len(leaf
, di
) +
4319 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4321 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4325 /* Reached end of directory/root. Bump pos past the last item. */
4326 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4328 * 32-bit glibc will use getdents64, but then strtol -
4329 * so the last number we can serve is this.
4331 filp
->f_pos
= 0x7fffffff;
4337 btrfs_free_path(path
);
4341 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4343 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4344 struct btrfs_trans_handle
*trans
;
4346 bool nolock
= false;
4348 if (BTRFS_I(inode
)->dummy_inode
)
4352 nolock
= (root
->fs_info
->closing
&& root
== root
->fs_info
->tree_root
);
4354 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4356 trans
= btrfs_join_transaction_nolock(root
, 1);
4358 trans
= btrfs_join_transaction(root
, 1);
4360 return PTR_ERR(trans
);
4361 btrfs_set_trans_block_group(trans
, inode
);
4363 ret
= btrfs_end_transaction_nolock(trans
, root
);
4365 ret
= btrfs_commit_transaction(trans
, root
);
4371 * This is somewhat expensive, updating the tree every time the
4372 * inode changes. But, it is most likely to find the inode in cache.
4373 * FIXME, needs more benchmarking...there are no reasons other than performance
4374 * to keep or drop this code.
4376 void btrfs_dirty_inode(struct inode
*inode
)
4378 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4379 struct btrfs_trans_handle
*trans
;
4382 if (BTRFS_I(inode
)->dummy_inode
)
4385 trans
= btrfs_join_transaction(root
, 1);
4386 BUG_ON(IS_ERR(trans
));
4387 btrfs_set_trans_block_group(trans
, inode
);
4389 ret
= btrfs_update_inode(trans
, root
, inode
);
4390 if (ret
&& ret
== -ENOSPC
) {
4391 /* whoops, lets try again with the full transaction */
4392 btrfs_end_transaction(trans
, root
);
4393 trans
= btrfs_start_transaction(root
, 1);
4394 if (IS_ERR(trans
)) {
4395 if (printk_ratelimit()) {
4396 printk(KERN_ERR
"btrfs: fail to "
4397 "dirty inode %lu error %ld\n",
4398 inode
->i_ino
, PTR_ERR(trans
));
4402 btrfs_set_trans_block_group(trans
, inode
);
4404 ret
= btrfs_update_inode(trans
, root
, inode
);
4406 if (printk_ratelimit()) {
4407 printk(KERN_ERR
"btrfs: fail to "
4408 "dirty inode %lu error %d\n",
4413 btrfs_end_transaction(trans
, root
);
4417 * find the highest existing sequence number in a directory
4418 * and then set the in-memory index_cnt variable to reflect
4419 * free sequence numbers
4421 static int btrfs_set_inode_index_count(struct inode
*inode
)
4423 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4424 struct btrfs_key key
, found_key
;
4425 struct btrfs_path
*path
;
4426 struct extent_buffer
*leaf
;
4429 key
.objectid
= inode
->i_ino
;
4430 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4431 key
.offset
= (u64
)-1;
4433 path
= btrfs_alloc_path();
4437 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4440 /* FIXME: we should be able to handle this */
4446 * MAGIC NUMBER EXPLANATION:
4447 * since we search a directory based on f_pos we have to start at 2
4448 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4449 * else has to start at 2
4451 if (path
->slots
[0] == 0) {
4452 BTRFS_I(inode
)->index_cnt
= 2;
4458 leaf
= path
->nodes
[0];
4459 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4461 if (found_key
.objectid
!= inode
->i_ino
||
4462 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4463 BTRFS_I(inode
)->index_cnt
= 2;
4467 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4469 btrfs_free_path(path
);
4474 * helper to find a free sequence number in a given directory. This current
4475 * code is very simple, later versions will do smarter things in the btree
4477 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4481 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4482 ret
= btrfs_set_inode_index_count(dir
);
4487 *index
= BTRFS_I(dir
)->index_cnt
;
4488 BTRFS_I(dir
)->index_cnt
++;
4493 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4494 struct btrfs_root
*root
,
4496 const char *name
, int name_len
,
4497 u64 ref_objectid
, u64 objectid
,
4498 u64 alloc_hint
, int mode
, u64
*index
)
4500 struct inode
*inode
;
4501 struct btrfs_inode_item
*inode_item
;
4502 struct btrfs_key
*location
;
4503 struct btrfs_path
*path
;
4504 struct btrfs_inode_ref
*ref
;
4505 struct btrfs_key key
[2];
4511 path
= btrfs_alloc_path();
4514 inode
= new_inode(root
->fs_info
->sb
);
4516 return ERR_PTR(-ENOMEM
);
4519 ret
= btrfs_set_inode_index(dir
, index
);
4522 return ERR_PTR(ret
);
4526 * index_cnt is ignored for everything but a dir,
4527 * btrfs_get_inode_index_count has an explanation for the magic
4530 BTRFS_I(inode
)->index_cnt
= 2;
4531 BTRFS_I(inode
)->root
= root
;
4532 BTRFS_I(inode
)->generation
= trans
->transid
;
4533 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4534 btrfs_set_inode_space_info(root
, inode
);
4540 BTRFS_I(inode
)->block_group
=
4541 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
4543 key
[0].objectid
= objectid
;
4544 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4547 key
[1].objectid
= objectid
;
4548 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4549 key
[1].offset
= ref_objectid
;
4551 sizes
[0] = sizeof(struct btrfs_inode_item
);
4552 sizes
[1] = name_len
+ sizeof(*ref
);
4554 path
->leave_spinning
= 1;
4555 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4559 inode_init_owner(inode
, dir
, mode
);
4560 inode
->i_ino
= objectid
;
4561 inode_set_bytes(inode
, 0);
4562 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4563 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4564 struct btrfs_inode_item
);
4565 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4567 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4568 struct btrfs_inode_ref
);
4569 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4570 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4571 ptr
= (unsigned long)(ref
+ 1);
4572 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4574 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4575 btrfs_free_path(path
);
4577 location
= &BTRFS_I(inode
)->location
;
4578 location
->objectid
= objectid
;
4579 location
->offset
= 0;
4580 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4582 btrfs_inherit_iflags(inode
, dir
);
4584 if ((mode
& S_IFREG
)) {
4585 if (btrfs_test_opt(root
, NODATASUM
))
4586 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4587 if (btrfs_test_opt(root
, NODATACOW
))
4588 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4591 insert_inode_hash(inode
);
4592 inode_tree_add(inode
);
4596 BTRFS_I(dir
)->index_cnt
--;
4597 btrfs_free_path(path
);
4599 return ERR_PTR(ret
);
4602 static inline u8
btrfs_inode_type(struct inode
*inode
)
4604 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4608 * utility function to add 'inode' into 'parent_inode' with
4609 * a give name and a given sequence number.
4610 * if 'add_backref' is true, also insert a backref from the
4611 * inode to the parent directory.
4613 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4614 struct inode
*parent_inode
, struct inode
*inode
,
4615 const char *name
, int name_len
, int add_backref
, u64 index
)
4618 struct btrfs_key key
;
4619 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4621 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4622 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4624 key
.objectid
= inode
->i_ino
;
4625 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4629 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4630 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4631 key
.objectid
, root
->root_key
.objectid
,
4632 parent_inode
->i_ino
,
4633 index
, name
, name_len
);
4634 } else if (add_backref
) {
4635 ret
= btrfs_insert_inode_ref(trans
, root
,
4636 name
, name_len
, inode
->i_ino
,
4637 parent_inode
->i_ino
, index
);
4641 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4642 parent_inode
->i_ino
, &key
,
4643 btrfs_inode_type(inode
), index
);
4646 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4648 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4649 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4654 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4655 struct inode
*dir
, struct dentry
*dentry
,
4656 struct inode
*inode
, int backref
, u64 index
)
4658 int err
= btrfs_add_link(trans
, dir
, inode
,
4659 dentry
->d_name
.name
, dentry
->d_name
.len
,
4662 d_instantiate(dentry
, inode
);
4670 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4671 int mode
, dev_t rdev
)
4673 struct btrfs_trans_handle
*trans
;
4674 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4675 struct inode
*inode
= NULL
;
4679 unsigned long nr
= 0;
4682 if (!new_valid_dev(rdev
))
4685 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4690 * 2 for inode item and ref
4692 * 1 for xattr if selinux is on
4694 trans
= btrfs_start_transaction(root
, 5);
4696 return PTR_ERR(trans
);
4698 btrfs_set_trans_block_group(trans
, dir
);
4700 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4701 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4702 BTRFS_I(dir
)->block_group
, mode
, &index
);
4703 err
= PTR_ERR(inode
);
4707 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4713 btrfs_set_trans_block_group(trans
, inode
);
4714 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4718 inode
->i_op
= &btrfs_special_inode_operations
;
4719 init_special_inode(inode
, inode
->i_mode
, rdev
);
4720 btrfs_update_inode(trans
, root
, inode
);
4722 btrfs_update_inode_block_group(trans
, inode
);
4723 btrfs_update_inode_block_group(trans
, dir
);
4725 nr
= trans
->blocks_used
;
4726 btrfs_end_transaction_throttle(trans
, root
);
4727 btrfs_btree_balance_dirty(root
, nr
);
4729 inode_dec_link_count(inode
);
4735 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4736 int mode
, struct nameidata
*nd
)
4738 struct btrfs_trans_handle
*trans
;
4739 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4740 struct inode
*inode
= NULL
;
4743 unsigned long nr
= 0;
4747 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4751 * 2 for inode item and ref
4753 * 1 for xattr if selinux is on
4755 trans
= btrfs_start_transaction(root
, 5);
4757 return PTR_ERR(trans
);
4759 btrfs_set_trans_block_group(trans
, dir
);
4761 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4762 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4763 BTRFS_I(dir
)->block_group
, mode
, &index
);
4764 err
= PTR_ERR(inode
);
4768 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4774 btrfs_set_trans_block_group(trans
, inode
);
4775 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4779 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4780 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4781 inode
->i_fop
= &btrfs_file_operations
;
4782 inode
->i_op
= &btrfs_file_inode_operations
;
4783 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4785 btrfs_update_inode_block_group(trans
, inode
);
4786 btrfs_update_inode_block_group(trans
, dir
);
4788 nr
= trans
->blocks_used
;
4789 btrfs_end_transaction_throttle(trans
, root
);
4791 inode_dec_link_count(inode
);
4794 btrfs_btree_balance_dirty(root
, nr
);
4798 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4799 struct dentry
*dentry
)
4801 struct btrfs_trans_handle
*trans
;
4802 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4803 struct inode
*inode
= old_dentry
->d_inode
;
4805 unsigned long nr
= 0;
4809 if (inode
->i_nlink
== 0)
4812 /* do not allow sys_link's with other subvols of the same device */
4813 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4816 btrfs_inc_nlink(inode
);
4817 inode
->i_ctime
= CURRENT_TIME
;
4819 err
= btrfs_set_inode_index(dir
, &index
);
4824 * 1 item for inode ref
4825 * 2 items for dir items
4827 trans
= btrfs_start_transaction(root
, 3);
4828 if (IS_ERR(trans
)) {
4829 err
= PTR_ERR(trans
);
4833 btrfs_set_trans_block_group(trans
, dir
);
4836 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4841 struct dentry
*parent
= dget_parent(dentry
);
4842 btrfs_update_inode_block_group(trans
, dir
);
4843 err
= btrfs_update_inode(trans
, root
, inode
);
4845 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4849 nr
= trans
->blocks_used
;
4850 btrfs_end_transaction_throttle(trans
, root
);
4853 inode_dec_link_count(inode
);
4856 btrfs_btree_balance_dirty(root
, nr
);
4860 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4862 struct inode
*inode
= NULL
;
4863 struct btrfs_trans_handle
*trans
;
4864 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4866 int drop_on_err
= 0;
4869 unsigned long nr
= 1;
4871 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4876 * 2 items for inode and ref
4877 * 2 items for dir items
4878 * 1 for xattr if selinux is on
4880 trans
= btrfs_start_transaction(root
, 5);
4882 return PTR_ERR(trans
);
4883 btrfs_set_trans_block_group(trans
, dir
);
4885 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4886 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4887 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
4889 if (IS_ERR(inode
)) {
4890 err
= PTR_ERR(inode
);
4896 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4900 inode
->i_op
= &btrfs_dir_inode_operations
;
4901 inode
->i_fop
= &btrfs_dir_file_operations
;
4902 btrfs_set_trans_block_group(trans
, inode
);
4904 btrfs_i_size_write(inode
, 0);
4905 err
= btrfs_update_inode(trans
, root
, inode
);
4909 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4910 dentry
->d_name
.len
, 0, index
);
4914 d_instantiate(dentry
, inode
);
4916 btrfs_update_inode_block_group(trans
, inode
);
4917 btrfs_update_inode_block_group(trans
, dir
);
4920 nr
= trans
->blocks_used
;
4921 btrfs_end_transaction_throttle(trans
, root
);
4924 btrfs_btree_balance_dirty(root
, nr
);
4928 /* helper for btfs_get_extent. Given an existing extent in the tree,
4929 * and an extent that you want to insert, deal with overlap and insert
4930 * the new extent into the tree.
4932 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4933 struct extent_map
*existing
,
4934 struct extent_map
*em
,
4935 u64 map_start
, u64 map_len
)
4939 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4940 start_diff
= map_start
- em
->start
;
4941 em
->start
= map_start
;
4943 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4944 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4945 em
->block_start
+= start_diff
;
4946 em
->block_len
-= start_diff
;
4948 return add_extent_mapping(em_tree
, em
);
4951 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4952 struct inode
*inode
, struct page
*page
,
4953 size_t pg_offset
, u64 extent_offset
,
4954 struct btrfs_file_extent_item
*item
)
4957 struct extent_buffer
*leaf
= path
->nodes
[0];
4960 unsigned long inline_size
;
4964 WARN_ON(pg_offset
!= 0);
4965 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4966 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4967 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4968 btrfs_item_nr(leaf
, path
->slots
[0]));
4969 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4970 ptr
= btrfs_file_extent_inline_start(item
);
4972 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4974 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4975 ret
= btrfs_decompress(compress_type
, tmp
, page
,
4976 extent_offset
, inline_size
, max_size
);
4978 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4979 unsigned long copy_size
= min_t(u64
,
4980 PAGE_CACHE_SIZE
- pg_offset
,
4981 max_size
- extent_offset
);
4982 memset(kaddr
+ pg_offset
, 0, copy_size
);
4983 kunmap_atomic(kaddr
, KM_USER0
);
4990 * a bit scary, this does extent mapping from logical file offset to the disk.
4991 * the ugly parts come from merging extents from the disk with the in-ram
4992 * representation. This gets more complex because of the data=ordered code,
4993 * where the in-ram extents might be locked pending data=ordered completion.
4995 * This also copies inline extents directly into the page.
4998 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4999 size_t pg_offset
, u64 start
, u64 len
,
5005 u64 extent_start
= 0;
5007 u64 objectid
= inode
->i_ino
;
5009 struct btrfs_path
*path
= NULL
;
5010 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5011 struct btrfs_file_extent_item
*item
;
5012 struct extent_buffer
*leaf
;
5013 struct btrfs_key found_key
;
5014 struct extent_map
*em
= NULL
;
5015 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5016 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5017 struct btrfs_trans_handle
*trans
= NULL
;
5021 read_lock(&em_tree
->lock
);
5022 em
= lookup_extent_mapping(em_tree
, start
, len
);
5024 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5025 read_unlock(&em_tree
->lock
);
5028 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
5029 free_extent_map(em
);
5030 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5031 free_extent_map(em
);
5035 em
= alloc_extent_map(GFP_NOFS
);
5040 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5041 em
->start
= EXTENT_MAP_HOLE
;
5042 em
->orig_start
= EXTENT_MAP_HOLE
;
5044 em
->block_len
= (u64
)-1;
5047 path
= btrfs_alloc_path();
5051 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5052 objectid
, start
, trans
!= NULL
);
5059 if (path
->slots
[0] == 0)
5064 leaf
= path
->nodes
[0];
5065 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5066 struct btrfs_file_extent_item
);
5067 /* are we inside the extent that was found? */
5068 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5069 found_type
= btrfs_key_type(&found_key
);
5070 if (found_key
.objectid
!= objectid
||
5071 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5075 found_type
= btrfs_file_extent_type(leaf
, item
);
5076 extent_start
= found_key
.offset
;
5077 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5078 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5079 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5080 extent_end
= extent_start
+
5081 btrfs_file_extent_num_bytes(leaf
, item
);
5082 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5084 size
= btrfs_file_extent_inline_len(leaf
, item
);
5085 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5086 ~((u64
)root
->sectorsize
- 1);
5089 if (start
>= extent_end
) {
5091 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5092 ret
= btrfs_next_leaf(root
, path
);
5099 leaf
= path
->nodes
[0];
5101 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5102 if (found_key
.objectid
!= objectid
||
5103 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5105 if (start
+ len
<= found_key
.offset
)
5108 em
->len
= found_key
.offset
- start
;
5112 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5113 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5114 em
->start
= extent_start
;
5115 em
->len
= extent_end
- extent_start
;
5116 em
->orig_start
= extent_start
-
5117 btrfs_file_extent_offset(leaf
, item
);
5118 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5120 em
->block_start
= EXTENT_MAP_HOLE
;
5123 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5124 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5125 em
->compress_type
= compress_type
;
5126 em
->block_start
= bytenr
;
5127 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5130 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5131 em
->block_start
= bytenr
;
5132 em
->block_len
= em
->len
;
5133 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5134 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5137 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5141 size_t extent_offset
;
5144 em
->block_start
= EXTENT_MAP_INLINE
;
5145 if (!page
|| create
) {
5146 em
->start
= extent_start
;
5147 em
->len
= extent_end
- extent_start
;
5151 size
= btrfs_file_extent_inline_len(leaf
, item
);
5152 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5153 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5154 size
- extent_offset
);
5155 em
->start
= extent_start
+ extent_offset
;
5156 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5157 ~((u64
)root
->sectorsize
- 1);
5158 em
->orig_start
= EXTENT_MAP_INLINE
;
5159 if (compress_type
) {
5160 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5161 em
->compress_type
= compress_type
;
5163 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5164 if (create
== 0 && !PageUptodate(page
)) {
5165 if (btrfs_file_extent_compression(leaf
, item
) !=
5166 BTRFS_COMPRESS_NONE
) {
5167 ret
= uncompress_inline(path
, inode
, page
,
5169 extent_offset
, item
);
5173 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5175 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5176 memset(map
+ pg_offset
+ copy_size
, 0,
5177 PAGE_CACHE_SIZE
- pg_offset
-
5182 flush_dcache_page(page
);
5183 } else if (create
&& PageUptodate(page
)) {
5187 free_extent_map(em
);
5189 btrfs_release_path(root
, path
);
5190 trans
= btrfs_join_transaction(root
, 1);
5192 return ERR_CAST(trans
);
5196 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5199 btrfs_mark_buffer_dirty(leaf
);
5201 set_extent_uptodate(io_tree
, em
->start
,
5202 extent_map_end(em
) - 1, GFP_NOFS
);
5205 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5212 em
->block_start
= EXTENT_MAP_HOLE
;
5213 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5215 btrfs_release_path(root
, path
);
5216 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5217 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5218 "[%llu %llu]\n", (unsigned long long)em
->start
,
5219 (unsigned long long)em
->len
,
5220 (unsigned long long)start
,
5221 (unsigned long long)len
);
5227 write_lock(&em_tree
->lock
);
5228 ret
= add_extent_mapping(em_tree
, em
);
5229 /* it is possible that someone inserted the extent into the tree
5230 * while we had the lock dropped. It is also possible that
5231 * an overlapping map exists in the tree
5233 if (ret
== -EEXIST
) {
5234 struct extent_map
*existing
;
5238 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5239 if (existing
&& (existing
->start
> start
||
5240 existing
->start
+ existing
->len
<= start
)) {
5241 free_extent_map(existing
);
5245 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5248 err
= merge_extent_mapping(em_tree
, existing
,
5251 free_extent_map(existing
);
5253 free_extent_map(em
);
5258 free_extent_map(em
);
5262 free_extent_map(em
);
5267 write_unlock(&em_tree
->lock
);
5270 btrfs_free_path(path
);
5272 ret
= btrfs_end_transaction(trans
, root
);
5277 free_extent_map(em
);
5278 return ERR_PTR(err
);
5283 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5286 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5287 struct btrfs_trans_handle
*trans
;
5288 struct extent_map
*em
;
5289 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5290 struct btrfs_key ins
;
5294 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5296 trans
= btrfs_join_transaction(root
, 0);
5298 return ERR_CAST(trans
);
5300 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5302 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5303 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5304 alloc_hint
, (u64
)-1, &ins
, 1);
5310 em
= alloc_extent_map(GFP_NOFS
);
5312 em
= ERR_PTR(-ENOMEM
);
5317 em
->orig_start
= em
->start
;
5318 em
->len
= ins
.offset
;
5320 em
->block_start
= ins
.objectid
;
5321 em
->block_len
= ins
.offset
;
5322 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5323 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5326 write_lock(&em_tree
->lock
);
5327 ret
= add_extent_mapping(em_tree
, em
);
5328 write_unlock(&em_tree
->lock
);
5331 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5334 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5335 ins
.offset
, ins
.offset
, 0);
5337 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5341 btrfs_end_transaction(trans
, root
);
5346 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5347 * block must be cow'd
5349 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5350 struct inode
*inode
, u64 offset
, u64 len
)
5352 struct btrfs_path
*path
;
5354 struct extent_buffer
*leaf
;
5355 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5356 struct btrfs_file_extent_item
*fi
;
5357 struct btrfs_key key
;
5365 path
= btrfs_alloc_path();
5369 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
5374 slot
= path
->slots
[0];
5377 /* can't find the item, must cow */
5384 leaf
= path
->nodes
[0];
5385 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5386 if (key
.objectid
!= inode
->i_ino
||
5387 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5388 /* not our file or wrong item type, must cow */
5392 if (key
.offset
> offset
) {
5393 /* Wrong offset, must cow */
5397 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5398 found_type
= btrfs_file_extent_type(leaf
, fi
);
5399 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5400 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5401 /* not a regular extent, must cow */
5404 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5405 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5407 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5408 if (extent_end
< offset
+ len
) {
5409 /* extent doesn't include our full range, must cow */
5413 if (btrfs_extent_readonly(root
, disk_bytenr
))
5417 * look for other files referencing this extent, if we
5418 * find any we must cow
5420 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
5421 key
.offset
- backref_offset
, disk_bytenr
))
5425 * adjust disk_bytenr and num_bytes to cover just the bytes
5426 * in this extent we are about to write. If there
5427 * are any csums in that range we have to cow in order
5428 * to keep the csums correct
5430 disk_bytenr
+= backref_offset
;
5431 disk_bytenr
+= offset
- key
.offset
;
5432 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5433 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5436 * all of the above have passed, it is safe to overwrite this extent
5441 btrfs_free_path(path
);
5445 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5446 struct buffer_head
*bh_result
, int create
)
5448 struct extent_map
*em
;
5449 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5450 u64 start
= iblock
<< inode
->i_blkbits
;
5451 u64 len
= bh_result
->b_size
;
5452 struct btrfs_trans_handle
*trans
;
5454 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5459 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5460 * io. INLINE is special, and we could probably kludge it in here, but
5461 * it's still buffered so for safety lets just fall back to the generic
5464 * For COMPRESSED we _have_ to read the entire extent in so we can
5465 * decompress it, so there will be buffering required no matter what we
5466 * do, so go ahead and fallback to buffered.
5468 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5469 * to buffered IO. Don't blame me, this is the price we pay for using
5472 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5473 em
->block_start
== EXTENT_MAP_INLINE
) {
5474 free_extent_map(em
);
5478 /* Just a good old fashioned hole, return */
5479 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5480 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5481 free_extent_map(em
);
5482 /* DIO will do one hole at a time, so just unlock a sector */
5483 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5484 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5489 * We don't allocate a new extent in the following cases
5491 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5493 * 2) The extent is marked as PREALLOC. We're good to go here and can
5494 * just use the extent.
5498 len
= em
->len
- (start
- em
->start
);
5502 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5503 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5504 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5509 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5510 type
= BTRFS_ORDERED_PREALLOC
;
5512 type
= BTRFS_ORDERED_NOCOW
;
5513 len
= min(len
, em
->len
- (start
- em
->start
));
5514 block_start
= em
->block_start
+ (start
- em
->start
);
5517 * we're not going to log anything, but we do need
5518 * to make sure the current transaction stays open
5519 * while we look for nocow cross refs
5521 trans
= btrfs_join_transaction(root
, 0);
5525 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5526 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5527 block_start
, len
, len
, type
);
5528 btrfs_end_transaction(trans
, root
);
5530 free_extent_map(em
);
5535 btrfs_end_transaction(trans
, root
);
5539 * this will cow the extent, reset the len in case we changed
5542 len
= bh_result
->b_size
;
5543 free_extent_map(em
);
5544 em
= btrfs_new_extent_direct(inode
, start
, len
);
5547 len
= min(len
, em
->len
- (start
- em
->start
));
5549 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5550 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5553 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5555 bh_result
->b_size
= len
;
5556 bh_result
->b_bdev
= em
->bdev
;
5557 set_buffer_mapped(bh_result
);
5558 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5559 set_buffer_new(bh_result
);
5561 free_extent_map(em
);
5566 struct btrfs_dio_private
{
5567 struct inode
*inode
;
5574 /* number of bios pending for this dio */
5575 atomic_t pending_bios
;
5580 struct bio
*orig_bio
;
5583 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5585 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5586 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5587 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5588 struct inode
*inode
= dip
->inode
;
5589 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5591 u32
*private = dip
->csums
;
5593 start
= dip
->logical_offset
;
5595 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5596 struct page
*page
= bvec
->bv_page
;
5599 unsigned long flags
;
5601 local_irq_save(flags
);
5602 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5603 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5604 csum
, bvec
->bv_len
);
5605 btrfs_csum_final(csum
, (char *)&csum
);
5606 kunmap_atomic(kaddr
, KM_IRQ0
);
5607 local_irq_restore(flags
);
5609 flush_dcache_page(bvec
->bv_page
);
5610 if (csum
!= *private) {
5611 printk(KERN_ERR
"btrfs csum failed ino %lu off"
5612 " %llu csum %u private %u\n",
5613 inode
->i_ino
, (unsigned long long)start
,
5619 start
+= bvec
->bv_len
;
5622 } while (bvec
<= bvec_end
);
5624 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5625 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5626 bio
->bi_private
= dip
->private;
5630 dio_end_io(bio
, err
);
5633 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5635 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5636 struct inode
*inode
= dip
->inode
;
5637 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5638 struct btrfs_trans_handle
*trans
;
5639 struct btrfs_ordered_extent
*ordered
= NULL
;
5640 struct extent_state
*cached_state
= NULL
;
5641 u64 ordered_offset
= dip
->logical_offset
;
5642 u64 ordered_bytes
= dip
->bytes
;
5648 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5656 trans
= btrfs_join_transaction(root
, 1);
5657 if (IS_ERR(trans
)) {
5661 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5663 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5664 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5666 ret
= btrfs_update_inode(trans
, root
, inode
);
5671 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5672 ordered
->file_offset
+ ordered
->len
- 1, 0,
5673 &cached_state
, GFP_NOFS
);
5675 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5676 ret
= btrfs_mark_extent_written(trans
, inode
,
5677 ordered
->file_offset
,
5678 ordered
->file_offset
+
5685 ret
= insert_reserved_file_extent(trans
, inode
,
5686 ordered
->file_offset
,
5692 BTRFS_FILE_EXTENT_REG
);
5693 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5694 ordered
->file_offset
, ordered
->len
);
5702 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5703 btrfs_ordered_update_i_size(inode
, 0, ordered
);
5704 btrfs_update_inode(trans
, root
, inode
);
5706 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5707 ordered
->file_offset
+ ordered
->len
- 1,
5708 &cached_state
, GFP_NOFS
);
5710 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5711 btrfs_end_transaction(trans
, root
);
5712 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5713 btrfs_put_ordered_extent(ordered
);
5714 btrfs_put_ordered_extent(ordered
);
5718 * our bio might span multiple ordered extents. If we haven't
5719 * completed the accounting for the whole dio, go back and try again
5721 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5722 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5727 bio
->bi_private
= dip
->private;
5731 dio_end_io(bio
, err
);
5734 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5735 struct bio
*bio
, int mirror_num
,
5736 unsigned long bio_flags
, u64 offset
)
5739 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5740 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5745 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5747 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5750 printk(KERN_ERR
"btrfs direct IO failed ino %lu rw %lu "
5751 "sector %#Lx len %u err no %d\n",
5752 dip
->inode
->i_ino
, bio
->bi_rw
,
5753 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5757 * before atomic variable goto zero, we must make sure
5758 * dip->errors is perceived to be set.
5760 smp_mb__before_atomic_dec();
5763 /* if there are more bios still pending for this dio, just exit */
5764 if (!atomic_dec_and_test(&dip
->pending_bios
))
5768 bio_io_error(dip
->orig_bio
);
5770 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5771 bio_endio(dip
->orig_bio
, 0);
5777 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5778 u64 first_sector
, gfp_t gfp_flags
)
5780 int nr_vecs
= bio_get_nr_vecs(bdev
);
5781 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5784 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5785 int rw
, u64 file_offset
, int skip_sum
,
5788 int write
= rw
& REQ_WRITE
;
5789 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5793 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5797 if (write
&& !skip_sum
) {
5798 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5799 inode
, rw
, bio
, 0, 0,
5801 __btrfs_submit_bio_start_direct_io
,
5802 __btrfs_submit_bio_done
);
5804 } else if (!skip_sum
)
5805 btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5806 file_offset
, csums
);
5808 ret
= btrfs_map_bio(root
, rw
, bio
, 0, 1);
5814 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5817 struct inode
*inode
= dip
->inode
;
5818 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5819 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5821 struct bio
*orig_bio
= dip
->orig_bio
;
5822 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5823 u64 start_sector
= orig_bio
->bi_sector
;
5824 u64 file_offset
= dip
->logical_offset
;
5828 u32
*csums
= dip
->csums
;
5831 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5834 bio
->bi_private
= dip
;
5835 bio
->bi_end_io
= btrfs_end_dio_bio
;
5836 atomic_inc(&dip
->pending_bios
);
5838 map_length
= orig_bio
->bi_size
;
5839 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5840 &map_length
, NULL
, 0);
5846 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
5847 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
5848 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5849 bvec
->bv_offset
) < bvec
->bv_len
)) {
5851 * inc the count before we submit the bio so
5852 * we know the end IO handler won't happen before
5853 * we inc the count. Otherwise, the dip might get freed
5854 * before we're done setting it up
5856 atomic_inc(&dip
->pending_bios
);
5857 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
5858 file_offset
, skip_sum
,
5862 atomic_dec(&dip
->pending_bios
);
5867 csums
= csums
+ nr_pages
;
5868 start_sector
+= submit_len
>> 9;
5869 file_offset
+= submit_len
;
5874 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
5875 start_sector
, GFP_NOFS
);
5878 bio
->bi_private
= dip
;
5879 bio
->bi_end_io
= btrfs_end_dio_bio
;
5881 map_length
= orig_bio
->bi_size
;
5882 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5883 &map_length
, NULL
, 0);
5889 submit_len
+= bvec
->bv_len
;
5895 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
5904 * before atomic variable goto zero, we must
5905 * make sure dip->errors is perceived to be set.
5907 smp_mb__before_atomic_dec();
5908 if (atomic_dec_and_test(&dip
->pending_bios
))
5909 bio_io_error(dip
->orig_bio
);
5911 /* bio_end_io() will handle error, so we needn't return it */
5915 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
5918 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5919 struct btrfs_dio_private
*dip
;
5920 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5922 int write
= rw
& REQ_WRITE
;
5925 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
5927 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
5935 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
5942 dip
->private = bio
->bi_private
;
5944 dip
->logical_offset
= file_offset
;
5948 dip
->bytes
+= bvec
->bv_len
;
5950 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
5952 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
5953 bio
->bi_private
= dip
;
5955 dip
->orig_bio
= bio
;
5956 atomic_set(&dip
->pending_bios
, 0);
5959 bio
->bi_end_io
= btrfs_endio_direct_write
;
5961 bio
->bi_end_io
= btrfs_endio_direct_read
;
5963 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
5968 * If this is a write, we need to clean up the reserved space and kill
5969 * the ordered extent.
5972 struct btrfs_ordered_extent
*ordered
;
5973 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
5974 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
5975 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
5976 btrfs_free_reserved_extent(root
, ordered
->start
,
5978 btrfs_put_ordered_extent(ordered
);
5979 btrfs_put_ordered_extent(ordered
);
5981 bio_endio(bio
, ret
);
5984 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
5985 const struct iovec
*iov
, loff_t offset
,
5986 unsigned long nr_segs
)
5991 unsigned blocksize_mask
= root
->sectorsize
- 1;
5992 ssize_t retval
= -EINVAL
;
5993 loff_t end
= offset
;
5995 if (offset
& blocksize_mask
)
5998 /* Check the memory alignment. Blocks cannot straddle pages */
5999 for (seg
= 0; seg
< nr_segs
; seg
++) {
6000 addr
= (unsigned long)iov
[seg
].iov_base
;
6001 size
= iov
[seg
].iov_len
;
6003 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6010 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6011 const struct iovec
*iov
, loff_t offset
,
6012 unsigned long nr_segs
)
6014 struct file
*file
= iocb
->ki_filp
;
6015 struct inode
*inode
= file
->f_mapping
->host
;
6016 struct btrfs_ordered_extent
*ordered
;
6017 struct extent_state
*cached_state
= NULL
;
6018 u64 lockstart
, lockend
;
6020 int writing
= rw
& WRITE
;
6022 size_t count
= iov_length(iov
, nr_segs
);
6024 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6030 lockend
= offset
+ count
- 1;
6033 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6039 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6040 0, &cached_state
, GFP_NOFS
);
6042 * We're concerned with the entire range that we're going to be
6043 * doing DIO to, so we need to make sure theres no ordered
6044 * extents in this range.
6046 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6047 lockend
- lockstart
+ 1);
6050 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6051 &cached_state
, GFP_NOFS
);
6052 btrfs_start_ordered_extent(inode
, ordered
, 1);
6053 btrfs_put_ordered_extent(ordered
);
6058 * we don't use btrfs_set_extent_delalloc because we don't want
6059 * the dirty or uptodate bits
6062 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6063 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6064 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6067 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6068 lockend
, EXTENT_LOCKED
| write_bits
,
6069 1, 0, &cached_state
, GFP_NOFS
);
6074 free_extent_state(cached_state
);
6075 cached_state
= NULL
;
6077 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6078 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6079 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6080 btrfs_submit_direct
, 0);
6082 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6083 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6084 offset
+ iov_length(iov
, nr_segs
) - 1,
6085 EXTENT_LOCKED
| write_bits
, 1, 0,
6086 &cached_state
, GFP_NOFS
);
6087 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6089 * We're falling back to buffered, unlock the section we didn't
6092 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6093 offset
+ iov_length(iov
, nr_segs
) - 1,
6094 EXTENT_LOCKED
| write_bits
, 1, 0,
6095 &cached_state
, GFP_NOFS
);
6098 free_extent_state(cached_state
);
6102 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6103 __u64 start
, __u64 len
)
6105 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
6108 int btrfs_readpage(struct file
*file
, struct page
*page
)
6110 struct extent_io_tree
*tree
;
6111 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6112 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
6115 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6117 struct extent_io_tree
*tree
;
6120 if (current
->flags
& PF_MEMALLOC
) {
6121 redirty_page_for_writepage(wbc
, page
);
6125 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6126 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6129 int btrfs_writepages(struct address_space
*mapping
,
6130 struct writeback_control
*wbc
)
6132 struct extent_io_tree
*tree
;
6134 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6135 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6139 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6140 struct list_head
*pages
, unsigned nr_pages
)
6142 struct extent_io_tree
*tree
;
6143 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6144 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6147 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6149 struct extent_io_tree
*tree
;
6150 struct extent_map_tree
*map
;
6153 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6154 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6155 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6157 ClearPagePrivate(page
);
6158 set_page_private(page
, 0);
6159 page_cache_release(page
);
6164 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6166 if (PageWriteback(page
) || PageDirty(page
))
6168 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6171 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6173 struct extent_io_tree
*tree
;
6174 struct btrfs_ordered_extent
*ordered
;
6175 struct extent_state
*cached_state
= NULL
;
6176 u64 page_start
= page_offset(page
);
6177 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6181 * we have the page locked, so new writeback can't start,
6182 * and the dirty bit won't be cleared while we are here.
6184 * Wait for IO on this page so that we can safely clear
6185 * the PagePrivate2 bit and do ordered accounting
6187 wait_on_page_writeback(page
);
6189 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6191 btrfs_releasepage(page
, GFP_NOFS
);
6194 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6196 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6200 * IO on this page will never be started, so we need
6201 * to account for any ordered extents now
6203 clear_extent_bit(tree
, page_start
, page_end
,
6204 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6205 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6206 &cached_state
, GFP_NOFS
);
6208 * whoever cleared the private bit is responsible
6209 * for the finish_ordered_io
6211 if (TestClearPagePrivate2(page
)) {
6212 btrfs_finish_ordered_io(page
->mapping
->host
,
6213 page_start
, page_end
);
6215 btrfs_put_ordered_extent(ordered
);
6216 cached_state
= NULL
;
6217 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6220 clear_extent_bit(tree
, page_start
, page_end
,
6221 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6222 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6223 __btrfs_releasepage(page
, GFP_NOFS
);
6225 ClearPageChecked(page
);
6226 if (PagePrivate(page
)) {
6227 ClearPagePrivate(page
);
6228 set_page_private(page
, 0);
6229 page_cache_release(page
);
6234 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6235 * called from a page fault handler when a page is first dirtied. Hence we must
6236 * be careful to check for EOF conditions here. We set the page up correctly
6237 * for a written page which means we get ENOSPC checking when writing into
6238 * holes and correct delalloc and unwritten extent mapping on filesystems that
6239 * support these features.
6241 * We are not allowed to take the i_mutex here so we have to play games to
6242 * protect against truncate races as the page could now be beyond EOF. Because
6243 * vmtruncate() writes the inode size before removing pages, once we have the
6244 * page lock we can determine safely if the page is beyond EOF. If it is not
6245 * beyond EOF, then the page is guaranteed safe against truncation until we
6248 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6250 struct page
*page
= vmf
->page
;
6251 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6252 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6253 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6254 struct btrfs_ordered_extent
*ordered
;
6255 struct extent_state
*cached_state
= NULL
;
6257 unsigned long zero_start
;
6263 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6267 else /* -ENOSPC, -EIO, etc */
6268 ret
= VM_FAULT_SIGBUS
;
6272 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6275 size
= i_size_read(inode
);
6276 page_start
= page_offset(page
);
6277 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6279 if ((page
->mapping
!= inode
->i_mapping
) ||
6280 (page_start
>= size
)) {
6281 /* page got truncated out from underneath us */
6284 wait_on_page_writeback(page
);
6286 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6288 set_page_extent_mapped(page
);
6291 * we can't set the delalloc bits if there are pending ordered
6292 * extents. Drop our locks and wait for them to finish
6294 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6296 unlock_extent_cached(io_tree
, page_start
, page_end
,
6297 &cached_state
, GFP_NOFS
);
6299 btrfs_start_ordered_extent(inode
, ordered
, 1);
6300 btrfs_put_ordered_extent(ordered
);
6305 * XXX - page_mkwrite gets called every time the page is dirtied, even
6306 * if it was already dirty, so for space accounting reasons we need to
6307 * clear any delalloc bits for the range we are fixing to save. There
6308 * is probably a better way to do this, but for now keep consistent with
6309 * prepare_pages in the normal write path.
6311 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6312 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6313 0, 0, &cached_state
, GFP_NOFS
);
6315 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6318 unlock_extent_cached(io_tree
, page_start
, page_end
,
6319 &cached_state
, GFP_NOFS
);
6320 ret
= VM_FAULT_SIGBUS
;
6325 /* page is wholly or partially inside EOF */
6326 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6327 zero_start
= size
& ~PAGE_CACHE_MASK
;
6329 zero_start
= PAGE_CACHE_SIZE
;
6331 if (zero_start
!= PAGE_CACHE_SIZE
) {
6333 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6334 flush_dcache_page(page
);
6337 ClearPageChecked(page
);
6338 set_page_dirty(page
);
6339 SetPageUptodate(page
);
6341 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6342 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6344 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6348 return VM_FAULT_LOCKED
;
6350 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6355 static void btrfs_truncate(struct inode
*inode
)
6357 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6359 struct btrfs_trans_handle
*trans
;
6361 u64 mask
= root
->sectorsize
- 1;
6363 if (!S_ISREG(inode
->i_mode
)) {
6368 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6372 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6373 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6375 trans
= btrfs_start_transaction(root
, 0);
6376 BUG_ON(IS_ERR(trans
));
6377 btrfs_set_trans_block_group(trans
, inode
);
6378 trans
->block_rsv
= root
->orphan_block_rsv
;
6381 * setattr is responsible for setting the ordered_data_close flag,
6382 * but that is only tested during the last file release. That
6383 * could happen well after the next commit, leaving a great big
6384 * window where new writes may get lost if someone chooses to write
6385 * to this file after truncating to zero
6387 * The inode doesn't have any dirty data here, and so if we commit
6388 * this is a noop. If someone immediately starts writing to the inode
6389 * it is very likely we'll catch some of their writes in this
6390 * transaction, and the commit will find this file on the ordered
6391 * data list with good things to send down.
6393 * This is a best effort solution, there is still a window where
6394 * using truncate to replace the contents of the file will
6395 * end up with a zero length file after a crash.
6397 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6398 btrfs_add_ordered_operation(trans
, root
, inode
);
6402 trans
= btrfs_start_transaction(root
, 0);
6403 BUG_ON(IS_ERR(trans
));
6404 btrfs_set_trans_block_group(trans
, inode
);
6405 trans
->block_rsv
= root
->orphan_block_rsv
;
6408 ret
= btrfs_block_rsv_check(trans
, root
,
6409 root
->orphan_block_rsv
, 0, 5);
6411 BUG_ON(ret
!= -EAGAIN
);
6412 ret
= btrfs_commit_transaction(trans
, root
);
6418 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6420 BTRFS_EXTENT_DATA_KEY
);
6424 ret
= btrfs_update_inode(trans
, root
, inode
);
6427 nr
= trans
->blocks_used
;
6428 btrfs_end_transaction(trans
, root
);
6430 btrfs_btree_balance_dirty(root
, nr
);
6433 if (ret
== 0 && inode
->i_nlink
> 0) {
6434 ret
= btrfs_orphan_del(trans
, inode
);
6438 ret
= btrfs_update_inode(trans
, root
, inode
);
6441 nr
= trans
->blocks_used
;
6442 ret
= btrfs_end_transaction_throttle(trans
, root
);
6444 btrfs_btree_balance_dirty(root
, nr
);
6448 * create a new subvolume directory/inode (helper for the ioctl).
6450 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6451 struct btrfs_root
*new_root
,
6452 u64 new_dirid
, u64 alloc_hint
)
6454 struct inode
*inode
;
6458 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6459 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
6461 return PTR_ERR(inode
);
6462 inode
->i_op
= &btrfs_dir_inode_operations
;
6463 inode
->i_fop
= &btrfs_dir_file_operations
;
6466 btrfs_i_size_write(inode
, 0);
6468 err
= btrfs_update_inode(trans
, new_root
, inode
);
6475 /* helper function for file defrag and space balancing. This
6476 * forces readahead on a given range of bytes in an inode
6478 unsigned long btrfs_force_ra(struct address_space
*mapping
,
6479 struct file_ra_state
*ra
, struct file
*file
,
6480 pgoff_t offset
, pgoff_t last_index
)
6482 pgoff_t req_size
= last_index
- offset
+ 1;
6484 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
6485 return offset
+ req_size
;
6488 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6490 struct btrfs_inode
*ei
;
6491 struct inode
*inode
;
6493 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6498 ei
->space_info
= NULL
;
6502 ei
->last_sub_trans
= 0;
6503 ei
->logged_trans
= 0;
6504 ei
->delalloc_bytes
= 0;
6505 ei
->reserved_bytes
= 0;
6506 ei
->disk_i_size
= 0;
6508 ei
->index_cnt
= (u64
)-1;
6509 ei
->last_unlink_trans
= 0;
6511 spin_lock_init(&ei
->accounting_lock
);
6512 atomic_set(&ei
->outstanding_extents
, 0);
6513 ei
->reserved_extents
= 0;
6515 ei
->ordered_data_close
= 0;
6516 ei
->orphan_meta_reserved
= 0;
6517 ei
->dummy_inode
= 0;
6518 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6520 inode
= &ei
->vfs_inode
;
6521 extent_map_tree_init(&ei
->extent_tree
, GFP_NOFS
);
6522 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
, GFP_NOFS
);
6523 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
, GFP_NOFS
);
6524 mutex_init(&ei
->log_mutex
);
6525 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6526 INIT_LIST_HEAD(&ei
->i_orphan
);
6527 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6528 INIT_LIST_HEAD(&ei
->ordered_operations
);
6529 RB_CLEAR_NODE(&ei
->rb_node
);
6534 static void btrfs_i_callback(struct rcu_head
*head
)
6536 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6537 INIT_LIST_HEAD(&inode
->i_dentry
);
6538 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6541 void btrfs_destroy_inode(struct inode
*inode
)
6543 struct btrfs_ordered_extent
*ordered
;
6544 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6546 WARN_ON(!list_empty(&inode
->i_dentry
));
6547 WARN_ON(inode
->i_data
.nrpages
);
6548 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
));
6549 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
6552 * This can happen where we create an inode, but somebody else also
6553 * created the same inode and we need to destroy the one we already
6560 * Make sure we're properly removed from the ordered operation
6564 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6565 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6566 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6567 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6570 if (root
== root
->fs_info
->tree_root
) {
6571 struct btrfs_block_group_cache
*block_group
;
6573 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6574 BTRFS_I(inode
)->block_group
);
6575 if (block_group
&& block_group
->inode
== inode
) {
6576 spin_lock(&block_group
->lock
);
6577 block_group
->inode
= NULL
;
6578 spin_unlock(&block_group
->lock
);
6579 btrfs_put_block_group(block_group
);
6580 } else if (block_group
) {
6581 btrfs_put_block_group(block_group
);
6585 spin_lock(&root
->orphan_lock
);
6586 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6587 printk(KERN_INFO
"BTRFS: inode %lu still on the orphan list\n",
6589 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6591 spin_unlock(&root
->orphan_lock
);
6594 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6598 printk(KERN_ERR
"btrfs found ordered "
6599 "extent %llu %llu on inode cleanup\n",
6600 (unsigned long long)ordered
->file_offset
,
6601 (unsigned long long)ordered
->len
);
6602 btrfs_remove_ordered_extent(inode
, ordered
);
6603 btrfs_put_ordered_extent(ordered
);
6604 btrfs_put_ordered_extent(ordered
);
6607 inode_tree_del(inode
);
6608 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6610 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6613 int btrfs_drop_inode(struct inode
*inode
)
6615 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6617 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6618 root
!= root
->fs_info
->tree_root
)
6621 return generic_drop_inode(inode
);
6624 static void init_once(void *foo
)
6626 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6628 inode_init_once(&ei
->vfs_inode
);
6631 void btrfs_destroy_cachep(void)
6633 if (btrfs_inode_cachep
)
6634 kmem_cache_destroy(btrfs_inode_cachep
);
6635 if (btrfs_trans_handle_cachep
)
6636 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6637 if (btrfs_transaction_cachep
)
6638 kmem_cache_destroy(btrfs_transaction_cachep
);
6639 if (btrfs_path_cachep
)
6640 kmem_cache_destroy(btrfs_path_cachep
);
6643 int btrfs_init_cachep(void)
6645 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6646 sizeof(struct btrfs_inode
), 0,
6647 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6648 if (!btrfs_inode_cachep
)
6651 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6652 sizeof(struct btrfs_trans_handle
), 0,
6653 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6654 if (!btrfs_trans_handle_cachep
)
6657 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6658 sizeof(struct btrfs_transaction
), 0,
6659 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6660 if (!btrfs_transaction_cachep
)
6663 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6664 sizeof(struct btrfs_path
), 0,
6665 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6666 if (!btrfs_path_cachep
)
6671 btrfs_destroy_cachep();
6675 static int btrfs_getattr(struct vfsmount
*mnt
,
6676 struct dentry
*dentry
, struct kstat
*stat
)
6678 struct inode
*inode
= dentry
->d_inode
;
6679 generic_fillattr(inode
, stat
);
6680 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
6681 stat
->blksize
= PAGE_CACHE_SIZE
;
6682 stat
->blocks
= (inode_get_bytes(inode
) +
6683 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
6687 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6688 struct inode
*new_dir
, struct dentry
*new_dentry
)
6690 struct btrfs_trans_handle
*trans
;
6691 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6692 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6693 struct inode
*new_inode
= new_dentry
->d_inode
;
6694 struct inode
*old_inode
= old_dentry
->d_inode
;
6695 struct timespec ctime
= CURRENT_TIME
;
6700 if (new_dir
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6703 /* we only allow rename subvolume link between subvolumes */
6704 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6707 if (old_inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6708 (new_inode
&& new_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
))
6711 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6712 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6715 * we're using rename to replace one file with another.
6716 * and the replacement file is large. Start IO on it now so
6717 * we don't add too much work to the end of the transaction
6719 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
6720 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
6721 filemap_flush(old_inode
->i_mapping
);
6723 /* close the racy window with snapshot create/destroy ioctl */
6724 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6725 down_read(&root
->fs_info
->subvol_sem
);
6727 * We want to reserve the absolute worst case amount of items. So if
6728 * both inodes are subvols and we need to unlink them then that would
6729 * require 4 item modifications, but if they are both normal inodes it
6730 * would require 5 item modifications, so we'll assume their normal
6731 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6732 * should cover the worst case number of items we'll modify.
6734 trans
= btrfs_start_transaction(root
, 20);
6736 return PTR_ERR(trans
);
6738 btrfs_set_trans_block_group(trans
, new_dir
);
6741 btrfs_record_root_in_trans(trans
, dest
);
6743 ret
= btrfs_set_inode_index(new_dir
, &index
);
6747 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6748 /* force full log commit if subvolume involved. */
6749 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
6751 ret
= btrfs_insert_inode_ref(trans
, dest
,
6752 new_dentry
->d_name
.name
,
6753 new_dentry
->d_name
.len
,
6755 new_dir
->i_ino
, index
);
6759 * this is an ugly little race, but the rename is required
6760 * to make sure that if we crash, the inode is either at the
6761 * old name or the new one. pinning the log transaction lets
6762 * us make sure we don't allow a log commit to come in after
6763 * we unlink the name but before we add the new name back in.
6765 btrfs_pin_log_trans(root
);
6768 * make sure the inode gets flushed if it is replacing
6771 if (new_inode
&& new_inode
->i_size
&&
6772 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
6773 btrfs_add_ordered_operation(trans
, root
, old_inode
);
6776 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
6777 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
6778 old_inode
->i_ctime
= ctime
;
6780 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
6781 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
6783 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6784 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
6785 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
6786 old_dentry
->d_name
.name
,
6787 old_dentry
->d_name
.len
);
6789 btrfs_inc_nlink(old_dentry
->d_inode
);
6790 ret
= btrfs_unlink_inode(trans
, root
, old_dir
,
6791 old_dentry
->d_inode
,
6792 old_dentry
->d_name
.name
,
6793 old_dentry
->d_name
.len
);
6798 new_inode
->i_ctime
= CURRENT_TIME
;
6799 if (unlikely(new_inode
->i_ino
==
6800 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
6801 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
6802 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
6804 new_dentry
->d_name
.name
,
6805 new_dentry
->d_name
.len
);
6806 BUG_ON(new_inode
->i_nlink
== 0);
6808 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
6809 new_dentry
->d_inode
,
6810 new_dentry
->d_name
.name
,
6811 new_dentry
->d_name
.len
);
6814 if (new_inode
->i_nlink
== 0) {
6815 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
6820 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
6821 new_dentry
->d_name
.name
,
6822 new_dentry
->d_name
.len
, 0, index
);
6825 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
6826 struct dentry
*parent
= dget_parent(new_dentry
);
6827 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
6829 btrfs_end_log_trans(root
);
6832 btrfs_end_transaction_throttle(trans
, root
);
6834 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6835 up_read(&root
->fs_info
->subvol_sem
);
6841 * some fairly slow code that needs optimization. This walks the list
6842 * of all the inodes with pending delalloc and forces them to disk.
6844 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
6846 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
6847 struct btrfs_inode
*binode
;
6848 struct inode
*inode
;
6850 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
6853 spin_lock(&root
->fs_info
->delalloc_lock
);
6854 while (!list_empty(head
)) {
6855 binode
= list_entry(head
->next
, struct btrfs_inode
,
6857 inode
= igrab(&binode
->vfs_inode
);
6859 list_del_init(&binode
->delalloc_inodes
);
6860 spin_unlock(&root
->fs_info
->delalloc_lock
);
6862 filemap_flush(inode
->i_mapping
);
6864 btrfs_add_delayed_iput(inode
);
6869 spin_lock(&root
->fs_info
->delalloc_lock
);
6871 spin_unlock(&root
->fs_info
->delalloc_lock
);
6873 /* the filemap_flush will queue IO into the worker threads, but
6874 * we have to make sure the IO is actually started and that
6875 * ordered extents get created before we return
6877 atomic_inc(&root
->fs_info
->async_submit_draining
);
6878 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
6879 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
6880 wait_event(root
->fs_info
->async_submit_wait
,
6881 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
6882 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
6884 atomic_dec(&root
->fs_info
->async_submit_draining
);
6888 int btrfs_start_one_delalloc_inode(struct btrfs_root
*root
, int delay_iput
,
6891 struct btrfs_inode
*binode
;
6892 struct inode
*inode
= NULL
;
6894 spin_lock(&root
->fs_info
->delalloc_lock
);
6895 while (!list_empty(&root
->fs_info
->delalloc_inodes
)) {
6896 binode
= list_entry(root
->fs_info
->delalloc_inodes
.next
,
6897 struct btrfs_inode
, delalloc_inodes
);
6898 inode
= igrab(&binode
->vfs_inode
);
6900 list_move_tail(&binode
->delalloc_inodes
,
6901 &root
->fs_info
->delalloc_inodes
);
6905 list_del_init(&binode
->delalloc_inodes
);
6906 cond_resched_lock(&root
->fs_info
->delalloc_lock
);
6908 spin_unlock(&root
->fs_info
->delalloc_lock
);
6912 filemap_write_and_wait(inode
->i_mapping
);
6914 * We have to do this because compression doesn't
6915 * actually set PG_writeback until it submits the pages
6916 * for IO, which happens in an async thread, so we could
6917 * race and not actually wait for any writeback pages
6918 * because they've not been submitted yet. Technically
6919 * this could still be the case for the ordered stuff
6920 * since the async thread may not have started to do its
6921 * work yet. If this becomes the case then we need to
6922 * figure out a way to make sure that in writepage we
6923 * wait for any async pages to be submitted before
6924 * returning so that fdatawait does what its supposed to
6927 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
6929 filemap_flush(inode
->i_mapping
);
6932 btrfs_add_delayed_iput(inode
);
6940 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
6941 const char *symname
)
6943 struct btrfs_trans_handle
*trans
;
6944 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6945 struct btrfs_path
*path
;
6946 struct btrfs_key key
;
6947 struct inode
*inode
= NULL
;
6955 struct btrfs_file_extent_item
*ei
;
6956 struct extent_buffer
*leaf
;
6957 unsigned long nr
= 0;
6959 name_len
= strlen(symname
) + 1;
6960 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
6961 return -ENAMETOOLONG
;
6963 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
6967 * 2 items for inode item and ref
6968 * 2 items for dir items
6969 * 1 item for xattr if selinux is on
6971 trans
= btrfs_start_transaction(root
, 5);
6973 return PTR_ERR(trans
);
6975 btrfs_set_trans_block_group(trans
, dir
);
6977 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6978 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
6979 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
6981 err
= PTR_ERR(inode
);
6985 err
= btrfs_init_inode_security(trans
, inode
, dir
);
6991 btrfs_set_trans_block_group(trans
, inode
);
6992 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6996 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6997 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
6998 inode
->i_fop
= &btrfs_file_operations
;
6999 inode
->i_op
= &btrfs_file_inode_operations
;
7000 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7002 btrfs_update_inode_block_group(trans
, inode
);
7003 btrfs_update_inode_block_group(trans
, dir
);
7007 path
= btrfs_alloc_path();
7009 key
.objectid
= inode
->i_ino
;
7011 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7012 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7013 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7019 leaf
= path
->nodes
[0];
7020 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7021 struct btrfs_file_extent_item
);
7022 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7023 btrfs_set_file_extent_type(leaf
, ei
,
7024 BTRFS_FILE_EXTENT_INLINE
);
7025 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7026 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7027 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7028 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7030 ptr
= btrfs_file_extent_inline_start(ei
);
7031 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7032 btrfs_mark_buffer_dirty(leaf
);
7033 btrfs_free_path(path
);
7035 inode
->i_op
= &btrfs_symlink_inode_operations
;
7036 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7037 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7038 inode_set_bytes(inode
, name_len
);
7039 btrfs_i_size_write(inode
, name_len
- 1);
7040 err
= btrfs_update_inode(trans
, root
, inode
);
7045 nr
= trans
->blocks_used
;
7046 btrfs_end_transaction_throttle(trans
, root
);
7048 inode_dec_link_count(inode
);
7051 btrfs_btree_balance_dirty(root
, nr
);
7055 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7056 u64 start
, u64 num_bytes
, u64 min_size
,
7057 loff_t actual_len
, u64
*alloc_hint
,
7058 struct btrfs_trans_handle
*trans
)
7060 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7061 struct btrfs_key ins
;
7062 u64 cur_offset
= start
;
7065 bool own_trans
= true;
7069 while (num_bytes
> 0) {
7071 trans
= btrfs_start_transaction(root
, 3);
7072 if (IS_ERR(trans
)) {
7073 ret
= PTR_ERR(trans
);
7078 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7079 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7082 btrfs_end_transaction(trans
, root
);
7086 ret
= insert_reserved_file_extent(trans
, inode
,
7087 cur_offset
, ins
.objectid
,
7088 ins
.offset
, ins
.offset
,
7089 ins
.offset
, 0, 0, 0,
7090 BTRFS_FILE_EXTENT_PREALLOC
);
7092 btrfs_drop_extent_cache(inode
, cur_offset
,
7093 cur_offset
+ ins
.offset
-1, 0);
7095 num_bytes
-= ins
.offset
;
7096 cur_offset
+= ins
.offset
;
7097 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7099 inode
->i_ctime
= CURRENT_TIME
;
7100 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7101 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7102 (actual_len
> inode
->i_size
) &&
7103 (cur_offset
> inode
->i_size
)) {
7104 if (cur_offset
> actual_len
)
7105 i_size
= actual_len
;
7107 i_size
= cur_offset
;
7108 i_size_write(inode
, i_size
);
7109 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7112 ret
= btrfs_update_inode(trans
, root
, inode
);
7116 btrfs_end_transaction(trans
, root
);
7121 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7122 u64 start
, u64 num_bytes
, u64 min_size
,
7123 loff_t actual_len
, u64
*alloc_hint
)
7125 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7126 min_size
, actual_len
, alloc_hint
,
7130 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7131 struct btrfs_trans_handle
*trans
, int mode
,
7132 u64 start
, u64 num_bytes
, u64 min_size
,
7133 loff_t actual_len
, u64
*alloc_hint
)
7135 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7136 min_size
, actual_len
, alloc_hint
, trans
);
7139 static int btrfs_set_page_dirty(struct page
*page
)
7141 return __set_page_dirty_nobuffers(page
);
7144 static int btrfs_permission(struct inode
*inode
, int mask
, unsigned int flags
)
7146 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7148 if (btrfs_root_readonly(root
) && (mask
& MAY_WRITE
))
7150 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
7152 return generic_permission(inode
, mask
, flags
, btrfs_check_acl
);
7155 static const struct inode_operations btrfs_dir_inode_operations
= {
7156 .getattr
= btrfs_getattr
,
7157 .lookup
= btrfs_lookup
,
7158 .create
= btrfs_create
,
7159 .unlink
= btrfs_unlink
,
7161 .mkdir
= btrfs_mkdir
,
7162 .rmdir
= btrfs_rmdir
,
7163 .rename
= btrfs_rename
,
7164 .symlink
= btrfs_symlink
,
7165 .setattr
= btrfs_setattr
,
7166 .mknod
= btrfs_mknod
,
7167 .setxattr
= btrfs_setxattr
,
7168 .getxattr
= btrfs_getxattr
,
7169 .listxattr
= btrfs_listxattr
,
7170 .removexattr
= btrfs_removexattr
,
7171 .permission
= btrfs_permission
,
7173 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7174 .lookup
= btrfs_lookup
,
7175 .permission
= btrfs_permission
,
7178 static const struct file_operations btrfs_dir_file_operations
= {
7179 .llseek
= generic_file_llseek
,
7180 .read
= generic_read_dir
,
7181 .readdir
= btrfs_real_readdir
,
7182 .unlocked_ioctl
= btrfs_ioctl
,
7183 #ifdef CONFIG_COMPAT
7184 .compat_ioctl
= btrfs_ioctl
,
7186 .release
= btrfs_release_file
,
7187 .fsync
= btrfs_sync_file
,
7190 static struct extent_io_ops btrfs_extent_io_ops
= {
7191 .fill_delalloc
= run_delalloc_range
,
7192 .submit_bio_hook
= btrfs_submit_bio_hook
,
7193 .merge_bio_hook
= btrfs_merge_bio_hook
,
7194 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7195 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7196 .writepage_start_hook
= btrfs_writepage_start_hook
,
7197 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
7198 .set_bit_hook
= btrfs_set_bit_hook
,
7199 .clear_bit_hook
= btrfs_clear_bit_hook
,
7200 .merge_extent_hook
= btrfs_merge_extent_hook
,
7201 .split_extent_hook
= btrfs_split_extent_hook
,
7205 * btrfs doesn't support the bmap operation because swapfiles
7206 * use bmap to make a mapping of extents in the file. They assume
7207 * these extents won't change over the life of the file and they
7208 * use the bmap result to do IO directly to the drive.
7210 * the btrfs bmap call would return logical addresses that aren't
7211 * suitable for IO and they also will change frequently as COW
7212 * operations happen. So, swapfile + btrfs == corruption.
7214 * For now we're avoiding this by dropping bmap.
7216 static const struct address_space_operations btrfs_aops
= {
7217 .readpage
= btrfs_readpage
,
7218 .writepage
= btrfs_writepage
,
7219 .writepages
= btrfs_writepages
,
7220 .readpages
= btrfs_readpages
,
7221 .sync_page
= block_sync_page
,
7222 .direct_IO
= btrfs_direct_IO
,
7223 .invalidatepage
= btrfs_invalidatepage
,
7224 .releasepage
= btrfs_releasepage
,
7225 .set_page_dirty
= btrfs_set_page_dirty
,
7226 .error_remove_page
= generic_error_remove_page
,
7229 static const struct address_space_operations btrfs_symlink_aops
= {
7230 .readpage
= btrfs_readpage
,
7231 .writepage
= btrfs_writepage
,
7232 .invalidatepage
= btrfs_invalidatepage
,
7233 .releasepage
= btrfs_releasepage
,
7236 static const struct inode_operations btrfs_file_inode_operations
= {
7237 .truncate
= btrfs_truncate
,
7238 .getattr
= btrfs_getattr
,
7239 .setattr
= btrfs_setattr
,
7240 .setxattr
= btrfs_setxattr
,
7241 .getxattr
= btrfs_getxattr
,
7242 .listxattr
= btrfs_listxattr
,
7243 .removexattr
= btrfs_removexattr
,
7244 .permission
= btrfs_permission
,
7245 .fiemap
= btrfs_fiemap
,
7247 static const struct inode_operations btrfs_special_inode_operations
= {
7248 .getattr
= btrfs_getattr
,
7249 .setattr
= btrfs_setattr
,
7250 .permission
= btrfs_permission
,
7251 .setxattr
= btrfs_setxattr
,
7252 .getxattr
= btrfs_getxattr
,
7253 .listxattr
= btrfs_listxattr
,
7254 .removexattr
= btrfs_removexattr
,
7256 static const struct inode_operations btrfs_symlink_inode_operations
= {
7257 .readlink
= generic_readlink
,
7258 .follow_link
= page_follow_link_light
,
7259 .put_link
= page_put_link
,
7260 .getattr
= btrfs_getattr
,
7261 .permission
= btrfs_permission
,
7262 .setxattr
= btrfs_setxattr
,
7263 .getxattr
= btrfs_getxattr
,
7264 .listxattr
= btrfs_listxattr
,
7265 .removexattr
= btrfs_removexattr
,
7268 const struct dentry_operations btrfs_dentry_operations
= {
7269 .d_delete
= btrfs_dentry_delete
,