4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
27 static void sum_vm_events(unsigned long *ret
)
32 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
34 for_each_online_cpu(cpu
) {
35 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
37 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
38 ret
[i
] += this->event
[i
];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret
)
53 EXPORT_SYMBOL_GPL(all_vm_events
);
56 * Fold the foreign cpu events into our own.
58 * This is adding to the events on one processor
59 * but keeps the global counts constant.
61 void vm_events_fold_cpu(int cpu
)
63 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
66 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
67 count_vm_events(i
, fold_state
->event
[i
]);
68 fold_state
->event
[i
] = 0;
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
75 * Manage combined zone based / global counters
77 * vm_stat contains the global counters
79 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
80 EXPORT_SYMBOL(vm_stat
);
84 int calculate_pressure_threshold(struct zone
*zone
)
87 int watermark_distance
;
90 * As vmstats are not up to date, there is drift between the estimated
91 * and real values. For high thresholds and a high number of CPUs, it
92 * is possible for the min watermark to be breached while the estimated
93 * value looks fine. The pressure threshold is a reduced value such
94 * that even the maximum amount of drift will not accidentally breach
97 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
98 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
101 * Maximum threshold is 125
103 threshold
= min(125, threshold
);
108 int calculate_normal_threshold(struct zone
*zone
)
111 int mem
; /* memory in 128 MB units */
114 * The threshold scales with the number of processors and the amount
115 * of memory per zone. More memory means that we can defer updates for
116 * longer, more processors could lead to more contention.
117 * fls() is used to have a cheap way of logarithmic scaling.
119 * Some sample thresholds:
121 * Threshold Processors (fls) Zonesize fls(mem+1)
122 * ------------------------------------------------------------------
139 * 125 1024 10 8-16 GB 8
140 * 125 1024 10 16-32 GB 9
143 mem
= zone
->managed_pages
>> (27 - PAGE_SHIFT
);
145 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
148 * Maximum threshold is 125
150 threshold
= min(125, threshold
);
156 * Refresh the thresholds for each zone.
158 void refresh_zone_stat_thresholds(void)
164 for_each_populated_zone(zone
) {
165 unsigned long max_drift
, tolerate_drift
;
167 threshold
= calculate_normal_threshold(zone
);
169 for_each_online_cpu(cpu
)
170 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
174 * Only set percpu_drift_mark if there is a danger that
175 * NR_FREE_PAGES reports the low watermark is ok when in fact
176 * the min watermark could be breached by an allocation
178 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
179 max_drift
= num_online_cpus() * threshold
;
180 if (max_drift
> tolerate_drift
)
181 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
186 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
187 int (*calculate_pressure
)(struct zone
*))
194 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
195 zone
= &pgdat
->node_zones
[i
];
196 if (!zone
->percpu_drift_mark
)
199 threshold
= (*calculate_pressure
)(zone
);
200 for_each_possible_cpu(cpu
)
201 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
207 * For use when we know that interrupts are disabled.
209 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
212 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
213 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
217 x
= delta
+ __this_cpu_read(*p
);
219 t
= __this_cpu_read(pcp
->stat_threshold
);
221 if (unlikely(x
> t
|| x
< -t
)) {
222 zone_page_state_add(x
, zone
, item
);
225 __this_cpu_write(*p
, x
);
227 EXPORT_SYMBOL(__mod_zone_page_state
);
230 * Optimized increment and decrement functions.
232 * These are only for a single page and therefore can take a struct page *
233 * argument instead of struct zone *. This allows the inclusion of the code
234 * generated for page_zone(page) into the optimized functions.
236 * No overflow check is necessary and therefore the differential can be
237 * incremented or decremented in place which may allow the compilers to
238 * generate better code.
239 * The increment or decrement is known and therefore one boundary check can
242 * NOTE: These functions are very performance sensitive. Change only
245 * Some processors have inc/dec instructions that are atomic vs an interrupt.
246 * However, the code must first determine the differential location in a zone
247 * based on the processor number and then inc/dec the counter. There is no
248 * guarantee without disabling preemption that the processor will not change
249 * in between and therefore the atomicity vs. interrupt cannot be exploited
250 * in a useful way here.
252 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
254 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
255 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
258 v
= __this_cpu_inc_return(*p
);
259 t
= __this_cpu_read(pcp
->stat_threshold
);
260 if (unlikely(v
> t
)) {
261 s8 overstep
= t
>> 1;
263 zone_page_state_add(v
+ overstep
, zone
, item
);
264 __this_cpu_write(*p
, -overstep
);
268 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
270 __inc_zone_state(page_zone(page
), item
);
272 EXPORT_SYMBOL(__inc_zone_page_state
);
274 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
276 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
277 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
280 v
= __this_cpu_dec_return(*p
);
281 t
= __this_cpu_read(pcp
->stat_threshold
);
282 if (unlikely(v
< - t
)) {
283 s8 overstep
= t
>> 1;
285 zone_page_state_add(v
- overstep
, zone
, item
);
286 __this_cpu_write(*p
, overstep
);
290 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
292 __dec_zone_state(page_zone(page
), item
);
294 EXPORT_SYMBOL(__dec_zone_page_state
);
296 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
298 * If we have cmpxchg_local support then we do not need to incur the overhead
299 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
301 * mod_state() modifies the zone counter state through atomic per cpu
304 * Overstep mode specifies how overstep should handled:
306 * 1 Overstepping half of threshold
307 * -1 Overstepping minus half of threshold
309 static inline void mod_state(struct zone
*zone
,
310 enum zone_stat_item item
, int delta
, int overstep_mode
)
312 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
313 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
317 z
= 0; /* overflow to zone counters */
320 * The fetching of the stat_threshold is racy. We may apply
321 * a counter threshold to the wrong the cpu if we get
322 * rescheduled while executing here. However, the next
323 * counter update will apply the threshold again and
324 * therefore bring the counter under the threshold again.
326 * Most of the time the thresholds are the same anyways
327 * for all cpus in a zone.
329 t
= this_cpu_read(pcp
->stat_threshold
);
331 o
= this_cpu_read(*p
);
334 if (n
> t
|| n
< -t
) {
335 int os
= overstep_mode
* (t
>> 1) ;
337 /* Overflow must be added to zone counters */
341 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
344 zone_page_state_add(z
, zone
, item
);
347 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
350 mod_state(zone
, item
, delta
, 0);
352 EXPORT_SYMBOL(mod_zone_page_state
);
354 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
356 mod_state(zone
, item
, 1, 1);
359 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
361 mod_state(page_zone(page
), item
, 1, 1);
363 EXPORT_SYMBOL(inc_zone_page_state
);
365 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
367 mod_state(page_zone(page
), item
, -1, -1);
369 EXPORT_SYMBOL(dec_zone_page_state
);
372 * Use interrupt disable to serialize counter updates
374 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
379 local_irq_save(flags
);
380 __mod_zone_page_state(zone
, item
, delta
);
381 local_irq_restore(flags
);
383 EXPORT_SYMBOL(mod_zone_page_state
);
385 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
389 local_irq_save(flags
);
390 __inc_zone_state(zone
, item
);
391 local_irq_restore(flags
);
394 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
399 zone
= page_zone(page
);
400 local_irq_save(flags
);
401 __inc_zone_state(zone
, item
);
402 local_irq_restore(flags
);
404 EXPORT_SYMBOL(inc_zone_page_state
);
406 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
410 local_irq_save(flags
);
411 __dec_zone_page_state(page
, item
);
412 local_irq_restore(flags
);
414 EXPORT_SYMBOL(dec_zone_page_state
);
418 * Update the zone counters for one cpu.
420 * The cpu specified must be either the current cpu or a processor that
421 * is not online. If it is the current cpu then the execution thread must
422 * be pinned to the current cpu.
424 * Note that refresh_cpu_vm_stats strives to only access
425 * node local memory. The per cpu pagesets on remote zones are placed
426 * in the memory local to the processor using that pageset. So the
427 * loop over all zones will access a series of cachelines local to
430 * The call to zone_page_state_add updates the cachelines with the
431 * statistics in the remote zone struct as well as the global cachelines
432 * with the global counters. These could cause remote node cache line
433 * bouncing and will have to be only done when necessary.
435 void refresh_cpu_vm_stats(int cpu
)
439 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
441 for_each_populated_zone(zone
) {
442 struct per_cpu_pageset
*p
;
444 p
= per_cpu_ptr(zone
->pageset
, cpu
);
446 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
447 if (p
->vm_stat_diff
[i
]) {
451 local_irq_save(flags
);
452 v
= p
->vm_stat_diff
[i
];
453 p
->vm_stat_diff
[i
] = 0;
454 local_irq_restore(flags
);
455 atomic_long_add(v
, &zone
->vm_stat
[i
]);
458 /* 3 seconds idle till flush */
465 * Deal with draining the remote pageset of this
468 * Check if there are pages remaining in this pageset
469 * if not then there is nothing to expire.
471 if (!p
->expire
|| !p
->pcp
.count
)
475 * We never drain zones local to this processor.
477 if (zone_to_nid(zone
) == numa_node_id()) {
487 drain_zone_pages(zone
, &p
->pcp
);
491 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
493 atomic_long_add(global_diff
[i
], &vm_stat
[i
]);
497 * this is only called if !populated_zone(zone), which implies no other users of
498 * pset->vm_stat_diff[] exsist.
500 void drain_zonestat(struct zone
*zone
, struct per_cpu_pageset
*pset
)
504 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
505 if (pset
->vm_stat_diff
[i
]) {
506 int v
= pset
->vm_stat_diff
[i
];
507 pset
->vm_stat_diff
[i
] = 0;
508 atomic_long_add(v
, &zone
->vm_stat
[i
]);
509 atomic_long_add(v
, &vm_stat
[i
]);
516 * zonelist = the list of zones passed to the allocator
517 * z = the zone from which the allocation occurred.
519 * Must be called with interrupts disabled.
521 * When __GFP_OTHER_NODE is set assume the node of the preferred
522 * zone is the local node. This is useful for daemons who allocate
523 * memory on behalf of other processes.
525 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
, gfp_t flags
)
527 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
528 __inc_zone_state(z
, NUMA_HIT
);
530 __inc_zone_state(z
, NUMA_MISS
);
531 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
533 if (z
->node
== ((flags
& __GFP_OTHER_NODE
) ?
534 preferred_zone
->node
: numa_node_id()))
535 __inc_zone_state(z
, NUMA_LOCAL
);
537 __inc_zone_state(z
, NUMA_OTHER
);
541 #ifdef CONFIG_COMPACTION
543 struct contig_page_info
{
544 unsigned long free_pages
;
545 unsigned long free_blocks_total
;
546 unsigned long free_blocks_suitable
;
550 * Calculate the number of free pages in a zone, how many contiguous
551 * pages are free and how many are large enough to satisfy an allocation of
552 * the target size. Note that this function makes no attempt to estimate
553 * how many suitable free blocks there *might* be if MOVABLE pages were
554 * migrated. Calculating that is possible, but expensive and can be
555 * figured out from userspace
557 static void fill_contig_page_info(struct zone
*zone
,
558 unsigned int suitable_order
,
559 struct contig_page_info
*info
)
563 info
->free_pages
= 0;
564 info
->free_blocks_total
= 0;
565 info
->free_blocks_suitable
= 0;
567 for (order
= 0; order
< MAX_ORDER
; order
++) {
568 unsigned long blocks
;
570 /* Count number of free blocks */
571 blocks
= zone
->free_area
[order
].nr_free
;
572 info
->free_blocks_total
+= blocks
;
574 /* Count free base pages */
575 info
->free_pages
+= blocks
<< order
;
577 /* Count the suitable free blocks */
578 if (order
>= suitable_order
)
579 info
->free_blocks_suitable
+= blocks
<<
580 (order
- suitable_order
);
585 * A fragmentation index only makes sense if an allocation of a requested
586 * size would fail. If that is true, the fragmentation index indicates
587 * whether external fragmentation or a lack of memory was the problem.
588 * The value can be used to determine if page reclaim or compaction
591 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
593 unsigned long requested
= 1UL << order
;
595 if (!info
->free_blocks_total
)
598 /* Fragmentation index only makes sense when a request would fail */
599 if (info
->free_blocks_suitable
)
603 * Index is between 0 and 1 so return within 3 decimal places
605 * 0 => allocation would fail due to lack of memory
606 * 1 => allocation would fail due to fragmentation
608 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
611 /* Same as __fragmentation index but allocs contig_page_info on stack */
612 int fragmentation_index(struct zone
*zone
, unsigned int order
)
614 struct contig_page_info info
;
616 fill_contig_page_info(zone
, order
, &info
);
617 return __fragmentation_index(order
, &info
);
621 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
622 #include <linux/proc_fs.h>
623 #include <linux/seq_file.h>
625 static char * const migratetype_names
[MIGRATE_TYPES
] = {
633 #ifdef CONFIG_MEMORY_ISOLATION
638 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
642 for (pgdat
= first_online_pgdat();
644 pgdat
= next_online_pgdat(pgdat
))
650 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
652 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
655 return next_online_pgdat(pgdat
);
658 static void frag_stop(struct seq_file
*m
, void *arg
)
662 /* Walk all the zones in a node and print using a callback */
663 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
664 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
667 struct zone
*node_zones
= pgdat
->node_zones
;
670 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
671 if (!populated_zone(zone
))
674 spin_lock_irqsave(&zone
->lock
, flags
);
675 print(m
, pgdat
, zone
);
676 spin_unlock_irqrestore(&zone
->lock
, flags
);
681 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
682 #ifdef CONFIG_ZONE_DMA
683 #define TEXT_FOR_DMA(xx) xx "_dma",
685 #define TEXT_FOR_DMA(xx)
688 #ifdef CONFIG_ZONE_DMA32
689 #define TEXT_FOR_DMA32(xx) xx "_dma32",
691 #define TEXT_FOR_DMA32(xx)
694 #ifdef CONFIG_HIGHMEM
695 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
697 #define TEXT_FOR_HIGHMEM(xx)
700 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
701 TEXT_FOR_HIGHMEM(xx) xx "_movable",
703 const char * const vmstat_text
[] = {
704 /* Zoned VM counters */
717 "nr_slab_reclaimable",
718 "nr_slab_unreclaimable",
719 "nr_page_table_pages",
724 "nr_vmscan_immediate_reclaim",
740 "nr_anon_transparent_hugepages",
742 "nr_dirty_threshold",
743 "nr_dirty_background_threshold",
745 #ifdef CONFIG_VM_EVENT_COUNTERS
751 TEXTS_FOR_ZONES("pgalloc")
760 TEXTS_FOR_ZONES("pgrefill")
761 TEXTS_FOR_ZONES("pgsteal_kswapd")
762 TEXTS_FOR_ZONES("pgsteal_direct")
763 TEXTS_FOR_ZONES("pgscan_kswapd")
764 TEXTS_FOR_ZONES("pgscan_direct")
765 "pgscan_direct_throttle",
768 "zone_reclaim_failed",
773 "kswapd_low_wmark_hit_quickly",
774 "kswapd_high_wmark_hit_quickly",
780 #ifdef CONFIG_NUMA_BALANCING
783 "numa_hint_faults_local",
784 "numa_pages_migrated",
786 #ifdef CONFIG_MIGRATION
790 #ifdef CONFIG_COMPACTION
791 "compact_migrate_scanned",
792 "compact_free_scanned",
799 #ifdef CONFIG_HUGETLB_PAGE
800 "htlb_buddy_alloc_success",
801 "htlb_buddy_alloc_fail",
803 "unevictable_pgs_culled",
804 "unevictable_pgs_scanned",
805 "unevictable_pgs_rescued",
806 "unevictable_pgs_mlocked",
807 "unevictable_pgs_munlocked",
808 "unevictable_pgs_cleared",
809 "unevictable_pgs_stranded",
811 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
813 "thp_fault_fallback",
814 "thp_collapse_alloc",
815 "thp_collapse_alloc_failed",
817 "thp_zero_page_alloc",
818 "thp_zero_page_alloc_failed",
821 #endif /* CONFIG_VM_EVENTS_COUNTERS */
823 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
826 #ifdef CONFIG_PROC_FS
827 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
832 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
833 for (order
= 0; order
< MAX_ORDER
; ++order
)
834 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
839 * This walks the free areas for each zone.
841 static int frag_show(struct seq_file
*m
, void *arg
)
843 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
844 walk_zones_in_node(m
, pgdat
, frag_show_print
);
848 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
849 pg_data_t
*pgdat
, struct zone
*zone
)
853 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
854 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
857 migratetype_names
[mtype
]);
858 for (order
= 0; order
< MAX_ORDER
; ++order
) {
859 unsigned long freecount
= 0;
860 struct free_area
*area
;
861 struct list_head
*curr
;
863 area
= &(zone
->free_area
[order
]);
865 list_for_each(curr
, &area
->free_list
[mtype
])
867 seq_printf(m
, "%6lu ", freecount
);
873 /* Print out the free pages at each order for each migatetype */
874 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
877 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
880 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
881 for (order
= 0; order
< MAX_ORDER
; ++order
)
882 seq_printf(m
, "%6d ", order
);
885 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
890 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
891 pg_data_t
*pgdat
, struct zone
*zone
)
895 unsigned long start_pfn
= zone
->zone_start_pfn
;
896 unsigned long end_pfn
= zone_end_pfn(zone
);
897 unsigned long count
[MIGRATE_TYPES
] = { 0, };
899 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
905 page
= pfn_to_page(pfn
);
907 /* Watch for unexpected holes punched in the memmap */
908 if (!memmap_valid_within(pfn
, page
, zone
))
911 mtype
= get_pageblock_migratetype(page
);
913 if (mtype
< MIGRATE_TYPES
)
918 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
919 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
920 seq_printf(m
, "%12lu ", count
[mtype
]);
924 /* Print out the free pages at each order for each migratetype */
925 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
928 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
930 seq_printf(m
, "\n%-23s", "Number of blocks type ");
931 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
932 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
934 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
940 * This prints out statistics in relation to grouping pages by mobility.
941 * It is expensive to collect so do not constantly read the file.
943 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
945 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
947 /* check memoryless node */
948 if (!node_state(pgdat
->node_id
, N_MEMORY
))
951 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
952 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
954 pagetypeinfo_showfree(m
, pgdat
);
955 pagetypeinfo_showblockcount(m
, pgdat
);
960 static const struct seq_operations fragmentation_op
= {
967 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
969 return seq_open(file
, &fragmentation_op
);
972 static const struct file_operations fragmentation_file_operations
= {
973 .open
= fragmentation_open
,
976 .release
= seq_release
,
979 static const struct seq_operations pagetypeinfo_op
= {
983 .show
= pagetypeinfo_show
,
986 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
988 return seq_open(file
, &pagetypeinfo_op
);
991 static const struct file_operations pagetypeinfo_file_ops
= {
992 .open
= pagetypeinfo_open
,
995 .release
= seq_release
,
998 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1002 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
1012 zone_page_state(zone
, NR_FREE_PAGES
),
1013 min_wmark_pages(zone
),
1014 low_wmark_pages(zone
),
1015 high_wmark_pages(zone
),
1016 zone
->pages_scanned
,
1017 zone
->spanned_pages
,
1018 zone
->present_pages
,
1019 zone
->managed_pages
);
1021 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1022 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
1023 zone_page_state(zone
, i
));
1026 "\n protection: (%lu",
1027 zone
->lowmem_reserve
[0]);
1028 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
1029 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
1033 for_each_online_cpu(i
) {
1034 struct per_cpu_pageset
*pageset
;
1036 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1045 pageset
->pcp
.batch
);
1047 seq_printf(m
, "\n vm stats threshold: %d",
1048 pageset
->stat_threshold
);
1052 "\n all_unreclaimable: %u"
1054 "\n inactive_ratio: %u",
1055 zone
->all_unreclaimable
,
1056 zone
->zone_start_pfn
,
1057 zone
->inactive_ratio
);
1062 * Output information about zones in @pgdat.
1064 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1066 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1067 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
1071 static const struct seq_operations zoneinfo_op
= {
1072 .start
= frag_start
, /* iterate over all zones. The same as in
1076 .show
= zoneinfo_show
,
1079 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
1081 return seq_open(file
, &zoneinfo_op
);
1084 static const struct file_operations proc_zoneinfo_file_operations
= {
1085 .open
= zoneinfo_open
,
1087 .llseek
= seq_lseek
,
1088 .release
= seq_release
,
1091 enum writeback_stat_item
{
1093 NR_DIRTY_BG_THRESHOLD
,
1094 NR_VM_WRITEBACK_STAT_ITEMS
,
1097 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1100 int i
, stat_items_size
;
1102 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1104 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1105 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1107 #ifdef CONFIG_VM_EVENT_COUNTERS
1108 stat_items_size
+= sizeof(struct vm_event_state
);
1111 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1114 return ERR_PTR(-ENOMEM
);
1115 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1116 v
[i
] = global_page_state(i
);
1117 v
+= NR_VM_ZONE_STAT_ITEMS
;
1119 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1120 v
+ NR_DIRTY_THRESHOLD
);
1121 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1123 #ifdef CONFIG_VM_EVENT_COUNTERS
1125 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1128 return (unsigned long *)m
->private + *pos
;
1131 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1134 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1136 return (unsigned long *)m
->private + *pos
;
1139 static int vmstat_show(struct seq_file
*m
, void *arg
)
1141 unsigned long *l
= arg
;
1142 unsigned long off
= l
- (unsigned long *)m
->private;
1144 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1148 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1154 static const struct seq_operations vmstat_op
= {
1155 .start
= vmstat_start
,
1156 .next
= vmstat_next
,
1157 .stop
= vmstat_stop
,
1158 .show
= vmstat_show
,
1161 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1163 return seq_open(file
, &vmstat_op
);
1166 static const struct file_operations proc_vmstat_file_operations
= {
1167 .open
= vmstat_open
,
1169 .llseek
= seq_lseek
,
1170 .release
= seq_release
,
1172 #endif /* CONFIG_PROC_FS */
1175 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1176 int sysctl_stat_interval __read_mostly
= HZ
;
1178 static void vmstat_update(struct work_struct
*w
)
1180 refresh_cpu_vm_stats(smp_processor_id());
1181 schedule_delayed_work(&__get_cpu_var(vmstat_work
),
1182 round_jiffies_relative(sysctl_stat_interval
));
1185 static void start_cpu_timer(int cpu
)
1187 struct delayed_work
*work
= &per_cpu(vmstat_work
, cpu
);
1189 INIT_DEFERRABLE_WORK(work
, vmstat_update
);
1190 schedule_delayed_work_on(cpu
, work
, __round_jiffies_relative(HZ
, cpu
));
1194 * Use the cpu notifier to insure that the thresholds are recalculated
1197 static int vmstat_cpuup_callback(struct notifier_block
*nfb
,
1198 unsigned long action
,
1201 long cpu
= (long)hcpu
;
1205 case CPU_ONLINE_FROZEN
:
1206 refresh_zone_stat_thresholds();
1207 start_cpu_timer(cpu
);
1208 node_set_state(cpu_to_node(cpu
), N_CPU
);
1210 case CPU_DOWN_PREPARE
:
1211 case CPU_DOWN_PREPARE_FROZEN
:
1212 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1213 per_cpu(vmstat_work
, cpu
).work
.func
= NULL
;
1215 case CPU_DOWN_FAILED
:
1216 case CPU_DOWN_FAILED_FROZEN
:
1217 start_cpu_timer(cpu
);
1220 case CPU_DEAD_FROZEN
:
1221 refresh_zone_stat_thresholds();
1229 static struct notifier_block vmstat_notifier
=
1230 { &vmstat_cpuup_callback
, NULL
, 0 };
1233 static int __init
setup_vmstat(void)
1238 register_cpu_notifier(&vmstat_notifier
);
1240 for_each_online_cpu(cpu
)
1241 start_cpu_timer(cpu
);
1243 #ifdef CONFIG_PROC_FS
1244 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1245 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1246 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1247 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1251 module_init(setup_vmstat
)
1253 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1254 #include <linux/debugfs.h>
1258 * Return an index indicating how much of the available free memory is
1259 * unusable for an allocation of the requested size.
1261 static int unusable_free_index(unsigned int order
,
1262 struct contig_page_info
*info
)
1264 /* No free memory is interpreted as all free memory is unusable */
1265 if (info
->free_pages
== 0)
1269 * Index should be a value between 0 and 1. Return a value to 3
1272 * 0 => no fragmentation
1273 * 1 => high fragmentation
1275 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1279 static void unusable_show_print(struct seq_file
*m
,
1280 pg_data_t
*pgdat
, struct zone
*zone
)
1284 struct contig_page_info info
;
1286 seq_printf(m
, "Node %d, zone %8s ",
1289 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1290 fill_contig_page_info(zone
, order
, &info
);
1291 index
= unusable_free_index(order
, &info
);
1292 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1299 * Display unusable free space index
1301 * The unusable free space index measures how much of the available free
1302 * memory cannot be used to satisfy an allocation of a given size and is a
1303 * value between 0 and 1. The higher the value, the more of free memory is
1304 * unusable and by implication, the worse the external fragmentation is. This
1305 * can be expressed as a percentage by multiplying by 100.
1307 static int unusable_show(struct seq_file
*m
, void *arg
)
1309 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1311 /* check memoryless node */
1312 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1315 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1320 static const struct seq_operations unusable_op
= {
1321 .start
= frag_start
,
1324 .show
= unusable_show
,
1327 static int unusable_open(struct inode
*inode
, struct file
*file
)
1329 return seq_open(file
, &unusable_op
);
1332 static const struct file_operations unusable_file_ops
= {
1333 .open
= unusable_open
,
1335 .llseek
= seq_lseek
,
1336 .release
= seq_release
,
1339 static void extfrag_show_print(struct seq_file
*m
,
1340 pg_data_t
*pgdat
, struct zone
*zone
)
1345 /* Alloc on stack as interrupts are disabled for zone walk */
1346 struct contig_page_info info
;
1348 seq_printf(m
, "Node %d, zone %8s ",
1351 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1352 fill_contig_page_info(zone
, order
, &info
);
1353 index
= __fragmentation_index(order
, &info
);
1354 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1361 * Display fragmentation index for orders that allocations would fail for
1363 static int extfrag_show(struct seq_file
*m
, void *arg
)
1365 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1367 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1372 static const struct seq_operations extfrag_op
= {
1373 .start
= frag_start
,
1376 .show
= extfrag_show
,
1379 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1381 return seq_open(file
, &extfrag_op
);
1384 static const struct file_operations extfrag_file_ops
= {
1385 .open
= extfrag_open
,
1387 .llseek
= seq_lseek
,
1388 .release
= seq_release
,
1391 static int __init
extfrag_debug_init(void)
1393 struct dentry
*extfrag_debug_root
;
1395 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1396 if (!extfrag_debug_root
)
1399 if (!debugfs_create_file("unusable_index", 0444,
1400 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1403 if (!debugfs_create_file("extfrag_index", 0444,
1404 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1409 debugfs_remove_recursive(extfrag_debug_root
);
1413 module_init(extfrag_debug_init
);