x86: move X86_FEATURE_CONSTANT_TSC into early cpu feature detection
[linux-2.6.git] / arch / x86 / kernel / vm86_32.c
blob738c2104df30753bfb04a36fd68269e6564587c5
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 * stack - Manfred Spraul <manfred@colorfullife.com>
7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 * them correctly. Now the emulation will be in a
9 * consistent state after stackfaults - Kasper Dupont
10 * <kasperd@daimi.au.dk>
12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 * <kasperd@daimi.au.dk>
15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 * caused by Kasper Dupont's changes - Stas Sergeev
18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 * Kasper Dupont <kasperd@daimi.au.dk>
21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 * Kasper Dupont <kasperd@daimi.au.dk>
24 * 9 apr 2002 - Changed stack access macros to jump to a label
25 * instead of returning to userspace. This simplifies
26 * do_int, and is needed by handle_vm6_fault. Kasper
27 * Dupont <kasperd@daimi.au.dk>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/signal.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/highmem.h>
41 #include <linux/ptrace.h>
42 #include <linux/audit.h>
43 #include <linux/stddef.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/tlbflush.h>
48 #include <asm/irq.h>
51 * Known problems:
53 * Interrupt handling is not guaranteed:
54 * - a real x86 will disable all interrupts for one instruction
55 * after a "mov ss,xx" to make stack handling atomic even without
56 * the 'lss' instruction. We can't guarantee this in v86 mode,
57 * as the next instruction might result in a page fault or similar.
58 * - a real x86 will have interrupts disabled for one instruction
59 * past the 'sti' that enables them. We don't bother with all the
60 * details yet.
62 * Let's hope these problems do not actually matter for anything.
66 #define KVM86 ((struct kernel_vm86_struct *)regs)
67 #define VMPI KVM86->vm86plus
71 * 8- and 16-bit register defines..
73 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
74 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
75 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
76 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
79 * virtual flags (16 and 32-bit versions)
81 #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
82 #define VEFLAGS (current->thread.v86flags)
84 #define set_flags(X,new,mask) \
85 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
87 #define SAFE_MASK (0xDD5)
88 #define RETURN_MASK (0xDFF)
90 /* convert kernel_vm86_regs to vm86_regs */
91 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
92 const struct kernel_vm86_regs *regs)
94 int ret = 0;
96 /* kernel_vm86_regs is missing gs, so copy everything up to
97 (but not including) orig_eax, and then rest including orig_eax. */
98 ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
99 ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
100 sizeof(struct kernel_vm86_regs) -
101 offsetof(struct kernel_vm86_regs, pt.orig_ax));
103 return ret;
106 /* convert vm86_regs to kernel_vm86_regs */
107 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
108 const struct vm86_regs __user *user,
109 unsigned extra)
111 int ret = 0;
113 /* copy ax-fs inclusive */
114 ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
115 /* copy orig_ax-__gsh+extra */
116 ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
117 sizeof(struct kernel_vm86_regs) -
118 offsetof(struct kernel_vm86_regs, pt.orig_ax) +
119 extra);
120 return ret;
123 struct pt_regs * save_v86_state(struct kernel_vm86_regs * regs)
125 struct tss_struct *tss;
126 struct pt_regs *ret;
127 unsigned long tmp;
130 * This gets called from entry.S with interrupts disabled, but
131 * from process context. Enable interrupts here, before trying
132 * to access user space.
134 local_irq_enable();
136 if (!current->thread.vm86_info) {
137 printk("no vm86_info: BAD\n");
138 do_exit(SIGSEGV);
140 set_flags(regs->pt.flags, VEFLAGS, VIF_MASK | current->thread.v86mask);
141 tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs,regs);
142 tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
143 if (tmp) {
144 printk("vm86: could not access userspace vm86_info\n");
145 do_exit(SIGSEGV);
148 tss = &per_cpu(init_tss, get_cpu());
149 current->thread.sp0 = current->thread.saved_sp0;
150 current->thread.sysenter_cs = __KERNEL_CS;
151 load_sp0(tss, &current->thread);
152 current->thread.saved_sp0 = 0;
153 put_cpu();
155 ret = KVM86->regs32;
157 ret->fs = current->thread.saved_fs;
158 loadsegment(gs, current->thread.saved_gs);
160 return ret;
163 static void mark_screen_rdonly(struct mm_struct *mm)
165 pgd_t *pgd;
166 pud_t *pud;
167 pmd_t *pmd;
168 pte_t *pte;
169 spinlock_t *ptl;
170 int i;
172 pgd = pgd_offset(mm, 0xA0000);
173 if (pgd_none_or_clear_bad(pgd))
174 goto out;
175 pud = pud_offset(pgd, 0xA0000);
176 if (pud_none_or_clear_bad(pud))
177 goto out;
178 pmd = pmd_offset(pud, 0xA0000);
179 if (pmd_none_or_clear_bad(pmd))
180 goto out;
181 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
182 for (i = 0; i < 32; i++) {
183 if (pte_present(*pte))
184 set_pte(pte, pte_wrprotect(*pte));
185 pte++;
187 pte_unmap_unlock(pte, ptl);
188 out:
189 flush_tlb();
194 static int do_vm86_irq_handling(int subfunction, int irqnumber);
195 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
197 asmlinkage int sys_vm86old(struct pt_regs regs)
199 struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.bx;
200 struct kernel_vm86_struct info; /* declare this _on top_,
201 * this avoids wasting of stack space.
202 * This remains on the stack until we
203 * return to 32 bit user space.
205 struct task_struct *tsk;
206 int tmp, ret = -EPERM;
208 tsk = current;
209 if (tsk->thread.saved_sp0)
210 goto out;
211 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
212 offsetof(struct kernel_vm86_struct, vm86plus) -
213 sizeof(info.regs));
214 ret = -EFAULT;
215 if (tmp)
216 goto out;
217 memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
218 info.regs32 = &regs;
219 tsk->thread.vm86_info = v86;
220 do_sys_vm86(&info, tsk);
221 ret = 0; /* we never return here */
222 out:
223 return ret;
227 asmlinkage int sys_vm86(struct pt_regs regs)
229 struct kernel_vm86_struct info; /* declare this _on top_,
230 * this avoids wasting of stack space.
231 * This remains on the stack until we
232 * return to 32 bit user space.
234 struct task_struct *tsk;
235 int tmp, ret;
236 struct vm86plus_struct __user *v86;
238 tsk = current;
239 switch (regs.bx) {
240 case VM86_REQUEST_IRQ:
241 case VM86_FREE_IRQ:
242 case VM86_GET_IRQ_BITS:
243 case VM86_GET_AND_RESET_IRQ:
244 ret = do_vm86_irq_handling(regs.bx, (int)regs.cx);
245 goto out;
246 case VM86_PLUS_INSTALL_CHECK:
247 /* NOTE: on old vm86 stuff this will return the error
248 from access_ok(), because the subfunction is
249 interpreted as (invalid) address to vm86_struct.
250 So the installation check works.
252 ret = 0;
253 goto out;
256 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
257 ret = -EPERM;
258 if (tsk->thread.saved_sp0)
259 goto out;
260 v86 = (struct vm86plus_struct __user *)regs.cx;
261 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
262 offsetof(struct kernel_vm86_struct, regs32) -
263 sizeof(info.regs));
264 ret = -EFAULT;
265 if (tmp)
266 goto out;
267 info.regs32 = &regs;
268 info.vm86plus.is_vm86pus = 1;
269 tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
270 do_sys_vm86(&info, tsk);
271 ret = 0; /* we never return here */
272 out:
273 return ret;
277 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
279 struct tss_struct *tss;
281 * make sure the vm86() system call doesn't try to do anything silly
283 info->regs.pt.ds = 0;
284 info->regs.pt.es = 0;
285 info->regs.pt.fs = 0;
287 /* we are clearing gs later just before "jmp resume_userspace",
288 * because it is not saved/restored.
292 * The flags register is also special: we cannot trust that the user
293 * has set it up safely, so this makes sure interrupt etc flags are
294 * inherited from protected mode.
296 VEFLAGS = info->regs.pt.flags;
297 info->regs.pt.flags &= SAFE_MASK;
298 info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
299 info->regs.pt.flags |= VM_MASK;
301 switch (info->cpu_type) {
302 case CPU_286:
303 tsk->thread.v86mask = 0;
304 break;
305 case CPU_386:
306 tsk->thread.v86mask = NT_MASK | IOPL_MASK;
307 break;
308 case CPU_486:
309 tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
310 break;
311 default:
312 tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
313 break;
317 * Save old state, set default return value (%ax) to 0
319 info->regs32->ax = 0;
320 tsk->thread.saved_sp0 = tsk->thread.sp0;
321 tsk->thread.saved_fs = info->regs32->fs;
322 savesegment(gs, tsk->thread.saved_gs);
324 tss = &per_cpu(init_tss, get_cpu());
325 tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
326 if (cpu_has_sep)
327 tsk->thread.sysenter_cs = 0;
328 load_sp0(tss, &tsk->thread);
329 put_cpu();
331 tsk->thread.screen_bitmap = info->screen_bitmap;
332 if (info->flags & VM86_SCREEN_BITMAP)
333 mark_screen_rdonly(tsk->mm);
335 /*call audit_syscall_exit since we do not exit via the normal paths */
336 if (unlikely(current->audit_context))
337 audit_syscall_exit(AUDITSC_RESULT(0), 0);
339 __asm__ __volatile__(
340 "movl %0,%%esp\n\t"
341 "movl %1,%%ebp\n\t"
342 "mov %2, %%gs\n\t"
343 "jmp resume_userspace"
344 : /* no outputs */
345 :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
346 /* we never return here */
349 static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
351 struct pt_regs * regs32;
353 regs32 = save_v86_state(regs16);
354 regs32->ax = retval;
355 __asm__ __volatile__("movl %0,%%esp\n\t"
356 "movl %1,%%ebp\n\t"
357 "jmp resume_userspace"
358 : : "r" (regs32), "r" (current_thread_info()));
361 static inline void set_IF(struct kernel_vm86_regs * regs)
363 VEFLAGS |= VIF_MASK;
364 if (VEFLAGS & VIP_MASK)
365 return_to_32bit(regs, VM86_STI);
368 static inline void clear_IF(struct kernel_vm86_regs * regs)
370 VEFLAGS &= ~VIF_MASK;
373 static inline void clear_TF(struct kernel_vm86_regs * regs)
375 regs->pt.flags &= ~TF_MASK;
378 static inline void clear_AC(struct kernel_vm86_regs * regs)
380 regs->pt.flags &= ~AC_MASK;
383 /* It is correct to call set_IF(regs) from the set_vflags_*
384 * functions. However someone forgot to call clear_IF(regs)
385 * in the opposite case.
386 * After the command sequence CLI PUSHF STI POPF you should
387 * end up with interrupts disabled, but you ended up with
388 * interrupts enabled.
389 * ( I was testing my own changes, but the only bug I
390 * could find was in a function I had not changed. )
391 * [KD]
394 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs * regs)
396 set_flags(VEFLAGS, flags, current->thread.v86mask);
397 set_flags(regs->pt.flags, flags, SAFE_MASK);
398 if (flags & IF_MASK)
399 set_IF(regs);
400 else
401 clear_IF(regs);
404 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
406 set_flags(VFLAGS, flags, current->thread.v86mask);
407 set_flags(regs->pt.flags, flags, SAFE_MASK);
408 if (flags & IF_MASK)
409 set_IF(regs);
410 else
411 clear_IF(regs);
414 static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
416 unsigned long flags = regs->pt.flags & RETURN_MASK;
418 if (VEFLAGS & VIF_MASK)
419 flags |= IF_MASK;
420 flags |= IOPL_MASK;
421 return flags | (VEFLAGS & current->thread.v86mask);
424 static inline int is_revectored(int nr, struct revectored_struct * bitmap)
426 __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
427 :"=r" (nr)
428 :"m" (*bitmap),"r" (nr));
429 return nr;
432 #define val_byte(val, n) (((__u8 *)&val)[n])
434 #define pushb(base, ptr, val, err_label) \
435 do { \
436 __u8 __val = val; \
437 ptr--; \
438 if (put_user(__val, base + ptr) < 0) \
439 goto err_label; \
440 } while(0)
442 #define pushw(base, ptr, val, err_label) \
443 do { \
444 __u16 __val = val; \
445 ptr--; \
446 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
447 goto err_label; \
448 ptr--; \
449 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
450 goto err_label; \
451 } while(0)
453 #define pushl(base, ptr, val, err_label) \
454 do { \
455 __u32 __val = val; \
456 ptr--; \
457 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
458 goto err_label; \
459 ptr--; \
460 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
461 goto err_label; \
462 ptr--; \
463 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
464 goto err_label; \
465 ptr--; \
466 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
467 goto err_label; \
468 } while(0)
470 #define popb(base, ptr, err_label) \
471 ({ \
472 __u8 __res; \
473 if (get_user(__res, base + ptr) < 0) \
474 goto err_label; \
475 ptr++; \
476 __res; \
479 #define popw(base, ptr, err_label) \
480 ({ \
481 __u16 __res; \
482 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
483 goto err_label; \
484 ptr++; \
485 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
486 goto err_label; \
487 ptr++; \
488 __res; \
491 #define popl(base, ptr, err_label) \
492 ({ \
493 __u32 __res; \
494 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
495 goto err_label; \
496 ptr++; \
497 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
498 goto err_label; \
499 ptr++; \
500 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
501 goto err_label; \
502 ptr++; \
503 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
504 goto err_label; \
505 ptr++; \
506 __res; \
509 /* There are so many possible reasons for this function to return
510 * VM86_INTx, so adding another doesn't bother me. We can expect
511 * userspace programs to be able to handle it. (Getting a problem
512 * in userspace is always better than an Oops anyway.) [KD]
514 static void do_int(struct kernel_vm86_regs *regs, int i,
515 unsigned char __user * ssp, unsigned short sp)
517 unsigned long __user *intr_ptr;
518 unsigned long segoffs;
520 if (regs->pt.cs == BIOSSEG)
521 goto cannot_handle;
522 if (is_revectored(i, &KVM86->int_revectored))
523 goto cannot_handle;
524 if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
525 goto cannot_handle;
526 intr_ptr = (unsigned long __user *) (i << 2);
527 if (get_user(segoffs, intr_ptr))
528 goto cannot_handle;
529 if ((segoffs >> 16) == BIOSSEG)
530 goto cannot_handle;
531 pushw(ssp, sp, get_vflags(regs), cannot_handle);
532 pushw(ssp, sp, regs->pt.cs, cannot_handle);
533 pushw(ssp, sp, IP(regs), cannot_handle);
534 regs->pt.cs = segoffs >> 16;
535 SP(regs) -= 6;
536 IP(regs) = segoffs & 0xffff;
537 clear_TF(regs);
538 clear_IF(regs);
539 clear_AC(regs);
540 return;
542 cannot_handle:
543 return_to_32bit(regs, VM86_INTx + (i << 8));
546 int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
548 if (VMPI.is_vm86pus) {
549 if ( (trapno==3) || (trapno==1) )
550 return_to_32bit(regs, VM86_TRAP + (trapno << 8));
551 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
552 return 0;
554 if (trapno !=1)
555 return 1; /* we let this handle by the calling routine */
556 if (current->ptrace & PT_PTRACED) {
557 unsigned long flags;
558 spin_lock_irqsave(&current->sighand->siglock, flags);
559 sigdelset(&current->blocked, SIGTRAP);
560 recalc_sigpending();
561 spin_unlock_irqrestore(&current->sighand->siglock, flags);
563 send_sig(SIGTRAP, current, 1);
564 current->thread.trap_no = trapno;
565 current->thread.error_code = error_code;
566 return 0;
569 void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
571 unsigned char opcode;
572 unsigned char __user *csp;
573 unsigned char __user *ssp;
574 unsigned short ip, sp, orig_flags;
575 int data32, pref_done;
577 #define CHECK_IF_IN_TRAP \
578 if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
579 newflags |= TF_MASK
580 #define VM86_FAULT_RETURN do { \
581 if (VMPI.force_return_for_pic && (VEFLAGS & (IF_MASK | VIF_MASK))) \
582 return_to_32bit(regs, VM86_PICRETURN); \
583 if (orig_flags & TF_MASK) \
584 handle_vm86_trap(regs, 0, 1); \
585 return; } while (0)
587 orig_flags = *(unsigned short *)&regs->pt.flags;
589 csp = (unsigned char __user *) (regs->pt.cs << 4);
590 ssp = (unsigned char __user *) (regs->pt.ss << 4);
591 sp = SP(regs);
592 ip = IP(regs);
594 data32 = 0;
595 pref_done = 0;
596 do {
597 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
598 case 0x66: /* 32-bit data */ data32=1; break;
599 case 0x67: /* 32-bit address */ break;
600 case 0x2e: /* CS */ break;
601 case 0x3e: /* DS */ break;
602 case 0x26: /* ES */ break;
603 case 0x36: /* SS */ break;
604 case 0x65: /* GS */ break;
605 case 0x64: /* FS */ break;
606 case 0xf2: /* repnz */ break;
607 case 0xf3: /* rep */ break;
608 default: pref_done = 1;
610 } while (!pref_done);
612 switch (opcode) {
614 /* pushf */
615 case 0x9c:
616 if (data32) {
617 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
618 SP(regs) -= 4;
619 } else {
620 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
621 SP(regs) -= 2;
623 IP(regs) = ip;
624 VM86_FAULT_RETURN;
626 /* popf */
627 case 0x9d:
629 unsigned long newflags;
630 if (data32) {
631 newflags=popl(ssp, sp, simulate_sigsegv);
632 SP(regs) += 4;
633 } else {
634 newflags = popw(ssp, sp, simulate_sigsegv);
635 SP(regs) += 2;
637 IP(regs) = ip;
638 CHECK_IF_IN_TRAP;
639 if (data32) {
640 set_vflags_long(newflags, regs);
641 } else {
642 set_vflags_short(newflags, regs);
644 VM86_FAULT_RETURN;
647 /* int xx */
648 case 0xcd: {
649 int intno=popb(csp, ip, simulate_sigsegv);
650 IP(regs) = ip;
651 if (VMPI.vm86dbg_active) {
652 if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
653 return_to_32bit(regs, VM86_INTx + (intno << 8));
655 do_int(regs, intno, ssp, sp);
656 return;
659 /* iret */
660 case 0xcf:
662 unsigned long newip;
663 unsigned long newcs;
664 unsigned long newflags;
665 if (data32) {
666 newip=popl(ssp, sp, simulate_sigsegv);
667 newcs=popl(ssp, sp, simulate_sigsegv);
668 newflags=popl(ssp, sp, simulate_sigsegv);
669 SP(regs) += 12;
670 } else {
671 newip = popw(ssp, sp, simulate_sigsegv);
672 newcs = popw(ssp, sp, simulate_sigsegv);
673 newflags = popw(ssp, sp, simulate_sigsegv);
674 SP(regs) += 6;
676 IP(regs) = newip;
677 regs->pt.cs = newcs;
678 CHECK_IF_IN_TRAP;
679 if (data32) {
680 set_vflags_long(newflags, regs);
681 } else {
682 set_vflags_short(newflags, regs);
684 VM86_FAULT_RETURN;
687 /* cli */
688 case 0xfa:
689 IP(regs) = ip;
690 clear_IF(regs);
691 VM86_FAULT_RETURN;
693 /* sti */
695 * Damn. This is incorrect: the 'sti' instruction should actually
696 * enable interrupts after the /next/ instruction. Not good.
698 * Probably needs some horsing around with the TF flag. Aiee..
700 case 0xfb:
701 IP(regs) = ip;
702 set_IF(regs);
703 VM86_FAULT_RETURN;
705 default:
706 return_to_32bit(regs, VM86_UNKNOWN);
709 return;
711 simulate_sigsegv:
712 /* FIXME: After a long discussion with Stas we finally
713 * agreed, that this is wrong. Here we should
714 * really send a SIGSEGV to the user program.
715 * But how do we create the correct context? We
716 * are inside a general protection fault handler
717 * and has just returned from a page fault handler.
718 * The correct context for the signal handler
719 * should be a mixture of the two, but how do we
720 * get the information? [KD]
722 return_to_32bit(regs, VM86_UNKNOWN);
725 /* ---------------- vm86 special IRQ passing stuff ----------------- */
727 #define VM86_IRQNAME "vm86irq"
729 static struct vm86_irqs {
730 struct task_struct *tsk;
731 int sig;
732 } vm86_irqs[16];
734 static DEFINE_SPINLOCK(irqbits_lock);
735 static int irqbits;
737 #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
738 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
739 | (1 << SIGUNUSED) )
741 static irqreturn_t irq_handler(int intno, void *dev_id)
743 int irq_bit;
744 unsigned long flags;
746 spin_lock_irqsave(&irqbits_lock, flags);
747 irq_bit = 1 << intno;
748 if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
749 goto out;
750 irqbits |= irq_bit;
751 if (vm86_irqs[intno].sig)
752 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
754 * IRQ will be re-enabled when user asks for the irq (whether
755 * polling or as a result of the signal)
757 disable_irq_nosync(intno);
758 spin_unlock_irqrestore(&irqbits_lock, flags);
759 return IRQ_HANDLED;
761 out:
762 spin_unlock_irqrestore(&irqbits_lock, flags);
763 return IRQ_NONE;
766 static inline void free_vm86_irq(int irqnumber)
768 unsigned long flags;
770 free_irq(irqnumber, NULL);
771 vm86_irqs[irqnumber].tsk = NULL;
773 spin_lock_irqsave(&irqbits_lock, flags);
774 irqbits &= ~(1 << irqnumber);
775 spin_unlock_irqrestore(&irqbits_lock, flags);
778 void release_vm86_irqs(struct task_struct *task)
780 int i;
781 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
782 if (vm86_irqs[i].tsk == task)
783 free_vm86_irq(i);
786 static inline int get_and_reset_irq(int irqnumber)
788 int bit;
789 unsigned long flags;
790 int ret = 0;
792 if (invalid_vm86_irq(irqnumber)) return 0;
793 if (vm86_irqs[irqnumber].tsk != current) return 0;
794 spin_lock_irqsave(&irqbits_lock, flags);
795 bit = irqbits & (1 << irqnumber);
796 irqbits &= ~bit;
797 if (bit) {
798 enable_irq(irqnumber);
799 ret = 1;
802 spin_unlock_irqrestore(&irqbits_lock, flags);
803 return ret;
807 static int do_vm86_irq_handling(int subfunction, int irqnumber)
809 int ret;
810 switch (subfunction) {
811 case VM86_GET_AND_RESET_IRQ: {
812 return get_and_reset_irq(irqnumber);
814 case VM86_GET_IRQ_BITS: {
815 return irqbits;
817 case VM86_REQUEST_IRQ: {
818 int sig = irqnumber >> 8;
819 int irq = irqnumber & 255;
820 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
821 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
822 if (invalid_vm86_irq(irq)) return -EPERM;
823 if (vm86_irqs[irq].tsk) return -EPERM;
824 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
825 if (ret) return ret;
826 vm86_irqs[irq].sig = sig;
827 vm86_irqs[irq].tsk = current;
828 return irq;
830 case VM86_FREE_IRQ: {
831 if (invalid_vm86_irq(irqnumber)) return -EPERM;
832 if (!vm86_irqs[irqnumber].tsk) return 0;
833 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
834 free_vm86_irq(irqnumber);
835 return 0;
838 return -EINVAL;