sparc64: Move to 64-bit PGDs and PMDs.
[linux-2.6.git] / arch / sparc / mm / init_64.c
blob828784419e2578eb22ea65a6dd66a2dd1d625918
1 /*
2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
52 #include "init_64.h"
54 unsigned long kern_linear_pte_xor[4] __read_mostly;
56 /* A bitmap, two bits for every 256MB of physical memory. These two
57 * bits determine what page size we use for kernel linear
58 * translations. They form an index into kern_linear_pte_xor[]. The
59 * value in the indexed slot is XOR'd with the TLB miss virtual
60 * address to form the resulting TTE. The mapping is:
62 * 0 ==> 4MB
63 * 1 ==> 256MB
64 * 2 ==> 2GB
65 * 3 ==> 16GB
67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68 * support 2GB pages, and hopefully future cpus will support the 16GB
69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70 * if these larger page sizes are not supported by the cpu.
72 * It would be nice to determine this from the machine description
73 * 'cpu' properties, but we need to have this table setup before the
74 * MDESC is initialized.
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80 * Space is allocated for this right after the trap table in
81 * arch/sparc64/kernel/head.S
83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84 #endif
86 static unsigned long cpu_pgsz_mask;
88 #define MAX_BANKS 32
90 static struct linux_prom64_registers pavail[MAX_BANKS];
91 static int pavail_ents;
93 static int cmp_p64(const void *a, const void *b)
95 const struct linux_prom64_registers *x = a, *y = b;
97 if (x->phys_addr > y->phys_addr)
98 return 1;
99 if (x->phys_addr < y->phys_addr)
100 return -1;
101 return 0;
104 static void __init read_obp_memory(const char *property,
105 struct linux_prom64_registers *regs,
106 int *num_ents)
108 phandle node = prom_finddevice("/memory");
109 int prop_size = prom_getproplen(node, property);
110 int ents, ret, i;
112 ents = prop_size / sizeof(struct linux_prom64_registers);
113 if (ents > MAX_BANKS) {
114 prom_printf("The machine has more %s property entries than "
115 "this kernel can support (%d).\n",
116 property, MAX_BANKS);
117 prom_halt();
120 ret = prom_getproperty(node, property, (char *) regs, prop_size);
121 if (ret == -1) {
122 prom_printf("Couldn't get %s property from /memory.\n",
123 property);
124 prom_halt();
127 /* Sanitize what we got from the firmware, by page aligning
128 * everything.
130 for (i = 0; i < ents; i++) {
131 unsigned long base, size;
133 base = regs[i].phys_addr;
134 size = regs[i].reg_size;
136 size &= PAGE_MASK;
137 if (base & ~PAGE_MASK) {
138 unsigned long new_base = PAGE_ALIGN(base);
140 size -= new_base - base;
141 if ((long) size < 0L)
142 size = 0UL;
143 base = new_base;
145 if (size == 0UL) {
146 /* If it is empty, simply get rid of it.
147 * This simplifies the logic of the other
148 * functions that process these arrays.
150 memmove(&regs[i], &regs[i + 1],
151 (ents - i - 1) * sizeof(regs[0]));
152 i--;
153 ents--;
154 continue;
156 regs[i].phys_addr = base;
157 regs[i].reg_size = size;
160 *num_ents = ents;
162 sort(regs, ents, sizeof(struct linux_prom64_registers),
163 cmp_p64, NULL);
166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167 sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
188 int num_kernel_image_mappings;
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
197 inline void flush_dcache_page_impl(struct page *page)
199 BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes);
202 #endif
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page),
206 ((tlb_type == spitfire) &&
207 page_mapping(page) != NULL));
208 #else
209 if (page_mapping(page) != NULL &&
210 tlb_type == spitfire)
211 __flush_icache_page(__pa(page_address(page)));
212 #endif
215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 #define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 unsigned long mask = this_cpu;
226 unsigned long non_cpu_bits;
228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 __asm__ __volatile__("1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
236 "cmp %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t"
238 " nop"
239 : /* no outputs */
240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241 : "g1", "g7");
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 unsigned long mask = (1UL << PG_dcache_dirty);
248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249 "1:\n\t"
250 "ldx [%2], %%g7\n\t"
251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t"
253 "cmp %%g1, %0\n\t"
254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t"
257 "cmp %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t"
259 " nop\n"
260 "2:"
261 : /* no outputs */
262 : "r" (cpu), "r" (mask), "r" (&page->flags),
263 "i" (PG_dcache_cpu_mask),
264 "i" (PG_dcache_cpu_shift)
265 : "g1", "g7");
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 unsigned long tsb_addr = (unsigned long) ent;
272 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 tsb_addr = __pa(tsb_addr);
275 __tsb_insert(tsb_addr, tag, pte);
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 static void flush_dcache(unsigned long pfn)
282 struct page *page;
284 page = pfn_to_page(pfn);
285 if (page) {
286 unsigned long pg_flags;
288 pg_flags = page->flags;
289 if (pg_flags & (1UL << PG_dcache_dirty)) {
290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291 PG_dcache_cpu_mask);
292 int this_cpu = get_cpu();
294 /* This is just to optimize away some function calls
295 * in the SMP case.
297 if (cpu == this_cpu)
298 flush_dcache_page_impl(page);
299 else
300 smp_flush_dcache_page_impl(page, cpu);
302 clear_dcache_dirty_cpu(page, cpu);
304 put_cpu();
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311 unsigned long tsb_hash_shift, unsigned long address,
312 unsigned long tte)
314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315 unsigned long tag;
317 if (unlikely(!tsb))
318 return;
320 tsb += ((address >> tsb_hash_shift) &
321 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322 tag = (address >> 22UL);
323 tsb_insert(tsb, tag, tte);
326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
327 static inline bool is_hugetlb_pte(pte_t pte)
329 if ((tlb_type == hypervisor &&
330 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
331 (tlb_type != hypervisor &&
332 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
333 return true;
334 return false;
336 #endif
338 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
340 struct mm_struct *mm;
341 unsigned long flags;
342 pte_t pte = *ptep;
344 if (tlb_type != hypervisor) {
345 unsigned long pfn = pte_pfn(pte);
347 if (pfn_valid(pfn))
348 flush_dcache(pfn);
351 mm = vma->vm_mm;
353 spin_lock_irqsave(&mm->context.lock, flags);
355 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
356 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
357 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
358 address, pte_val(pte));
359 else
360 #endif
361 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
362 address, pte_val(pte));
364 spin_unlock_irqrestore(&mm->context.lock, flags);
367 void flush_dcache_page(struct page *page)
369 struct address_space *mapping;
370 int this_cpu;
372 if (tlb_type == hypervisor)
373 return;
375 /* Do not bother with the expensive D-cache flush if it
376 * is merely the zero page. The 'bigcore' testcase in GDB
377 * causes this case to run millions of times.
379 if (page == ZERO_PAGE(0))
380 return;
382 this_cpu = get_cpu();
384 mapping = page_mapping(page);
385 if (mapping && !mapping_mapped(mapping)) {
386 int dirty = test_bit(PG_dcache_dirty, &page->flags);
387 if (dirty) {
388 int dirty_cpu = dcache_dirty_cpu(page);
390 if (dirty_cpu == this_cpu)
391 goto out;
392 smp_flush_dcache_page_impl(page, dirty_cpu);
394 set_dcache_dirty(page, this_cpu);
395 } else {
396 /* We could delay the flush for the !page_mapping
397 * case too. But that case is for exec env/arg
398 * pages and those are %99 certainly going to get
399 * faulted into the tlb (and thus flushed) anyways.
401 flush_dcache_page_impl(page);
404 out:
405 put_cpu();
407 EXPORT_SYMBOL(flush_dcache_page);
409 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
411 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
412 if (tlb_type == spitfire) {
413 unsigned long kaddr;
415 /* This code only runs on Spitfire cpus so this is
416 * why we can assume _PAGE_PADDR_4U.
418 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
419 unsigned long paddr, mask = _PAGE_PADDR_4U;
421 if (kaddr >= PAGE_OFFSET)
422 paddr = kaddr & mask;
423 else {
424 pgd_t *pgdp = pgd_offset_k(kaddr);
425 pud_t *pudp = pud_offset(pgdp, kaddr);
426 pmd_t *pmdp = pmd_offset(pudp, kaddr);
427 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
429 paddr = pte_val(*ptep) & mask;
431 __flush_icache_page(paddr);
435 EXPORT_SYMBOL(flush_icache_range);
437 void mmu_info(struct seq_file *m)
439 static const char *pgsz_strings[] = {
440 "8K", "64K", "512K", "4MB", "32MB",
441 "256MB", "2GB", "16GB",
443 int i, printed;
445 if (tlb_type == cheetah)
446 seq_printf(m, "MMU Type\t: Cheetah\n");
447 else if (tlb_type == cheetah_plus)
448 seq_printf(m, "MMU Type\t: Cheetah+\n");
449 else if (tlb_type == spitfire)
450 seq_printf(m, "MMU Type\t: Spitfire\n");
451 else if (tlb_type == hypervisor)
452 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
453 else
454 seq_printf(m, "MMU Type\t: ???\n");
456 seq_printf(m, "MMU PGSZs\t: ");
457 printed = 0;
458 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
459 if (cpu_pgsz_mask & (1UL << i)) {
460 seq_printf(m, "%s%s",
461 printed ? "," : "", pgsz_strings[i]);
462 printed++;
465 seq_putc(m, '\n');
467 #ifdef CONFIG_DEBUG_DCFLUSH
468 seq_printf(m, "DCPageFlushes\t: %d\n",
469 atomic_read(&dcpage_flushes));
470 #ifdef CONFIG_SMP
471 seq_printf(m, "DCPageFlushesXC\t: %d\n",
472 atomic_read(&dcpage_flushes_xcall));
473 #endif /* CONFIG_SMP */
474 #endif /* CONFIG_DEBUG_DCFLUSH */
477 struct linux_prom_translation prom_trans[512] __read_mostly;
478 unsigned int prom_trans_ents __read_mostly;
480 unsigned long kern_locked_tte_data;
482 /* The obp translations are saved based on 8k pagesize, since obp can
483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
484 * HI_OBP_ADDRESS range are handled in ktlb.S.
486 static inline int in_obp_range(unsigned long vaddr)
488 return (vaddr >= LOW_OBP_ADDRESS &&
489 vaddr < HI_OBP_ADDRESS);
492 static int cmp_ptrans(const void *a, const void *b)
494 const struct linux_prom_translation *x = a, *y = b;
496 if (x->virt > y->virt)
497 return 1;
498 if (x->virt < y->virt)
499 return -1;
500 return 0;
503 /* Read OBP translations property into 'prom_trans[]'. */
504 static void __init read_obp_translations(void)
506 int n, node, ents, first, last, i;
508 node = prom_finddevice("/virtual-memory");
509 n = prom_getproplen(node, "translations");
510 if (unlikely(n == 0 || n == -1)) {
511 prom_printf("prom_mappings: Couldn't get size.\n");
512 prom_halt();
514 if (unlikely(n > sizeof(prom_trans))) {
515 prom_printf("prom_mappings: Size %d is too big.\n", n);
516 prom_halt();
519 if ((n = prom_getproperty(node, "translations",
520 (char *)&prom_trans[0],
521 sizeof(prom_trans))) == -1) {
522 prom_printf("prom_mappings: Couldn't get property.\n");
523 prom_halt();
526 n = n / sizeof(struct linux_prom_translation);
528 ents = n;
530 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
531 cmp_ptrans, NULL);
533 /* Now kick out all the non-OBP entries. */
534 for (i = 0; i < ents; i++) {
535 if (in_obp_range(prom_trans[i].virt))
536 break;
538 first = i;
539 for (; i < ents; i++) {
540 if (!in_obp_range(prom_trans[i].virt))
541 break;
543 last = i;
545 for (i = 0; i < (last - first); i++) {
546 struct linux_prom_translation *src = &prom_trans[i + first];
547 struct linux_prom_translation *dest = &prom_trans[i];
549 *dest = *src;
551 for (; i < ents; i++) {
552 struct linux_prom_translation *dest = &prom_trans[i];
553 dest->virt = dest->size = dest->data = 0x0UL;
556 prom_trans_ents = last - first;
558 if (tlb_type == spitfire) {
559 /* Clear diag TTE bits. */
560 for (i = 0; i < prom_trans_ents; i++)
561 prom_trans[i].data &= ~0x0003fe0000000000UL;
564 /* Force execute bit on. */
565 for (i = 0; i < prom_trans_ents; i++)
566 prom_trans[i].data |= (tlb_type == hypervisor ?
567 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
570 static void __init hypervisor_tlb_lock(unsigned long vaddr,
571 unsigned long pte,
572 unsigned long mmu)
574 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
576 if (ret != 0) {
577 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
578 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
579 prom_halt();
583 static unsigned long kern_large_tte(unsigned long paddr);
585 static void __init remap_kernel(void)
587 unsigned long phys_page, tte_vaddr, tte_data;
588 int i, tlb_ent = sparc64_highest_locked_tlbent();
590 tte_vaddr = (unsigned long) KERNBASE;
591 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
592 tte_data = kern_large_tte(phys_page);
594 kern_locked_tte_data = tte_data;
596 /* Now lock us into the TLBs via Hypervisor or OBP. */
597 if (tlb_type == hypervisor) {
598 for (i = 0; i < num_kernel_image_mappings; i++) {
599 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
600 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
601 tte_vaddr += 0x400000;
602 tte_data += 0x400000;
604 } else {
605 for (i = 0; i < num_kernel_image_mappings; i++) {
606 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
607 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
608 tte_vaddr += 0x400000;
609 tte_data += 0x400000;
611 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
613 if (tlb_type == cheetah_plus) {
614 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
615 CTX_CHEETAH_PLUS_NUC);
616 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
617 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
622 static void __init inherit_prom_mappings(void)
624 /* Now fixup OBP's idea about where we really are mapped. */
625 printk("Remapping the kernel... ");
626 remap_kernel();
627 printk("done.\n");
630 void prom_world(int enter)
632 if (!enter)
633 set_fs(get_fs());
635 __asm__ __volatile__("flushw");
638 void __flush_dcache_range(unsigned long start, unsigned long end)
640 unsigned long va;
642 if (tlb_type == spitfire) {
643 int n = 0;
645 for (va = start; va < end; va += 32) {
646 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
647 if (++n >= 512)
648 break;
650 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
651 start = __pa(start);
652 end = __pa(end);
653 for (va = start; va < end; va += 32)
654 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
655 "membar #Sync"
656 : /* no outputs */
657 : "r" (va),
658 "i" (ASI_DCACHE_INVALIDATE));
661 EXPORT_SYMBOL(__flush_dcache_range);
663 /* get_new_mmu_context() uses "cache + 1". */
664 DEFINE_SPINLOCK(ctx_alloc_lock);
665 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
666 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
667 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
668 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
670 /* Caller does TLB context flushing on local CPU if necessary.
671 * The caller also ensures that CTX_VALID(mm->context) is false.
673 * We must be careful about boundary cases so that we never
674 * let the user have CTX 0 (nucleus) or we ever use a CTX
675 * version of zero (and thus NO_CONTEXT would not be caught
676 * by version mis-match tests in mmu_context.h).
678 * Always invoked with interrupts disabled.
680 void get_new_mmu_context(struct mm_struct *mm)
682 unsigned long ctx, new_ctx;
683 unsigned long orig_pgsz_bits;
684 int new_version;
686 spin_lock(&ctx_alloc_lock);
687 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
688 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
689 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
690 new_version = 0;
691 if (new_ctx >= (1 << CTX_NR_BITS)) {
692 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
693 if (new_ctx >= ctx) {
694 int i;
695 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
696 CTX_FIRST_VERSION;
697 if (new_ctx == 1)
698 new_ctx = CTX_FIRST_VERSION;
700 /* Don't call memset, for 16 entries that's just
701 * plain silly...
703 mmu_context_bmap[0] = 3;
704 mmu_context_bmap[1] = 0;
705 mmu_context_bmap[2] = 0;
706 mmu_context_bmap[3] = 0;
707 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
708 mmu_context_bmap[i + 0] = 0;
709 mmu_context_bmap[i + 1] = 0;
710 mmu_context_bmap[i + 2] = 0;
711 mmu_context_bmap[i + 3] = 0;
713 new_version = 1;
714 goto out;
717 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
718 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
719 out:
720 tlb_context_cache = new_ctx;
721 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
722 spin_unlock(&ctx_alloc_lock);
724 if (unlikely(new_version))
725 smp_new_mmu_context_version();
728 static int numa_enabled = 1;
729 static int numa_debug;
731 static int __init early_numa(char *p)
733 if (!p)
734 return 0;
736 if (strstr(p, "off"))
737 numa_enabled = 0;
739 if (strstr(p, "debug"))
740 numa_debug = 1;
742 return 0;
744 early_param("numa", early_numa);
746 #define numadbg(f, a...) \
747 do { if (numa_debug) \
748 printk(KERN_INFO f, ## a); \
749 } while (0)
751 static void __init find_ramdisk(unsigned long phys_base)
753 #ifdef CONFIG_BLK_DEV_INITRD
754 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
755 unsigned long ramdisk_image;
757 /* Older versions of the bootloader only supported a
758 * 32-bit physical address for the ramdisk image
759 * location, stored at sparc_ramdisk_image. Newer
760 * SILO versions set sparc_ramdisk_image to zero and
761 * provide a full 64-bit physical address at
762 * sparc_ramdisk_image64.
764 ramdisk_image = sparc_ramdisk_image;
765 if (!ramdisk_image)
766 ramdisk_image = sparc_ramdisk_image64;
768 /* Another bootloader quirk. The bootloader normalizes
769 * the physical address to KERNBASE, so we have to
770 * factor that back out and add in the lowest valid
771 * physical page address to get the true physical address.
773 ramdisk_image -= KERNBASE;
774 ramdisk_image += phys_base;
776 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
777 ramdisk_image, sparc_ramdisk_size);
779 initrd_start = ramdisk_image;
780 initrd_end = ramdisk_image + sparc_ramdisk_size;
782 memblock_reserve(initrd_start, sparc_ramdisk_size);
784 initrd_start += PAGE_OFFSET;
785 initrd_end += PAGE_OFFSET;
787 #endif
790 struct node_mem_mask {
791 unsigned long mask;
792 unsigned long val;
794 static struct node_mem_mask node_masks[MAX_NUMNODES];
795 static int num_node_masks;
797 int numa_cpu_lookup_table[NR_CPUS];
798 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
800 #ifdef CONFIG_NEED_MULTIPLE_NODES
802 struct mdesc_mblock {
803 u64 base;
804 u64 size;
805 u64 offset; /* RA-to-PA */
807 static struct mdesc_mblock *mblocks;
808 static int num_mblocks;
810 static unsigned long ra_to_pa(unsigned long addr)
812 int i;
814 for (i = 0; i < num_mblocks; i++) {
815 struct mdesc_mblock *m = &mblocks[i];
817 if (addr >= m->base &&
818 addr < (m->base + m->size)) {
819 addr += m->offset;
820 break;
823 return addr;
826 static int find_node(unsigned long addr)
828 int i;
830 addr = ra_to_pa(addr);
831 for (i = 0; i < num_node_masks; i++) {
832 struct node_mem_mask *p = &node_masks[i];
834 if ((addr & p->mask) == p->val)
835 return i;
837 return -1;
840 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
842 *nid = find_node(start);
843 start += PAGE_SIZE;
844 while (start < end) {
845 int n = find_node(start);
847 if (n != *nid)
848 break;
849 start += PAGE_SIZE;
852 if (start > end)
853 start = end;
855 return start;
857 #endif
859 /* This must be invoked after performing all of the necessary
860 * memblock_set_node() calls for 'nid'. We need to be able to get
861 * correct data from get_pfn_range_for_nid().
863 static void __init allocate_node_data(int nid)
865 struct pglist_data *p;
866 unsigned long start_pfn, end_pfn;
867 #ifdef CONFIG_NEED_MULTIPLE_NODES
868 unsigned long paddr;
870 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
871 if (!paddr) {
872 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
873 prom_halt();
875 NODE_DATA(nid) = __va(paddr);
876 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
878 NODE_DATA(nid)->node_id = nid;
879 #endif
881 p = NODE_DATA(nid);
883 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
884 p->node_start_pfn = start_pfn;
885 p->node_spanned_pages = end_pfn - start_pfn;
888 static void init_node_masks_nonnuma(void)
890 int i;
892 numadbg("Initializing tables for non-numa.\n");
894 node_masks[0].mask = node_masks[0].val = 0;
895 num_node_masks = 1;
897 for (i = 0; i < NR_CPUS; i++)
898 numa_cpu_lookup_table[i] = 0;
900 cpumask_setall(&numa_cpumask_lookup_table[0]);
903 #ifdef CONFIG_NEED_MULTIPLE_NODES
904 struct pglist_data *node_data[MAX_NUMNODES];
906 EXPORT_SYMBOL(numa_cpu_lookup_table);
907 EXPORT_SYMBOL(numa_cpumask_lookup_table);
908 EXPORT_SYMBOL(node_data);
910 struct mdesc_mlgroup {
911 u64 node;
912 u64 latency;
913 u64 match;
914 u64 mask;
916 static struct mdesc_mlgroup *mlgroups;
917 static int num_mlgroups;
919 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
920 u32 cfg_handle)
922 u64 arc;
924 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
925 u64 target = mdesc_arc_target(md, arc);
926 const u64 *val;
928 val = mdesc_get_property(md, target,
929 "cfg-handle", NULL);
930 if (val && *val == cfg_handle)
931 return 0;
933 return -ENODEV;
936 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
937 u32 cfg_handle)
939 u64 arc, candidate, best_latency = ~(u64)0;
941 candidate = MDESC_NODE_NULL;
942 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
943 u64 target = mdesc_arc_target(md, arc);
944 const char *name = mdesc_node_name(md, target);
945 const u64 *val;
947 if (strcmp(name, "pio-latency-group"))
948 continue;
950 val = mdesc_get_property(md, target, "latency", NULL);
951 if (!val)
952 continue;
954 if (*val < best_latency) {
955 candidate = target;
956 best_latency = *val;
960 if (candidate == MDESC_NODE_NULL)
961 return -ENODEV;
963 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
966 int of_node_to_nid(struct device_node *dp)
968 const struct linux_prom64_registers *regs;
969 struct mdesc_handle *md;
970 u32 cfg_handle;
971 int count, nid;
972 u64 grp;
974 /* This is the right thing to do on currently supported
975 * SUN4U NUMA platforms as well, as the PCI controller does
976 * not sit behind any particular memory controller.
978 if (!mlgroups)
979 return -1;
981 regs = of_get_property(dp, "reg", NULL);
982 if (!regs)
983 return -1;
985 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
987 md = mdesc_grab();
989 count = 0;
990 nid = -1;
991 mdesc_for_each_node_by_name(md, grp, "group") {
992 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
993 nid = count;
994 break;
996 count++;
999 mdesc_release(md);
1001 return nid;
1004 static void __init add_node_ranges(void)
1006 struct memblock_region *reg;
1008 for_each_memblock(memory, reg) {
1009 unsigned long size = reg->size;
1010 unsigned long start, end;
1012 start = reg->base;
1013 end = start + size;
1014 while (start < end) {
1015 unsigned long this_end;
1016 int nid;
1018 this_end = memblock_nid_range(start, end, &nid);
1020 numadbg("Setting memblock NUMA node nid[%d] "
1021 "start[%lx] end[%lx]\n",
1022 nid, start, this_end);
1024 memblock_set_node(start, this_end - start, nid);
1025 start = this_end;
1030 static int __init grab_mlgroups(struct mdesc_handle *md)
1032 unsigned long paddr;
1033 int count = 0;
1034 u64 node;
1036 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1037 count++;
1038 if (!count)
1039 return -ENOENT;
1041 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1042 SMP_CACHE_BYTES);
1043 if (!paddr)
1044 return -ENOMEM;
1046 mlgroups = __va(paddr);
1047 num_mlgroups = count;
1049 count = 0;
1050 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1051 struct mdesc_mlgroup *m = &mlgroups[count++];
1052 const u64 *val;
1054 m->node = node;
1056 val = mdesc_get_property(md, node, "latency", NULL);
1057 m->latency = *val;
1058 val = mdesc_get_property(md, node, "address-match", NULL);
1059 m->match = *val;
1060 val = mdesc_get_property(md, node, "address-mask", NULL);
1061 m->mask = *val;
1063 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1064 "match[%llx] mask[%llx]\n",
1065 count - 1, m->node, m->latency, m->match, m->mask);
1068 return 0;
1071 static int __init grab_mblocks(struct mdesc_handle *md)
1073 unsigned long paddr;
1074 int count = 0;
1075 u64 node;
1077 mdesc_for_each_node_by_name(md, node, "mblock")
1078 count++;
1079 if (!count)
1080 return -ENOENT;
1082 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1083 SMP_CACHE_BYTES);
1084 if (!paddr)
1085 return -ENOMEM;
1087 mblocks = __va(paddr);
1088 num_mblocks = count;
1090 count = 0;
1091 mdesc_for_each_node_by_name(md, node, "mblock") {
1092 struct mdesc_mblock *m = &mblocks[count++];
1093 const u64 *val;
1095 val = mdesc_get_property(md, node, "base", NULL);
1096 m->base = *val;
1097 val = mdesc_get_property(md, node, "size", NULL);
1098 m->size = *val;
1099 val = mdesc_get_property(md, node,
1100 "address-congruence-offset", NULL);
1102 /* The address-congruence-offset property is optional.
1103 * Explicity zero it be identifty this.
1105 if (val)
1106 m->offset = *val;
1107 else
1108 m->offset = 0UL;
1110 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1111 count - 1, m->base, m->size, m->offset);
1114 return 0;
1117 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1118 u64 grp, cpumask_t *mask)
1120 u64 arc;
1122 cpumask_clear(mask);
1124 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1125 u64 target = mdesc_arc_target(md, arc);
1126 const char *name = mdesc_node_name(md, target);
1127 const u64 *id;
1129 if (strcmp(name, "cpu"))
1130 continue;
1131 id = mdesc_get_property(md, target, "id", NULL);
1132 if (*id < nr_cpu_ids)
1133 cpumask_set_cpu(*id, mask);
1137 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1139 int i;
1141 for (i = 0; i < num_mlgroups; i++) {
1142 struct mdesc_mlgroup *m = &mlgroups[i];
1143 if (m->node == node)
1144 return m;
1146 return NULL;
1149 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1150 int index)
1152 struct mdesc_mlgroup *candidate = NULL;
1153 u64 arc, best_latency = ~(u64)0;
1154 struct node_mem_mask *n;
1156 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1157 u64 target = mdesc_arc_target(md, arc);
1158 struct mdesc_mlgroup *m = find_mlgroup(target);
1159 if (!m)
1160 continue;
1161 if (m->latency < best_latency) {
1162 candidate = m;
1163 best_latency = m->latency;
1166 if (!candidate)
1167 return -ENOENT;
1169 if (num_node_masks != index) {
1170 printk(KERN_ERR "Inconsistent NUMA state, "
1171 "index[%d] != num_node_masks[%d]\n",
1172 index, num_node_masks);
1173 return -EINVAL;
1176 n = &node_masks[num_node_masks++];
1178 n->mask = candidate->mask;
1179 n->val = candidate->match;
1181 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1182 index, n->mask, n->val, candidate->latency);
1184 return 0;
1187 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1188 int index)
1190 cpumask_t mask;
1191 int cpu;
1193 numa_parse_mdesc_group_cpus(md, grp, &mask);
1195 for_each_cpu(cpu, &mask)
1196 numa_cpu_lookup_table[cpu] = index;
1197 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1199 if (numa_debug) {
1200 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1201 for_each_cpu(cpu, &mask)
1202 printk("%d ", cpu);
1203 printk("]\n");
1206 return numa_attach_mlgroup(md, grp, index);
1209 static int __init numa_parse_mdesc(void)
1211 struct mdesc_handle *md = mdesc_grab();
1212 int i, err, count;
1213 u64 node;
1215 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1216 if (node == MDESC_NODE_NULL) {
1217 mdesc_release(md);
1218 return -ENOENT;
1221 err = grab_mblocks(md);
1222 if (err < 0)
1223 goto out;
1225 err = grab_mlgroups(md);
1226 if (err < 0)
1227 goto out;
1229 count = 0;
1230 mdesc_for_each_node_by_name(md, node, "group") {
1231 err = numa_parse_mdesc_group(md, node, count);
1232 if (err < 0)
1233 break;
1234 count++;
1237 add_node_ranges();
1239 for (i = 0; i < num_node_masks; i++) {
1240 allocate_node_data(i);
1241 node_set_online(i);
1244 err = 0;
1245 out:
1246 mdesc_release(md);
1247 return err;
1250 static int __init numa_parse_jbus(void)
1252 unsigned long cpu, index;
1254 /* NUMA node id is encoded in bits 36 and higher, and there is
1255 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1257 index = 0;
1258 for_each_present_cpu(cpu) {
1259 numa_cpu_lookup_table[cpu] = index;
1260 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1261 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1262 node_masks[index].val = cpu << 36UL;
1264 index++;
1266 num_node_masks = index;
1268 add_node_ranges();
1270 for (index = 0; index < num_node_masks; index++) {
1271 allocate_node_data(index);
1272 node_set_online(index);
1275 return 0;
1278 static int __init numa_parse_sun4u(void)
1280 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1281 unsigned long ver;
1283 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1284 if ((ver >> 32UL) == __JALAPENO_ID ||
1285 (ver >> 32UL) == __SERRANO_ID)
1286 return numa_parse_jbus();
1288 return -1;
1291 static int __init bootmem_init_numa(void)
1293 int err = -1;
1295 numadbg("bootmem_init_numa()\n");
1297 if (numa_enabled) {
1298 if (tlb_type == hypervisor)
1299 err = numa_parse_mdesc();
1300 else
1301 err = numa_parse_sun4u();
1303 return err;
1306 #else
1308 static int bootmem_init_numa(void)
1310 return -1;
1313 #endif
1315 static void __init bootmem_init_nonnuma(void)
1317 unsigned long top_of_ram = memblock_end_of_DRAM();
1318 unsigned long total_ram = memblock_phys_mem_size();
1320 numadbg("bootmem_init_nonnuma()\n");
1322 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1323 top_of_ram, total_ram);
1324 printk(KERN_INFO "Memory hole size: %ldMB\n",
1325 (top_of_ram - total_ram) >> 20);
1327 init_node_masks_nonnuma();
1328 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1329 allocate_node_data(0);
1330 node_set_online(0);
1333 static unsigned long __init bootmem_init(unsigned long phys_base)
1335 unsigned long end_pfn;
1337 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1338 max_pfn = max_low_pfn = end_pfn;
1339 min_low_pfn = (phys_base >> PAGE_SHIFT);
1341 if (bootmem_init_numa() < 0)
1342 bootmem_init_nonnuma();
1344 /* Dump memblock with node info. */
1345 memblock_dump_all();
1347 /* XXX cpu notifier XXX */
1349 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1350 sparse_init();
1352 return end_pfn;
1355 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1356 static int pall_ents __initdata;
1358 #ifdef CONFIG_DEBUG_PAGEALLOC
1359 static unsigned long __ref kernel_map_range(unsigned long pstart,
1360 unsigned long pend, pgprot_t prot)
1362 unsigned long vstart = PAGE_OFFSET + pstart;
1363 unsigned long vend = PAGE_OFFSET + pend;
1364 unsigned long alloc_bytes = 0UL;
1366 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1367 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1368 vstart, vend);
1369 prom_halt();
1372 while (vstart < vend) {
1373 unsigned long this_end, paddr = __pa(vstart);
1374 pgd_t *pgd = pgd_offset_k(vstart);
1375 pud_t *pud;
1376 pmd_t *pmd;
1377 pte_t *pte;
1379 pud = pud_offset(pgd, vstart);
1380 if (pud_none(*pud)) {
1381 pmd_t *new;
1383 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1384 alloc_bytes += PAGE_SIZE;
1385 pud_populate(&init_mm, pud, new);
1388 pmd = pmd_offset(pud, vstart);
1389 if (!pmd_present(*pmd)) {
1390 pte_t *new;
1392 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1393 alloc_bytes += PAGE_SIZE;
1394 pmd_populate_kernel(&init_mm, pmd, new);
1397 pte = pte_offset_kernel(pmd, vstart);
1398 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1399 if (this_end > vend)
1400 this_end = vend;
1402 while (vstart < this_end) {
1403 pte_val(*pte) = (paddr | pgprot_val(prot));
1405 vstart += PAGE_SIZE;
1406 paddr += PAGE_SIZE;
1407 pte++;
1411 return alloc_bytes;
1414 extern unsigned int kvmap_linear_patch[1];
1415 #endif /* CONFIG_DEBUG_PAGEALLOC */
1417 static void __init kpte_set_val(unsigned long index, unsigned long val)
1419 unsigned long *ptr = kpte_linear_bitmap;
1421 val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1422 ptr += (index / (BITS_PER_LONG / 2));
1424 *ptr |= val;
1427 static const unsigned long kpte_shift_min = 28; /* 256MB */
1428 static const unsigned long kpte_shift_max = 34; /* 16GB */
1429 static const unsigned long kpte_shift_incr = 3;
1431 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1432 unsigned long shift)
1434 unsigned long size = (1UL << shift);
1435 unsigned long mask = (size - 1UL);
1436 unsigned long remains = end - start;
1437 unsigned long val;
1439 if (remains < size || (start & mask))
1440 return start;
1442 /* VAL maps:
1444 * shift 28 --> kern_linear_pte_xor index 1
1445 * shift 31 --> kern_linear_pte_xor index 2
1446 * shift 34 --> kern_linear_pte_xor index 3
1448 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1450 remains &= ~mask;
1451 if (shift != kpte_shift_max)
1452 remains = size;
1454 while (remains) {
1455 unsigned long index = start >> kpte_shift_min;
1457 kpte_set_val(index, val);
1459 start += 1UL << kpte_shift_min;
1460 remains -= 1UL << kpte_shift_min;
1463 return start;
1466 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1468 unsigned long smallest_size, smallest_mask;
1469 unsigned long s;
1471 smallest_size = (1UL << kpte_shift_min);
1472 smallest_mask = (smallest_size - 1UL);
1474 while (start < end) {
1475 unsigned long orig_start = start;
1477 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1478 start = kpte_mark_using_shift(start, end, s);
1480 if (start != orig_start)
1481 break;
1484 if (start == orig_start)
1485 start = (start + smallest_size) & ~smallest_mask;
1489 static void __init init_kpte_bitmap(void)
1491 unsigned long i;
1493 for (i = 0; i < pall_ents; i++) {
1494 unsigned long phys_start, phys_end;
1496 phys_start = pall[i].phys_addr;
1497 phys_end = phys_start + pall[i].reg_size;
1499 mark_kpte_bitmap(phys_start, phys_end);
1503 static void __init kernel_physical_mapping_init(void)
1505 #ifdef CONFIG_DEBUG_PAGEALLOC
1506 unsigned long i, mem_alloced = 0UL;
1508 for (i = 0; i < pall_ents; i++) {
1509 unsigned long phys_start, phys_end;
1511 phys_start = pall[i].phys_addr;
1512 phys_end = phys_start + pall[i].reg_size;
1514 mem_alloced += kernel_map_range(phys_start, phys_end,
1515 PAGE_KERNEL);
1518 printk("Allocated %ld bytes for kernel page tables.\n",
1519 mem_alloced);
1521 kvmap_linear_patch[0] = 0x01000000; /* nop */
1522 flushi(&kvmap_linear_patch[0]);
1524 __flush_tlb_all();
1525 #endif
1528 #ifdef CONFIG_DEBUG_PAGEALLOC
1529 void kernel_map_pages(struct page *page, int numpages, int enable)
1531 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1532 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534 kernel_map_range(phys_start, phys_end,
1535 (enable ? PAGE_KERNEL : __pgprot(0)));
1537 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1538 PAGE_OFFSET + phys_end);
1540 /* we should perform an IPI and flush all tlbs,
1541 * but that can deadlock->flush only current cpu.
1543 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1544 PAGE_OFFSET + phys_end);
1546 #endif
1548 unsigned long __init find_ecache_flush_span(unsigned long size)
1550 int i;
1552 for (i = 0; i < pavail_ents; i++) {
1553 if (pavail[i].reg_size >= size)
1554 return pavail[i].phys_addr;
1557 return ~0UL;
1560 unsigned long PAGE_OFFSET;
1561 EXPORT_SYMBOL(PAGE_OFFSET);
1563 static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
1565 unsigned long final_shift;
1566 unsigned int val = *insn;
1567 unsigned int cnt;
1569 /* We are patching in ilog2(max_supported_phys_address), and
1570 * we are doing so in a manner similar to a relocation addend.
1571 * That is, we are adding the shift value to whatever value
1572 * is in the shift instruction count field already.
1574 cnt = (val & 0x3f);
1575 val &= ~0x3f;
1577 /* If we are trying to shift >= 64 bits, clear the destination
1578 * register. This can happen when phys_bits ends up being equal
1579 * to MAX_PHYS_ADDRESS_BITS.
1581 final_shift = (cnt + (64 - phys_bits));
1582 if (final_shift >= 64) {
1583 unsigned int rd = (val >> 25) & 0x1f;
1585 val = 0x80100000 | (rd << 25);
1586 } else {
1587 val |= final_shift;
1589 *insn = val;
1591 __asm__ __volatile__("flush %0"
1592 : /* no outputs */
1593 : "r" (insn));
1596 static void __init page_offset_shift_patch(unsigned long phys_bits)
1598 extern unsigned int __page_offset_shift_patch;
1599 extern unsigned int __page_offset_shift_patch_end;
1600 unsigned int *p;
1602 p = &__page_offset_shift_patch;
1603 while (p < &__page_offset_shift_patch_end) {
1604 unsigned int *insn = (unsigned int *)(unsigned long)*p;
1606 page_offset_shift_patch_one(insn, phys_bits);
1608 p++;
1612 static void __init setup_page_offset(void)
1614 unsigned long max_phys_bits = 40;
1616 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1617 max_phys_bits = 42;
1618 } else if (tlb_type == hypervisor) {
1619 switch (sun4v_chip_type) {
1620 case SUN4V_CHIP_NIAGARA1:
1621 case SUN4V_CHIP_NIAGARA2:
1622 max_phys_bits = 39;
1623 break;
1624 case SUN4V_CHIP_NIAGARA3:
1625 max_phys_bits = 43;
1626 break;
1627 case SUN4V_CHIP_NIAGARA4:
1628 case SUN4V_CHIP_NIAGARA5:
1629 case SUN4V_CHIP_SPARC64X:
1630 default:
1631 max_phys_bits = 47;
1632 break;
1636 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1637 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1638 max_phys_bits);
1639 prom_halt();
1642 PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
1644 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1645 PAGE_OFFSET, max_phys_bits);
1647 page_offset_shift_patch(max_phys_bits);
1650 static void __init tsb_phys_patch(void)
1652 struct tsb_ldquad_phys_patch_entry *pquad;
1653 struct tsb_phys_patch_entry *p;
1655 pquad = &__tsb_ldquad_phys_patch;
1656 while (pquad < &__tsb_ldquad_phys_patch_end) {
1657 unsigned long addr = pquad->addr;
1659 if (tlb_type == hypervisor)
1660 *(unsigned int *) addr = pquad->sun4v_insn;
1661 else
1662 *(unsigned int *) addr = pquad->sun4u_insn;
1663 wmb();
1664 __asm__ __volatile__("flush %0"
1665 : /* no outputs */
1666 : "r" (addr));
1668 pquad++;
1671 p = &__tsb_phys_patch;
1672 while (p < &__tsb_phys_patch_end) {
1673 unsigned long addr = p->addr;
1675 *(unsigned int *) addr = p->insn;
1676 wmb();
1677 __asm__ __volatile__("flush %0"
1678 : /* no outputs */
1679 : "r" (addr));
1681 p++;
1685 /* Don't mark as init, we give this to the Hypervisor. */
1686 #ifndef CONFIG_DEBUG_PAGEALLOC
1687 #define NUM_KTSB_DESCR 2
1688 #else
1689 #define NUM_KTSB_DESCR 1
1690 #endif
1691 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1692 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1694 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1696 pa >>= KTSB_PHYS_SHIFT;
1698 while (start < end) {
1699 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1701 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1702 __asm__ __volatile__("flush %0" : : "r" (ia));
1704 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1705 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1707 start++;
1711 static void ktsb_phys_patch(void)
1713 extern unsigned int __swapper_tsb_phys_patch;
1714 extern unsigned int __swapper_tsb_phys_patch_end;
1715 unsigned long ktsb_pa;
1717 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1718 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1719 &__swapper_tsb_phys_patch_end, ktsb_pa);
1720 #ifndef CONFIG_DEBUG_PAGEALLOC
1722 extern unsigned int __swapper_4m_tsb_phys_patch;
1723 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1724 ktsb_pa = (kern_base +
1725 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1726 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1727 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1729 #endif
1732 static void __init sun4v_ktsb_init(void)
1734 unsigned long ktsb_pa;
1736 /* First KTSB for PAGE_SIZE mappings. */
1737 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1739 switch (PAGE_SIZE) {
1740 case 8 * 1024:
1741 default:
1742 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1743 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1744 break;
1746 case 64 * 1024:
1747 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1748 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1749 break;
1751 case 512 * 1024:
1752 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1753 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1754 break;
1756 case 4 * 1024 * 1024:
1757 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1758 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1759 break;
1762 ktsb_descr[0].assoc = 1;
1763 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1764 ktsb_descr[0].ctx_idx = 0;
1765 ktsb_descr[0].tsb_base = ktsb_pa;
1766 ktsb_descr[0].resv = 0;
1768 #ifndef CONFIG_DEBUG_PAGEALLOC
1769 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1770 ktsb_pa = (kern_base +
1771 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1773 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1774 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1775 HV_PGSZ_MASK_256MB |
1776 HV_PGSZ_MASK_2GB |
1777 HV_PGSZ_MASK_16GB) &
1778 cpu_pgsz_mask);
1779 ktsb_descr[1].assoc = 1;
1780 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1781 ktsb_descr[1].ctx_idx = 0;
1782 ktsb_descr[1].tsb_base = ktsb_pa;
1783 ktsb_descr[1].resv = 0;
1784 #endif
1787 void sun4v_ktsb_register(void)
1789 unsigned long pa, ret;
1791 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1793 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1794 if (ret != 0) {
1795 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1796 "errors with %lx\n", pa, ret);
1797 prom_halt();
1801 static void __init sun4u_linear_pte_xor_finalize(void)
1803 #ifndef CONFIG_DEBUG_PAGEALLOC
1804 /* This is where we would add Panther support for
1805 * 32MB and 256MB pages.
1807 #endif
1810 static void __init sun4v_linear_pte_xor_finalize(void)
1812 #ifndef CONFIG_DEBUG_PAGEALLOC
1813 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1814 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1815 PAGE_OFFSET;
1816 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1817 _PAGE_P_4V | _PAGE_W_4V);
1818 } else {
1819 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1822 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1823 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1824 PAGE_OFFSET;
1825 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1826 _PAGE_P_4V | _PAGE_W_4V);
1827 } else {
1828 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1831 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1832 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1833 PAGE_OFFSET;
1834 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1835 _PAGE_P_4V | _PAGE_W_4V);
1836 } else {
1837 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1839 #endif
1842 /* paging_init() sets up the page tables */
1844 static unsigned long last_valid_pfn;
1845 pgd_t swapper_pg_dir[PTRS_PER_PGD];
1847 static void sun4u_pgprot_init(void);
1848 static void sun4v_pgprot_init(void);
1850 void __init paging_init(void)
1852 unsigned long end_pfn, shift, phys_base;
1853 unsigned long real_end, i;
1854 int node;
1856 setup_page_offset();
1858 /* These build time checkes make sure that the dcache_dirty_cpu()
1859 * page->flags usage will work.
1861 * When a page gets marked as dcache-dirty, we store the
1862 * cpu number starting at bit 32 in the page->flags. Also,
1863 * functions like clear_dcache_dirty_cpu use the cpu mask
1864 * in 13-bit signed-immediate instruction fields.
1868 * Page flags must not reach into upper 32 bits that are used
1869 * for the cpu number
1871 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1874 * The bit fields placed in the high range must not reach below
1875 * the 32 bit boundary. Otherwise we cannot place the cpu field
1876 * at the 32 bit boundary.
1878 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1879 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1881 BUILD_BUG_ON(NR_CPUS > 4096);
1883 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1884 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1886 /* Invalidate both kernel TSBs. */
1887 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1888 #ifndef CONFIG_DEBUG_PAGEALLOC
1889 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1890 #endif
1892 if (tlb_type == hypervisor)
1893 sun4v_pgprot_init();
1894 else
1895 sun4u_pgprot_init();
1897 if (tlb_type == cheetah_plus ||
1898 tlb_type == hypervisor) {
1899 tsb_phys_patch();
1900 ktsb_phys_patch();
1903 if (tlb_type == hypervisor)
1904 sun4v_patch_tlb_handlers();
1906 /* Find available physical memory...
1908 * Read it twice in order to work around a bug in openfirmware.
1909 * The call to grab this table itself can cause openfirmware to
1910 * allocate memory, which in turn can take away some space from
1911 * the list of available memory. Reading it twice makes sure
1912 * we really do get the final value.
1914 read_obp_translations();
1915 read_obp_memory("reg", &pall[0], &pall_ents);
1916 read_obp_memory("available", &pavail[0], &pavail_ents);
1917 read_obp_memory("available", &pavail[0], &pavail_ents);
1919 phys_base = 0xffffffffffffffffUL;
1920 for (i = 0; i < pavail_ents; i++) {
1921 phys_base = min(phys_base, pavail[i].phys_addr);
1922 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1925 memblock_reserve(kern_base, kern_size);
1927 find_ramdisk(phys_base);
1929 memblock_enforce_memory_limit(cmdline_memory_size);
1931 memblock_allow_resize();
1932 memblock_dump_all();
1934 set_bit(0, mmu_context_bmap);
1936 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1938 real_end = (unsigned long)_end;
1939 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1940 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1941 num_kernel_image_mappings);
1943 /* Set kernel pgd to upper alias so physical page computations
1944 * work.
1946 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1948 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1950 /* Now can init the kernel/bad page tables. */
1951 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1952 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1954 inherit_prom_mappings();
1956 init_kpte_bitmap();
1958 /* Ok, we can use our TLB miss and window trap handlers safely. */
1959 setup_tba();
1961 __flush_tlb_all();
1963 prom_build_devicetree();
1964 of_populate_present_mask();
1965 #ifndef CONFIG_SMP
1966 of_fill_in_cpu_data();
1967 #endif
1969 if (tlb_type == hypervisor) {
1970 sun4v_mdesc_init();
1971 mdesc_populate_present_mask(cpu_all_mask);
1972 #ifndef CONFIG_SMP
1973 mdesc_fill_in_cpu_data(cpu_all_mask);
1974 #endif
1975 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1977 sun4v_linear_pte_xor_finalize();
1979 sun4v_ktsb_init();
1980 sun4v_ktsb_register();
1981 } else {
1982 unsigned long impl, ver;
1984 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1985 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1987 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1988 impl = ((ver >> 32) & 0xffff);
1989 if (impl == PANTHER_IMPL)
1990 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1991 HV_PGSZ_MASK_256MB);
1993 sun4u_linear_pte_xor_finalize();
1996 /* Flush the TLBs and the 4M TSB so that the updated linear
1997 * pte XOR settings are realized for all mappings.
1999 __flush_tlb_all();
2000 #ifndef CONFIG_DEBUG_PAGEALLOC
2001 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2002 #endif
2003 __flush_tlb_all();
2005 /* Setup bootmem... */
2006 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2008 /* Once the OF device tree and MDESC have been setup, we know
2009 * the list of possible cpus. Therefore we can allocate the
2010 * IRQ stacks.
2012 for_each_possible_cpu(i) {
2013 node = cpu_to_node(i);
2015 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2016 THREAD_SIZE,
2017 THREAD_SIZE, 0);
2018 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2019 THREAD_SIZE,
2020 THREAD_SIZE, 0);
2023 kernel_physical_mapping_init();
2026 unsigned long max_zone_pfns[MAX_NR_ZONES];
2028 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2030 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2032 free_area_init_nodes(max_zone_pfns);
2035 printk("Booting Linux...\n");
2038 int page_in_phys_avail(unsigned long paddr)
2040 int i;
2042 paddr &= PAGE_MASK;
2044 for (i = 0; i < pavail_ents; i++) {
2045 unsigned long start, end;
2047 start = pavail[i].phys_addr;
2048 end = start + pavail[i].reg_size;
2050 if (paddr >= start && paddr < end)
2051 return 1;
2053 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2054 return 1;
2055 #ifdef CONFIG_BLK_DEV_INITRD
2056 if (paddr >= __pa(initrd_start) &&
2057 paddr < __pa(PAGE_ALIGN(initrd_end)))
2058 return 1;
2059 #endif
2061 return 0;
2064 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
2065 static int pavail_rescan_ents __initdata;
2067 /* Certain OBP calls, such as fetching "available" properties, can
2068 * claim physical memory. So, along with initializing the valid
2069 * address bitmap, what we do here is refetch the physical available
2070 * memory list again, and make sure it provides at least as much
2071 * memory as 'pavail' does.
2073 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
2075 int i;
2077 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
2079 for (i = 0; i < pavail_ents; i++) {
2080 unsigned long old_start, old_end;
2082 old_start = pavail[i].phys_addr;
2083 old_end = old_start + pavail[i].reg_size;
2084 while (old_start < old_end) {
2085 int n;
2087 for (n = 0; n < pavail_rescan_ents; n++) {
2088 unsigned long new_start, new_end;
2090 new_start = pavail_rescan[n].phys_addr;
2091 new_end = new_start +
2092 pavail_rescan[n].reg_size;
2094 if (new_start <= old_start &&
2095 new_end >= (old_start + PAGE_SIZE)) {
2096 set_bit(old_start >> 22, bitmap);
2097 goto do_next_page;
2101 prom_printf("mem_init: Lost memory in pavail\n");
2102 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2103 pavail[i].phys_addr,
2104 pavail[i].reg_size);
2105 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2106 pavail_rescan[i].phys_addr,
2107 pavail_rescan[i].reg_size);
2108 prom_printf("mem_init: Cannot continue, aborting.\n");
2109 prom_halt();
2111 do_next_page:
2112 old_start += PAGE_SIZE;
2117 static void __init patch_tlb_miss_handler_bitmap(void)
2119 extern unsigned int valid_addr_bitmap_insn[];
2120 extern unsigned int valid_addr_bitmap_patch[];
2122 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2123 mb();
2124 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2125 flushi(&valid_addr_bitmap_insn[0]);
2128 static void __init register_page_bootmem_info(void)
2130 #ifdef CONFIG_NEED_MULTIPLE_NODES
2131 int i;
2133 for_each_online_node(i)
2134 if (NODE_DATA(i)->node_spanned_pages)
2135 register_page_bootmem_info_node(NODE_DATA(i));
2136 #endif
2138 void __init mem_init(void)
2140 unsigned long addr, last;
2142 addr = PAGE_OFFSET + kern_base;
2143 last = PAGE_ALIGN(kern_size) + addr;
2144 while (addr < last) {
2145 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
2146 addr += PAGE_SIZE;
2149 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2150 patch_tlb_miss_handler_bitmap();
2152 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2154 register_page_bootmem_info();
2155 free_all_bootmem();
2158 * Set up the zero page, mark it reserved, so that page count
2159 * is not manipulated when freeing the page from user ptes.
2161 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2162 if (mem_map_zero == NULL) {
2163 prom_printf("paging_init: Cannot alloc zero page.\n");
2164 prom_halt();
2166 mark_page_reserved(mem_map_zero);
2168 mem_init_print_info(NULL);
2170 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2171 cheetah_ecache_flush_init();
2174 void free_initmem(void)
2176 unsigned long addr, initend;
2177 int do_free = 1;
2179 /* If the physical memory maps were trimmed by kernel command
2180 * line options, don't even try freeing this initmem stuff up.
2181 * The kernel image could have been in the trimmed out region
2182 * and if so the freeing below will free invalid page structs.
2184 if (cmdline_memory_size)
2185 do_free = 0;
2188 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2190 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2191 initend = (unsigned long)(__init_end) & PAGE_MASK;
2192 for (; addr < initend; addr += PAGE_SIZE) {
2193 unsigned long page;
2195 page = (addr +
2196 ((unsigned long) __va(kern_base)) -
2197 ((unsigned long) KERNBASE));
2198 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2200 if (do_free)
2201 free_reserved_page(virt_to_page(page));
2205 #ifdef CONFIG_BLK_DEV_INITRD
2206 void free_initrd_mem(unsigned long start, unsigned long end)
2208 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2209 "initrd");
2211 #endif
2213 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2214 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2215 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2216 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2217 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2218 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2220 pgprot_t PAGE_KERNEL __read_mostly;
2221 EXPORT_SYMBOL(PAGE_KERNEL);
2223 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2224 pgprot_t PAGE_COPY __read_mostly;
2226 pgprot_t PAGE_SHARED __read_mostly;
2227 EXPORT_SYMBOL(PAGE_SHARED);
2229 unsigned long pg_iobits __read_mostly;
2231 unsigned long _PAGE_IE __read_mostly;
2232 EXPORT_SYMBOL(_PAGE_IE);
2234 unsigned long _PAGE_E __read_mostly;
2235 EXPORT_SYMBOL(_PAGE_E);
2237 unsigned long _PAGE_CACHE __read_mostly;
2238 EXPORT_SYMBOL(_PAGE_CACHE);
2240 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2241 unsigned long vmemmap_table[VMEMMAP_SIZE];
2243 static long __meminitdata addr_start, addr_end;
2244 static int __meminitdata node_start;
2246 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2247 int node)
2249 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2250 unsigned long phys_end = (vend - VMEMMAP_BASE);
2251 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2252 unsigned long end = VMEMMAP_ALIGN(phys_end);
2253 unsigned long pte_base;
2255 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2256 _PAGE_CP_4U | _PAGE_CV_4U |
2257 _PAGE_P_4U | _PAGE_W_4U);
2258 if (tlb_type == hypervisor)
2259 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2260 _PAGE_CP_4V | _PAGE_CV_4V |
2261 _PAGE_P_4V | _PAGE_W_4V);
2263 for (; addr < end; addr += VMEMMAP_CHUNK) {
2264 unsigned long *vmem_pp =
2265 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2266 void *block;
2268 if (!(*vmem_pp & _PAGE_VALID)) {
2269 block = vmemmap_alloc_block(1UL << 22, node);
2270 if (!block)
2271 return -ENOMEM;
2273 *vmem_pp = pte_base | __pa(block);
2275 /* check to see if we have contiguous blocks */
2276 if (addr_end != addr || node_start != node) {
2277 if (addr_start)
2278 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2279 addr_start, addr_end-1, node_start);
2280 addr_start = addr;
2281 node_start = node;
2283 addr_end = addr + VMEMMAP_CHUNK;
2286 return 0;
2289 void __meminit vmemmap_populate_print_last(void)
2291 if (addr_start) {
2292 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2293 addr_start, addr_end-1, node_start);
2294 addr_start = 0;
2295 addr_end = 0;
2296 node_start = 0;
2300 void vmemmap_free(unsigned long start, unsigned long end)
2304 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2306 static void prot_init_common(unsigned long page_none,
2307 unsigned long page_shared,
2308 unsigned long page_copy,
2309 unsigned long page_readonly,
2310 unsigned long page_exec_bit)
2312 PAGE_COPY = __pgprot(page_copy);
2313 PAGE_SHARED = __pgprot(page_shared);
2315 protection_map[0x0] = __pgprot(page_none);
2316 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2317 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2318 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2319 protection_map[0x4] = __pgprot(page_readonly);
2320 protection_map[0x5] = __pgprot(page_readonly);
2321 protection_map[0x6] = __pgprot(page_copy);
2322 protection_map[0x7] = __pgprot(page_copy);
2323 protection_map[0x8] = __pgprot(page_none);
2324 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2325 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2326 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2327 protection_map[0xc] = __pgprot(page_readonly);
2328 protection_map[0xd] = __pgprot(page_readonly);
2329 protection_map[0xe] = __pgprot(page_shared);
2330 protection_map[0xf] = __pgprot(page_shared);
2333 static void __init sun4u_pgprot_init(void)
2335 unsigned long page_none, page_shared, page_copy, page_readonly;
2336 unsigned long page_exec_bit;
2337 int i;
2339 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2340 _PAGE_CACHE_4U | _PAGE_P_4U |
2341 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2342 _PAGE_EXEC_4U);
2343 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2344 _PAGE_CACHE_4U | _PAGE_P_4U |
2345 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2346 _PAGE_EXEC_4U | _PAGE_L_4U);
2348 _PAGE_IE = _PAGE_IE_4U;
2349 _PAGE_E = _PAGE_E_4U;
2350 _PAGE_CACHE = _PAGE_CACHE_4U;
2352 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2353 __ACCESS_BITS_4U | _PAGE_E_4U);
2355 #ifdef CONFIG_DEBUG_PAGEALLOC
2356 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2357 #else
2358 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2359 PAGE_OFFSET;
2360 #endif
2361 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2362 _PAGE_P_4U | _PAGE_W_4U);
2364 for (i = 1; i < 4; i++)
2365 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2367 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2368 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2369 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2372 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2373 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2374 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2375 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2376 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2377 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2378 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2380 page_exec_bit = _PAGE_EXEC_4U;
2382 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2383 page_exec_bit);
2386 static void __init sun4v_pgprot_init(void)
2388 unsigned long page_none, page_shared, page_copy, page_readonly;
2389 unsigned long page_exec_bit;
2390 int i;
2392 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2393 _PAGE_CACHE_4V | _PAGE_P_4V |
2394 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2395 _PAGE_EXEC_4V);
2396 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2398 _PAGE_IE = _PAGE_IE_4V;
2399 _PAGE_E = _PAGE_E_4V;
2400 _PAGE_CACHE = _PAGE_CACHE_4V;
2402 #ifdef CONFIG_DEBUG_PAGEALLOC
2403 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2404 #else
2405 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2406 PAGE_OFFSET;
2407 #endif
2408 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2409 _PAGE_P_4V | _PAGE_W_4V);
2411 for (i = 1; i < 4; i++)
2412 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2414 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2415 __ACCESS_BITS_4V | _PAGE_E_4V);
2417 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2418 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2419 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2420 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2422 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2423 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2424 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2425 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2426 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2427 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2428 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2430 page_exec_bit = _PAGE_EXEC_4V;
2432 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2433 page_exec_bit);
2436 unsigned long pte_sz_bits(unsigned long sz)
2438 if (tlb_type == hypervisor) {
2439 switch (sz) {
2440 case 8 * 1024:
2441 default:
2442 return _PAGE_SZ8K_4V;
2443 case 64 * 1024:
2444 return _PAGE_SZ64K_4V;
2445 case 512 * 1024:
2446 return _PAGE_SZ512K_4V;
2447 case 4 * 1024 * 1024:
2448 return _PAGE_SZ4MB_4V;
2450 } else {
2451 switch (sz) {
2452 case 8 * 1024:
2453 default:
2454 return _PAGE_SZ8K_4U;
2455 case 64 * 1024:
2456 return _PAGE_SZ64K_4U;
2457 case 512 * 1024:
2458 return _PAGE_SZ512K_4U;
2459 case 4 * 1024 * 1024:
2460 return _PAGE_SZ4MB_4U;
2465 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2467 pte_t pte;
2469 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2470 pte_val(pte) |= (((unsigned long)space) << 32);
2471 pte_val(pte) |= pte_sz_bits(page_size);
2473 return pte;
2476 static unsigned long kern_large_tte(unsigned long paddr)
2478 unsigned long val;
2480 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2481 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2482 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2483 if (tlb_type == hypervisor)
2484 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2485 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2486 _PAGE_EXEC_4V | _PAGE_W_4V);
2488 return val | paddr;
2491 /* If not locked, zap it. */
2492 void __flush_tlb_all(void)
2494 unsigned long pstate;
2495 int i;
2497 __asm__ __volatile__("flushw\n\t"
2498 "rdpr %%pstate, %0\n\t"
2499 "wrpr %0, %1, %%pstate"
2500 : "=r" (pstate)
2501 : "i" (PSTATE_IE));
2502 if (tlb_type == hypervisor) {
2503 sun4v_mmu_demap_all();
2504 } else if (tlb_type == spitfire) {
2505 for (i = 0; i < 64; i++) {
2506 /* Spitfire Errata #32 workaround */
2507 /* NOTE: Always runs on spitfire, so no
2508 * cheetah+ page size encodings.
2510 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2511 "flush %%g6"
2512 : /* No outputs */
2513 : "r" (0),
2514 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2516 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2517 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2518 "membar #Sync"
2519 : /* no outputs */
2520 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2521 spitfire_put_dtlb_data(i, 0x0UL);
2524 /* Spitfire Errata #32 workaround */
2525 /* NOTE: Always runs on spitfire, so no
2526 * cheetah+ page size encodings.
2528 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2529 "flush %%g6"
2530 : /* No outputs */
2531 : "r" (0),
2532 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2534 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2535 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2536 "membar #Sync"
2537 : /* no outputs */
2538 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2539 spitfire_put_itlb_data(i, 0x0UL);
2542 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2543 cheetah_flush_dtlb_all();
2544 cheetah_flush_itlb_all();
2546 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2547 : : "r" (pstate));
2550 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2551 unsigned long address)
2553 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2554 __GFP_REPEAT | __GFP_ZERO);
2555 pte_t *pte = NULL;
2557 if (page)
2558 pte = (pte_t *) page_address(page);
2560 return pte;
2563 pgtable_t pte_alloc_one(struct mm_struct *mm,
2564 unsigned long address)
2566 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2567 __GFP_REPEAT | __GFP_ZERO);
2568 pte_t *pte = NULL;
2570 if (page) {
2571 pgtable_page_ctor(page);
2572 pte = (pte_t *) page_address(page);
2575 return pte;
2578 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2580 free_page((unsigned long)pte);
2583 static void __pte_free(pgtable_t pte)
2585 struct page *page = virt_to_page(pte);
2587 pgtable_page_dtor(page);
2588 __free_page(page);
2591 void pte_free(struct mm_struct *mm, pgtable_t pte)
2593 __pte_free(pte);
2596 void pgtable_free(void *table, bool is_page)
2598 if (is_page)
2599 __pte_free(table);
2600 else
2601 kmem_cache_free(pgtable_cache, table);
2604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2605 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
2607 if (pgprot_val(pgprot) & _PAGE_VALID)
2608 pmd_val(pmd) |= PMD_HUGE_PRESENT;
2609 if (tlb_type == hypervisor) {
2610 if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
2611 pmd_val(pmd) |= PMD_HUGE_WRITE;
2612 if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
2613 pmd_val(pmd) |= PMD_HUGE_EXEC;
2615 if (!for_modify) {
2616 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
2617 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2618 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
2619 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2621 } else {
2622 if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
2623 pmd_val(pmd) |= PMD_HUGE_WRITE;
2624 if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
2625 pmd_val(pmd) |= PMD_HUGE_EXEC;
2627 if (!for_modify) {
2628 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
2629 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2630 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
2631 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2635 return pmd;
2638 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
2640 pmd_t pmd;
2642 pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
2643 pmd_val(pmd) |= PMD_ISHUGE;
2644 pmd = pmd_set_protbits(pmd, pgprot, false);
2645 return pmd;
2648 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
2650 pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
2651 PMD_HUGE_WRITE |
2652 PMD_HUGE_EXEC);
2653 pmd = pmd_set_protbits(pmd, newprot, true);
2654 return pmd;
2657 pgprot_t pmd_pgprot(pmd_t entry)
2659 unsigned long pte = 0;
2661 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2662 pte |= _PAGE_VALID;
2664 if (tlb_type == hypervisor) {
2665 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2666 pte |= _PAGE_PRESENT_4V;
2667 if (pmd_val(entry) & PMD_HUGE_EXEC)
2668 pte |= _PAGE_EXEC_4V;
2669 if (pmd_val(entry) & PMD_HUGE_WRITE)
2670 pte |= _PAGE_W_4V;
2671 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2672 pte |= _PAGE_ACCESSED_4V;
2673 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2674 pte |= _PAGE_MODIFIED_4V;
2675 pte |= _PAGE_CP_4V|_PAGE_CV_4V;
2676 } else {
2677 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2678 pte |= _PAGE_PRESENT_4U;
2679 if (pmd_val(entry) & PMD_HUGE_EXEC)
2680 pte |= _PAGE_EXEC_4U;
2681 if (pmd_val(entry) & PMD_HUGE_WRITE)
2682 pte |= _PAGE_W_4U;
2683 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2684 pte |= _PAGE_ACCESSED_4U;
2685 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2686 pte |= _PAGE_MODIFIED_4U;
2687 pte |= _PAGE_CP_4U|_PAGE_CV_4U;
2690 return __pgprot(pte);
2693 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2694 pmd_t *pmd)
2696 unsigned long pte, flags;
2697 struct mm_struct *mm;
2698 pmd_t entry = *pmd;
2699 pgprot_t prot;
2701 if (!pmd_large(entry) || !pmd_young(entry))
2702 return;
2704 pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
2705 pte <<= PMD_PADDR_SHIFT;
2706 pte |= _PAGE_VALID;
2708 /* We are fabricating 8MB pages using 4MB real hw pages. */
2709 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2711 prot = pmd_pgprot(entry);
2713 if (tlb_type == hypervisor)
2714 pgprot_val(prot) |= _PAGE_SZHUGE_4V;
2715 else
2716 pgprot_val(prot) |= _PAGE_SZHUGE_4U;
2718 pte |= pgprot_val(prot);
2720 mm = vma->vm_mm;
2722 spin_lock_irqsave(&mm->context.lock, flags);
2724 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2725 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2726 addr, pte);
2728 spin_unlock_irqrestore(&mm->context.lock, flags);
2730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2732 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2733 static void context_reload(void *__data)
2735 struct mm_struct *mm = __data;
2737 if (mm == current->mm)
2738 load_secondary_context(mm);
2741 void hugetlb_setup(struct pt_regs *regs)
2743 struct mm_struct *mm = current->mm;
2744 struct tsb_config *tp;
2746 if (in_atomic() || !mm) {
2747 const struct exception_table_entry *entry;
2749 entry = search_exception_tables(regs->tpc);
2750 if (entry) {
2751 regs->tpc = entry->fixup;
2752 regs->tnpc = regs->tpc + 4;
2753 return;
2755 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2756 die_if_kernel("HugeTSB in atomic", regs);
2759 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2760 if (likely(tp->tsb == NULL))
2761 tsb_grow(mm, MM_TSB_HUGE, 0);
2763 tsb_context_switch(mm);
2764 smp_tsb_sync(mm);
2766 /* On UltraSPARC-III+ and later, configure the second half of
2767 * the Data-TLB for huge pages.
2769 if (tlb_type == cheetah_plus) {
2770 unsigned long ctx;
2772 spin_lock(&ctx_alloc_lock);
2773 ctx = mm->context.sparc64_ctx_val;
2774 ctx &= ~CTX_PGSZ_MASK;
2775 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2776 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2778 if (ctx != mm->context.sparc64_ctx_val) {
2779 /* When changing the page size fields, we
2780 * must perform a context flush so that no
2781 * stale entries match. This flush must
2782 * occur with the original context register
2783 * settings.
2785 do_flush_tlb_mm(mm);
2787 /* Reload the context register of all processors
2788 * also executing in this address space.
2790 mm->context.sparc64_ctx_val = ctx;
2791 on_each_cpu(context_reload, mm, 0);
2793 spin_unlock(&ctx_alloc_lock);
2796 #endif