1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
9 #include <linux/ioport.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
23 * - The third channel may be used to provide a 16-bit clockevent
24 * source, used in either periodic or oneshot mode. This runs
25 * at 32 KiHZ, and can handle delays of up to two seconds.
27 * A boot clocksource and clockevent source are also currently needed,
28 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
29 * this code can be used when init_timers() is called, well before most
30 * devices are set up. (Some low end AT91 parts, which can run uClinux,
31 * have only the timers in one TC block... they currently don't support
32 * the tclib code, because of that initialization issue.)
34 * REVISIT behavior during system suspend states... we should disable
35 * all clocks and save the power. Easily done for clockevent devices,
36 * but clocksources won't necessarily get the needed notifications.
37 * For deeper system sleep states, this will be mandatory...
40 static void __iomem
*tcaddr
;
42 static cycle_t
tc_get_cycles(struct clocksource
*cs
)
47 raw_local_irq_save(flags
);
49 upper
= __raw_readl(tcaddr
+ ATMEL_TC_REG(1, CV
));
50 lower
= __raw_readl(tcaddr
+ ATMEL_TC_REG(0, CV
));
51 } while (upper
!= __raw_readl(tcaddr
+ ATMEL_TC_REG(1, CV
)));
53 raw_local_irq_restore(flags
);
54 return (upper
<< 16) | lower
;
57 static struct clocksource clksrc
= {
60 .read
= tc_get_cycles
,
61 .mask
= CLOCKSOURCE_MASK(32),
62 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
65 #ifdef CONFIG_GENERIC_CLOCKEVENTS
67 struct tc_clkevt_device
{
68 struct clock_event_device clkevt
;
73 static struct tc_clkevt_device
*to_tc_clkevt(struct clock_event_device
*clkevt
)
75 return container_of(clkevt
, struct tc_clkevt_device
, clkevt
);
78 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
79 * because using one of the divided clocks would usually mean the
80 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
82 * A divided clock could be good for high resolution timers, since
83 * 30.5 usec resolution can seem "low".
85 static u32 timer_clock
;
87 static void tc_mode(enum clock_event_mode m
, struct clock_event_device
*d
)
89 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
90 void __iomem
*regs
= tcd
->regs
;
92 if (tcd
->clkevt
.mode
== CLOCK_EVT_MODE_PERIODIC
93 || tcd
->clkevt
.mode
== CLOCK_EVT_MODE_ONESHOT
) {
94 __raw_writel(0xff, regs
+ ATMEL_TC_REG(2, IDR
));
95 __raw_writel(ATMEL_TC_CLKDIS
, regs
+ ATMEL_TC_REG(2, CCR
));
96 clk_disable(tcd
->clk
);
101 /* By not making the gentime core emulate periodic mode on top
102 * of oneshot, we get lower overhead and improved accuracy.
104 case CLOCK_EVT_MODE_PERIODIC
:
105 clk_enable(tcd
->clk
);
107 /* slow clock, count up to RC, then irq and restart */
108 __raw_writel(timer_clock
109 | ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP_AUTO
,
110 regs
+ ATMEL_TC_REG(2, CMR
));
111 __raw_writel((32768 + HZ
/2) / HZ
, tcaddr
+ ATMEL_TC_REG(2, RC
));
113 /* Enable clock and interrupts on RC compare */
114 __raw_writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
117 __raw_writel(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
,
118 regs
+ ATMEL_TC_REG(2, CCR
));
121 case CLOCK_EVT_MODE_ONESHOT
:
122 clk_enable(tcd
->clk
);
124 /* slow clock, count up to RC, then irq and stop */
125 __raw_writel(timer_clock
| ATMEL_TC_CPCSTOP
126 | ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP_AUTO
,
127 regs
+ ATMEL_TC_REG(2, CMR
));
128 __raw_writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
130 /* set_next_event() configures and starts the timer */
138 static int tc_next_event(unsigned long delta
, struct clock_event_device
*d
)
140 __raw_writel(delta
, tcaddr
+ ATMEL_TC_REG(2, RC
));
143 __raw_writel(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
,
144 tcaddr
+ ATMEL_TC_REG(2, CCR
));
148 static struct tc_clkevt_device clkevt
= {
151 .features
= CLOCK_EVT_FEAT_PERIODIC
152 | CLOCK_EVT_FEAT_ONESHOT
,
154 /* Should be lower than at91rm9200's system timer */
156 .set_next_event
= tc_next_event
,
161 static irqreturn_t
ch2_irq(int irq
, void *handle
)
163 struct tc_clkevt_device
*dev
= handle
;
166 sr
= __raw_readl(dev
->regs
+ ATMEL_TC_REG(2, SR
));
167 if (sr
& ATMEL_TC_CPCS
) {
168 dev
->clkevt
.event_handler(&dev
->clkevt
);
175 static struct irqaction tc_irqaction
= {
177 .flags
= IRQF_TIMER
| IRQF_DISABLED
,
181 static void __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
183 struct clk
*t2_clk
= tc
->clk
[2];
184 int irq
= tc
->irq
[2];
186 clkevt
.regs
= tc
->regs
;
188 tc_irqaction
.dev_id
= &clkevt
;
190 timer_clock
= clk32k_divisor_idx
;
192 clkevt
.clkevt
.mult
= div_sc(32768, NSEC_PER_SEC
, clkevt
.clkevt
.shift
);
193 clkevt
.clkevt
.max_delta_ns
194 = clockevent_delta2ns(0xffff, &clkevt
.clkevt
);
195 clkevt
.clkevt
.min_delta_ns
= clockevent_delta2ns(1, &clkevt
.clkevt
) + 1;
196 clkevt
.clkevt
.cpumask
= cpumask_of(0);
198 clockevents_register_device(&clkevt
.clkevt
);
200 setup_irq(irq
, &tc_irqaction
);
203 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
205 static void __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
212 static int __init
tcb_clksrc_init(void)
214 static char bootinfo
[] __initdata
215 = KERN_DEBUG
"%s: tc%d at %d.%03d MHz\n";
217 struct platform_device
*pdev
;
220 u32 rate
, divided_rate
= 0;
221 int best_divisor_idx
= -1;
222 int clk32k_divisor_idx
= -1;
225 tc
= atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK
, clksrc
.name
);
227 pr_debug("can't alloc TC for clocksource\n");
236 /* How fast will we be counting? Pick something over 5 MHz. */
237 rate
= (u32
) clk_get_rate(t0_clk
);
238 for (i
= 0; i
< 5; i
++) {
239 unsigned divisor
= atmel_tc_divisors
[i
];
242 /* remember 32 KiHz clock for later */
244 clk32k_divisor_idx
= i
;
248 tmp
= rate
/ divisor
;
249 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate
, divisor
, i
, tmp
);
250 if (best_divisor_idx
> 0) {
251 if (tmp
< 5 * 1000 * 1000)
255 best_divisor_idx
= i
;
259 printk(bootinfo
, clksrc
.name
, CONFIG_ATMEL_TCB_CLKSRC_BLOCK
,
260 divided_rate
/ 1000000,
261 ((divided_rate
+ 500000) % 1000000) / 1000);
263 /* tclib will give us three clocks no matter what the
264 * underlying platform supports.
266 clk_enable(tc
->clk
[1]);
268 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
269 __raw_writel(best_divisor_idx
/* likely divide-by-8 */
271 | ATMEL_TC_WAVESEL_UP
/* free-run */
272 | ATMEL_TC_ACPA_SET
/* TIOA0 rises at 0 */
273 | ATMEL_TC_ACPC_CLEAR
, /* (duty cycle 50%) */
274 tcaddr
+ ATMEL_TC_REG(0, CMR
));
275 __raw_writel(0x0000, tcaddr
+ ATMEL_TC_REG(0, RA
));
276 __raw_writel(0x8000, tcaddr
+ ATMEL_TC_REG(0, RC
));
277 __raw_writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
278 __raw_writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
280 /* channel 1: waveform mode, input TIOA0 */
281 __raw_writel(ATMEL_TC_XC1
/* input: TIOA0 */
283 | ATMEL_TC_WAVESEL_UP
, /* free-run */
284 tcaddr
+ ATMEL_TC_REG(1, CMR
));
285 __raw_writel(0xff, tcaddr
+ ATMEL_TC_REG(1, IDR
)); /* no irqs */
286 __raw_writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(1, CCR
));
288 /* chain channel 0 to channel 1, then reset all the timers */
289 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0
, tcaddr
+ ATMEL_TC_BMR
);
290 __raw_writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
292 /* and away we go! */
293 clocksource_register_hz(&clksrc
, divided_rate
);
295 /* channel 2: periodic and oneshot timer support */
296 setup_clkevents(tc
, clk32k_divisor_idx
);
300 arch_initcall(tcb_clksrc_init
);