2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock
);
76 static cpumask_var_t cpus_hardware_enabled
;
77 static int kvm_usage_count
= 0;
78 static atomic_t hardware_enable_failed
;
80 struct kmem_cache
*kvm_vcpu_cache
;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
83 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
85 struct dentry
*kvm_debugfs_dir
;
87 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
90 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
99 EXPORT_SYMBOL_GPL(kvm_rebooting
);
101 static bool largepages_enabled
= true;
103 bool kvm_is_mmio_pfn(pfn_t pfn
)
105 if (pfn_valid(pfn
)) {
107 struct page
*tail
= pfn_to_page(pfn
);
108 struct page
*head
= compound_trans_head(tail
);
109 reserved
= PageReserved(head
);
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
125 return PageReserved(tail
);
132 * Switches to specified vcpu, until a matching vcpu_put()
134 int vcpu_load(struct kvm_vcpu
*vcpu
)
138 if (mutex_lock_killable(&vcpu
->mutex
))
140 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
141 /* The thread running this VCPU changed. */
142 struct pid
*oldpid
= vcpu
->pid
;
143 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
144 rcu_assign_pointer(vcpu
->pid
, newpid
);
149 preempt_notifier_register(&vcpu
->preempt_notifier
);
150 kvm_arch_vcpu_load(vcpu
, cpu
);
155 void vcpu_put(struct kvm_vcpu
*vcpu
)
158 kvm_arch_vcpu_put(vcpu
);
159 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
161 mutex_unlock(&vcpu
->mutex
);
164 static void ack_flush(void *_completed
)
168 static bool make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
173 struct kvm_vcpu
*vcpu
;
175 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
178 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
179 kvm_make_request(req
, vcpu
);
182 /* Set ->requests bit before we read ->mode */
185 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
186 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
187 cpumask_set_cpu(cpu
, cpus
);
189 if (unlikely(cpus
== NULL
))
190 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
191 else if (!cpumask_empty(cpus
))
192 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
196 free_cpumask_var(cpus
);
200 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
202 long dirty_count
= kvm
->tlbs_dirty
;
205 if (make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
206 ++kvm
->stat
.remote_tlb_flush
;
207 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
210 void kvm_reload_remote_mmus(struct kvm
*kvm
)
212 make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
215 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
220 mutex_init(&vcpu
->mutex
);
225 init_waitqueue_head(&vcpu
->wq
);
226 kvm_async_pf_vcpu_init(vcpu
);
228 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
233 vcpu
->run
= page_address(page
);
235 kvm_vcpu_set_in_spin_loop(vcpu
, false);
236 kvm_vcpu_set_dy_eligible(vcpu
, false);
238 r
= kvm_arch_vcpu_init(vcpu
);
244 free_page((unsigned long)vcpu
->run
);
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
250 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
253 kvm_arch_vcpu_uninit(vcpu
);
254 free_page((unsigned long)vcpu
->run
);
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
261 return container_of(mn
, struct kvm
, mmu_notifier
);
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
265 struct mm_struct
*mm
,
266 unsigned long address
)
268 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
269 int need_tlb_flush
, idx
;
272 * When ->invalidate_page runs, the linux pte has been zapped
273 * already but the page is still allocated until
274 * ->invalidate_page returns. So if we increase the sequence
275 * here the kvm page fault will notice if the spte can't be
276 * established because the page is going to be freed. If
277 * instead the kvm page fault establishes the spte before
278 * ->invalidate_page runs, kvm_unmap_hva will release it
281 * The sequence increase only need to be seen at spin_unlock
282 * time, and not at spin_lock time.
284 * Increasing the sequence after the spin_unlock would be
285 * unsafe because the kvm page fault could then establish the
286 * pte after kvm_unmap_hva returned, without noticing the page
287 * is going to be freed.
289 idx
= srcu_read_lock(&kvm
->srcu
);
290 spin_lock(&kvm
->mmu_lock
);
292 kvm
->mmu_notifier_seq
++;
293 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
294 /* we've to flush the tlb before the pages can be freed */
296 kvm_flush_remote_tlbs(kvm
);
298 spin_unlock(&kvm
->mmu_lock
);
299 srcu_read_unlock(&kvm
->srcu
, idx
);
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
303 struct mm_struct
*mm
,
304 unsigned long address
,
307 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
310 idx
= srcu_read_lock(&kvm
->srcu
);
311 spin_lock(&kvm
->mmu_lock
);
312 kvm
->mmu_notifier_seq
++;
313 kvm_set_spte_hva(kvm
, address
, pte
);
314 spin_unlock(&kvm
->mmu_lock
);
315 srcu_read_unlock(&kvm
->srcu
, idx
);
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
319 struct mm_struct
*mm
,
323 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
324 int need_tlb_flush
= 0, idx
;
326 idx
= srcu_read_lock(&kvm
->srcu
);
327 spin_lock(&kvm
->mmu_lock
);
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
333 kvm
->mmu_notifier_count
++;
334 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
335 need_tlb_flush
|= kvm
->tlbs_dirty
;
336 /* we've to flush the tlb before the pages can be freed */
338 kvm_flush_remote_tlbs(kvm
);
340 spin_unlock(&kvm
->mmu_lock
);
341 srcu_read_unlock(&kvm
->srcu
, idx
);
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
345 struct mm_struct
*mm
,
349 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
351 spin_lock(&kvm
->mmu_lock
);
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
357 kvm
->mmu_notifier_seq
++;
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
364 kvm
->mmu_notifier_count
--;
365 spin_unlock(&kvm
->mmu_lock
);
367 BUG_ON(kvm
->mmu_notifier_count
< 0);
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
371 struct mm_struct
*mm
,
372 unsigned long address
)
374 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
377 idx
= srcu_read_lock(&kvm
->srcu
);
378 spin_lock(&kvm
->mmu_lock
);
380 young
= kvm_age_hva(kvm
, address
);
382 kvm_flush_remote_tlbs(kvm
);
384 spin_unlock(&kvm
->mmu_lock
);
385 srcu_read_unlock(&kvm
->srcu
, idx
);
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
391 struct mm_struct
*mm
,
392 unsigned long address
)
394 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
397 idx
= srcu_read_lock(&kvm
->srcu
);
398 spin_lock(&kvm
->mmu_lock
);
399 young
= kvm_test_age_hva(kvm
, address
);
400 spin_unlock(&kvm
->mmu_lock
);
401 srcu_read_unlock(&kvm
->srcu
, idx
);
406 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
407 struct mm_struct
*mm
)
409 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
412 idx
= srcu_read_lock(&kvm
->srcu
);
413 kvm_arch_flush_shadow_all(kvm
);
414 srcu_read_unlock(&kvm
->srcu
, idx
);
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
418 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
419 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
420 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
421 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
422 .test_young
= kvm_mmu_notifier_test_young
,
423 .change_pte
= kvm_mmu_notifier_change_pte
,
424 .release
= kvm_mmu_notifier_release
,
427 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
429 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
430 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442 static void kvm_init_memslots_id(struct kvm
*kvm
)
445 struct kvm_memslots
*slots
= kvm
->memslots
;
447 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
448 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
451 static struct kvm
*kvm_create_vm(unsigned long type
)
454 struct kvm
*kvm
= kvm_arch_alloc_vm();
457 return ERR_PTR(-ENOMEM
);
459 r
= kvm_arch_init_vm(kvm
, type
);
461 goto out_err_nodisable
;
463 r
= hardware_enable_all();
465 goto out_err_nodisable
;
467 #ifdef CONFIG_HAVE_KVM_IRQCHIP
468 INIT_HLIST_HEAD(&kvm
->mask_notifier_list
);
469 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
473 kvm
->memslots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
476 kvm_init_memslots_id(kvm
);
477 if (init_srcu_struct(&kvm
->srcu
))
479 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
480 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
486 spin_lock_init(&kvm
->mmu_lock
);
487 kvm
->mm
= current
->mm
;
488 atomic_inc(&kvm
->mm
->mm_count
);
489 kvm_eventfd_init(kvm
);
490 mutex_init(&kvm
->lock
);
491 mutex_init(&kvm
->irq_lock
);
492 mutex_init(&kvm
->slots_lock
);
493 atomic_set(&kvm
->users_count
, 1);
495 r
= kvm_init_mmu_notifier(kvm
);
499 raw_spin_lock(&kvm_lock
);
500 list_add(&kvm
->vm_list
, &vm_list
);
501 raw_spin_unlock(&kvm_lock
);
506 cleanup_srcu_struct(&kvm
->srcu
);
508 hardware_disable_all();
510 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
511 kfree(kvm
->buses
[i
]);
512 kfree(kvm
->memslots
);
513 kvm_arch_free_vm(kvm
);
518 * Avoid using vmalloc for a small buffer.
519 * Should not be used when the size is statically known.
521 void *kvm_kvzalloc(unsigned long size
)
523 if (size
> PAGE_SIZE
)
524 return vzalloc(size
);
526 return kzalloc(size
, GFP_KERNEL
);
529 void kvm_kvfree(const void *addr
)
531 if (is_vmalloc_addr(addr
))
537 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
539 if (!memslot
->dirty_bitmap
)
542 kvm_kvfree(memslot
->dirty_bitmap
);
543 memslot
->dirty_bitmap
= NULL
;
547 * Free any memory in @free but not in @dont.
549 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
550 struct kvm_memory_slot
*dont
)
552 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
553 kvm_destroy_dirty_bitmap(free
);
555 kvm_arch_free_memslot(free
, dont
);
560 void kvm_free_physmem(struct kvm
*kvm
)
562 struct kvm_memslots
*slots
= kvm
->memslots
;
563 struct kvm_memory_slot
*memslot
;
565 kvm_for_each_memslot(memslot
, slots
)
566 kvm_free_physmem_slot(memslot
, NULL
);
568 kfree(kvm
->memslots
);
571 static void kvm_destroy_vm(struct kvm
*kvm
)
574 struct mm_struct
*mm
= kvm
->mm
;
576 kvm_arch_sync_events(kvm
);
577 raw_spin_lock(&kvm_lock
);
578 list_del(&kvm
->vm_list
);
579 raw_spin_unlock(&kvm_lock
);
580 kvm_free_irq_routing(kvm
);
581 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
582 kvm_io_bus_destroy(kvm
->buses
[i
]);
583 kvm_coalesced_mmio_free(kvm
);
584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
585 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
587 kvm_arch_flush_shadow_all(kvm
);
589 kvm_arch_destroy_vm(kvm
);
590 kvm_free_physmem(kvm
);
591 cleanup_srcu_struct(&kvm
->srcu
);
592 kvm_arch_free_vm(kvm
);
593 hardware_disable_all();
597 void kvm_get_kvm(struct kvm
*kvm
)
599 atomic_inc(&kvm
->users_count
);
601 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
603 void kvm_put_kvm(struct kvm
*kvm
)
605 if (atomic_dec_and_test(&kvm
->users_count
))
608 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
611 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
613 struct kvm
*kvm
= filp
->private_data
;
615 kvm_irqfd_release(kvm
);
622 * Allocation size is twice as large as the actual dirty bitmap size.
623 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
628 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
630 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
631 if (!memslot
->dirty_bitmap
)
634 #endif /* !CONFIG_S390 */
638 static int cmp_memslot(const void *slot1
, const void *slot2
)
640 struct kvm_memory_slot
*s1
, *s2
;
642 s1
= (struct kvm_memory_slot
*)slot1
;
643 s2
= (struct kvm_memory_slot
*)slot2
;
645 if (s1
->npages
< s2
->npages
)
647 if (s1
->npages
> s2
->npages
)
654 * Sort the memslots base on its size, so the larger slots
655 * will get better fit.
657 static void sort_memslots(struct kvm_memslots
*slots
)
661 sort(slots
->memslots
, KVM_MEM_SLOTS_NUM
,
662 sizeof(struct kvm_memory_slot
), cmp_memslot
, NULL
);
664 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
665 slots
->id_to_index
[slots
->memslots
[i
].id
] = i
;
668 void update_memslots(struct kvm_memslots
*slots
, struct kvm_memory_slot
*new)
672 struct kvm_memory_slot
*old
= id_to_memslot(slots
, id
);
673 unsigned long npages
= old
->npages
;
676 if (new->npages
!= npages
)
677 sort_memslots(slots
);
683 static int check_memory_region_flags(struct kvm_userspace_memory_region
*mem
)
685 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
687 #ifdef KVM_CAP_READONLY_MEM
688 valid_flags
|= KVM_MEM_READONLY
;
691 if (mem
->flags
& ~valid_flags
)
698 * Allocate some memory and give it an address in the guest physical address
701 * Discontiguous memory is allowed, mostly for framebuffers.
703 * Must be called holding mmap_sem for write.
705 int __kvm_set_memory_region(struct kvm
*kvm
,
706 struct kvm_userspace_memory_region
*mem
,
711 unsigned long npages
;
713 struct kvm_memory_slot
*memslot
;
714 struct kvm_memory_slot old
, new;
715 struct kvm_memslots
*slots
, *old_memslots
;
717 r
= check_memory_region_flags(mem
);
722 /* General sanity checks */
723 if (mem
->memory_size
& (PAGE_SIZE
- 1))
725 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
727 /* We can read the guest memory with __xxx_user() later on. */
729 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
730 !access_ok(VERIFY_WRITE
,
731 (void __user
*)(unsigned long)mem
->userspace_addr
,
734 if (mem
->slot
>= KVM_MEM_SLOTS_NUM
)
736 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
739 memslot
= id_to_memslot(kvm
->memslots
, mem
->slot
);
740 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
741 npages
= mem
->memory_size
>> PAGE_SHIFT
;
744 if (npages
> KVM_MEM_MAX_NR_PAGES
)
748 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
750 new = old
= *memslot
;
753 new.base_gfn
= base_gfn
;
755 new.flags
= mem
->flags
;
757 /* Disallow changing a memory slot's size. */
759 if (npages
&& old
.npages
&& npages
!= old
.npages
)
762 /* Check for overlaps */
764 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
765 struct kvm_memory_slot
*s
= &kvm
->memslots
->memslots
[i
];
767 if (s
== memslot
|| !s
->npages
)
769 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
770 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
774 /* Free page dirty bitmap if unneeded */
775 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
776 new.dirty_bitmap
= NULL
;
780 /* Allocate if a slot is being created */
781 if (npages
&& !old
.npages
) {
782 new.user_alloc
= user_alloc
;
783 new.userspace_addr
= mem
->userspace_addr
;
785 if (kvm_arch_create_memslot(&new, npages
))
789 /* Allocate page dirty bitmap if needed */
790 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
791 if (kvm_create_dirty_bitmap(&new) < 0)
793 /* destroy any largepage mappings for dirty tracking */
796 if (!npages
|| base_gfn
!= old
.base_gfn
) {
797 struct kvm_memory_slot
*slot
;
800 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
804 slot
= id_to_memslot(slots
, mem
->slot
);
805 slot
->flags
|= KVM_MEMSLOT_INVALID
;
807 update_memslots(slots
, NULL
);
809 old_memslots
= kvm
->memslots
;
810 rcu_assign_pointer(kvm
->memslots
, slots
);
811 synchronize_srcu_expedited(&kvm
->srcu
);
812 /* From this point no new shadow pages pointing to a deleted,
813 * or moved, memslot will be created.
815 * validation of sp->gfn happens in:
816 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
817 * - kvm_is_visible_gfn (mmu_check_roots)
819 kvm_arch_flush_shadow_memslot(kvm
, slot
);
823 r
= kvm_arch_prepare_memory_region(kvm
, &new, old
, mem
, user_alloc
);
827 /* map/unmap the pages in iommu page table */
829 r
= kvm_iommu_map_pages(kvm
, &new);
833 kvm_iommu_unmap_pages(kvm
, &old
);
836 slots
= kmemdup(kvm
->memslots
, sizeof(struct kvm_memslots
),
841 /* actual memory is freed via old in kvm_free_physmem_slot below */
843 new.dirty_bitmap
= NULL
;
844 memset(&new.arch
, 0, sizeof(new.arch
));
847 update_memslots(slots
, &new);
848 old_memslots
= kvm
->memslots
;
849 rcu_assign_pointer(kvm
->memslots
, slots
);
850 synchronize_srcu_expedited(&kvm
->srcu
);
852 kvm_arch_commit_memory_region(kvm
, mem
, old
, user_alloc
);
854 kvm_free_physmem_slot(&old
, &new);
860 kvm_free_physmem_slot(&new, &old
);
865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
867 int kvm_set_memory_region(struct kvm
*kvm
,
868 struct kvm_userspace_memory_region
*mem
,
873 mutex_lock(&kvm
->slots_lock
);
874 r
= __kvm_set_memory_region(kvm
, mem
, user_alloc
);
875 mutex_unlock(&kvm
->slots_lock
);
878 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
880 int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
882 kvm_userspace_memory_region
*mem
,
885 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
887 return kvm_set_memory_region(kvm
, mem
, user_alloc
);
890 int kvm_get_dirty_log(struct kvm
*kvm
,
891 struct kvm_dirty_log
*log
, int *is_dirty
)
893 struct kvm_memory_slot
*memslot
;
896 unsigned long any
= 0;
899 if (log
->slot
>= KVM_MEMORY_SLOTS
)
902 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
904 if (!memslot
->dirty_bitmap
)
907 n
= kvm_dirty_bitmap_bytes(memslot
);
909 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
910 any
= memslot
->dirty_bitmap
[i
];
913 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
924 bool kvm_largepages_enabled(void)
926 return largepages_enabled
;
929 void kvm_disable_largepages(void)
931 largepages_enabled
= false;
933 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
935 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
937 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
939 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
941 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
943 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
945 if (!memslot
|| memslot
->id
>= KVM_MEMORY_SLOTS
||
946 memslot
->flags
& KVM_MEMSLOT_INVALID
)
951 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
953 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
955 struct vm_area_struct
*vma
;
956 unsigned long addr
, size
;
960 addr
= gfn_to_hva(kvm
, gfn
);
961 if (kvm_is_error_hva(addr
))
964 down_read(¤t
->mm
->mmap_sem
);
965 vma
= find_vma(current
->mm
, addr
);
969 size
= vma_kernel_pagesize(vma
);
972 up_read(¤t
->mm
->mmap_sem
);
977 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
979 return slot
->flags
& KVM_MEM_READONLY
;
982 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
983 gfn_t
*nr_pages
, bool write
)
985 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
986 return KVM_HVA_ERR_BAD
;
988 if (memslot_is_readonly(slot
) && write
)
989 return KVM_HVA_ERR_RO_BAD
;
992 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
994 return __gfn_to_hva_memslot(slot
, gfn
);
997 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1000 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1003 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1006 return gfn_to_hva_many(slot
, gfn
, NULL
);
1008 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1010 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1012 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1014 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1017 * The hva returned by this function is only allowed to be read.
1018 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1020 static unsigned long gfn_to_hva_read(struct kvm
*kvm
, gfn_t gfn
)
1022 return __gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
, false);
1025 static int kvm_read_hva(void *data
, void __user
*hva
, int len
)
1027 return __copy_from_user(data
, hva
, len
);
1030 static int kvm_read_hva_atomic(void *data
, void __user
*hva
, int len
)
1032 return __copy_from_user_inatomic(data
, hva
, len
);
1035 int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1036 unsigned long start
, int write
, struct page
**page
)
1038 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1041 flags
|= FOLL_WRITE
;
1043 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1046 static inline int check_user_page_hwpoison(unsigned long addr
)
1048 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1050 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1051 flags
, NULL
, NULL
, NULL
);
1052 return rc
== -EHWPOISON
;
1056 * The atomic path to get the writable pfn which will be stored in @pfn,
1057 * true indicates success, otherwise false is returned.
1059 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1060 bool write_fault
, bool *writable
, pfn_t
*pfn
)
1062 struct page
*page
[1];
1065 if (!(async
|| atomic
))
1069 * Fast pin a writable pfn only if it is a write fault request
1070 * or the caller allows to map a writable pfn for a read fault
1073 if (!(write_fault
|| writable
))
1076 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1078 *pfn
= page_to_pfn(page
[0]);
1089 * The slow path to get the pfn of the specified host virtual address,
1090 * 1 indicates success, -errno is returned if error is detected.
1092 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1093 bool *writable
, pfn_t
*pfn
)
1095 struct page
*page
[1];
1101 *writable
= write_fault
;
1104 down_read(¤t
->mm
->mmap_sem
);
1105 npages
= get_user_page_nowait(current
, current
->mm
,
1106 addr
, write_fault
, page
);
1107 up_read(¤t
->mm
->mmap_sem
);
1109 npages
= get_user_pages_fast(addr
, 1, write_fault
,
1114 /* map read fault as writable if possible */
1115 if (unlikely(!write_fault
) && writable
) {
1116 struct page
*wpage
[1];
1118 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1127 *pfn
= page_to_pfn(page
[0]);
1131 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1133 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1136 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1143 * Pin guest page in memory and return its pfn.
1144 * @addr: host virtual address which maps memory to the guest
1145 * @atomic: whether this function can sleep
1146 * @async: whether this function need to wait IO complete if the
1147 * host page is not in the memory
1148 * @write_fault: whether we should get a writable host page
1149 * @writable: whether it allows to map a writable host page for !@write_fault
1151 * The function will map a writable host page for these two cases:
1152 * 1): @write_fault = true
1153 * 2): @write_fault = false && @writable, @writable will tell the caller
1154 * whether the mapping is writable.
1156 static pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1157 bool write_fault
, bool *writable
)
1159 struct vm_area_struct
*vma
;
1163 /* we can do it either atomically or asynchronously, not both */
1164 BUG_ON(atomic
&& async
);
1166 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1170 return KVM_PFN_ERR_FAULT
;
1172 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1176 down_read(¤t
->mm
->mmap_sem
);
1177 if (npages
== -EHWPOISON
||
1178 (!async
&& check_user_page_hwpoison(addr
))) {
1179 pfn
= KVM_PFN_ERR_HWPOISON
;
1183 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1186 pfn
= KVM_PFN_ERR_FAULT
;
1187 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1188 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1190 BUG_ON(!kvm_is_mmio_pfn(pfn
));
1192 if (async
&& vma_is_valid(vma
, write_fault
))
1194 pfn
= KVM_PFN_ERR_FAULT
;
1197 up_read(¤t
->mm
->mmap_sem
);
1202 __gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
, bool atomic
,
1203 bool *async
, bool write_fault
, bool *writable
)
1205 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1207 if (addr
== KVM_HVA_ERR_RO_BAD
)
1208 return KVM_PFN_ERR_RO_FAULT
;
1210 if (kvm_is_error_hva(addr
))
1211 return KVM_PFN_ERR_BAD
;
1213 /* Do not map writable pfn in the readonly memslot. */
1214 if (writable
&& memslot_is_readonly(slot
)) {
1219 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1223 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1224 bool write_fault
, bool *writable
)
1226 struct kvm_memory_slot
*slot
;
1231 slot
= gfn_to_memslot(kvm
, gfn
);
1233 return __gfn_to_pfn_memslot(slot
, gfn
, atomic
, async
, write_fault
,
1237 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1239 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1243 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1244 bool write_fault
, bool *writable
)
1246 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1248 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1250 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1252 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1254 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1256 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1259 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1261 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1263 pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1265 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1268 pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1270 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1272 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1274 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1280 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1281 if (kvm_is_error_hva(addr
))
1284 if (entry
< nr_pages
)
1287 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1289 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1291 static struct page
*kvm_pfn_to_page(pfn_t pfn
)
1293 if (is_error_pfn(pfn
))
1294 return KVM_ERR_PTR_BAD_PAGE
;
1296 if (kvm_is_mmio_pfn(pfn
)) {
1298 return KVM_ERR_PTR_BAD_PAGE
;
1301 return pfn_to_page(pfn
);
1304 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1308 pfn
= gfn_to_pfn(kvm
, gfn
);
1310 return kvm_pfn_to_page(pfn
);
1313 EXPORT_SYMBOL_GPL(gfn_to_page
);
1315 void kvm_release_page_clean(struct page
*page
)
1317 WARN_ON(is_error_page(page
));
1319 kvm_release_pfn_clean(page_to_pfn(page
));
1321 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1323 void kvm_release_pfn_clean(pfn_t pfn
)
1325 if (!is_error_pfn(pfn
) && !kvm_is_mmio_pfn(pfn
))
1326 put_page(pfn_to_page(pfn
));
1328 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1330 void kvm_release_page_dirty(struct page
*page
)
1332 WARN_ON(is_error_page(page
));
1334 kvm_release_pfn_dirty(page_to_pfn(page
));
1336 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1338 void kvm_release_pfn_dirty(pfn_t pfn
)
1340 kvm_set_pfn_dirty(pfn
);
1341 kvm_release_pfn_clean(pfn
);
1343 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1345 void kvm_set_page_dirty(struct page
*page
)
1347 kvm_set_pfn_dirty(page_to_pfn(page
));
1349 EXPORT_SYMBOL_GPL(kvm_set_page_dirty
);
1351 void kvm_set_pfn_dirty(pfn_t pfn
)
1353 if (!kvm_is_mmio_pfn(pfn
)) {
1354 struct page
*page
= pfn_to_page(pfn
);
1355 if (!PageReserved(page
))
1359 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1361 void kvm_set_pfn_accessed(pfn_t pfn
)
1363 if (!kvm_is_mmio_pfn(pfn
))
1364 mark_page_accessed(pfn_to_page(pfn
));
1366 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1368 void kvm_get_pfn(pfn_t pfn
)
1370 if (!kvm_is_mmio_pfn(pfn
))
1371 get_page(pfn_to_page(pfn
));
1373 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1375 static int next_segment(unsigned long len
, int offset
)
1377 if (len
> PAGE_SIZE
- offset
)
1378 return PAGE_SIZE
- offset
;
1383 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1389 addr
= gfn_to_hva_read(kvm
, gfn
);
1390 if (kvm_is_error_hva(addr
))
1392 r
= kvm_read_hva(data
, (void __user
*)addr
+ offset
, len
);
1397 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1399 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1401 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1403 int offset
= offset_in_page(gpa
);
1406 while ((seg
= next_segment(len
, offset
)) != 0) {
1407 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1417 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1419 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1424 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1425 int offset
= offset_in_page(gpa
);
1427 addr
= gfn_to_hva_read(kvm
, gfn
);
1428 if (kvm_is_error_hva(addr
))
1430 pagefault_disable();
1431 r
= kvm_read_hva_atomic(data
, (void __user
*)addr
+ offset
, len
);
1437 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1439 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1440 int offset
, int len
)
1445 addr
= gfn_to_hva(kvm
, gfn
);
1446 if (kvm_is_error_hva(addr
))
1448 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1451 mark_page_dirty(kvm
, gfn
);
1454 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1456 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1459 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1461 int offset
= offset_in_page(gpa
);
1464 while ((seg
= next_segment(len
, offset
)) != 0) {
1465 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1476 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1479 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1480 int offset
= offset_in_page(gpa
);
1481 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1484 ghc
->generation
= slots
->generation
;
1485 ghc
->memslot
= gfn_to_memslot(kvm
, gfn
);
1486 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, gfn
, NULL
);
1487 if (!kvm_is_error_hva(ghc
->hva
))
1494 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1496 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1497 void *data
, unsigned long len
)
1499 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1502 if (slots
->generation
!= ghc
->generation
)
1503 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1505 if (kvm_is_error_hva(ghc
->hva
))
1508 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1511 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1515 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1517 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1518 void *data
, unsigned long len
)
1520 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1523 if (slots
->generation
!= ghc
->generation
)
1524 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1526 if (kvm_is_error_hva(ghc
->hva
))
1529 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1535 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1537 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1539 return kvm_write_guest_page(kvm
, gfn
, (const void *) empty_zero_page
,
1542 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1544 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1546 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1548 int offset
= offset_in_page(gpa
);
1551 while ((seg
= next_segment(len
, offset
)) != 0) {
1552 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1561 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1563 void mark_page_dirty_in_slot(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
1566 if (memslot
&& memslot
->dirty_bitmap
) {
1567 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1569 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1573 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1575 struct kvm_memory_slot
*memslot
;
1577 memslot
= gfn_to_memslot(kvm
, gfn
);
1578 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1582 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1584 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1589 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1591 if (kvm_arch_vcpu_runnable(vcpu
)) {
1592 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1595 if (kvm_cpu_has_pending_timer(vcpu
))
1597 if (signal_pending(current
))
1603 finish_wait(&vcpu
->wq
, &wait
);
1608 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1610 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
1613 int cpu
= vcpu
->cpu
;
1614 wait_queue_head_t
*wqp
;
1616 wqp
= kvm_arch_vcpu_wq(vcpu
);
1617 if (waitqueue_active(wqp
)) {
1618 wake_up_interruptible(wqp
);
1619 ++vcpu
->stat
.halt_wakeup
;
1623 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
1624 if (kvm_arch_vcpu_should_kick(vcpu
))
1625 smp_send_reschedule(cpu
);
1628 #endif /* !CONFIG_S390 */
1630 void kvm_resched(struct kvm_vcpu
*vcpu
)
1632 if (!need_resched())
1636 EXPORT_SYMBOL_GPL(kvm_resched
);
1638 bool kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
1641 struct task_struct
*task
= NULL
;
1644 pid
= rcu_dereference(target
->pid
);
1646 task
= get_pid_task(target
->pid
, PIDTYPE_PID
);
1650 if (task
->flags
& PF_VCPU
) {
1651 put_task_struct(task
);
1654 if (yield_to(task
, 1)) {
1655 put_task_struct(task
);
1658 put_task_struct(task
);
1661 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
1663 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1665 * Helper that checks whether a VCPU is eligible for directed yield.
1666 * Most eligible candidate to yield is decided by following heuristics:
1668 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1669 * (preempted lock holder), indicated by @in_spin_loop.
1670 * Set at the beiginning and cleared at the end of interception/PLE handler.
1672 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1673 * chance last time (mostly it has become eligible now since we have probably
1674 * yielded to lockholder in last iteration. This is done by toggling
1675 * @dy_eligible each time a VCPU checked for eligibility.)
1677 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1678 * to preempted lock-holder could result in wrong VCPU selection and CPU
1679 * burning. Giving priority for a potential lock-holder increases lock
1682 * Since algorithm is based on heuristics, accessing another VCPU data without
1683 * locking does not harm. It may result in trying to yield to same VCPU, fail
1684 * and continue with next VCPU and so on.
1686 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
1690 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
1691 (vcpu
->spin_loop
.in_spin_loop
&&
1692 vcpu
->spin_loop
.dy_eligible
);
1694 if (vcpu
->spin_loop
.in_spin_loop
)
1695 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
1700 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1702 struct kvm
*kvm
= me
->kvm
;
1703 struct kvm_vcpu
*vcpu
;
1704 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1709 kvm_vcpu_set_in_spin_loop(me
, true);
1711 * We boost the priority of a VCPU that is runnable but not
1712 * currently running, because it got preempted by something
1713 * else and called schedule in __vcpu_run. Hopefully that
1714 * VCPU is holding the lock that we need and will release it.
1715 * We approximate round-robin by starting at the last boosted VCPU.
1717 for (pass
= 0; pass
< 2 && !yielded
; pass
++) {
1718 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1719 if (!pass
&& i
<= last_boosted_vcpu
) {
1720 i
= last_boosted_vcpu
;
1722 } else if (pass
&& i
> last_boosted_vcpu
)
1726 if (waitqueue_active(&vcpu
->wq
))
1728 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
1730 if (kvm_vcpu_yield_to(vcpu
)) {
1731 kvm
->last_boosted_vcpu
= i
;
1737 kvm_vcpu_set_in_spin_loop(me
, false);
1739 /* Ensure vcpu is not eligible during next spinloop */
1740 kvm_vcpu_set_dy_eligible(me
, false);
1742 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1744 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1746 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1749 if (vmf
->pgoff
== 0)
1750 page
= virt_to_page(vcpu
->run
);
1752 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1753 page
= virt_to_page(vcpu
->arch
.pio_data
);
1755 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1756 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1757 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1760 return kvm_arch_vcpu_fault(vcpu
, vmf
);
1766 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1767 .fault
= kvm_vcpu_fault
,
1770 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1772 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1776 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1778 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1780 kvm_put_kvm(vcpu
->kvm
);
1784 static struct file_operations kvm_vcpu_fops
= {
1785 .release
= kvm_vcpu_release
,
1786 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1787 #ifdef CONFIG_COMPAT
1788 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
1790 .mmap
= kvm_vcpu_mmap
,
1791 .llseek
= noop_llseek
,
1795 * Allocates an inode for the vcpu.
1797 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
1799 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
);
1803 * Creates some virtual cpus. Good luck creating more than one.
1805 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
1808 struct kvm_vcpu
*vcpu
, *v
;
1810 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
1812 return PTR_ERR(vcpu
);
1814 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
1816 r
= kvm_arch_vcpu_setup(vcpu
);
1820 mutex_lock(&kvm
->lock
);
1821 if (!kvm_vcpu_compatible(vcpu
)) {
1823 goto unlock_vcpu_destroy
;
1825 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
1827 goto unlock_vcpu_destroy
;
1830 kvm_for_each_vcpu(r
, v
, kvm
)
1831 if (v
->vcpu_id
== id
) {
1833 goto unlock_vcpu_destroy
;
1836 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
1838 /* Now it's all set up, let userspace reach it */
1840 r
= create_vcpu_fd(vcpu
);
1843 goto unlock_vcpu_destroy
;
1846 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
1848 atomic_inc(&kvm
->online_vcpus
);
1850 mutex_unlock(&kvm
->lock
);
1853 unlock_vcpu_destroy
:
1854 mutex_unlock(&kvm
->lock
);
1856 kvm_arch_vcpu_destroy(vcpu
);
1860 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
1863 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1864 vcpu
->sigset_active
= 1;
1865 vcpu
->sigset
= *sigset
;
1867 vcpu
->sigset_active
= 0;
1871 static long kvm_vcpu_ioctl(struct file
*filp
,
1872 unsigned int ioctl
, unsigned long arg
)
1874 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1875 void __user
*argp
= (void __user
*)arg
;
1877 struct kvm_fpu
*fpu
= NULL
;
1878 struct kvm_sregs
*kvm_sregs
= NULL
;
1880 if (vcpu
->kvm
->mm
!= current
->mm
)
1883 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1885 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1886 * so vcpu_load() would break it.
1888 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_INTERRUPT
)
1889 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1893 r
= vcpu_load(vcpu
);
1901 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
1902 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
1904 case KVM_GET_REGS
: {
1905 struct kvm_regs
*kvm_regs
;
1908 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1911 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
1915 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
1922 case KVM_SET_REGS
: {
1923 struct kvm_regs
*kvm_regs
;
1926 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
1927 if (IS_ERR(kvm_regs
)) {
1928 r
= PTR_ERR(kvm_regs
);
1931 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
1939 case KVM_GET_SREGS
: {
1940 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1944 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
1948 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
1953 case KVM_SET_SREGS
: {
1954 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
1955 if (IS_ERR(kvm_sregs
)) {
1956 r
= PTR_ERR(kvm_sregs
);
1959 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
1965 case KVM_GET_MP_STATE
: {
1966 struct kvm_mp_state mp_state
;
1968 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
1972 if (copy_to_user(argp
, &mp_state
, sizeof mp_state
))
1977 case KVM_SET_MP_STATE
: {
1978 struct kvm_mp_state mp_state
;
1981 if (copy_from_user(&mp_state
, argp
, sizeof mp_state
))
1983 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
1989 case KVM_TRANSLATE
: {
1990 struct kvm_translation tr
;
1993 if (copy_from_user(&tr
, argp
, sizeof tr
))
1995 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
1999 if (copy_to_user(argp
, &tr
, sizeof tr
))
2004 case KVM_SET_GUEST_DEBUG
: {
2005 struct kvm_guest_debug dbg
;
2008 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
2010 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2016 case KVM_SET_SIGNAL_MASK
: {
2017 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2018 struct kvm_signal_mask kvm_sigmask
;
2019 sigset_t sigset
, *p
;
2024 if (copy_from_user(&kvm_sigmask
, argp
,
2025 sizeof kvm_sigmask
))
2028 if (kvm_sigmask
.len
!= sizeof sigset
)
2031 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2036 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2040 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2044 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2048 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2054 fpu
= memdup_user(argp
, sizeof(*fpu
));
2059 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2066 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2075 #ifdef CONFIG_COMPAT
2076 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2077 unsigned int ioctl
, unsigned long arg
)
2079 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2080 void __user
*argp
= compat_ptr(arg
);
2083 if (vcpu
->kvm
->mm
!= current
->mm
)
2087 case KVM_SET_SIGNAL_MASK
: {
2088 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2089 struct kvm_signal_mask kvm_sigmask
;
2090 compat_sigset_t csigset
;
2095 if (copy_from_user(&kvm_sigmask
, argp
,
2096 sizeof kvm_sigmask
))
2099 if (kvm_sigmask
.len
!= sizeof csigset
)
2102 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2105 sigset_from_compat(&sigset
, &csigset
);
2106 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2108 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2112 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2120 static long kvm_vm_ioctl(struct file
*filp
,
2121 unsigned int ioctl
, unsigned long arg
)
2123 struct kvm
*kvm
= filp
->private_data
;
2124 void __user
*argp
= (void __user
*)arg
;
2127 if (kvm
->mm
!= current
->mm
)
2130 case KVM_CREATE_VCPU
:
2131 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2135 case KVM_SET_USER_MEMORY_REGION
: {
2136 struct kvm_userspace_memory_region kvm_userspace_mem
;
2139 if (copy_from_user(&kvm_userspace_mem
, argp
,
2140 sizeof kvm_userspace_mem
))
2143 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 1);
2148 case KVM_GET_DIRTY_LOG
: {
2149 struct kvm_dirty_log log
;
2152 if (copy_from_user(&log
, argp
, sizeof log
))
2154 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2159 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2160 case KVM_REGISTER_COALESCED_MMIO
: {
2161 struct kvm_coalesced_mmio_zone zone
;
2163 if (copy_from_user(&zone
, argp
, sizeof zone
))
2165 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2171 case KVM_UNREGISTER_COALESCED_MMIO
: {
2172 struct kvm_coalesced_mmio_zone zone
;
2174 if (copy_from_user(&zone
, argp
, sizeof zone
))
2176 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2184 struct kvm_irqfd data
;
2187 if (copy_from_user(&data
, argp
, sizeof data
))
2189 r
= kvm_irqfd(kvm
, &data
);
2192 case KVM_IOEVENTFD
: {
2193 struct kvm_ioeventfd data
;
2196 if (copy_from_user(&data
, argp
, sizeof data
))
2198 r
= kvm_ioeventfd(kvm
, &data
);
2201 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2202 case KVM_SET_BOOT_CPU_ID
:
2204 mutex_lock(&kvm
->lock
);
2205 if (atomic_read(&kvm
->online_vcpus
) != 0)
2208 kvm
->bsp_vcpu_id
= arg
;
2209 mutex_unlock(&kvm
->lock
);
2212 #ifdef CONFIG_HAVE_KVM_MSI
2213 case KVM_SIGNAL_MSI
: {
2217 if (copy_from_user(&msi
, argp
, sizeof msi
))
2219 r
= kvm_send_userspace_msi(kvm
, &msi
);
2223 #ifdef __KVM_HAVE_IRQ_LINE
2224 case KVM_IRQ_LINE_STATUS
:
2225 case KVM_IRQ_LINE
: {
2226 struct kvm_irq_level irq_event
;
2229 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
2232 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
);
2237 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2238 if (copy_to_user(argp
, &irq_event
, sizeof irq_event
))
2247 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2249 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
2255 #ifdef CONFIG_COMPAT
2256 struct compat_kvm_dirty_log
{
2260 compat_uptr_t dirty_bitmap
; /* one bit per page */
2265 static long kvm_vm_compat_ioctl(struct file
*filp
,
2266 unsigned int ioctl
, unsigned long arg
)
2268 struct kvm
*kvm
= filp
->private_data
;
2271 if (kvm
->mm
!= current
->mm
)
2274 case KVM_GET_DIRTY_LOG
: {
2275 struct compat_kvm_dirty_log compat_log
;
2276 struct kvm_dirty_log log
;
2279 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2280 sizeof(compat_log
)))
2282 log
.slot
= compat_log
.slot
;
2283 log
.padding1
= compat_log
.padding1
;
2284 log
.padding2
= compat_log
.padding2
;
2285 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2287 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2293 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2301 static int kvm_vm_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2303 struct page
*page
[1];
2306 gfn_t gfn
= vmf
->pgoff
;
2307 struct kvm
*kvm
= vma
->vm_file
->private_data
;
2309 addr
= gfn_to_hva(kvm
, gfn
);
2310 if (kvm_is_error_hva(addr
))
2311 return VM_FAULT_SIGBUS
;
2313 npages
= get_user_pages(current
, current
->mm
, addr
, 1, 1, 0, page
,
2315 if (unlikely(npages
!= 1))
2316 return VM_FAULT_SIGBUS
;
2318 vmf
->page
= page
[0];
2322 static const struct vm_operations_struct kvm_vm_vm_ops
= {
2323 .fault
= kvm_vm_fault
,
2326 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2328 vma
->vm_ops
= &kvm_vm_vm_ops
;
2332 static struct file_operations kvm_vm_fops
= {
2333 .release
= kvm_vm_release
,
2334 .unlocked_ioctl
= kvm_vm_ioctl
,
2335 #ifdef CONFIG_COMPAT
2336 .compat_ioctl
= kvm_vm_compat_ioctl
,
2338 .mmap
= kvm_vm_mmap
,
2339 .llseek
= noop_llseek
,
2342 static int kvm_dev_ioctl_create_vm(unsigned long type
)
2347 kvm
= kvm_create_vm(type
);
2349 return PTR_ERR(kvm
);
2350 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2351 r
= kvm_coalesced_mmio_init(kvm
);
2357 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
2364 static long kvm_dev_ioctl_check_extension_generic(long arg
)
2367 case KVM_CAP_USER_MEMORY
:
2368 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2369 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2370 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2371 case KVM_CAP_SET_BOOT_CPU_ID
:
2373 case KVM_CAP_INTERNAL_ERROR_DATA
:
2374 #ifdef CONFIG_HAVE_KVM_MSI
2375 case KVM_CAP_SIGNAL_MSI
:
2378 #ifdef KVM_CAP_IRQ_ROUTING
2379 case KVM_CAP_IRQ_ROUTING
:
2380 return KVM_MAX_IRQ_ROUTES
;
2385 return kvm_dev_ioctl_check_extension(arg
);
2388 static long kvm_dev_ioctl(struct file
*filp
,
2389 unsigned int ioctl
, unsigned long arg
)
2394 case KVM_GET_API_VERSION
:
2398 r
= KVM_API_VERSION
;
2401 r
= kvm_dev_ioctl_create_vm(arg
);
2403 case KVM_CHECK_EXTENSION
:
2404 r
= kvm_dev_ioctl_check_extension_generic(arg
);
2406 case KVM_GET_VCPU_MMAP_SIZE
:
2410 r
= PAGE_SIZE
; /* struct kvm_run */
2412 r
+= PAGE_SIZE
; /* pio data page */
2414 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2415 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2418 case KVM_TRACE_ENABLE
:
2419 case KVM_TRACE_PAUSE
:
2420 case KVM_TRACE_DISABLE
:
2424 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2430 static struct file_operations kvm_chardev_ops
= {
2431 .unlocked_ioctl
= kvm_dev_ioctl
,
2432 .compat_ioctl
= kvm_dev_ioctl
,
2433 .llseek
= noop_llseek
,
2436 static struct miscdevice kvm_dev
= {
2442 static void hardware_enable_nolock(void *junk
)
2444 int cpu
= raw_smp_processor_id();
2447 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2450 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2452 r
= kvm_arch_hardware_enable(NULL
);
2455 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2456 atomic_inc(&hardware_enable_failed
);
2457 printk(KERN_INFO
"kvm: enabling virtualization on "
2458 "CPU%d failed\n", cpu
);
2462 static void hardware_enable(void *junk
)
2464 raw_spin_lock(&kvm_lock
);
2465 hardware_enable_nolock(junk
);
2466 raw_spin_unlock(&kvm_lock
);
2469 static void hardware_disable_nolock(void *junk
)
2471 int cpu
= raw_smp_processor_id();
2473 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2475 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2476 kvm_arch_hardware_disable(NULL
);
2479 static void hardware_disable(void *junk
)
2481 raw_spin_lock(&kvm_lock
);
2482 hardware_disable_nolock(junk
);
2483 raw_spin_unlock(&kvm_lock
);
2486 static void hardware_disable_all_nolock(void)
2488 BUG_ON(!kvm_usage_count
);
2491 if (!kvm_usage_count
)
2492 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2495 static void hardware_disable_all(void)
2497 raw_spin_lock(&kvm_lock
);
2498 hardware_disable_all_nolock();
2499 raw_spin_unlock(&kvm_lock
);
2502 static int hardware_enable_all(void)
2506 raw_spin_lock(&kvm_lock
);
2509 if (kvm_usage_count
== 1) {
2510 atomic_set(&hardware_enable_failed
, 0);
2511 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2513 if (atomic_read(&hardware_enable_failed
)) {
2514 hardware_disable_all_nolock();
2519 raw_spin_unlock(&kvm_lock
);
2524 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2529 if (!kvm_usage_count
)
2532 val
&= ~CPU_TASKS_FROZEN
;
2535 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2537 hardware_disable(NULL
);
2540 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2542 hardware_enable(NULL
);
2549 asmlinkage
void kvm_spurious_fault(void)
2551 /* Fault while not rebooting. We want the trace. */
2554 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
2556 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2560 * Some (well, at least mine) BIOSes hang on reboot if
2563 * And Intel TXT required VMX off for all cpu when system shutdown.
2565 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2566 kvm_rebooting
= true;
2567 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2571 static struct notifier_block kvm_reboot_notifier
= {
2572 .notifier_call
= kvm_reboot
,
2576 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2580 for (i
= 0; i
< bus
->dev_count
; i
++) {
2581 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
2583 kvm_iodevice_destructor(pos
);
2588 int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
2590 const struct kvm_io_range
*r1
= p1
;
2591 const struct kvm_io_range
*r2
= p2
;
2593 if (r1
->addr
< r2
->addr
)
2595 if (r1
->addr
+ r1
->len
> r2
->addr
+ r2
->len
)
2600 int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
2601 gpa_t addr
, int len
)
2603 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
2609 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
2610 kvm_io_bus_sort_cmp
, NULL
);
2615 int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
2616 gpa_t addr
, int len
)
2618 struct kvm_io_range
*range
, key
;
2621 key
= (struct kvm_io_range
) {
2626 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
2627 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
2631 off
= range
- bus
->range
;
2633 while (off
> 0 && kvm_io_bus_sort_cmp(&key
, &bus
->range
[off
-1]) == 0)
2639 /* kvm_io_bus_write - called under kvm->slots_lock */
2640 int kvm_io_bus_write(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2641 int len
, const void *val
)
2644 struct kvm_io_bus
*bus
;
2645 struct kvm_io_range range
;
2647 range
= (struct kvm_io_range
) {
2652 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2653 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2657 while (idx
< bus
->dev_count
&&
2658 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2659 if (!kvm_iodevice_write(bus
->range
[idx
].dev
, addr
, len
, val
))
2667 /* kvm_io_bus_read - called under kvm->slots_lock */
2668 int kvm_io_bus_read(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2672 struct kvm_io_bus
*bus
;
2673 struct kvm_io_range range
;
2675 range
= (struct kvm_io_range
) {
2680 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2681 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2685 while (idx
< bus
->dev_count
&&
2686 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2687 if (!kvm_iodevice_read(bus
->range
[idx
].dev
, addr
, len
, val
))
2695 /* Caller must hold slots_lock. */
2696 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2697 int len
, struct kvm_io_device
*dev
)
2699 struct kvm_io_bus
*new_bus
, *bus
;
2701 bus
= kvm
->buses
[bus_idx
];
2702 if (bus
->dev_count
> NR_IOBUS_DEVS
- 1)
2705 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
2706 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
2709 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
2710 sizeof(struct kvm_io_range
)));
2711 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
2712 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2713 synchronize_srcu_expedited(&kvm
->srcu
);
2719 /* Caller must hold slots_lock. */
2720 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
2721 struct kvm_io_device
*dev
)
2724 struct kvm_io_bus
*new_bus
, *bus
;
2726 bus
= kvm
->buses
[bus_idx
];
2728 for (i
= 0; i
< bus
->dev_count
; i
++)
2729 if (bus
->range
[i
].dev
== dev
) {
2737 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
2738 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
2742 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
2743 new_bus
->dev_count
--;
2744 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
2745 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
2747 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2748 synchronize_srcu_expedited(&kvm
->srcu
);
2753 static struct notifier_block kvm_cpu_notifier
= {
2754 .notifier_call
= kvm_cpu_hotplug
,
2757 static int vm_stat_get(void *_offset
, u64
*val
)
2759 unsigned offset
= (long)_offset
;
2763 raw_spin_lock(&kvm_lock
);
2764 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2765 *val
+= *(u32
*)((void *)kvm
+ offset
);
2766 raw_spin_unlock(&kvm_lock
);
2770 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
2772 static int vcpu_stat_get(void *_offset
, u64
*val
)
2774 unsigned offset
= (long)_offset
;
2776 struct kvm_vcpu
*vcpu
;
2780 raw_spin_lock(&kvm_lock
);
2781 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2782 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2783 *val
+= *(u32
*)((void *)vcpu
+ offset
);
2785 raw_spin_unlock(&kvm_lock
);
2789 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
2791 static const struct file_operations
*stat_fops
[] = {
2792 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
2793 [KVM_STAT_VM
] = &vm_stat_fops
,
2796 static int kvm_init_debug(void)
2799 struct kvm_stats_debugfs_item
*p
;
2801 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
2802 if (kvm_debugfs_dir
== NULL
)
2805 for (p
= debugfs_entries
; p
->name
; ++p
) {
2806 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
2807 (void *)(long)p
->offset
,
2808 stat_fops
[p
->kind
]);
2809 if (p
->dentry
== NULL
)
2816 debugfs_remove_recursive(kvm_debugfs_dir
);
2821 static void kvm_exit_debug(void)
2823 struct kvm_stats_debugfs_item
*p
;
2825 for (p
= debugfs_entries
; p
->name
; ++p
)
2826 debugfs_remove(p
->dentry
);
2827 debugfs_remove(kvm_debugfs_dir
);
2830 static int kvm_suspend(void)
2832 if (kvm_usage_count
)
2833 hardware_disable_nolock(NULL
);
2837 static void kvm_resume(void)
2839 if (kvm_usage_count
) {
2840 WARN_ON(raw_spin_is_locked(&kvm_lock
));
2841 hardware_enable_nolock(NULL
);
2845 static struct syscore_ops kvm_syscore_ops
= {
2846 .suspend
= kvm_suspend
,
2847 .resume
= kvm_resume
,
2851 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
2853 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
2856 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
2858 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2860 kvm_arch_vcpu_load(vcpu
, cpu
);
2863 static void kvm_sched_out(struct preempt_notifier
*pn
,
2864 struct task_struct
*next
)
2866 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2868 kvm_arch_vcpu_put(vcpu
);
2871 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
2872 struct module
*module
)
2877 r
= kvm_arch_init(opaque
);
2881 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
2886 r
= kvm_arch_hardware_setup();
2890 for_each_online_cpu(cpu
) {
2891 smp_call_function_single(cpu
,
2892 kvm_arch_check_processor_compat
,
2898 r
= register_cpu_notifier(&kvm_cpu_notifier
);
2901 register_reboot_notifier(&kvm_reboot_notifier
);
2903 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2905 vcpu_align
= __alignof__(struct kvm_vcpu
);
2906 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
2908 if (!kvm_vcpu_cache
) {
2913 r
= kvm_async_pf_init();
2917 kvm_chardev_ops
.owner
= module
;
2918 kvm_vm_fops
.owner
= module
;
2919 kvm_vcpu_fops
.owner
= module
;
2921 r
= misc_register(&kvm_dev
);
2923 printk(KERN_ERR
"kvm: misc device register failed\n");
2927 register_syscore_ops(&kvm_syscore_ops
);
2929 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
2930 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
2932 r
= kvm_init_debug();
2934 printk(KERN_ERR
"kvm: create debugfs files failed\n");
2941 unregister_syscore_ops(&kvm_syscore_ops
);
2943 kvm_async_pf_deinit();
2945 kmem_cache_destroy(kvm_vcpu_cache
);
2947 unregister_reboot_notifier(&kvm_reboot_notifier
);
2948 unregister_cpu_notifier(&kvm_cpu_notifier
);
2951 kvm_arch_hardware_unsetup();
2953 free_cpumask_var(cpus_hardware_enabled
);
2959 EXPORT_SYMBOL_GPL(kvm_init
);
2964 misc_deregister(&kvm_dev
);
2965 kmem_cache_destroy(kvm_vcpu_cache
);
2966 kvm_async_pf_deinit();
2967 unregister_syscore_ops(&kvm_syscore_ops
);
2968 unregister_reboot_notifier(&kvm_reboot_notifier
);
2969 unregister_cpu_notifier(&kvm_cpu_notifier
);
2970 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2971 kvm_arch_hardware_unsetup();
2973 free_cpumask_var(cpus_hardware_enabled
);
2975 EXPORT_SYMBOL_GPL(kvm_exit
);