2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
24 #include "transaction.h"
25 #include "print-tree.h"
28 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
29 *root
, struct btrfs_path
*path
, int level
);
30 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
31 *root
, struct btrfs_key
*ins_key
,
32 struct btrfs_path
*path
, int data_size
, int extend
);
33 static int push_node_left(struct btrfs_trans_handle
*trans
,
34 struct btrfs_root
*root
, struct extent_buffer
*dst
,
35 struct extent_buffer
*src
, int empty
);
36 static int balance_node_right(struct btrfs_trans_handle
*trans
,
37 struct btrfs_root
*root
,
38 struct extent_buffer
*dst_buf
,
39 struct extent_buffer
*src_buf
);
40 static void del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
41 struct btrfs_path
*path
, int level
, int slot
);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
43 struct extent_buffer
*eb
);
44 struct extent_buffer
*read_old_tree_block(struct btrfs_root
*root
, u64 bytenr
,
45 u32 blocksize
, u64 parent_transid
,
47 struct extent_buffer
*btrfs_find_old_tree_block(struct btrfs_root
*root
,
48 u64 bytenr
, u32 blocksize
,
51 struct btrfs_path
*btrfs_alloc_path(void)
53 struct btrfs_path
*path
;
54 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
59 * set all locked nodes in the path to blocking locks. This should
60 * be done before scheduling
62 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
65 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
66 if (!p
->nodes
[i
] || !p
->locks
[i
])
68 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
69 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
70 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
71 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
72 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
77 * reset all the locked nodes in the patch to spinning locks.
79 * held is used to keep lockdep happy, when lockdep is enabled
80 * we set held to a blocking lock before we go around and
81 * retake all the spinlocks in the path. You can safely use NULL
84 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
85 struct extent_buffer
*held
, int held_rw
)
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 /* lockdep really cares that we take all of these spinlocks
91 * in the right order. If any of the locks in the path are not
92 * currently blocking, it is going to complain. So, make really
93 * really sure by forcing the path to blocking before we clear
97 btrfs_set_lock_blocking_rw(held
, held_rw
);
98 if (held_rw
== BTRFS_WRITE_LOCK
)
99 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
100 else if (held_rw
== BTRFS_READ_LOCK
)
101 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
103 btrfs_set_path_blocking(p
);
106 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
107 if (p
->nodes
[i
] && p
->locks
[i
]) {
108 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
109 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
110 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
111 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
112 p
->locks
[i
] = BTRFS_READ_LOCK
;
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 btrfs_clear_lock_blocking_rw(held
, held_rw
);
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path
*p
)
127 btrfs_release_path(p
);
128 kmem_cache_free(btrfs_path_cachep
, p
);
132 * path release drops references on the extent buffers in the path
133 * and it drops any locks held by this path
135 * It is safe to call this on paths that no locks or extent buffers held.
137 noinline
void btrfs_release_path(struct btrfs_path
*p
)
141 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
146 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
149 free_extent_buffer(p
->nodes
[i
]);
155 * safely gets a reference on the root node of a tree. A lock
156 * is not taken, so a concurrent writer may put a different node
157 * at the root of the tree. See btrfs_lock_root_node for the
160 * The extent buffer returned by this has a reference taken, so
161 * it won't disappear. It may stop being the root of the tree
162 * at any time because there are no locks held.
164 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
166 struct extent_buffer
*eb
;
170 eb
= rcu_dereference(root
->node
);
173 * RCU really hurts here, we could free up the root node because
174 * it was cow'ed but we may not get the new root node yet so do
175 * the inc_not_zero dance and if it doesn't work then
176 * synchronize_rcu and try again.
178 if (atomic_inc_not_zero(&eb
->refs
)) {
188 /* loop around taking references on and locking the root node of the
189 * tree until you end up with a lock on the root. A locked buffer
190 * is returned, with a reference held.
192 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
194 struct extent_buffer
*eb
;
197 eb
= btrfs_root_node(root
);
199 if (eb
== root
->node
)
201 btrfs_tree_unlock(eb
);
202 free_extent_buffer(eb
);
207 /* loop around taking references on and locking the root node of the
208 * tree until you end up with a lock on the root. A locked buffer
209 * is returned, with a reference held.
211 struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
213 struct extent_buffer
*eb
;
216 eb
= btrfs_root_node(root
);
217 btrfs_tree_read_lock(eb
);
218 if (eb
== root
->node
)
220 btrfs_tree_read_unlock(eb
);
221 free_extent_buffer(eb
);
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227 * put onto a simple dirty list. transaction.c walks this to make sure they
228 * get properly updated on disk.
230 static void add_root_to_dirty_list(struct btrfs_root
*root
)
232 spin_lock(&root
->fs_info
->trans_lock
);
233 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
234 list_add(&root
->dirty_list
,
235 &root
->fs_info
->dirty_cowonly_roots
);
237 spin_unlock(&root
->fs_info
->trans_lock
);
241 * used by snapshot creation to make a copy of a root for a tree with
242 * a given objectid. The buffer with the new root node is returned in
243 * cow_ret, and this func returns zero on success or a negative error code.
245 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
246 struct btrfs_root
*root
,
247 struct extent_buffer
*buf
,
248 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
250 struct extent_buffer
*cow
;
253 struct btrfs_disk_key disk_key
;
255 WARN_ON(root
->ref_cows
&& trans
->transid
!=
256 root
->fs_info
->running_transaction
->transid
);
257 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
259 level
= btrfs_header_level(buf
);
261 btrfs_item_key(buf
, &disk_key
, 0);
263 btrfs_node_key(buf
, &disk_key
, 0);
265 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, 0,
266 new_root_objectid
, &disk_key
, level
,
271 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
272 btrfs_set_header_bytenr(cow
, cow
->start
);
273 btrfs_set_header_generation(cow
, trans
->transid
);
274 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
275 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
276 BTRFS_HEADER_FLAG_RELOC
);
277 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
278 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
280 btrfs_set_header_owner(cow
, new_root_objectid
);
282 write_extent_buffer(cow
, root
->fs_info
->fsid
,
283 (unsigned long)btrfs_header_fsid(cow
),
286 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
287 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
288 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
290 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
295 btrfs_mark_buffer_dirty(cow
);
304 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
305 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
307 MOD_LOG_ROOT_REPLACE
,
310 struct tree_mod_move
{
315 struct tree_mod_root
{
320 struct tree_mod_elem
{
322 u64 index
; /* shifted logical */
326 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
329 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
332 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 struct btrfs_disk_key key
;
336 /* this is used for op == MOD_LOG_MOVE_KEYS */
337 struct tree_mod_move move
;
339 /* this is used for op == MOD_LOG_ROOT_REPLACE */
340 struct tree_mod_root old_root
;
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
345 read_lock(&fs_info
->tree_mod_log_lock
);
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
350 read_unlock(&fs_info
->tree_mod_log_lock
);
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
355 write_lock(&fs_info
->tree_mod_log_lock
);
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
360 write_unlock(&fs_info
->tree_mod_log_lock
);
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
371 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
372 struct seq_list
*elem
)
376 tree_mod_log_write_lock(fs_info
);
377 spin_lock(&fs_info
->tree_mod_seq_lock
);
379 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
380 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
382 seq
= btrfs_inc_tree_mod_seq(fs_info
);
383 spin_unlock(&fs_info
->tree_mod_seq_lock
);
384 tree_mod_log_write_unlock(fs_info
);
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
390 struct seq_list
*elem
)
392 struct rb_root
*tm_root
;
393 struct rb_node
*node
;
394 struct rb_node
*next
;
395 struct seq_list
*cur_elem
;
396 struct tree_mod_elem
*tm
;
397 u64 min_seq
= (u64
)-1;
398 u64 seq_putting
= elem
->seq
;
403 spin_lock(&fs_info
->tree_mod_seq_lock
);
404 list_del(&elem
->list
);
407 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
408 if (cur_elem
->seq
< min_seq
) {
409 if (seq_putting
> cur_elem
->seq
) {
411 * blocker with lower sequence number exists, we
412 * cannot remove anything from the log
414 spin_unlock(&fs_info
->tree_mod_seq_lock
);
417 min_seq
= cur_elem
->seq
;
420 spin_unlock(&fs_info
->tree_mod_seq_lock
);
423 * anything that's lower than the lowest existing (read: blocked)
424 * sequence number can be removed from the tree.
426 tree_mod_log_write_lock(fs_info
);
427 tm_root
= &fs_info
->tree_mod_log
;
428 for (node
= rb_first(tm_root
); node
; node
= next
) {
429 next
= rb_next(node
);
430 tm
= container_of(node
, struct tree_mod_elem
, node
);
431 if (tm
->seq
> min_seq
)
433 rb_erase(node
, tm_root
);
436 tree_mod_log_write_unlock(fs_info
);
440 * key order of the log:
443 * the index is the shifted logical of the *new* root node for root replace
444 * operations, or the shifted logical of the affected block for all other
448 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
450 struct rb_root
*tm_root
;
451 struct rb_node
**new;
452 struct rb_node
*parent
= NULL
;
453 struct tree_mod_elem
*cur
;
455 BUG_ON(!tm
|| !tm
->seq
);
457 tm_root
= &fs_info
->tree_mod_log
;
458 new = &tm_root
->rb_node
;
460 cur
= container_of(*new, struct tree_mod_elem
, node
);
462 if (cur
->index
< tm
->index
)
463 new = &((*new)->rb_left
);
464 else if (cur
->index
> tm
->index
)
465 new = &((*new)->rb_right
);
466 else if (cur
->seq
< tm
->seq
)
467 new = &((*new)->rb_left
);
468 else if (cur
->seq
> tm
->seq
)
469 new = &((*new)->rb_right
);
476 rb_link_node(&tm
->node
, parent
, new);
477 rb_insert_color(&tm
->node
, tm_root
);
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
488 struct extent_buffer
*eb
) {
490 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
492 if (eb
&& btrfs_header_level(eb
) == 0)
495 tree_mod_log_write_lock(fs_info
);
496 if (list_empty(&fs_info
->tree_mod_seq_list
)) {
498 * someone emptied the list while we were waiting for the lock.
499 * we must not add to the list when no blocker exists.
501 tree_mod_log_write_unlock(fs_info
);
509 * This allocates memory and gets a tree modification sequence number.
511 * Returns <0 on error.
512 * Returns >0 (the added sequence number) on success.
514 static inline int tree_mod_alloc(struct btrfs_fs_info
*fs_info
, gfp_t flags
,
515 struct tree_mod_elem
**tm_ret
)
517 struct tree_mod_elem
*tm
;
520 * once we switch from spin locks to something different, we should
521 * honor the flags parameter here.
523 tm
= *tm_ret
= kzalloc(sizeof(*tm
), GFP_ATOMIC
);
527 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
532 __tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
533 struct extent_buffer
*eb
, int slot
,
534 enum mod_log_op op
, gfp_t flags
)
537 struct tree_mod_elem
*tm
;
539 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
543 tm
->index
= eb
->start
>> PAGE_CACHE_SHIFT
;
544 if (op
!= MOD_LOG_KEY_ADD
) {
545 btrfs_node_key(eb
, &tm
->key
, slot
);
546 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
550 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
552 return __tree_mod_log_insert(fs_info
, tm
);
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info
*fs_info
,
557 struct extent_buffer
*eb
, int slot
,
558 enum mod_log_op op
, gfp_t flags
)
562 if (tree_mod_dont_log(fs_info
, eb
))
565 ret
= __tree_mod_log_insert_key(fs_info
, eb
, slot
, op
, flags
);
567 tree_mod_log_write_unlock(fs_info
);
572 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
573 int slot
, enum mod_log_op op
)
575 return tree_mod_log_insert_key_mask(fs_info
, eb
, slot
, op
, GFP_NOFS
);
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info
*fs_info
,
580 struct extent_buffer
*eb
, int slot
,
583 return __tree_mod_log_insert_key(fs_info
, eb
, slot
, op
, GFP_NOFS
);
587 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
588 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
589 int nr_items
, gfp_t flags
)
591 struct tree_mod_elem
*tm
;
595 if (tree_mod_dont_log(fs_info
, eb
))
599 * When we override something during the move, we log these removals.
600 * This can only happen when we move towards the beginning of the
601 * buffer, i.e. dst_slot < src_slot.
603 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
604 ret
= tree_mod_log_insert_key_locked(fs_info
, eb
, i
+ dst_slot
,
605 MOD_LOG_KEY_REMOVE_WHILE_MOVING
);
609 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
613 tm
->index
= eb
->start
>> PAGE_CACHE_SHIFT
;
615 tm
->move
.dst_slot
= dst_slot
;
616 tm
->move
.nr_items
= nr_items
;
617 tm
->op
= MOD_LOG_MOVE_KEYS
;
619 ret
= __tree_mod_log_insert(fs_info
, tm
);
621 tree_mod_log_write_unlock(fs_info
);
626 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
632 if (btrfs_header_level(eb
) == 0)
635 nritems
= btrfs_header_nritems(eb
);
636 for (i
= nritems
- 1; i
>= 0; i
--) {
637 ret
= tree_mod_log_insert_key_locked(fs_info
, eb
, i
,
638 MOD_LOG_KEY_REMOVE_WHILE_FREEING
);
644 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
645 struct extent_buffer
*old_root
,
646 struct extent_buffer
*new_root
, gfp_t flags
)
648 struct tree_mod_elem
*tm
;
651 if (tree_mod_dont_log(fs_info
, NULL
))
654 __tree_mod_log_free_eb(fs_info
, old_root
);
656 ret
= tree_mod_alloc(fs_info
, flags
, &tm
);
660 tm
->index
= new_root
->start
>> PAGE_CACHE_SHIFT
;
661 tm
->old_root
.logical
= old_root
->start
;
662 tm
->old_root
.level
= btrfs_header_level(old_root
);
663 tm
->generation
= btrfs_header_generation(old_root
);
664 tm
->op
= MOD_LOG_ROOT_REPLACE
;
666 ret
= __tree_mod_log_insert(fs_info
, tm
);
668 tree_mod_log_write_unlock(fs_info
);
672 static struct tree_mod_elem
*
673 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
676 struct rb_root
*tm_root
;
677 struct rb_node
*node
;
678 struct tree_mod_elem
*cur
= NULL
;
679 struct tree_mod_elem
*found
= NULL
;
680 u64 index
= start
>> PAGE_CACHE_SHIFT
;
682 tree_mod_log_read_lock(fs_info
);
683 tm_root
= &fs_info
->tree_mod_log
;
684 node
= tm_root
->rb_node
;
686 cur
= container_of(node
, struct tree_mod_elem
, node
);
687 if (cur
->index
< index
) {
688 node
= node
->rb_left
;
689 } else if (cur
->index
> index
) {
690 node
= node
->rb_right
;
691 } else if (cur
->seq
< min_seq
) {
692 node
= node
->rb_left
;
693 } else if (!smallest
) {
694 /* we want the node with the highest seq */
696 BUG_ON(found
->seq
> cur
->seq
);
698 node
= node
->rb_left
;
699 } else if (cur
->seq
> min_seq
) {
700 /* we want the node with the smallest seq */
702 BUG_ON(found
->seq
< cur
->seq
);
704 node
= node
->rb_right
;
710 tree_mod_log_read_unlock(fs_info
);
716 * this returns the element from the log with the smallest time sequence
717 * value that's in the log (the oldest log item). any element with a time
718 * sequence lower than min_seq will be ignored.
720 static struct tree_mod_elem
*
721 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
724 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
728 * this returns the element from the log with the largest time sequence
729 * value that's in the log (the most recent log item). any element with
730 * a time sequence lower than min_seq will be ignored.
732 static struct tree_mod_elem
*
733 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
735 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
739 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
740 struct extent_buffer
*src
, unsigned long dst_offset
,
741 unsigned long src_offset
, int nr_items
, int log_removal
)
746 if (tree_mod_dont_log(fs_info
, NULL
))
749 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0) {
750 tree_mod_log_write_unlock(fs_info
);
754 for (i
= 0; i
< nr_items
; i
++) {
756 ret
= tree_mod_log_insert_key_locked(fs_info
, src
,
761 ret
= tree_mod_log_insert_key_locked(fs_info
, dst
,
767 tree_mod_log_write_unlock(fs_info
);
771 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
772 int dst_offset
, int src_offset
, int nr_items
)
775 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
781 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
782 struct extent_buffer
*eb
, int slot
, int atomic
)
786 ret
= tree_mod_log_insert_key_mask(fs_info
, eb
, slot
,
788 atomic
? GFP_ATOMIC
: GFP_NOFS
);
793 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
795 if (tree_mod_dont_log(fs_info
, eb
))
798 __tree_mod_log_free_eb(fs_info
, eb
);
800 tree_mod_log_write_unlock(fs_info
);
804 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
805 struct extent_buffer
*new_root_node
)
808 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
809 new_root_node
, GFP_NOFS
);
814 * check if the tree block can be shared by multiple trees
816 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
817 struct extent_buffer
*buf
)
820 * Tree blocks not in refernece counted trees and tree roots
821 * are never shared. If a block was allocated after the last
822 * snapshot and the block was not allocated by tree relocation,
823 * we know the block is not shared.
825 if (root
->ref_cows
&&
826 buf
!= root
->node
&& buf
!= root
->commit_root
&&
827 (btrfs_header_generation(buf
) <=
828 btrfs_root_last_snapshot(&root
->root_item
) ||
829 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
831 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
832 if (root
->ref_cows
&&
833 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
839 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
840 struct btrfs_root
*root
,
841 struct extent_buffer
*buf
,
842 struct extent_buffer
*cow
,
852 * Backrefs update rules:
854 * Always use full backrefs for extent pointers in tree block
855 * allocated by tree relocation.
857 * If a shared tree block is no longer referenced by its owner
858 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
859 * use full backrefs for extent pointers in tree block.
861 * If a tree block is been relocating
862 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
863 * use full backrefs for extent pointers in tree block.
864 * The reason for this is some operations (such as drop tree)
865 * are only allowed for blocks use full backrefs.
868 if (btrfs_block_can_be_shared(root
, buf
)) {
869 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
870 buf
->len
, &refs
, &flags
);
875 btrfs_std_error(root
->fs_info
, ret
);
880 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
881 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
882 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
887 owner
= btrfs_header_owner(buf
);
888 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
889 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
892 if ((owner
== root
->root_key
.objectid
||
893 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
894 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
895 ret
= btrfs_inc_ref(trans
, root
, buf
, 1, 1);
896 BUG_ON(ret
); /* -ENOMEM */
898 if (root
->root_key
.objectid
==
899 BTRFS_TREE_RELOC_OBJECTID
) {
900 ret
= btrfs_dec_ref(trans
, root
, buf
, 0, 1);
901 BUG_ON(ret
); /* -ENOMEM */
902 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
903 BUG_ON(ret
); /* -ENOMEM */
905 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
908 if (root
->root_key
.objectid
==
909 BTRFS_TREE_RELOC_OBJECTID
)
910 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
912 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
913 BUG_ON(ret
); /* -ENOMEM */
915 if (new_flags
!= 0) {
916 ret
= btrfs_set_disk_extent_flags(trans
, root
,
924 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
925 if (root
->root_key
.objectid
==
926 BTRFS_TREE_RELOC_OBJECTID
)
927 ret
= btrfs_inc_ref(trans
, root
, cow
, 1, 1);
929 ret
= btrfs_inc_ref(trans
, root
, cow
, 0, 1);
930 BUG_ON(ret
); /* -ENOMEM */
931 ret
= btrfs_dec_ref(trans
, root
, buf
, 1, 1);
932 BUG_ON(ret
); /* -ENOMEM */
934 clean_tree_block(trans
, root
, buf
);
941 * does the dirty work in cow of a single block. The parent block (if
942 * supplied) is updated to point to the new cow copy. The new buffer is marked
943 * dirty and returned locked. If you modify the block it needs to be marked
946 * search_start -- an allocation hint for the new block
948 * empty_size -- a hint that you plan on doing more cow. This is the size in
949 * bytes the allocator should try to find free next to the block it returns.
950 * This is just a hint and may be ignored by the allocator.
952 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
953 struct btrfs_root
*root
,
954 struct extent_buffer
*buf
,
955 struct extent_buffer
*parent
, int parent_slot
,
956 struct extent_buffer
**cow_ret
,
957 u64 search_start
, u64 empty_size
)
959 struct btrfs_disk_key disk_key
;
960 struct extent_buffer
*cow
;
969 btrfs_assert_tree_locked(buf
);
971 WARN_ON(root
->ref_cows
&& trans
->transid
!=
972 root
->fs_info
->running_transaction
->transid
);
973 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
975 level
= btrfs_header_level(buf
);
978 btrfs_item_key(buf
, &disk_key
, 0);
980 btrfs_node_key(buf
, &disk_key
, 0);
982 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
984 parent_start
= parent
->start
;
990 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, parent_start
,
991 root
->root_key
.objectid
, &disk_key
,
992 level
, search_start
, empty_size
);
996 /* cow is set to blocking by btrfs_init_new_buffer */
998 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
999 btrfs_set_header_bytenr(cow
, cow
->start
);
1000 btrfs_set_header_generation(cow
, trans
->transid
);
1001 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1002 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1003 BTRFS_HEADER_FLAG_RELOC
);
1004 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1005 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1007 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1009 write_extent_buffer(cow
, root
->fs_info
->fsid
,
1010 (unsigned long)btrfs_header_fsid(cow
),
1013 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1015 btrfs_abort_transaction(trans
, root
, ret
);
1020 btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1022 if (buf
== root
->node
) {
1023 WARN_ON(parent
&& parent
!= buf
);
1024 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1025 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1026 parent_start
= buf
->start
;
1030 extent_buffer_get(cow
);
1031 tree_mod_log_set_root_pointer(root
, cow
);
1032 rcu_assign_pointer(root
->node
, cow
);
1034 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1036 free_extent_buffer(buf
);
1037 add_root_to_dirty_list(root
);
1039 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1040 parent_start
= parent
->start
;
1044 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1045 tree_mod_log_insert_key(root
->fs_info
, parent
, parent_slot
,
1046 MOD_LOG_KEY_REPLACE
);
1047 btrfs_set_node_blockptr(parent
, parent_slot
,
1049 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1051 btrfs_mark_buffer_dirty(parent
);
1052 tree_mod_log_free_eb(root
->fs_info
, buf
);
1053 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1057 btrfs_tree_unlock(buf
);
1058 free_extent_buffer_stale(buf
);
1059 btrfs_mark_buffer_dirty(cow
);
1065 * returns the logical address of the oldest predecessor of the given root.
1066 * entries older than time_seq are ignored.
1068 static struct tree_mod_elem
*
1069 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1070 struct btrfs_root
*root
, u64 time_seq
)
1072 struct tree_mod_elem
*tm
;
1073 struct tree_mod_elem
*found
= NULL
;
1074 u64 root_logical
= root
->node
->start
;
1081 * the very last operation that's logged for a root is the replacement
1082 * operation (if it is replaced at all). this has the index of the *new*
1083 * root, making it the very first operation that's logged for this root.
1086 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1091 * if there are no tree operation for the oldest root, we simply
1092 * return it. this should only happen if that (old) root is at
1099 * if there's an operation that's not a root replacement, we
1100 * found the oldest version of our root. normally, we'll find a
1101 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1103 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1107 root_logical
= tm
->old_root
.logical
;
1108 BUG_ON(root_logical
== root
->node
->start
);
1112 /* if there's no old root to return, return what we found instead */
1120 * tm is a pointer to the first operation to rewind within eb. then, all
1121 * previous operations will be rewinded (until we reach something older than
1125 __tree_mod_log_rewind(struct extent_buffer
*eb
, u64 time_seq
,
1126 struct tree_mod_elem
*first_tm
)
1129 struct rb_node
*next
;
1130 struct tree_mod_elem
*tm
= first_tm
;
1131 unsigned long o_dst
;
1132 unsigned long o_src
;
1133 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1135 n
= btrfs_header_nritems(eb
);
1136 while (tm
&& tm
->seq
>= time_seq
) {
1138 * all the operations are recorded with the operator used for
1139 * the modification. as we're going backwards, we do the
1140 * opposite of each operation here.
1143 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1144 BUG_ON(tm
->slot
< n
);
1146 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1147 case MOD_LOG_KEY_REMOVE
:
1148 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1149 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1150 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1154 case MOD_LOG_KEY_REPLACE
:
1155 BUG_ON(tm
->slot
>= n
);
1156 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1157 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1158 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1161 case MOD_LOG_KEY_ADD
:
1162 /* if a move operation is needed it's in the log */
1165 case MOD_LOG_MOVE_KEYS
:
1166 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1167 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1168 memmove_extent_buffer(eb
, o_dst
, o_src
,
1169 tm
->move
.nr_items
* p_size
);
1171 case MOD_LOG_ROOT_REPLACE
:
1173 * this operation is special. for roots, this must be
1174 * handled explicitly before rewinding.
1175 * for non-roots, this operation may exist if the node
1176 * was a root: root A -> child B; then A gets empty and
1177 * B is promoted to the new root. in the mod log, we'll
1178 * have a root-replace operation for B, a tree block
1179 * that is no root. we simply ignore that operation.
1183 next
= rb_next(&tm
->node
);
1186 tm
= container_of(next
, struct tree_mod_elem
, node
);
1187 if (tm
->index
!= first_tm
->index
)
1190 btrfs_set_header_nritems(eb
, n
);
1193 static struct extent_buffer
*
1194 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1197 struct extent_buffer
*eb_rewin
;
1198 struct tree_mod_elem
*tm
;
1203 if (btrfs_header_level(eb
) == 0)
1206 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1210 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1211 BUG_ON(tm
->slot
!= 0);
1212 eb_rewin
= alloc_dummy_extent_buffer(eb
->start
,
1213 fs_info
->tree_root
->nodesize
);
1215 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1216 btrfs_set_header_backref_rev(eb_rewin
,
1217 btrfs_header_backref_rev(eb
));
1218 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1219 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1221 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1225 extent_buffer_get(eb_rewin
);
1226 free_extent_buffer(eb
);
1228 __tree_mod_log_rewind(eb_rewin
, time_seq
, tm
);
1229 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1230 BTRFS_NODEPTRS_PER_BLOCK(fs_info
->tree_root
));
1236 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1237 * value. If there are no changes, the current root->root_node is returned. If
1238 * anything changed in between, there's a fresh buffer allocated on which the
1239 * rewind operations are done. In any case, the returned buffer is read locked.
1240 * Returns NULL on error (with no locks held).
1242 static inline struct extent_buffer
*
1243 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1245 struct tree_mod_elem
*tm
;
1246 struct extent_buffer
*eb
;
1247 struct extent_buffer
*old
;
1248 struct tree_mod_root
*old_root
= NULL
;
1249 u64 old_generation
= 0;
1253 eb
= btrfs_read_lock_root_node(root
);
1254 tm
= __tree_mod_log_oldest_root(root
->fs_info
, root
, time_seq
);
1258 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1259 old_root
= &tm
->old_root
;
1260 old_generation
= tm
->generation
;
1261 logical
= old_root
->logical
;
1263 logical
= root
->node
->start
;
1266 tm
= tree_mod_log_search(root
->fs_info
, logical
, time_seq
);
1267 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1268 btrfs_tree_read_unlock(root
->node
);
1269 free_extent_buffer(root
->node
);
1270 blocksize
= btrfs_level_size(root
, old_root
->level
);
1271 old
= read_tree_block(root
, logical
, blocksize
, 0);
1273 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1277 eb
= btrfs_clone_extent_buffer(old
);
1278 free_extent_buffer(old
);
1280 } else if (old_root
) {
1281 btrfs_tree_read_unlock(root
->node
);
1282 free_extent_buffer(root
->node
);
1283 eb
= alloc_dummy_extent_buffer(logical
, root
->nodesize
);
1285 eb
= btrfs_clone_extent_buffer(root
->node
);
1286 btrfs_tree_read_unlock(root
->node
);
1287 free_extent_buffer(root
->node
);
1292 extent_buffer_get(eb
);
1293 btrfs_tree_read_lock(eb
);
1295 btrfs_set_header_bytenr(eb
, eb
->start
);
1296 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1297 btrfs_set_header_owner(eb
, root
->root_key
.objectid
);
1298 btrfs_set_header_level(eb
, old_root
->level
);
1299 btrfs_set_header_generation(eb
, old_generation
);
1302 __tree_mod_log_rewind(eb
, time_seq
, tm
);
1304 WARN_ON(btrfs_header_level(eb
) != 0);
1305 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(root
));
1310 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1312 struct tree_mod_elem
*tm
;
1315 tm
= __tree_mod_log_oldest_root(root
->fs_info
, root
, time_seq
);
1316 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1317 level
= tm
->old_root
.level
;
1320 level
= btrfs_header_level(root
->node
);
1327 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1328 struct btrfs_root
*root
,
1329 struct extent_buffer
*buf
)
1331 /* ensure we can see the force_cow */
1335 * We do not need to cow a block if
1336 * 1) this block is not created or changed in this transaction;
1337 * 2) this block does not belong to TREE_RELOC tree;
1338 * 3) the root is not forced COW.
1340 * What is forced COW:
1341 * when we create snapshot during commiting the transaction,
1342 * after we've finished coping src root, we must COW the shared
1343 * block to ensure the metadata consistency.
1345 if (btrfs_header_generation(buf
) == trans
->transid
&&
1346 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1347 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1348 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1355 * cows a single block, see __btrfs_cow_block for the real work.
1356 * This version of it has extra checks so that a block isn't cow'd more than
1357 * once per transaction, as long as it hasn't been written yet
1359 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1360 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1361 struct extent_buffer
*parent
, int parent_slot
,
1362 struct extent_buffer
**cow_ret
)
1367 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
1368 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1369 (unsigned long long)trans
->transid
,
1370 (unsigned long long)
1371 root
->fs_info
->running_transaction
->transid
);
1373 if (trans
->transid
!= root
->fs_info
->generation
)
1374 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1375 (unsigned long long)trans
->transid
,
1376 (unsigned long long)root
->fs_info
->generation
);
1378 if (!should_cow_block(trans
, root
, buf
)) {
1383 search_start
= buf
->start
& ~((u64
)(1024 * 1024 * 1024) - 1);
1386 btrfs_set_lock_blocking(parent
);
1387 btrfs_set_lock_blocking(buf
);
1389 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1390 parent_slot
, cow_ret
, search_start
, 0);
1392 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1398 * helper function for defrag to decide if two blocks pointed to by a
1399 * node are actually close by
1401 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1403 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1405 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1411 * compare two keys in a memcmp fashion
1413 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
1415 struct btrfs_key k1
;
1417 btrfs_disk_key_to_cpu(&k1
, disk
);
1419 return btrfs_comp_cpu_keys(&k1
, k2
);
1423 * same as comp_keys only with two btrfs_key's
1425 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
1427 if (k1
->objectid
> k2
->objectid
)
1429 if (k1
->objectid
< k2
->objectid
)
1431 if (k1
->type
> k2
->type
)
1433 if (k1
->type
< k2
->type
)
1435 if (k1
->offset
> k2
->offset
)
1437 if (k1
->offset
< k2
->offset
)
1443 * this is used by the defrag code to go through all the
1444 * leaves pointed to by a node and reallocate them so that
1445 * disk order is close to key order
1447 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1448 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1449 int start_slot
, u64
*last_ret
,
1450 struct btrfs_key
*progress
)
1452 struct extent_buffer
*cur
;
1455 u64 search_start
= *last_ret
;
1465 int progress_passed
= 0;
1466 struct btrfs_disk_key disk_key
;
1468 parent_level
= btrfs_header_level(parent
);
1470 WARN_ON(trans
->transaction
!= root
->fs_info
->running_transaction
);
1471 WARN_ON(trans
->transid
!= root
->fs_info
->generation
);
1473 parent_nritems
= btrfs_header_nritems(parent
);
1474 blocksize
= btrfs_level_size(root
, parent_level
- 1);
1475 end_slot
= parent_nritems
;
1477 if (parent_nritems
== 1)
1480 btrfs_set_lock_blocking(parent
);
1482 for (i
= start_slot
; i
< end_slot
; i
++) {
1485 btrfs_node_key(parent
, &disk_key
, i
);
1486 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1489 progress_passed
= 1;
1490 blocknr
= btrfs_node_blockptr(parent
, i
);
1491 gen
= btrfs_node_ptr_generation(parent
, i
);
1492 if (last_block
== 0)
1493 last_block
= blocknr
;
1496 other
= btrfs_node_blockptr(parent
, i
- 1);
1497 close
= close_blocks(blocknr
, other
, blocksize
);
1499 if (!close
&& i
< end_slot
- 2) {
1500 other
= btrfs_node_blockptr(parent
, i
+ 1);
1501 close
= close_blocks(blocknr
, other
, blocksize
);
1504 last_block
= blocknr
;
1508 cur
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
1510 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1513 if (!cur
|| !uptodate
) {
1515 cur
= read_tree_block(root
, blocknr
,
1519 } else if (!uptodate
) {
1520 err
= btrfs_read_buffer(cur
, gen
);
1522 free_extent_buffer(cur
);
1527 if (search_start
== 0)
1528 search_start
= last_block
;
1530 btrfs_tree_lock(cur
);
1531 btrfs_set_lock_blocking(cur
);
1532 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1535 (end_slot
- i
) * blocksize
));
1537 btrfs_tree_unlock(cur
);
1538 free_extent_buffer(cur
);
1541 search_start
= cur
->start
;
1542 last_block
= cur
->start
;
1543 *last_ret
= search_start
;
1544 btrfs_tree_unlock(cur
);
1545 free_extent_buffer(cur
);
1551 * The leaf data grows from end-to-front in the node.
1552 * this returns the address of the start of the last item,
1553 * which is the stop of the leaf data stack
1555 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
1556 struct extent_buffer
*leaf
)
1558 u32 nr
= btrfs_header_nritems(leaf
);
1560 return BTRFS_LEAF_DATA_SIZE(root
);
1561 return btrfs_item_offset_nr(leaf
, nr
- 1);
1566 * search for key in the extent_buffer. The items start at offset p,
1567 * and they are item_size apart. There are 'max' items in p.
1569 * the slot in the array is returned via slot, and it points to
1570 * the place where you would insert key if it is not found in
1573 * slot may point to max if the key is bigger than all of the keys
1575 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1577 int item_size
, struct btrfs_key
*key
,
1584 struct btrfs_disk_key
*tmp
= NULL
;
1585 struct btrfs_disk_key unaligned
;
1586 unsigned long offset
;
1588 unsigned long map_start
= 0;
1589 unsigned long map_len
= 0;
1592 while (low
< high
) {
1593 mid
= (low
+ high
) / 2;
1594 offset
= p
+ mid
* item_size
;
1596 if (!kaddr
|| offset
< map_start
||
1597 (offset
+ sizeof(struct btrfs_disk_key
)) >
1598 map_start
+ map_len
) {
1600 err
= map_private_extent_buffer(eb
, offset
,
1601 sizeof(struct btrfs_disk_key
),
1602 &kaddr
, &map_start
, &map_len
);
1605 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1608 read_extent_buffer(eb
, &unaligned
,
1609 offset
, sizeof(unaligned
));
1614 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1617 ret
= comp_keys(tmp
, key
);
1633 * simple bin_search frontend that does the right thing for
1636 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1637 int level
, int *slot
)
1640 return generic_bin_search(eb
,
1641 offsetof(struct btrfs_leaf
, items
),
1642 sizeof(struct btrfs_item
),
1643 key
, btrfs_header_nritems(eb
),
1646 return generic_bin_search(eb
,
1647 offsetof(struct btrfs_node
, ptrs
),
1648 sizeof(struct btrfs_key_ptr
),
1649 key
, btrfs_header_nritems(eb
),
1653 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1654 int level
, int *slot
)
1656 return bin_search(eb
, key
, level
, slot
);
1659 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1661 spin_lock(&root
->accounting_lock
);
1662 btrfs_set_root_used(&root
->root_item
,
1663 btrfs_root_used(&root
->root_item
) + size
);
1664 spin_unlock(&root
->accounting_lock
);
1667 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1669 spin_lock(&root
->accounting_lock
);
1670 btrfs_set_root_used(&root
->root_item
,
1671 btrfs_root_used(&root
->root_item
) - size
);
1672 spin_unlock(&root
->accounting_lock
);
1675 /* given a node and slot number, this reads the blocks it points to. The
1676 * extent buffer is returned with a reference taken (but unlocked).
1677 * NULL is returned on error.
1679 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
1680 struct extent_buffer
*parent
, int slot
)
1682 int level
= btrfs_header_level(parent
);
1685 if (slot
>= btrfs_header_nritems(parent
))
1690 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
1691 btrfs_level_size(root
, level
- 1),
1692 btrfs_node_ptr_generation(parent
, slot
));
1696 * node level balancing, used to make sure nodes are in proper order for
1697 * item deletion. We balance from the top down, so we have to make sure
1698 * that a deletion won't leave an node completely empty later on.
1700 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1701 struct btrfs_root
*root
,
1702 struct btrfs_path
*path
, int level
)
1704 struct extent_buffer
*right
= NULL
;
1705 struct extent_buffer
*mid
;
1706 struct extent_buffer
*left
= NULL
;
1707 struct extent_buffer
*parent
= NULL
;
1711 int orig_slot
= path
->slots
[level
];
1717 mid
= path
->nodes
[level
];
1719 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1720 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1721 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1723 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1725 if (level
< BTRFS_MAX_LEVEL
- 1) {
1726 parent
= path
->nodes
[level
+ 1];
1727 pslot
= path
->slots
[level
+ 1];
1731 * deal with the case where there is only one pointer in the root
1732 * by promoting the node below to a root
1735 struct extent_buffer
*child
;
1737 if (btrfs_header_nritems(mid
) != 1)
1740 /* promote the child to a root */
1741 child
= read_node_slot(root
, mid
, 0);
1744 btrfs_std_error(root
->fs_info
, ret
);
1748 btrfs_tree_lock(child
);
1749 btrfs_set_lock_blocking(child
);
1750 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1752 btrfs_tree_unlock(child
);
1753 free_extent_buffer(child
);
1757 tree_mod_log_set_root_pointer(root
, child
);
1758 rcu_assign_pointer(root
->node
, child
);
1760 add_root_to_dirty_list(root
);
1761 btrfs_tree_unlock(child
);
1763 path
->locks
[level
] = 0;
1764 path
->nodes
[level
] = NULL
;
1765 clean_tree_block(trans
, root
, mid
);
1766 btrfs_tree_unlock(mid
);
1767 /* once for the path */
1768 free_extent_buffer(mid
);
1770 root_sub_used(root
, mid
->len
);
1771 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1772 /* once for the root ptr */
1773 free_extent_buffer_stale(mid
);
1776 if (btrfs_header_nritems(mid
) >
1777 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1780 left
= read_node_slot(root
, parent
, pslot
- 1);
1782 btrfs_tree_lock(left
);
1783 btrfs_set_lock_blocking(left
);
1784 wret
= btrfs_cow_block(trans
, root
, left
,
1785 parent
, pslot
- 1, &left
);
1791 right
= read_node_slot(root
, parent
, pslot
+ 1);
1793 btrfs_tree_lock(right
);
1794 btrfs_set_lock_blocking(right
);
1795 wret
= btrfs_cow_block(trans
, root
, right
,
1796 parent
, pslot
+ 1, &right
);
1803 /* first, try to make some room in the middle buffer */
1805 orig_slot
+= btrfs_header_nritems(left
);
1806 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1812 * then try to empty the right most buffer into the middle
1815 wret
= push_node_left(trans
, root
, mid
, right
, 1);
1816 if (wret
< 0 && wret
!= -ENOSPC
)
1818 if (btrfs_header_nritems(right
) == 0) {
1819 clean_tree_block(trans
, root
, right
);
1820 btrfs_tree_unlock(right
);
1821 del_ptr(trans
, root
, path
, level
+ 1, pslot
+ 1);
1822 root_sub_used(root
, right
->len
);
1823 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1824 free_extent_buffer_stale(right
);
1827 struct btrfs_disk_key right_key
;
1828 btrfs_node_key(right
, &right_key
, 0);
1829 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1831 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1832 btrfs_mark_buffer_dirty(parent
);
1835 if (btrfs_header_nritems(mid
) == 1) {
1837 * we're not allowed to leave a node with one item in the
1838 * tree during a delete. A deletion from lower in the tree
1839 * could try to delete the only pointer in this node.
1840 * So, pull some keys from the left.
1841 * There has to be a left pointer at this point because
1842 * otherwise we would have pulled some pointers from the
1847 btrfs_std_error(root
->fs_info
, ret
);
1850 wret
= balance_node_right(trans
, root
, mid
, left
);
1856 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1862 if (btrfs_header_nritems(mid
) == 0) {
1863 clean_tree_block(trans
, root
, mid
);
1864 btrfs_tree_unlock(mid
);
1865 del_ptr(trans
, root
, path
, level
+ 1, pslot
);
1866 root_sub_used(root
, mid
->len
);
1867 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1868 free_extent_buffer_stale(mid
);
1871 /* update the parent key to reflect our changes */
1872 struct btrfs_disk_key mid_key
;
1873 btrfs_node_key(mid
, &mid_key
, 0);
1874 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1876 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1877 btrfs_mark_buffer_dirty(parent
);
1880 /* update the path */
1882 if (btrfs_header_nritems(left
) > orig_slot
) {
1883 extent_buffer_get(left
);
1884 /* left was locked after cow */
1885 path
->nodes
[level
] = left
;
1886 path
->slots
[level
+ 1] -= 1;
1887 path
->slots
[level
] = orig_slot
;
1889 btrfs_tree_unlock(mid
);
1890 free_extent_buffer(mid
);
1893 orig_slot
-= btrfs_header_nritems(left
);
1894 path
->slots
[level
] = orig_slot
;
1897 /* double check we haven't messed things up */
1899 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1903 btrfs_tree_unlock(right
);
1904 free_extent_buffer(right
);
1907 if (path
->nodes
[level
] != left
)
1908 btrfs_tree_unlock(left
);
1909 free_extent_buffer(left
);
1914 /* Node balancing for insertion. Here we only split or push nodes around
1915 * when they are completely full. This is also done top down, so we
1916 * have to be pessimistic.
1918 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1919 struct btrfs_root
*root
,
1920 struct btrfs_path
*path
, int level
)
1922 struct extent_buffer
*right
= NULL
;
1923 struct extent_buffer
*mid
;
1924 struct extent_buffer
*left
= NULL
;
1925 struct extent_buffer
*parent
= NULL
;
1929 int orig_slot
= path
->slots
[level
];
1934 mid
= path
->nodes
[level
];
1935 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1937 if (level
< BTRFS_MAX_LEVEL
- 1) {
1938 parent
= path
->nodes
[level
+ 1];
1939 pslot
= path
->slots
[level
+ 1];
1945 left
= read_node_slot(root
, parent
, pslot
- 1);
1947 /* first, try to make some room in the middle buffer */
1951 btrfs_tree_lock(left
);
1952 btrfs_set_lock_blocking(left
);
1954 left_nr
= btrfs_header_nritems(left
);
1955 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1958 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1963 wret
= push_node_left(trans
, root
,
1970 struct btrfs_disk_key disk_key
;
1971 orig_slot
+= left_nr
;
1972 btrfs_node_key(mid
, &disk_key
, 0);
1973 tree_mod_log_set_node_key(root
->fs_info
, parent
,
1975 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1976 btrfs_mark_buffer_dirty(parent
);
1977 if (btrfs_header_nritems(left
) > orig_slot
) {
1978 path
->nodes
[level
] = left
;
1979 path
->slots
[level
+ 1] -= 1;
1980 path
->slots
[level
] = orig_slot
;
1981 btrfs_tree_unlock(mid
);
1982 free_extent_buffer(mid
);
1985 btrfs_header_nritems(left
);
1986 path
->slots
[level
] = orig_slot
;
1987 btrfs_tree_unlock(left
);
1988 free_extent_buffer(left
);
1992 btrfs_tree_unlock(left
);
1993 free_extent_buffer(left
);
1995 right
= read_node_slot(root
, parent
, pslot
+ 1);
1998 * then try to empty the right most buffer into the middle
2003 btrfs_tree_lock(right
);
2004 btrfs_set_lock_blocking(right
);
2006 right_nr
= btrfs_header_nritems(right
);
2007 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2010 ret
= btrfs_cow_block(trans
, root
, right
,
2016 wret
= balance_node_right(trans
, root
,
2023 struct btrfs_disk_key disk_key
;
2025 btrfs_node_key(right
, &disk_key
, 0);
2026 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2028 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2029 btrfs_mark_buffer_dirty(parent
);
2031 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2032 path
->nodes
[level
] = right
;
2033 path
->slots
[level
+ 1] += 1;
2034 path
->slots
[level
] = orig_slot
-
2035 btrfs_header_nritems(mid
);
2036 btrfs_tree_unlock(mid
);
2037 free_extent_buffer(mid
);
2039 btrfs_tree_unlock(right
);
2040 free_extent_buffer(right
);
2044 btrfs_tree_unlock(right
);
2045 free_extent_buffer(right
);
2051 * readahead one full node of leaves, finding things that are close
2052 * to the block in 'slot', and triggering ra on them.
2054 static void reada_for_search(struct btrfs_root
*root
,
2055 struct btrfs_path
*path
,
2056 int level
, int slot
, u64 objectid
)
2058 struct extent_buffer
*node
;
2059 struct btrfs_disk_key disk_key
;
2065 int direction
= path
->reada
;
2066 struct extent_buffer
*eb
;
2074 if (!path
->nodes
[level
])
2077 node
= path
->nodes
[level
];
2079 search
= btrfs_node_blockptr(node
, slot
);
2080 blocksize
= btrfs_level_size(root
, level
- 1);
2081 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
2083 free_extent_buffer(eb
);
2089 nritems
= btrfs_header_nritems(node
);
2093 if (direction
< 0) {
2097 } else if (direction
> 0) {
2102 if (path
->reada
< 0 && objectid
) {
2103 btrfs_node_key(node
, &disk_key
, nr
);
2104 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2107 search
= btrfs_node_blockptr(node
, nr
);
2108 if ((search
<= target
&& target
- search
<= 65536) ||
2109 (search
> target
&& search
- target
<= 65536)) {
2110 gen
= btrfs_node_ptr_generation(node
, nr
);
2111 readahead_tree_block(root
, search
, blocksize
, gen
);
2115 if ((nread
> 65536 || nscan
> 32))
2121 * returns -EAGAIN if it had to drop the path, or zero if everything was in
2124 static noinline
int reada_for_balance(struct btrfs_root
*root
,
2125 struct btrfs_path
*path
, int level
)
2129 struct extent_buffer
*parent
;
2130 struct extent_buffer
*eb
;
2137 parent
= path
->nodes
[level
+ 1];
2141 nritems
= btrfs_header_nritems(parent
);
2142 slot
= path
->slots
[level
+ 1];
2143 blocksize
= btrfs_level_size(root
, level
);
2146 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2147 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2148 eb
= btrfs_find_tree_block(root
, block1
, blocksize
);
2150 * if we get -eagain from btrfs_buffer_uptodate, we
2151 * don't want to return eagain here. That will loop
2154 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2156 free_extent_buffer(eb
);
2158 if (slot
+ 1 < nritems
) {
2159 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2160 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2161 eb
= btrfs_find_tree_block(root
, block2
, blocksize
);
2162 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2164 free_extent_buffer(eb
);
2166 if (block1
|| block2
) {
2169 /* release the whole path */
2170 btrfs_release_path(path
);
2172 /* read the blocks */
2174 readahead_tree_block(root
, block1
, blocksize
, 0);
2176 readahead_tree_block(root
, block2
, blocksize
, 0);
2179 eb
= read_tree_block(root
, block1
, blocksize
, 0);
2180 free_extent_buffer(eb
);
2183 eb
= read_tree_block(root
, block2
, blocksize
, 0);
2184 free_extent_buffer(eb
);
2192 * when we walk down the tree, it is usually safe to unlock the higher layers
2193 * in the tree. The exceptions are when our path goes through slot 0, because
2194 * operations on the tree might require changing key pointers higher up in the
2197 * callers might also have set path->keep_locks, which tells this code to keep
2198 * the lock if the path points to the last slot in the block. This is part of
2199 * walking through the tree, and selecting the next slot in the higher block.
2201 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2202 * if lowest_unlock is 1, level 0 won't be unlocked
2204 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2205 int lowest_unlock
, int min_write_lock_level
,
2206 int *write_lock_level
)
2209 int skip_level
= level
;
2211 struct extent_buffer
*t
;
2213 if (path
->really_keep_locks
)
2216 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2217 if (!path
->nodes
[i
])
2219 if (!path
->locks
[i
])
2221 if (!no_skips
&& path
->slots
[i
] == 0) {
2225 if (!no_skips
&& path
->keep_locks
) {
2228 nritems
= btrfs_header_nritems(t
);
2229 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2234 if (skip_level
< i
&& i
>= lowest_unlock
)
2238 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2239 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2241 if (write_lock_level
&&
2242 i
> min_write_lock_level
&&
2243 i
<= *write_lock_level
) {
2244 *write_lock_level
= i
- 1;
2251 * This releases any locks held in the path starting at level and
2252 * going all the way up to the root.
2254 * btrfs_search_slot will keep the lock held on higher nodes in a few
2255 * corner cases, such as COW of the block at slot zero in the node. This
2256 * ignores those rules, and it should only be called when there are no
2257 * more updates to be done higher up in the tree.
2259 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2263 if (path
->keep_locks
|| path
->really_keep_locks
)
2266 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2267 if (!path
->nodes
[i
])
2269 if (!path
->locks
[i
])
2271 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2277 * helper function for btrfs_search_slot. The goal is to find a block
2278 * in cache without setting the path to blocking. If we find the block
2279 * we return zero and the path is unchanged.
2281 * If we can't find the block, we set the path blocking and do some
2282 * reada. -EAGAIN is returned and the search must be repeated.
2285 read_block_for_search(struct btrfs_trans_handle
*trans
,
2286 struct btrfs_root
*root
, struct btrfs_path
*p
,
2287 struct extent_buffer
**eb_ret
, int level
, int slot
,
2288 struct btrfs_key
*key
, u64 time_seq
)
2293 struct extent_buffer
*b
= *eb_ret
;
2294 struct extent_buffer
*tmp
;
2297 blocknr
= btrfs_node_blockptr(b
, slot
);
2298 gen
= btrfs_node_ptr_generation(b
, slot
);
2299 blocksize
= btrfs_level_size(root
, level
- 1);
2301 tmp
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
2303 /* first we do an atomic uptodate check */
2304 if (btrfs_buffer_uptodate(tmp
, 0, 1) > 0) {
2305 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2307 * we found an up to date block without
2314 /* the pages were up to date, but we failed
2315 * the generation number check. Do a full
2316 * read for the generation number that is correct.
2317 * We must do this without dropping locks so
2318 * we can trust our generation number
2320 free_extent_buffer(tmp
);
2321 btrfs_set_path_blocking(p
);
2323 /* now we're allowed to do a blocking uptodate check */
2324 tmp
= read_tree_block(root
, blocknr
, blocksize
, gen
);
2325 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
, 0) > 0) {
2329 free_extent_buffer(tmp
);
2330 btrfs_release_path(p
);
2336 * reduce lock contention at high levels
2337 * of the btree by dropping locks before
2338 * we read. Don't release the lock on the current
2339 * level because we need to walk this node to figure
2340 * out which blocks to read.
2342 btrfs_unlock_up_safe(p
, level
+ 1);
2343 btrfs_set_path_blocking(p
);
2345 free_extent_buffer(tmp
);
2347 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
2349 btrfs_release_path(p
);
2352 tmp
= read_tree_block(root
, blocknr
, blocksize
, 0);
2355 * If the read above didn't mark this buffer up to date,
2356 * it will never end up being up to date. Set ret to EIO now
2357 * and give up so that our caller doesn't loop forever
2360 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2362 free_extent_buffer(tmp
);
2368 * helper function for btrfs_search_slot. This does all of the checks
2369 * for node-level blocks and does any balancing required based on
2372 * If no extra work was required, zero is returned. If we had to
2373 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2377 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2378 struct btrfs_root
*root
, struct btrfs_path
*p
,
2379 struct extent_buffer
*b
, int level
, int ins_len
,
2380 int *write_lock_level
)
2383 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2384 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
2387 if (*write_lock_level
< level
+ 1) {
2388 *write_lock_level
= level
+ 1;
2389 btrfs_release_path(p
);
2393 sret
= reada_for_balance(root
, p
, level
);
2397 btrfs_set_path_blocking(p
);
2398 sret
= split_node(trans
, root
, p
, level
);
2399 btrfs_clear_path_blocking(p
, NULL
, 0);
2406 b
= p
->nodes
[level
];
2407 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2408 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
2411 if (*write_lock_level
< level
+ 1) {
2412 *write_lock_level
= level
+ 1;
2413 btrfs_release_path(p
);
2417 sret
= reada_for_balance(root
, p
, level
);
2421 btrfs_set_path_blocking(p
);
2422 sret
= balance_level(trans
, root
, p
, level
);
2423 btrfs_clear_path_blocking(p
, NULL
, 0);
2429 b
= p
->nodes
[level
];
2431 btrfs_release_path(p
);
2434 BUG_ON(btrfs_header_nritems(b
) == 1);
2445 * look for key in the tree. path is filled in with nodes along the way
2446 * if key is found, we return zero and you can find the item in the leaf
2447 * level of the path (level 0)
2449 * If the key isn't found, the path points to the slot where it should
2450 * be inserted, and 1 is returned. If there are other errors during the
2451 * search a negative error number is returned.
2453 * if ins_len > 0, nodes and leaves will be split as we walk down the
2454 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2457 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
2458 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
2461 struct extent_buffer
*b
;
2466 int lowest_unlock
= 1;
2468 /* everything at write_lock_level or lower must be write locked */
2469 int write_lock_level
= 0;
2470 u8 lowest_level
= 0;
2471 int min_write_lock_level
;
2473 lowest_level
= p
->lowest_level
;
2474 WARN_ON(lowest_level
&& ins_len
> 0);
2475 WARN_ON(p
->nodes
[0] != NULL
);
2480 /* when we are removing items, we might have to go up to level
2481 * two as we update tree pointers Make sure we keep write
2482 * for those levels as well
2484 write_lock_level
= 2;
2485 } else if (ins_len
> 0) {
2487 * for inserting items, make sure we have a write lock on
2488 * level 1 so we can update keys
2490 write_lock_level
= 1;
2494 write_lock_level
= -1;
2496 if (cow
&& (p
->really_keep_locks
|| p
->keep_locks
|| p
->lowest_level
))
2497 write_lock_level
= BTRFS_MAX_LEVEL
;
2499 min_write_lock_level
= write_lock_level
;
2503 * we try very hard to do read locks on the root
2505 root_lock
= BTRFS_READ_LOCK
;
2507 if (p
->search_commit_root
) {
2509 * the commit roots are read only
2510 * so we always do read locks
2512 b
= root
->commit_root
;
2513 extent_buffer_get(b
);
2514 level
= btrfs_header_level(b
);
2515 if (!p
->skip_locking
)
2516 btrfs_tree_read_lock(b
);
2518 if (p
->skip_locking
) {
2519 b
= btrfs_root_node(root
);
2520 level
= btrfs_header_level(b
);
2522 /* we don't know the level of the root node
2523 * until we actually have it read locked
2525 b
= btrfs_read_lock_root_node(root
);
2526 level
= btrfs_header_level(b
);
2527 if (level
<= write_lock_level
) {
2528 /* whoops, must trade for write lock */
2529 btrfs_tree_read_unlock(b
);
2530 free_extent_buffer(b
);
2531 b
= btrfs_lock_root_node(root
);
2532 root_lock
= BTRFS_WRITE_LOCK
;
2534 /* the level might have changed, check again */
2535 level
= btrfs_header_level(b
);
2539 p
->nodes
[level
] = b
;
2540 if (!p
->skip_locking
)
2541 p
->locks
[level
] = root_lock
;
2544 level
= btrfs_header_level(b
);
2547 * setup the path here so we can release it under lock
2548 * contention with the cow code
2552 * if we don't really need to cow this block
2553 * then we don't want to set the path blocking,
2554 * so we test it here
2556 if (!should_cow_block(trans
, root
, b
))
2559 btrfs_set_path_blocking(p
);
2562 * must have write locks on this node and the
2565 if (level
> write_lock_level
||
2566 (level
+ 1 > write_lock_level
&&
2567 level
+ 1 < BTRFS_MAX_LEVEL
&&
2568 p
->nodes
[level
+ 1])) {
2569 write_lock_level
= level
+ 1;
2570 btrfs_release_path(p
);
2574 err
= btrfs_cow_block(trans
, root
, b
,
2575 p
->nodes
[level
+ 1],
2576 p
->slots
[level
+ 1], &b
);
2583 BUG_ON(!cow
&& ins_len
);
2585 p
->nodes
[level
] = b
;
2586 btrfs_clear_path_blocking(p
, NULL
, 0);
2589 * we have a lock on b and as long as we aren't changing
2590 * the tree, there is no way to for the items in b to change.
2591 * It is safe to drop the lock on our parent before we
2592 * go through the expensive btree search on b.
2594 * If cow is true, then we might be changing slot zero,
2595 * which may require changing the parent. So, we can't
2596 * drop the lock until after we know which slot we're
2600 btrfs_unlock_up_safe(p
, level
+ 1);
2602 ret
= bin_search(b
, key
, level
, &slot
);
2606 if (ret
&& slot
> 0) {
2610 p
->slots
[level
] = slot
;
2611 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2612 ins_len
, &write_lock_level
);
2619 b
= p
->nodes
[level
];
2620 slot
= p
->slots
[level
];
2623 * slot 0 is special, if we change the key
2624 * we have to update the parent pointer
2625 * which means we must have a write lock
2628 if (slot
== 0 && cow
&&
2629 write_lock_level
< level
+ 1) {
2630 write_lock_level
= level
+ 1;
2631 btrfs_release_path(p
);
2635 unlock_up(p
, level
, lowest_unlock
,
2636 min_write_lock_level
, &write_lock_level
);
2638 if (level
== lowest_level
) {
2644 err
= read_block_for_search(trans
, root
, p
,
2645 &b
, level
, slot
, key
, 0);
2653 if (!p
->skip_locking
) {
2654 level
= btrfs_header_level(b
);
2655 if (level
<= write_lock_level
) {
2656 err
= btrfs_try_tree_write_lock(b
);
2658 btrfs_set_path_blocking(p
);
2660 btrfs_clear_path_blocking(p
, b
,
2663 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2665 err
= btrfs_try_tree_read_lock(b
);
2667 btrfs_set_path_blocking(p
);
2668 btrfs_tree_read_lock(b
);
2669 btrfs_clear_path_blocking(p
, b
,
2672 p
->locks
[level
] = BTRFS_READ_LOCK
;
2674 p
->nodes
[level
] = b
;
2677 p
->slots
[level
] = slot
;
2679 btrfs_leaf_free_space(root
, b
) < ins_len
) {
2680 if (write_lock_level
< 1) {
2681 write_lock_level
= 1;
2682 btrfs_release_path(p
);
2686 btrfs_set_path_blocking(p
);
2687 err
= split_leaf(trans
, root
, key
,
2688 p
, ins_len
, ret
== 0);
2689 btrfs_clear_path_blocking(p
, NULL
, 0);
2697 if (!p
->search_for_split
)
2698 unlock_up(p
, level
, lowest_unlock
,
2699 min_write_lock_level
, &write_lock_level
);
2706 * we don't really know what they plan on doing with the path
2707 * from here on, so for now just mark it as blocking
2709 if (!p
->leave_spinning
)
2710 btrfs_set_path_blocking(p
);
2712 btrfs_release_path(p
);
2717 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2718 * current state of the tree together with the operations recorded in the tree
2719 * modification log to search for the key in a previous version of this tree, as
2720 * denoted by the time_seq parameter.
2722 * Naturally, there is no support for insert, delete or cow operations.
2724 * The resulting path and return value will be set up as if we called
2725 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2727 int btrfs_search_old_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
2728 struct btrfs_path
*p
, u64 time_seq
)
2730 struct extent_buffer
*b
;
2735 int lowest_unlock
= 1;
2736 u8 lowest_level
= 0;
2738 lowest_level
= p
->lowest_level
;
2739 WARN_ON(p
->nodes
[0] != NULL
);
2741 if (p
->search_commit_root
) {
2743 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2747 b
= get_old_root(root
, time_seq
);
2748 level
= btrfs_header_level(b
);
2749 p
->locks
[level
] = BTRFS_READ_LOCK
;
2752 level
= btrfs_header_level(b
);
2753 p
->nodes
[level
] = b
;
2754 btrfs_clear_path_blocking(p
, NULL
, 0);
2757 * we have a lock on b and as long as we aren't changing
2758 * the tree, there is no way to for the items in b to change.
2759 * It is safe to drop the lock on our parent before we
2760 * go through the expensive btree search on b.
2762 btrfs_unlock_up_safe(p
, level
+ 1);
2764 ret
= bin_search(b
, key
, level
, &slot
);
2768 if (ret
&& slot
> 0) {
2772 p
->slots
[level
] = slot
;
2773 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2775 if (level
== lowest_level
) {
2781 err
= read_block_for_search(NULL
, root
, p
, &b
, level
,
2782 slot
, key
, time_seq
);
2790 level
= btrfs_header_level(b
);
2791 err
= btrfs_try_tree_read_lock(b
);
2793 btrfs_set_path_blocking(p
);
2794 btrfs_tree_read_lock(b
);
2795 btrfs_clear_path_blocking(p
, b
,
2798 p
->locks
[level
] = BTRFS_READ_LOCK
;
2799 p
->nodes
[level
] = b
;
2800 b
= tree_mod_log_rewind(root
->fs_info
, b
, time_seq
);
2801 if (b
!= p
->nodes
[level
]) {
2802 btrfs_tree_unlock_rw(p
->nodes
[level
],
2804 p
->locks
[level
] = 0;
2805 p
->nodes
[level
] = b
;
2808 p
->slots
[level
] = slot
;
2809 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2815 if (!p
->leave_spinning
)
2816 btrfs_set_path_blocking(p
);
2818 btrfs_release_path(p
);
2824 * helper to use instead of search slot if no exact match is needed but
2825 * instead the next or previous item should be returned.
2826 * When find_higher is true, the next higher item is returned, the next lower
2828 * When return_any and find_higher are both true, and no higher item is found,
2829 * return the next lower instead.
2830 * When return_any is true and find_higher is false, and no lower item is found,
2831 * return the next higher instead.
2832 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2835 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
2836 struct btrfs_key
*key
, struct btrfs_path
*p
,
2837 int find_higher
, int return_any
)
2840 struct extent_buffer
*leaf
;
2843 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2847 * a return value of 1 means the path is at the position where the
2848 * item should be inserted. Normally this is the next bigger item,
2849 * but in case the previous item is the last in a leaf, path points
2850 * to the first free slot in the previous leaf, i.e. at an invalid
2856 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2857 ret
= btrfs_next_leaf(root
, p
);
2863 * no higher item found, return the next
2868 btrfs_release_path(p
);
2872 if (p
->slots
[0] == 0) {
2873 ret
= btrfs_prev_leaf(root
, p
);
2877 p
->slots
[0] = btrfs_header_nritems(leaf
) - 1;
2883 * no lower item found, return the next
2888 btrfs_release_path(p
);
2898 * adjust the pointers going up the tree, starting at level
2899 * making sure the right key of each node is points to 'key'.
2900 * This is used after shifting pointers to the left, so it stops
2901 * fixing up pointers when a given leaf/node is not in slot 0 of the
2905 static void fixup_low_keys(struct btrfs_trans_handle
*trans
,
2906 struct btrfs_root
*root
, struct btrfs_path
*path
,
2907 struct btrfs_disk_key
*key
, int level
)
2910 struct extent_buffer
*t
;
2912 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2913 int tslot
= path
->slots
[i
];
2914 if (!path
->nodes
[i
])
2917 tree_mod_log_set_node_key(root
->fs_info
, t
, tslot
, 1);
2918 btrfs_set_node_key(t
, key
, tslot
);
2919 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
2928 * This function isn't completely safe. It's the caller's responsibility
2929 * that the new key won't break the order
2931 void btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
2932 struct btrfs_root
*root
, struct btrfs_path
*path
,
2933 struct btrfs_key
*new_key
)
2935 struct btrfs_disk_key disk_key
;
2936 struct extent_buffer
*eb
;
2939 eb
= path
->nodes
[0];
2940 slot
= path
->slots
[0];
2942 btrfs_item_key(eb
, &disk_key
, slot
- 1);
2943 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
2945 if (slot
< btrfs_header_nritems(eb
) - 1) {
2946 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
2947 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
2950 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
2951 btrfs_set_item_key(eb
, &disk_key
, slot
);
2952 btrfs_mark_buffer_dirty(eb
);
2954 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
2958 * try to push data from one node into the next node left in the
2961 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2962 * error, and > 0 if there was no room in the left hand block.
2964 static int push_node_left(struct btrfs_trans_handle
*trans
,
2965 struct btrfs_root
*root
, struct extent_buffer
*dst
,
2966 struct extent_buffer
*src
, int empty
)
2973 src_nritems
= btrfs_header_nritems(src
);
2974 dst_nritems
= btrfs_header_nritems(dst
);
2975 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
2976 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2977 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2979 if (!empty
&& src_nritems
<= 8)
2982 if (push_items
<= 0)
2986 push_items
= min(src_nritems
, push_items
);
2987 if (push_items
< src_nritems
) {
2988 /* leave at least 8 pointers in the node if
2989 * we aren't going to empty it
2991 if (src_nritems
- push_items
< 8) {
2992 if (push_items
<= 8)
2998 push_items
= min(src_nritems
- 8, push_items
);
3000 tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, dst_nritems
, 0,
3002 copy_extent_buffer(dst
, src
,
3003 btrfs_node_key_ptr_offset(dst_nritems
),
3004 btrfs_node_key_ptr_offset(0),
3005 push_items
* sizeof(struct btrfs_key_ptr
));
3007 if (push_items
< src_nritems
) {
3009 * don't call tree_mod_log_eb_move here, key removal was already
3010 * fully logged by tree_mod_log_eb_copy above.
3012 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3013 btrfs_node_key_ptr_offset(push_items
),
3014 (src_nritems
- push_items
) *
3015 sizeof(struct btrfs_key_ptr
));
3017 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3018 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3019 btrfs_mark_buffer_dirty(src
);
3020 btrfs_mark_buffer_dirty(dst
);
3026 * try to push data from one node into the next node right in the
3029 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3030 * error, and > 0 if there was no room in the right hand block.
3032 * this will only push up to 1/2 the contents of the left node over
3034 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3035 struct btrfs_root
*root
,
3036 struct extent_buffer
*dst
,
3037 struct extent_buffer
*src
)
3045 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3046 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3048 src_nritems
= btrfs_header_nritems(src
);
3049 dst_nritems
= btrfs_header_nritems(dst
);
3050 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3051 if (push_items
<= 0)
3054 if (src_nritems
< 4)
3057 max_push
= src_nritems
/ 2 + 1;
3058 /* don't try to empty the node */
3059 if (max_push
>= src_nritems
)
3062 if (max_push
< push_items
)
3063 push_items
= max_push
;
3065 tree_mod_log_eb_move(root
->fs_info
, dst
, push_items
, 0, dst_nritems
);
3066 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3067 btrfs_node_key_ptr_offset(0),
3069 sizeof(struct btrfs_key_ptr
));
3071 tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, 0,
3072 src_nritems
- push_items
, push_items
, 1);
3073 copy_extent_buffer(dst
, src
,
3074 btrfs_node_key_ptr_offset(0),
3075 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3076 push_items
* sizeof(struct btrfs_key_ptr
));
3078 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3079 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3081 btrfs_mark_buffer_dirty(src
);
3082 btrfs_mark_buffer_dirty(dst
);
3088 * helper function to insert a new root level in the tree.
3089 * A new node is allocated, and a single item is inserted to
3090 * point to the existing root
3092 * returns zero on success or < 0 on failure.
3094 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3095 struct btrfs_root
*root
,
3096 struct btrfs_path
*path
, int level
)
3099 struct extent_buffer
*lower
;
3100 struct extent_buffer
*c
;
3101 struct extent_buffer
*old
;
3102 struct btrfs_disk_key lower_key
;
3104 BUG_ON(path
->nodes
[level
]);
3105 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3107 lower
= path
->nodes
[level
-1];
3109 btrfs_item_key(lower
, &lower_key
, 0);
3111 btrfs_node_key(lower
, &lower_key
, 0);
3113 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
3114 root
->root_key
.objectid
, &lower_key
,
3115 level
, root
->node
->start
, 0);
3119 root_add_used(root
, root
->nodesize
);
3121 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
3122 btrfs_set_header_nritems(c
, 1);
3123 btrfs_set_header_level(c
, level
);
3124 btrfs_set_header_bytenr(c
, c
->start
);
3125 btrfs_set_header_generation(c
, trans
->transid
);
3126 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3127 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3129 write_extent_buffer(c
, root
->fs_info
->fsid
,
3130 (unsigned long)btrfs_header_fsid(c
),
3133 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
3134 (unsigned long)btrfs_header_chunk_tree_uuid(c
),
3137 btrfs_set_node_key(c
, &lower_key
, 0);
3138 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3139 lower_gen
= btrfs_header_generation(lower
);
3140 WARN_ON(lower_gen
!= trans
->transid
);
3142 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3144 btrfs_mark_buffer_dirty(c
);
3147 tree_mod_log_set_root_pointer(root
, c
);
3148 rcu_assign_pointer(root
->node
, c
);
3150 /* the super has an extra ref to root->node */
3151 free_extent_buffer(old
);
3153 add_root_to_dirty_list(root
);
3154 extent_buffer_get(c
);
3155 path
->nodes
[level
] = c
;
3156 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
3157 path
->slots
[level
] = 0;
3162 * worker function to insert a single pointer in a node.
3163 * the node should have enough room for the pointer already
3165 * slot and level indicate where you want the key to go, and
3166 * blocknr is the block the key points to.
3168 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3169 struct btrfs_root
*root
, struct btrfs_path
*path
,
3170 struct btrfs_disk_key
*key
, u64 bytenr
,
3171 int slot
, int level
)
3173 struct extent_buffer
*lower
;
3177 BUG_ON(!path
->nodes
[level
]);
3178 btrfs_assert_tree_locked(path
->nodes
[level
]);
3179 lower
= path
->nodes
[level
];
3180 nritems
= btrfs_header_nritems(lower
);
3181 BUG_ON(slot
> nritems
);
3182 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
));
3183 if (slot
!= nritems
) {
3185 tree_mod_log_eb_move(root
->fs_info
, lower
, slot
+ 1,
3186 slot
, nritems
- slot
);
3187 memmove_extent_buffer(lower
,
3188 btrfs_node_key_ptr_offset(slot
+ 1),
3189 btrfs_node_key_ptr_offset(slot
),
3190 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3193 ret
= tree_mod_log_insert_key(root
->fs_info
, lower
, slot
,
3197 btrfs_set_node_key(lower
, key
, slot
);
3198 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3199 WARN_ON(trans
->transid
== 0);
3200 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3201 btrfs_set_header_nritems(lower
, nritems
+ 1);
3202 btrfs_mark_buffer_dirty(lower
);
3206 * split the node at the specified level in path in two.
3207 * The path is corrected to point to the appropriate node after the split
3209 * Before splitting this tries to make some room in the node by pushing
3210 * left and right, if either one works, it returns right away.
3212 * returns 0 on success and < 0 on failure
3214 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3215 struct btrfs_root
*root
,
3216 struct btrfs_path
*path
, int level
)
3218 struct extent_buffer
*c
;
3219 struct extent_buffer
*split
;
3220 struct btrfs_disk_key disk_key
;
3224 int tree_mod_log_removal
= 1;
3226 c
= path
->nodes
[level
];
3227 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3228 if (c
== root
->node
) {
3229 /* trying to split the root, lets make a new one */
3230 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3232 * removal of root nodes has been logged by
3233 * tree_mod_log_set_root_pointer due to locking
3235 tree_mod_log_removal
= 0;
3239 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3240 c
= path
->nodes
[level
];
3241 if (!ret
&& btrfs_header_nritems(c
) <
3242 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
3248 c_nritems
= btrfs_header_nritems(c
);
3249 mid
= (c_nritems
+ 1) / 2;
3250 btrfs_node_key(c
, &disk_key
, mid
);
3252 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
3253 root
->root_key
.objectid
,
3254 &disk_key
, level
, c
->start
, 0);
3256 return PTR_ERR(split
);
3258 root_add_used(root
, root
->nodesize
);
3260 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
3261 btrfs_set_header_level(split
, btrfs_header_level(c
));
3262 btrfs_set_header_bytenr(split
, split
->start
);
3263 btrfs_set_header_generation(split
, trans
->transid
);
3264 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3265 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3266 write_extent_buffer(split
, root
->fs_info
->fsid
,
3267 (unsigned long)btrfs_header_fsid(split
),
3269 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
3270 (unsigned long)btrfs_header_chunk_tree_uuid(split
),
3273 tree_mod_log_eb_copy(root
->fs_info
, split
, c
, 0, mid
, c_nritems
- mid
,
3274 tree_mod_log_removal
);
3275 copy_extent_buffer(split
, c
,
3276 btrfs_node_key_ptr_offset(0),
3277 btrfs_node_key_ptr_offset(mid
),
3278 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3279 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3280 btrfs_set_header_nritems(c
, mid
);
3283 btrfs_mark_buffer_dirty(c
);
3284 btrfs_mark_buffer_dirty(split
);
3286 insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
3287 path
->slots
[level
+ 1] + 1, level
+ 1);
3289 if (path
->slots
[level
] >= mid
) {
3290 path
->slots
[level
] -= mid
;
3291 btrfs_tree_unlock(c
);
3292 free_extent_buffer(c
);
3293 path
->nodes
[level
] = split
;
3294 path
->slots
[level
+ 1] += 1;
3296 btrfs_tree_unlock(split
);
3297 free_extent_buffer(split
);
3303 * how many bytes are required to store the items in a leaf. start
3304 * and nr indicate which items in the leaf to check. This totals up the
3305 * space used both by the item structs and the item data
3307 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3309 struct btrfs_item
*start_item
;
3310 struct btrfs_item
*end_item
;
3311 struct btrfs_map_token token
;
3313 int nritems
= btrfs_header_nritems(l
);
3314 int end
= min(nritems
, start
+ nr
) - 1;
3318 btrfs_init_map_token(&token
);
3319 start_item
= btrfs_item_nr(l
, start
);
3320 end_item
= btrfs_item_nr(l
, end
);
3321 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3322 btrfs_token_item_size(l
, start_item
, &token
);
3323 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3324 data_len
+= sizeof(struct btrfs_item
) * nr
;
3325 WARN_ON(data_len
< 0);
3330 * The space between the end of the leaf items and
3331 * the start of the leaf data. IOW, how much room
3332 * the leaf has left for both items and data
3334 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
3335 struct extent_buffer
*leaf
)
3337 int nritems
= btrfs_header_nritems(leaf
);
3339 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
3341 printk(KERN_CRIT
"leaf free space ret %d, leaf data size %lu, "
3342 "used %d nritems %d\n",
3343 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
3344 leaf_space_used(leaf
, 0, nritems
), nritems
);
3350 * min slot controls the lowest index we're willing to push to the
3351 * right. We'll push up to and including min_slot, but no lower
3353 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3354 struct btrfs_root
*root
,
3355 struct btrfs_path
*path
,
3356 int data_size
, int empty
,
3357 struct extent_buffer
*right
,
3358 int free_space
, u32 left_nritems
,
3361 struct extent_buffer
*left
= path
->nodes
[0];
3362 struct extent_buffer
*upper
= path
->nodes
[1];
3363 struct btrfs_map_token token
;
3364 struct btrfs_disk_key disk_key
;
3369 struct btrfs_item
*item
;
3375 btrfs_init_map_token(&token
);
3380 nr
= max_t(u32
, 1, min_slot
);
3382 if (path
->slots
[0] >= left_nritems
)
3383 push_space
+= data_size
;
3385 slot
= path
->slots
[1];
3386 i
= left_nritems
- 1;
3388 item
= btrfs_item_nr(left
, i
);
3390 if (!empty
&& push_items
> 0) {
3391 if (path
->slots
[0] > i
)
3393 if (path
->slots
[0] == i
) {
3394 int space
= btrfs_leaf_free_space(root
, left
);
3395 if (space
+ push_space
* 2 > free_space
)
3400 if (path
->slots
[0] == i
)
3401 push_space
+= data_size
;
3403 this_item_size
= btrfs_item_size(left
, item
);
3404 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3408 push_space
+= this_item_size
+ sizeof(*item
);
3414 if (push_items
== 0)
3417 WARN_ON(!empty
&& push_items
== left_nritems
);
3419 /* push left to right */
3420 right_nritems
= btrfs_header_nritems(right
);
3422 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3423 push_space
-= leaf_data_end(root
, left
);
3425 /* make room in the right data area */
3426 data_end
= leaf_data_end(root
, right
);
3427 memmove_extent_buffer(right
,
3428 btrfs_leaf_data(right
) + data_end
- push_space
,
3429 btrfs_leaf_data(right
) + data_end
,
3430 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
3432 /* copy from the left data area */
3433 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
3434 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3435 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
3438 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3439 btrfs_item_nr_offset(0),
3440 right_nritems
* sizeof(struct btrfs_item
));
3442 /* copy the items from left to right */
3443 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3444 btrfs_item_nr_offset(left_nritems
- push_items
),
3445 push_items
* sizeof(struct btrfs_item
));
3447 /* update the item pointers */
3448 right_nritems
+= push_items
;
3449 btrfs_set_header_nritems(right
, right_nritems
);
3450 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3451 for (i
= 0; i
< right_nritems
; i
++) {
3452 item
= btrfs_item_nr(right
, i
);
3453 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3454 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3457 left_nritems
-= push_items
;
3458 btrfs_set_header_nritems(left
, left_nritems
);
3461 btrfs_mark_buffer_dirty(left
);
3463 clean_tree_block(trans
, root
, left
);
3465 btrfs_mark_buffer_dirty(right
);
3467 btrfs_item_key(right
, &disk_key
, 0);
3468 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3469 btrfs_mark_buffer_dirty(upper
);
3471 /* then fixup the leaf pointer in the path */
3472 if (path
->slots
[0] >= left_nritems
) {
3473 path
->slots
[0] -= left_nritems
;
3474 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3475 clean_tree_block(trans
, root
, path
->nodes
[0]);
3476 btrfs_tree_unlock(path
->nodes
[0]);
3477 free_extent_buffer(path
->nodes
[0]);
3478 path
->nodes
[0] = right
;
3479 path
->slots
[1] += 1;
3481 btrfs_tree_unlock(right
);
3482 free_extent_buffer(right
);
3487 btrfs_tree_unlock(right
);
3488 free_extent_buffer(right
);
3493 * push some data in the path leaf to the right, trying to free up at
3494 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3496 * returns 1 if the push failed because the other node didn't have enough
3497 * room, 0 if everything worked out and < 0 if there were major errors.
3499 * this will push starting from min_slot to the end of the leaf. It won't
3500 * push any slot lower than min_slot
3502 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3503 *root
, struct btrfs_path
*path
,
3504 int min_data_size
, int data_size
,
3505 int empty
, u32 min_slot
)
3507 struct extent_buffer
*left
= path
->nodes
[0];
3508 struct extent_buffer
*right
;
3509 struct extent_buffer
*upper
;
3515 if (!path
->nodes
[1])
3518 slot
= path
->slots
[1];
3519 upper
= path
->nodes
[1];
3520 if (slot
>= btrfs_header_nritems(upper
) - 1)
3523 btrfs_assert_tree_locked(path
->nodes
[1]);
3525 right
= read_node_slot(root
, upper
, slot
+ 1);
3529 btrfs_tree_lock(right
);
3530 btrfs_set_lock_blocking(right
);
3532 free_space
= btrfs_leaf_free_space(root
, right
);
3533 if (free_space
< data_size
)
3536 /* cow and double check */
3537 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3542 free_space
= btrfs_leaf_free_space(root
, right
);
3543 if (free_space
< data_size
)
3546 left_nritems
= btrfs_header_nritems(left
);
3547 if (left_nritems
== 0)
3550 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
3551 right
, free_space
, left_nritems
, min_slot
);
3553 btrfs_tree_unlock(right
);
3554 free_extent_buffer(right
);
3559 * push some data in the path leaf to the left, trying to free up at
3560 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3562 * max_slot can put a limit on how far into the leaf we'll push items. The
3563 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3566 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3567 struct btrfs_root
*root
,
3568 struct btrfs_path
*path
, int data_size
,
3569 int empty
, struct extent_buffer
*left
,
3570 int free_space
, u32 right_nritems
,
3573 struct btrfs_disk_key disk_key
;
3574 struct extent_buffer
*right
= path
->nodes
[0];
3578 struct btrfs_item
*item
;
3579 u32 old_left_nritems
;
3583 u32 old_left_item_size
;
3584 struct btrfs_map_token token
;
3586 btrfs_init_map_token(&token
);
3589 nr
= min(right_nritems
, max_slot
);
3591 nr
= min(right_nritems
- 1, max_slot
);
3593 for (i
= 0; i
< nr
; i
++) {
3594 item
= btrfs_item_nr(right
, i
);
3596 if (!empty
&& push_items
> 0) {
3597 if (path
->slots
[0] < i
)
3599 if (path
->slots
[0] == i
) {
3600 int space
= btrfs_leaf_free_space(root
, right
);
3601 if (space
+ push_space
* 2 > free_space
)
3606 if (path
->slots
[0] == i
)
3607 push_space
+= data_size
;
3609 this_item_size
= btrfs_item_size(right
, item
);
3610 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3614 push_space
+= this_item_size
+ sizeof(*item
);
3617 if (push_items
== 0) {
3621 if (!empty
&& push_items
== btrfs_header_nritems(right
))
3624 /* push data from right to left */
3625 copy_extent_buffer(left
, right
,
3626 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3627 btrfs_item_nr_offset(0),
3628 push_items
* sizeof(struct btrfs_item
));
3630 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
3631 btrfs_item_offset_nr(right
, push_items
- 1);
3633 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
3634 leaf_data_end(root
, left
) - push_space
,
3635 btrfs_leaf_data(right
) +
3636 btrfs_item_offset_nr(right
, push_items
- 1),
3638 old_left_nritems
= btrfs_header_nritems(left
);
3639 BUG_ON(old_left_nritems
<= 0);
3641 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3642 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3645 item
= btrfs_item_nr(left
, i
);
3647 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3648 btrfs_set_token_item_offset(left
, item
,
3649 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
),
3652 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3654 /* fixup right node */
3655 if (push_items
> right_nritems
)
3656 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3659 if (push_items
< right_nritems
) {
3660 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3661 leaf_data_end(root
, right
);
3662 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
3663 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3664 btrfs_leaf_data(right
) +
3665 leaf_data_end(root
, right
), push_space
);
3667 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3668 btrfs_item_nr_offset(push_items
),
3669 (btrfs_header_nritems(right
) - push_items
) *
3670 sizeof(struct btrfs_item
));
3672 right_nritems
-= push_items
;
3673 btrfs_set_header_nritems(right
, right_nritems
);
3674 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3675 for (i
= 0; i
< right_nritems
; i
++) {
3676 item
= btrfs_item_nr(right
, i
);
3678 push_space
= push_space
- btrfs_token_item_size(right
,
3680 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3683 btrfs_mark_buffer_dirty(left
);
3685 btrfs_mark_buffer_dirty(right
);
3687 clean_tree_block(trans
, root
, right
);
3689 btrfs_item_key(right
, &disk_key
, 0);
3690 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3692 /* then fixup the leaf pointer in the path */
3693 if (path
->slots
[0] < push_items
) {
3694 path
->slots
[0] += old_left_nritems
;
3695 btrfs_tree_unlock(path
->nodes
[0]);
3696 free_extent_buffer(path
->nodes
[0]);
3697 path
->nodes
[0] = left
;
3698 path
->slots
[1] -= 1;
3700 btrfs_tree_unlock(left
);
3701 free_extent_buffer(left
);
3702 path
->slots
[0] -= push_items
;
3704 BUG_ON(path
->slots
[0] < 0);
3707 btrfs_tree_unlock(left
);
3708 free_extent_buffer(left
);
3713 * push some data in the path leaf to the left, trying to free up at
3714 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3716 * max_slot can put a limit on how far into the leaf we'll push items. The
3717 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3720 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3721 *root
, struct btrfs_path
*path
, int min_data_size
,
3722 int data_size
, int empty
, u32 max_slot
)
3724 struct extent_buffer
*right
= path
->nodes
[0];
3725 struct extent_buffer
*left
;
3731 slot
= path
->slots
[1];
3734 if (!path
->nodes
[1])
3737 right_nritems
= btrfs_header_nritems(right
);
3738 if (right_nritems
== 0)
3741 btrfs_assert_tree_locked(path
->nodes
[1]);
3743 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
3747 btrfs_tree_lock(left
);
3748 btrfs_set_lock_blocking(left
);
3750 free_space
= btrfs_leaf_free_space(root
, left
);
3751 if (free_space
< data_size
) {
3756 /* cow and double check */
3757 ret
= btrfs_cow_block(trans
, root
, left
,
3758 path
->nodes
[1], slot
- 1, &left
);
3760 /* we hit -ENOSPC, but it isn't fatal here */
3766 free_space
= btrfs_leaf_free_space(root
, left
);
3767 if (free_space
< data_size
) {
3772 return __push_leaf_left(trans
, root
, path
, min_data_size
,
3773 empty
, left
, free_space
, right_nritems
,
3776 btrfs_tree_unlock(left
);
3777 free_extent_buffer(left
);
3782 * split the path's leaf in two, making sure there is at least data_size
3783 * available for the resulting leaf level of the path.
3785 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
3786 struct btrfs_root
*root
,
3787 struct btrfs_path
*path
,
3788 struct extent_buffer
*l
,
3789 struct extent_buffer
*right
,
3790 int slot
, int mid
, int nritems
)
3795 struct btrfs_disk_key disk_key
;
3796 struct btrfs_map_token token
;
3798 btrfs_init_map_token(&token
);
3800 nritems
= nritems
- mid
;
3801 btrfs_set_header_nritems(right
, nritems
);
3802 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
3804 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
3805 btrfs_item_nr_offset(mid
),
3806 nritems
* sizeof(struct btrfs_item
));
3808 copy_extent_buffer(right
, l
,
3809 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
3810 data_copy_size
, btrfs_leaf_data(l
) +
3811 leaf_data_end(root
, l
), data_copy_size
);
3813 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
3814 btrfs_item_end_nr(l
, mid
);
3816 for (i
= 0; i
< nritems
; i
++) {
3817 struct btrfs_item
*item
= btrfs_item_nr(right
, i
);
3820 ioff
= btrfs_token_item_offset(right
, item
, &token
);
3821 btrfs_set_token_item_offset(right
, item
,
3822 ioff
+ rt_data_off
, &token
);
3825 btrfs_set_header_nritems(l
, mid
);
3826 btrfs_item_key(right
, &disk_key
, 0);
3827 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
3828 path
->slots
[1] + 1, 1);
3830 btrfs_mark_buffer_dirty(right
);
3831 btrfs_mark_buffer_dirty(l
);
3832 BUG_ON(path
->slots
[0] != slot
);
3835 btrfs_tree_unlock(path
->nodes
[0]);
3836 free_extent_buffer(path
->nodes
[0]);
3837 path
->nodes
[0] = right
;
3838 path
->slots
[0] -= mid
;
3839 path
->slots
[1] += 1;
3841 btrfs_tree_unlock(right
);
3842 free_extent_buffer(right
);
3845 BUG_ON(path
->slots
[0] < 0);
3849 * double splits happen when we need to insert a big item in the middle
3850 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3851 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3854 * We avoid this by trying to push the items on either side of our target
3855 * into the adjacent leaves. If all goes well we can avoid the double split
3858 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
3859 struct btrfs_root
*root
,
3860 struct btrfs_path
*path
,
3868 slot
= path
->slots
[0];
3871 * try to push all the items after our slot into the
3874 ret
= push_leaf_right(trans
, root
, path
, 1, data_size
, 0, slot
);
3881 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3883 * our goal is to get our slot at the start or end of a leaf. If
3884 * we've done so we're done
3886 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
3889 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
3892 /* try to push all the items before our slot into the next leaf */
3893 slot
= path
->slots
[0];
3894 ret
= push_leaf_left(trans
, root
, path
, 1, data_size
, 0, slot
);
3907 * split the path's leaf in two, making sure there is at least data_size
3908 * available for the resulting leaf level of the path.
3910 * returns 0 if all went well and < 0 on failure.
3912 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
3913 struct btrfs_root
*root
,
3914 struct btrfs_key
*ins_key
,
3915 struct btrfs_path
*path
, int data_size
,
3918 struct btrfs_disk_key disk_key
;
3919 struct extent_buffer
*l
;
3923 struct extent_buffer
*right
;
3927 int num_doubles
= 0;
3928 int tried_avoid_double
= 0;
3931 slot
= path
->slots
[0];
3932 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
3933 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
3936 /* first try to make some room by pushing left and right */
3938 wret
= push_leaf_right(trans
, root
, path
, data_size
,
3943 wret
= push_leaf_left(trans
, root
, path
, data_size
,
3944 data_size
, 0, (u32
)-1);
3950 /* did the pushes work? */
3951 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
3955 if (!path
->nodes
[1]) {
3956 ret
= insert_new_root(trans
, root
, path
, 1);
3963 slot
= path
->slots
[0];
3964 nritems
= btrfs_header_nritems(l
);
3965 mid
= (nritems
+ 1) / 2;
3969 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
3970 BTRFS_LEAF_DATA_SIZE(root
)) {
3971 if (slot
>= nritems
) {
3975 if (mid
!= nritems
&&
3976 leaf_space_used(l
, mid
, nritems
- mid
) +
3977 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3978 if (data_size
&& !tried_avoid_double
)
3979 goto push_for_double
;
3985 if (leaf_space_used(l
, 0, mid
) + data_size
>
3986 BTRFS_LEAF_DATA_SIZE(root
)) {
3987 if (!extend
&& data_size
&& slot
== 0) {
3989 } else if ((extend
|| !data_size
) && slot
== 0) {
3993 if (mid
!= nritems
&&
3994 leaf_space_used(l
, mid
, nritems
- mid
) +
3995 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3996 if (data_size
&& !tried_avoid_double
)
3997 goto push_for_double
;
4005 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4007 btrfs_item_key(l
, &disk_key
, mid
);
4009 right
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
4010 root
->root_key
.objectid
,
4011 &disk_key
, 0, l
->start
, 0);
4013 return PTR_ERR(right
);
4015 root_add_used(root
, root
->leafsize
);
4017 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
4018 btrfs_set_header_bytenr(right
, right
->start
);
4019 btrfs_set_header_generation(right
, trans
->transid
);
4020 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4021 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4022 btrfs_set_header_level(right
, 0);
4023 write_extent_buffer(right
, root
->fs_info
->fsid
,
4024 (unsigned long)btrfs_header_fsid(right
),
4027 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
4028 (unsigned long)btrfs_header_chunk_tree_uuid(right
),
4033 btrfs_set_header_nritems(right
, 0);
4034 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4035 path
->slots
[1] + 1, 1);
4036 btrfs_tree_unlock(path
->nodes
[0]);
4037 free_extent_buffer(path
->nodes
[0]);
4038 path
->nodes
[0] = right
;
4040 path
->slots
[1] += 1;
4042 btrfs_set_header_nritems(right
, 0);
4043 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4045 btrfs_tree_unlock(path
->nodes
[0]);
4046 free_extent_buffer(path
->nodes
[0]);
4047 path
->nodes
[0] = right
;
4049 if (path
->slots
[1] == 0)
4050 fixup_low_keys(trans
, root
, path
,
4053 btrfs_mark_buffer_dirty(right
);
4057 copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
4060 BUG_ON(num_doubles
!= 0);
4068 push_for_double_split(trans
, root
, path
, data_size
);
4069 tried_avoid_double
= 1;
4070 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4075 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4076 struct btrfs_root
*root
,
4077 struct btrfs_path
*path
, int ins_len
)
4079 struct btrfs_key key
;
4080 struct extent_buffer
*leaf
;
4081 struct btrfs_file_extent_item
*fi
;
4086 leaf
= path
->nodes
[0];
4087 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4089 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4090 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4092 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
4095 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4096 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4097 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4098 struct btrfs_file_extent_item
);
4099 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4101 btrfs_release_path(path
);
4103 path
->keep_locks
= 1;
4104 path
->search_for_split
= 1;
4105 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4106 path
->search_for_split
= 0;
4111 leaf
= path
->nodes
[0];
4112 /* if our item isn't there or got smaller, return now */
4113 if (ret
> 0 || item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4116 /* the leaf has changed, it now has room. return now */
4117 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
4120 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4121 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4122 struct btrfs_file_extent_item
);
4123 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4127 btrfs_set_path_blocking(path
);
4128 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4132 path
->keep_locks
= 0;
4133 btrfs_unlock_up_safe(path
, 1);
4136 path
->keep_locks
= 0;
4140 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
4141 struct btrfs_root
*root
,
4142 struct btrfs_path
*path
,
4143 struct btrfs_key
*new_key
,
4144 unsigned long split_offset
)
4146 struct extent_buffer
*leaf
;
4147 struct btrfs_item
*item
;
4148 struct btrfs_item
*new_item
;
4154 struct btrfs_disk_key disk_key
;
4156 leaf
= path
->nodes
[0];
4157 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
4159 btrfs_set_path_blocking(path
);
4161 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
4162 orig_offset
= btrfs_item_offset(leaf
, item
);
4163 item_size
= btrfs_item_size(leaf
, item
);
4165 buf
= kmalloc(item_size
, GFP_NOFS
);
4169 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4170 path
->slots
[0]), item_size
);
4172 slot
= path
->slots
[0] + 1;
4173 nritems
= btrfs_header_nritems(leaf
);
4174 if (slot
!= nritems
) {
4175 /* shift the items */
4176 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4177 btrfs_item_nr_offset(slot
),
4178 (nritems
- slot
) * sizeof(struct btrfs_item
));
4181 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4182 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4184 new_item
= btrfs_item_nr(leaf
, slot
);
4186 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4187 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4189 btrfs_set_item_offset(leaf
, item
,
4190 orig_offset
+ item_size
- split_offset
);
4191 btrfs_set_item_size(leaf
, item
, split_offset
);
4193 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4195 /* write the data for the start of the original item */
4196 write_extent_buffer(leaf
, buf
,
4197 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4200 /* write the data for the new item */
4201 write_extent_buffer(leaf
, buf
+ split_offset
,
4202 btrfs_item_ptr_offset(leaf
, slot
),
4203 item_size
- split_offset
);
4204 btrfs_mark_buffer_dirty(leaf
);
4206 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
4212 * This function splits a single item into two items,
4213 * giving 'new_key' to the new item and splitting the
4214 * old one at split_offset (from the start of the item).
4216 * The path may be released by this operation. After
4217 * the split, the path is pointing to the old item. The
4218 * new item is going to be in the same node as the old one.
4220 * Note, the item being split must be smaller enough to live alone on
4221 * a tree block with room for one extra struct btrfs_item
4223 * This allows us to split the item in place, keeping a lock on the
4224 * leaf the entire time.
4226 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4227 struct btrfs_root
*root
,
4228 struct btrfs_path
*path
,
4229 struct btrfs_key
*new_key
,
4230 unsigned long split_offset
)
4233 ret
= setup_leaf_for_split(trans
, root
, path
,
4234 sizeof(struct btrfs_item
));
4238 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
4243 * This function duplicate a item, giving 'new_key' to the new item.
4244 * It guarantees both items live in the same tree leaf and the new item
4245 * is contiguous with the original item.
4247 * This allows us to split file extent in place, keeping a lock on the
4248 * leaf the entire time.
4250 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4251 struct btrfs_root
*root
,
4252 struct btrfs_path
*path
,
4253 struct btrfs_key
*new_key
)
4255 struct extent_buffer
*leaf
;
4259 leaf
= path
->nodes
[0];
4260 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4261 ret
= setup_leaf_for_split(trans
, root
, path
,
4262 item_size
+ sizeof(struct btrfs_item
));
4267 setup_items_for_insert(trans
, root
, path
, new_key
, &item_size
,
4268 item_size
, item_size
+
4269 sizeof(struct btrfs_item
), 1);
4270 leaf
= path
->nodes
[0];
4271 memcpy_extent_buffer(leaf
,
4272 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4273 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4279 * make the item pointed to by the path smaller. new_size indicates
4280 * how small to make it, and from_end tells us if we just chop bytes
4281 * off the end of the item or if we shift the item to chop bytes off
4284 void btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
4285 struct btrfs_root
*root
,
4286 struct btrfs_path
*path
,
4287 u32 new_size
, int from_end
)
4290 struct extent_buffer
*leaf
;
4291 struct btrfs_item
*item
;
4293 unsigned int data_end
;
4294 unsigned int old_data_start
;
4295 unsigned int old_size
;
4296 unsigned int size_diff
;
4298 struct btrfs_map_token token
;
4300 btrfs_init_map_token(&token
);
4302 leaf
= path
->nodes
[0];
4303 slot
= path
->slots
[0];
4305 old_size
= btrfs_item_size_nr(leaf
, slot
);
4306 if (old_size
== new_size
)
4309 nritems
= btrfs_header_nritems(leaf
);
4310 data_end
= leaf_data_end(root
, leaf
);
4312 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4314 size_diff
= old_size
- new_size
;
4317 BUG_ON(slot
>= nritems
);
4320 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4322 /* first correct the data pointers */
4323 for (i
= slot
; i
< nritems
; i
++) {
4325 item
= btrfs_item_nr(leaf
, i
);
4327 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4328 btrfs_set_token_item_offset(leaf
, item
,
4329 ioff
+ size_diff
, &token
);
4332 /* shift the data */
4334 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4335 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4336 data_end
, old_data_start
+ new_size
- data_end
);
4338 struct btrfs_disk_key disk_key
;
4341 btrfs_item_key(leaf
, &disk_key
, slot
);
4343 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4345 struct btrfs_file_extent_item
*fi
;
4347 fi
= btrfs_item_ptr(leaf
, slot
,
4348 struct btrfs_file_extent_item
);
4349 fi
= (struct btrfs_file_extent_item
*)(
4350 (unsigned long)fi
- size_diff
);
4352 if (btrfs_file_extent_type(leaf
, fi
) ==
4353 BTRFS_FILE_EXTENT_INLINE
) {
4354 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4355 memmove_extent_buffer(leaf
, ptr
,
4357 offsetof(struct btrfs_file_extent_item
,
4362 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4363 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4364 data_end
, old_data_start
- data_end
);
4366 offset
= btrfs_disk_key_offset(&disk_key
);
4367 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4368 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4370 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4373 item
= btrfs_item_nr(leaf
, slot
);
4374 btrfs_set_item_size(leaf
, item
, new_size
);
4375 btrfs_mark_buffer_dirty(leaf
);
4377 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4378 btrfs_print_leaf(root
, leaf
);
4384 * make the item pointed to by the path bigger, data_size is the new size.
4386 void btrfs_extend_item(struct btrfs_trans_handle
*trans
,
4387 struct btrfs_root
*root
, struct btrfs_path
*path
,
4391 struct extent_buffer
*leaf
;
4392 struct btrfs_item
*item
;
4394 unsigned int data_end
;
4395 unsigned int old_data
;
4396 unsigned int old_size
;
4398 struct btrfs_map_token token
;
4400 btrfs_init_map_token(&token
);
4402 leaf
= path
->nodes
[0];
4404 nritems
= btrfs_header_nritems(leaf
);
4405 data_end
= leaf_data_end(root
, leaf
);
4407 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
4408 btrfs_print_leaf(root
, leaf
);
4411 slot
= path
->slots
[0];
4412 old_data
= btrfs_item_end_nr(leaf
, slot
);
4415 if (slot
>= nritems
) {
4416 btrfs_print_leaf(root
, leaf
);
4417 printk(KERN_CRIT
"slot %d too large, nritems %d\n",
4423 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4425 /* first correct the data pointers */
4426 for (i
= slot
; i
< nritems
; i
++) {
4428 item
= btrfs_item_nr(leaf
, i
);
4430 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4431 btrfs_set_token_item_offset(leaf
, item
,
4432 ioff
- data_size
, &token
);
4435 /* shift the data */
4436 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4437 data_end
- data_size
, btrfs_leaf_data(leaf
) +
4438 data_end
, old_data
- data_end
);
4440 data_end
= old_data
;
4441 old_size
= btrfs_item_size_nr(leaf
, slot
);
4442 item
= btrfs_item_nr(leaf
, slot
);
4443 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4444 btrfs_mark_buffer_dirty(leaf
);
4446 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4447 btrfs_print_leaf(root
, leaf
);
4453 * this is a helper for btrfs_insert_empty_items, the main goal here is
4454 * to save stack depth by doing the bulk of the work in a function
4455 * that doesn't call btrfs_search_slot
4457 void setup_items_for_insert(struct btrfs_trans_handle
*trans
,
4458 struct btrfs_root
*root
, struct btrfs_path
*path
,
4459 struct btrfs_key
*cpu_key
, u32
*data_size
,
4460 u32 total_data
, u32 total_size
, int nr
)
4462 struct btrfs_item
*item
;
4465 unsigned int data_end
;
4466 struct btrfs_disk_key disk_key
;
4467 struct extent_buffer
*leaf
;
4469 struct btrfs_map_token token
;
4471 btrfs_init_map_token(&token
);
4473 leaf
= path
->nodes
[0];
4474 slot
= path
->slots
[0];
4476 nritems
= btrfs_header_nritems(leaf
);
4477 data_end
= leaf_data_end(root
, leaf
);
4479 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4480 btrfs_print_leaf(root
, leaf
);
4481 printk(KERN_CRIT
"not enough freespace need %u have %d\n",
4482 total_size
, btrfs_leaf_free_space(root
, leaf
));
4486 if (slot
!= nritems
) {
4487 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4489 if (old_data
< data_end
) {
4490 btrfs_print_leaf(root
, leaf
);
4491 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
4492 slot
, old_data
, data_end
);
4496 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4498 /* first correct the data pointers */
4499 for (i
= slot
; i
< nritems
; i
++) {
4502 item
= btrfs_item_nr(leaf
, i
);
4503 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4504 btrfs_set_token_item_offset(leaf
, item
,
4505 ioff
- total_data
, &token
);
4507 /* shift the items */
4508 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4509 btrfs_item_nr_offset(slot
),
4510 (nritems
- slot
) * sizeof(struct btrfs_item
));
4512 /* shift the data */
4513 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4514 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4515 data_end
, old_data
- data_end
);
4516 data_end
= old_data
;
4519 /* setup the item for the new data */
4520 for (i
= 0; i
< nr
; i
++) {
4521 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4522 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4523 item
= btrfs_item_nr(leaf
, slot
+ i
);
4524 btrfs_set_token_item_offset(leaf
, item
,
4525 data_end
- data_size
[i
], &token
);
4526 data_end
-= data_size
[i
];
4527 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4530 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4533 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4534 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4536 btrfs_unlock_up_safe(path
, 1);
4537 btrfs_mark_buffer_dirty(leaf
);
4539 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4540 btrfs_print_leaf(root
, leaf
);
4546 * Given a key and some data, insert items into the tree.
4547 * This does all the path init required, making room in the tree if needed.
4549 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4550 struct btrfs_root
*root
,
4551 struct btrfs_path
*path
,
4552 struct btrfs_key
*cpu_key
, u32
*data_size
,
4561 for (i
= 0; i
< nr
; i
++)
4562 total_data
+= data_size
[i
];
4564 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4565 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4571 slot
= path
->slots
[0];
4574 setup_items_for_insert(trans
, root
, path
, cpu_key
, data_size
,
4575 total_data
, total_size
, nr
);
4580 * Given a key and some data, insert an item into the tree.
4581 * This does all the path init required, making room in the tree if needed.
4583 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
4584 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
4588 struct btrfs_path
*path
;
4589 struct extent_buffer
*leaf
;
4592 path
= btrfs_alloc_path();
4595 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4597 leaf
= path
->nodes
[0];
4598 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4599 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4600 btrfs_mark_buffer_dirty(leaf
);
4602 btrfs_free_path(path
);
4607 * delete the pointer from a given node.
4609 * the tree should have been previously balanced so the deletion does not
4612 static void del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4613 struct btrfs_path
*path
, int level
, int slot
)
4615 struct extent_buffer
*parent
= path
->nodes
[level
];
4619 nritems
= btrfs_header_nritems(parent
);
4620 if (slot
!= nritems
- 1) {
4622 tree_mod_log_eb_move(root
->fs_info
, parent
, slot
,
4623 slot
+ 1, nritems
- slot
- 1);
4624 memmove_extent_buffer(parent
,
4625 btrfs_node_key_ptr_offset(slot
),
4626 btrfs_node_key_ptr_offset(slot
+ 1),
4627 sizeof(struct btrfs_key_ptr
) *
4628 (nritems
- slot
- 1));
4630 ret
= tree_mod_log_insert_key(root
->fs_info
, parent
, slot
,
4631 MOD_LOG_KEY_REMOVE
);
4636 btrfs_set_header_nritems(parent
, nritems
);
4637 if (nritems
== 0 && parent
== root
->node
) {
4638 BUG_ON(btrfs_header_level(root
->node
) != 1);
4639 /* just turn the root into a leaf and break */
4640 btrfs_set_header_level(root
->node
, 0);
4641 } else if (slot
== 0) {
4642 struct btrfs_disk_key disk_key
;
4644 btrfs_node_key(parent
, &disk_key
, 0);
4645 fixup_low_keys(trans
, root
, path
, &disk_key
, level
+ 1);
4647 btrfs_mark_buffer_dirty(parent
);
4651 * a helper function to delete the leaf pointed to by path->slots[1] and
4654 * This deletes the pointer in path->nodes[1] and frees the leaf
4655 * block extent. zero is returned if it all worked out, < 0 otherwise.
4657 * The path must have already been setup for deleting the leaf, including
4658 * all the proper balancing. path->nodes[1] must be locked.
4660 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4661 struct btrfs_root
*root
,
4662 struct btrfs_path
*path
,
4663 struct extent_buffer
*leaf
)
4665 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4666 del_ptr(trans
, root
, path
, 1, path
->slots
[1]);
4669 * btrfs_free_extent is expensive, we want to make sure we
4670 * aren't holding any locks when we call it
4672 btrfs_unlock_up_safe(path
, 0);
4674 root_sub_used(root
, leaf
->len
);
4676 extent_buffer_get(leaf
);
4677 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4678 free_extent_buffer_stale(leaf
);
4681 * delete the item at the leaf level in path. If that empties
4682 * the leaf, remove it from the tree
4684 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4685 struct btrfs_path
*path
, int slot
, int nr
)
4687 struct extent_buffer
*leaf
;
4688 struct btrfs_item
*item
;
4695 struct btrfs_map_token token
;
4697 btrfs_init_map_token(&token
);
4699 leaf
= path
->nodes
[0];
4700 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4702 for (i
= 0; i
< nr
; i
++)
4703 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4705 nritems
= btrfs_header_nritems(leaf
);
4707 if (slot
+ nr
!= nritems
) {
4708 int data_end
= leaf_data_end(root
, leaf
);
4710 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4712 btrfs_leaf_data(leaf
) + data_end
,
4713 last_off
- data_end
);
4715 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4718 item
= btrfs_item_nr(leaf
, i
);
4719 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4720 btrfs_set_token_item_offset(leaf
, item
,
4721 ioff
+ dsize
, &token
);
4724 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4725 btrfs_item_nr_offset(slot
+ nr
),
4726 sizeof(struct btrfs_item
) *
4727 (nritems
- slot
- nr
));
4729 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4732 /* delete the leaf if we've emptied it */
4734 if (leaf
== root
->node
) {
4735 btrfs_set_header_level(leaf
, 0);
4737 btrfs_set_path_blocking(path
);
4738 clean_tree_block(trans
, root
, leaf
);
4739 btrfs_del_leaf(trans
, root
, path
, leaf
);
4742 int used
= leaf_space_used(leaf
, 0, nritems
);
4744 struct btrfs_disk_key disk_key
;
4746 btrfs_item_key(leaf
, &disk_key
, 0);
4747 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
4750 /* delete the leaf if it is mostly empty */
4751 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
4752 /* push_leaf_left fixes the path.
4753 * make sure the path still points to our leaf
4754 * for possible call to del_ptr below
4756 slot
= path
->slots
[1];
4757 extent_buffer_get(leaf
);
4759 btrfs_set_path_blocking(path
);
4760 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
4762 if (wret
< 0 && wret
!= -ENOSPC
)
4765 if (path
->nodes
[0] == leaf
&&
4766 btrfs_header_nritems(leaf
)) {
4767 wret
= push_leaf_right(trans
, root
, path
, 1,
4769 if (wret
< 0 && wret
!= -ENOSPC
)
4773 if (btrfs_header_nritems(leaf
) == 0) {
4774 path
->slots
[1] = slot
;
4775 btrfs_del_leaf(trans
, root
, path
, leaf
);
4776 free_extent_buffer(leaf
);
4779 /* if we're still in the path, make sure
4780 * we're dirty. Otherwise, one of the
4781 * push_leaf functions must have already
4782 * dirtied this buffer
4784 if (path
->nodes
[0] == leaf
)
4785 btrfs_mark_buffer_dirty(leaf
);
4786 free_extent_buffer(leaf
);
4789 btrfs_mark_buffer_dirty(leaf
);
4796 * search the tree again to find a leaf with lesser keys
4797 * returns 0 if it found something or 1 if there are no lesser leaves.
4798 * returns < 0 on io errors.
4800 * This may release the path, and so you may lose any locks held at the
4803 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4805 struct btrfs_key key
;
4806 struct btrfs_disk_key found_key
;
4809 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
4813 else if (key
.type
> 0)
4815 else if (key
.objectid
> 0)
4820 btrfs_release_path(path
);
4821 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4824 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
4825 ret
= comp_keys(&found_key
, &key
);
4832 * A helper function to walk down the tree starting at min_key, and looking
4833 * for nodes or leaves that are have a minimum transaction id.
4834 * This is used by the btree defrag code, and tree logging
4836 * This does not cow, but it does stuff the starting key it finds back
4837 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4838 * key and get a writable path.
4840 * This does lock as it descends, and path->keep_locks should be set
4841 * to 1 by the caller.
4843 * This honors path->lowest_level to prevent descent past a given level
4846 * min_trans indicates the oldest transaction that you are interested
4847 * in walking through. Any nodes or leaves older than min_trans are
4848 * skipped over (without reading them).
4850 * returns zero if something useful was found, < 0 on error and 1 if there
4851 * was nothing in the tree that matched the search criteria.
4853 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
4854 struct btrfs_key
*max_key
,
4855 struct btrfs_path
*path
,
4858 struct extent_buffer
*cur
;
4859 struct btrfs_key found_key
;
4866 WARN_ON(!path
->keep_locks
);
4868 cur
= btrfs_read_lock_root_node(root
);
4869 level
= btrfs_header_level(cur
);
4870 WARN_ON(path
->nodes
[level
]);
4871 path
->nodes
[level
] = cur
;
4872 path
->locks
[level
] = BTRFS_READ_LOCK
;
4874 if (btrfs_header_generation(cur
) < min_trans
) {
4879 nritems
= btrfs_header_nritems(cur
);
4880 level
= btrfs_header_level(cur
);
4881 sret
= bin_search(cur
, min_key
, level
, &slot
);
4883 /* at the lowest level, we're done, setup the path and exit */
4884 if (level
== path
->lowest_level
) {
4885 if (slot
>= nritems
)
4888 path
->slots
[level
] = slot
;
4889 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
4892 if (sret
&& slot
> 0)
4895 * check this node pointer against the min_trans parameters.
4896 * If it is too old, old, skip to the next one.
4898 while (slot
< nritems
) {
4902 blockptr
= btrfs_node_blockptr(cur
, slot
);
4903 gen
= btrfs_node_ptr_generation(cur
, slot
);
4904 if (gen
< min_trans
) {
4912 * we didn't find a candidate key in this node, walk forward
4913 * and find another one
4915 if (slot
>= nritems
) {
4916 path
->slots
[level
] = slot
;
4917 btrfs_set_path_blocking(path
);
4918 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
4921 btrfs_release_path(path
);
4927 /* save our key for returning back */
4928 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
4929 path
->slots
[level
] = slot
;
4930 if (level
== path
->lowest_level
) {
4932 unlock_up(path
, level
, 1, 0, NULL
);
4935 btrfs_set_path_blocking(path
);
4936 cur
= read_node_slot(root
, cur
, slot
);
4937 BUG_ON(!cur
); /* -ENOMEM */
4939 btrfs_tree_read_lock(cur
);
4941 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
4942 path
->nodes
[level
- 1] = cur
;
4943 unlock_up(path
, level
, 1, 0, NULL
);
4944 btrfs_clear_path_blocking(path
, NULL
, 0);
4948 memcpy(min_key
, &found_key
, sizeof(found_key
));
4949 btrfs_set_path_blocking(path
);
4953 static void tree_move_down(struct btrfs_root
*root
,
4954 struct btrfs_path
*path
,
4955 int *level
, int root_level
)
4957 BUG_ON(*level
== 0);
4958 path
->nodes
[*level
- 1] = read_node_slot(root
, path
->nodes
[*level
],
4959 path
->slots
[*level
]);
4960 path
->slots
[*level
- 1] = 0;
4964 static int tree_move_next_or_upnext(struct btrfs_root
*root
,
4965 struct btrfs_path
*path
,
4966 int *level
, int root_level
)
4970 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
4972 path
->slots
[*level
]++;
4974 while (path
->slots
[*level
] >= nritems
) {
4975 if (*level
== root_level
)
4979 path
->slots
[*level
] = 0;
4980 free_extent_buffer(path
->nodes
[*level
]);
4981 path
->nodes
[*level
] = NULL
;
4983 path
->slots
[*level
]++;
4985 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
4992 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4995 static int tree_advance(struct btrfs_root
*root
,
4996 struct btrfs_path
*path
,
4997 int *level
, int root_level
,
4999 struct btrfs_key
*key
)
5003 if (*level
== 0 || !allow_down
) {
5004 ret
= tree_move_next_or_upnext(root
, path
, level
, root_level
);
5006 tree_move_down(root
, path
, level
, root_level
);
5011 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5012 path
->slots
[*level
]);
5014 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5015 path
->slots
[*level
]);
5020 static int tree_compare_item(struct btrfs_root
*left_root
,
5021 struct btrfs_path
*left_path
,
5022 struct btrfs_path
*right_path
,
5027 unsigned long off1
, off2
;
5029 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5030 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5034 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5035 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5036 right_path
->slots
[0]);
5038 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5040 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5047 #define ADVANCE_ONLY_NEXT -1
5050 * This function compares two trees and calls the provided callback for
5051 * every changed/new/deleted item it finds.
5052 * If shared tree blocks are encountered, whole subtrees are skipped, making
5053 * the compare pretty fast on snapshotted subvolumes.
5055 * This currently works on commit roots only. As commit roots are read only,
5056 * we don't do any locking. The commit roots are protected with transactions.
5057 * Transactions are ended and rejoined when a commit is tried in between.
5059 * This function checks for modifications done to the trees while comparing.
5060 * If it detects a change, it aborts immediately.
5062 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5063 struct btrfs_root
*right_root
,
5064 btrfs_changed_cb_t changed_cb
, void *ctx
)
5068 struct btrfs_trans_handle
*trans
= NULL
;
5069 struct btrfs_path
*left_path
= NULL
;
5070 struct btrfs_path
*right_path
= NULL
;
5071 struct btrfs_key left_key
;
5072 struct btrfs_key right_key
;
5073 char *tmp_buf
= NULL
;
5074 int left_root_level
;
5075 int right_root_level
;
5078 int left_end_reached
;
5079 int right_end_reached
;
5084 u64 left_start_ctransid
;
5085 u64 right_start_ctransid
;
5088 left_path
= btrfs_alloc_path();
5093 right_path
= btrfs_alloc_path();
5099 tmp_buf
= kmalloc(left_root
->leafsize
, GFP_NOFS
);
5105 left_path
->search_commit_root
= 1;
5106 left_path
->skip_locking
= 1;
5107 right_path
->search_commit_root
= 1;
5108 right_path
->skip_locking
= 1;
5110 spin_lock(&left_root
->root_item_lock
);
5111 left_start_ctransid
= btrfs_root_ctransid(&left_root
->root_item
);
5112 spin_unlock(&left_root
->root_item_lock
);
5114 spin_lock(&right_root
->root_item_lock
);
5115 right_start_ctransid
= btrfs_root_ctransid(&right_root
->root_item
);
5116 spin_unlock(&right_root
->root_item_lock
);
5118 trans
= btrfs_join_transaction(left_root
);
5119 if (IS_ERR(trans
)) {
5120 ret
= PTR_ERR(trans
);
5126 * Strategy: Go to the first items of both trees. Then do
5128 * If both trees are at level 0
5129 * Compare keys of current items
5130 * If left < right treat left item as new, advance left tree
5132 * If left > right treat right item as deleted, advance right tree
5134 * If left == right do deep compare of items, treat as changed if
5135 * needed, advance both trees and repeat
5136 * If both trees are at the same level but not at level 0
5137 * Compare keys of current nodes/leafs
5138 * If left < right advance left tree and repeat
5139 * If left > right advance right tree and repeat
5140 * If left == right compare blockptrs of the next nodes/leafs
5141 * If they match advance both trees but stay at the same level
5143 * If they don't match advance both trees while allowing to go
5145 * If tree levels are different
5146 * Advance the tree that needs it and repeat
5148 * Advancing a tree means:
5149 * If we are at level 0, try to go to the next slot. If that's not
5150 * possible, go one level up and repeat. Stop when we found a level
5151 * where we could go to the next slot. We may at this point be on a
5154 * If we are not at level 0 and not on shared tree blocks, go one
5157 * If we are not at level 0 and on shared tree blocks, go one slot to
5158 * the right if possible or go up and right.
5161 left_level
= btrfs_header_level(left_root
->commit_root
);
5162 left_root_level
= left_level
;
5163 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5164 extent_buffer_get(left_path
->nodes
[left_level
]);
5166 right_level
= btrfs_header_level(right_root
->commit_root
);
5167 right_root_level
= right_level
;
5168 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5169 extent_buffer_get(right_path
->nodes
[right_level
]);
5171 if (left_level
== 0)
5172 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5173 &left_key
, left_path
->slots
[left_level
]);
5175 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5176 &left_key
, left_path
->slots
[left_level
]);
5177 if (right_level
== 0)
5178 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5179 &right_key
, right_path
->slots
[right_level
]);
5181 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5182 &right_key
, right_path
->slots
[right_level
]);
5184 left_end_reached
= right_end_reached
= 0;
5185 advance_left
= advance_right
= 0;
5189 * We need to make sure the transaction does not get committed
5190 * while we do anything on commit roots. This means, we need to
5191 * join and leave transactions for every item that we process.
5193 if (trans
&& btrfs_should_end_transaction(trans
, left_root
)) {
5194 btrfs_release_path(left_path
);
5195 btrfs_release_path(right_path
);
5197 ret
= btrfs_end_transaction(trans
, left_root
);
5202 /* now rejoin the transaction */
5204 trans
= btrfs_join_transaction(left_root
);
5205 if (IS_ERR(trans
)) {
5206 ret
= PTR_ERR(trans
);
5211 spin_lock(&left_root
->root_item_lock
);
5212 ctransid
= btrfs_root_ctransid(&left_root
->root_item
);
5213 spin_unlock(&left_root
->root_item_lock
);
5214 if (ctransid
!= left_start_ctransid
)
5215 left_start_ctransid
= 0;
5217 spin_lock(&right_root
->root_item_lock
);
5218 ctransid
= btrfs_root_ctransid(&right_root
->root_item
);
5219 spin_unlock(&right_root
->root_item_lock
);
5220 if (ctransid
!= right_start_ctransid
)
5221 right_start_ctransid
= 0;
5223 if (!left_start_ctransid
|| !right_start_ctransid
) {
5224 WARN(1, KERN_WARNING
5225 "btrfs: btrfs_compare_tree detected "
5226 "a change in one of the trees while "
5227 "iterating. This is probably a "
5234 * the commit root may have changed, so start again
5237 left_path
->lowest_level
= left_level
;
5238 right_path
->lowest_level
= right_level
;
5239 ret
= btrfs_search_slot(NULL
, left_root
,
5240 &left_key
, left_path
, 0, 0);
5243 ret
= btrfs_search_slot(NULL
, right_root
,
5244 &right_key
, right_path
, 0, 0);
5249 if (advance_left
&& !left_end_reached
) {
5250 ret
= tree_advance(left_root
, left_path
, &left_level
,
5252 advance_left
!= ADVANCE_ONLY_NEXT
,
5255 left_end_reached
= ADVANCE
;
5258 if (advance_right
&& !right_end_reached
) {
5259 ret
= tree_advance(right_root
, right_path
, &right_level
,
5261 advance_right
!= ADVANCE_ONLY_NEXT
,
5264 right_end_reached
= ADVANCE
;
5268 if (left_end_reached
&& right_end_reached
) {
5271 } else if (left_end_reached
) {
5272 if (right_level
== 0) {
5273 ret
= changed_cb(left_root
, right_root
,
5274 left_path
, right_path
,
5276 BTRFS_COMPARE_TREE_DELETED
,
5281 advance_right
= ADVANCE
;
5283 } else if (right_end_reached
) {
5284 if (left_level
== 0) {
5285 ret
= changed_cb(left_root
, right_root
,
5286 left_path
, right_path
,
5288 BTRFS_COMPARE_TREE_NEW
,
5293 advance_left
= ADVANCE
;
5297 if (left_level
== 0 && right_level
== 0) {
5298 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5300 ret
= changed_cb(left_root
, right_root
,
5301 left_path
, right_path
,
5303 BTRFS_COMPARE_TREE_NEW
,
5307 advance_left
= ADVANCE
;
5308 } else if (cmp
> 0) {
5309 ret
= changed_cb(left_root
, right_root
,
5310 left_path
, right_path
,
5312 BTRFS_COMPARE_TREE_DELETED
,
5316 advance_right
= ADVANCE
;
5318 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5319 ret
= tree_compare_item(left_root
, left_path
,
5320 right_path
, tmp_buf
);
5322 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5323 ret
= changed_cb(left_root
, right_root
,
5324 left_path
, right_path
,
5326 BTRFS_COMPARE_TREE_CHANGED
,
5331 advance_left
= ADVANCE
;
5332 advance_right
= ADVANCE
;
5334 } else if (left_level
== right_level
) {
5335 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5337 advance_left
= ADVANCE
;
5338 } else if (cmp
> 0) {
5339 advance_right
= ADVANCE
;
5341 left_blockptr
= btrfs_node_blockptr(
5342 left_path
->nodes
[left_level
],
5343 left_path
->slots
[left_level
]);
5344 right_blockptr
= btrfs_node_blockptr(
5345 right_path
->nodes
[right_level
],
5346 right_path
->slots
[right_level
]);
5347 if (left_blockptr
== right_blockptr
) {
5349 * As we're on a shared block, don't
5350 * allow to go deeper.
5352 advance_left
= ADVANCE_ONLY_NEXT
;
5353 advance_right
= ADVANCE_ONLY_NEXT
;
5355 advance_left
= ADVANCE
;
5356 advance_right
= ADVANCE
;
5359 } else if (left_level
< right_level
) {
5360 advance_right
= ADVANCE
;
5362 advance_left
= ADVANCE
;
5367 btrfs_free_path(left_path
);
5368 btrfs_free_path(right_path
);
5373 ret
= btrfs_end_transaction(trans
, left_root
);
5375 btrfs_end_transaction(trans
, left_root
);
5382 * this is similar to btrfs_next_leaf, but does not try to preserve
5383 * and fixup the path. It looks for and returns the next key in the
5384 * tree based on the current path and the min_trans parameters.
5386 * 0 is returned if another key is found, < 0 if there are any errors
5387 * and 1 is returned if there are no higher keys in the tree
5389 * path->keep_locks should be set to 1 on the search made before
5390 * calling this function.
5392 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5393 struct btrfs_key
*key
, int level
, u64 min_trans
)
5396 struct extent_buffer
*c
;
5398 WARN_ON(!path
->keep_locks
);
5399 while (level
< BTRFS_MAX_LEVEL
) {
5400 if (!path
->nodes
[level
])
5403 slot
= path
->slots
[level
] + 1;
5404 c
= path
->nodes
[level
];
5406 if (slot
>= btrfs_header_nritems(c
)) {
5409 struct btrfs_key cur_key
;
5410 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5411 !path
->nodes
[level
+ 1])
5414 if (path
->locks
[level
+ 1]) {
5419 slot
= btrfs_header_nritems(c
) - 1;
5421 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5423 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5425 orig_lowest
= path
->lowest_level
;
5426 btrfs_release_path(path
);
5427 path
->lowest_level
= level
;
5428 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5430 path
->lowest_level
= orig_lowest
;
5434 c
= path
->nodes
[level
];
5435 slot
= path
->slots
[level
];
5442 btrfs_item_key_to_cpu(c
, key
, slot
);
5444 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5446 if (gen
< min_trans
) {
5450 btrfs_node_key_to_cpu(c
, key
, slot
);
5458 * search the tree again to find a leaf with greater keys
5459 * returns 0 if it found something or 1 if there are no greater leaves.
5460 * returns < 0 on io errors.
5462 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5464 return btrfs_next_old_leaf(root
, path
, 0);
5467 /* Release the path up to but not including the given level */
5468 static void btrfs_release_level(struct btrfs_path
*path
, int level
)
5472 for (i
= 0; i
< level
; i
++) {
5474 if (!path
->nodes
[i
])
5476 if (path
->locks
[i
]) {
5477 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
5480 free_extent_buffer(path
->nodes
[i
]);
5481 path
->nodes
[i
] = NULL
;
5486 * This function assumes 2 things
5488 * 1) You are using path->keep_locks
5489 * 2) You are not inserting items.
5491 * If either of these are not true do not use this function. If you need a next
5492 * leaf with either of these not being true then this function can be easily
5493 * adapted to do that, but at the moment these are the limitations.
5495 int btrfs_next_leaf_write(struct btrfs_trans_handle
*trans
,
5496 struct btrfs_root
*root
, struct btrfs_path
*path
,
5499 struct extent_buffer
*b
;
5500 struct btrfs_key key
;
5505 int write_lock_level
= BTRFS_MAX_LEVEL
;
5506 int ins_len
= del
? -1 : 0;
5508 WARN_ON(!(path
->keep_locks
|| path
->really_keep_locks
));
5510 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5511 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5513 while (path
->nodes
[level
]) {
5514 nritems
= btrfs_header_nritems(path
->nodes
[level
]);
5515 if (!(path
->locks
[level
] & BTRFS_WRITE_LOCK
)) {
5517 btrfs_release_path(path
);
5518 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
5526 if (path
->slots
[level
] >= nritems
- 1) {
5531 btrfs_release_level(path
, level
);
5535 if (!path
->nodes
[level
]) {
5540 path
->slots
[level
]++;
5541 b
= path
->nodes
[level
];
5544 level
= btrfs_header_level(b
);
5546 if (!should_cow_block(trans
, root
, b
))
5549 btrfs_set_path_blocking(path
);
5550 ret
= btrfs_cow_block(trans
, root
, b
,
5551 path
->nodes
[level
+ 1],
5552 path
->slots
[level
+ 1], &b
);
5556 path
->nodes
[level
] = b
;
5557 btrfs_clear_path_blocking(path
, NULL
, 0);
5559 ret
= setup_nodes_for_search(trans
, root
, path
, b
,
5567 b
= path
->nodes
[level
];
5568 slot
= path
->slots
[level
];
5570 ret
= read_block_for_search(trans
, root
, path
,
5571 &b
, level
, slot
, &key
, 0);
5576 level
= btrfs_header_level(b
);
5577 if (!btrfs_try_tree_write_lock(b
)) {
5578 btrfs_set_path_blocking(path
);
5580 btrfs_clear_path_blocking(path
, b
,
5583 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
5584 path
->nodes
[level
] = b
;
5585 path
->slots
[level
] = 0;
5587 path
->slots
[level
] = 0;
5595 btrfs_release_path(path
);
5600 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5605 struct extent_buffer
*c
;
5606 struct extent_buffer
*next
;
5607 struct btrfs_key key
;
5610 int old_spinning
= path
->leave_spinning
;
5611 int next_rw_lock
= 0;
5613 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5617 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5622 btrfs_release_path(path
);
5624 path
->keep_locks
= 1;
5625 path
->leave_spinning
= 1;
5628 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5630 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5631 path
->keep_locks
= 0;
5636 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5638 * by releasing the path above we dropped all our locks. A balance
5639 * could have added more items next to the key that used to be
5640 * at the very end of the block. So, check again here and
5641 * advance the path if there are now more items available.
5643 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5650 while (level
< BTRFS_MAX_LEVEL
) {
5651 if (!path
->nodes
[level
]) {
5656 slot
= path
->slots
[level
] + 1;
5657 c
= path
->nodes
[level
];
5658 if (slot
>= btrfs_header_nritems(c
)) {
5660 if (level
== BTRFS_MAX_LEVEL
) {
5668 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5669 free_extent_buffer(next
);
5673 next_rw_lock
= path
->locks
[level
];
5674 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5680 btrfs_release_path(path
);
5684 if (!path
->skip_locking
) {
5685 ret
= btrfs_try_tree_read_lock(next
);
5686 if (!ret
&& time_seq
) {
5688 * If we don't get the lock, we may be racing
5689 * with push_leaf_left, holding that lock while
5690 * itself waiting for the leaf we've currently
5691 * locked. To solve this situation, we give up
5692 * on our lock and cycle.
5694 free_extent_buffer(next
);
5695 btrfs_release_path(path
);
5700 btrfs_set_path_blocking(path
);
5701 btrfs_tree_read_lock(next
);
5702 btrfs_clear_path_blocking(path
, next
,
5705 next_rw_lock
= BTRFS_READ_LOCK
;
5709 path
->slots
[level
] = slot
;
5712 c
= path
->nodes
[level
];
5713 if (path
->locks
[level
])
5714 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5716 free_extent_buffer(c
);
5717 path
->nodes
[level
] = next
;
5718 path
->slots
[level
] = 0;
5719 if (!path
->skip_locking
)
5720 path
->locks
[level
] = next_rw_lock
;
5724 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5730 btrfs_release_path(path
);
5734 if (!path
->skip_locking
) {
5735 ret
= btrfs_try_tree_read_lock(next
);
5737 btrfs_set_path_blocking(path
);
5738 btrfs_tree_read_lock(next
);
5739 btrfs_clear_path_blocking(path
, next
,
5742 next_rw_lock
= BTRFS_READ_LOCK
;
5747 unlock_up(path
, 0, 1, 0, NULL
);
5748 path
->leave_spinning
= old_spinning
;
5750 btrfs_set_path_blocking(path
);
5756 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5757 * searching until it gets past min_objectid or finds an item of 'type'
5759 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5761 int btrfs_previous_item(struct btrfs_root
*root
,
5762 struct btrfs_path
*path
, u64 min_objectid
,
5765 struct btrfs_key found_key
;
5766 struct extent_buffer
*leaf
;
5771 if (path
->slots
[0] == 0) {
5772 btrfs_set_path_blocking(path
);
5773 ret
= btrfs_prev_leaf(root
, path
);
5779 leaf
= path
->nodes
[0];
5780 nritems
= btrfs_header_nritems(leaf
);
5783 if (path
->slots
[0] == nritems
)
5786 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5787 if (found_key
.objectid
< min_objectid
)
5789 if (found_key
.type
== type
)
5791 if (found_key
.objectid
== min_objectid
&&
5792 found_key
.type
< type
)