2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
51 #include <asm/cpufeature.h>
54 static struct extent_io_ops btree_extent_io_ops
;
55 static void end_workqueue_fn(struct btrfs_work
*work
);
56 static void free_fs_root(struct btrfs_root
*root
);
57 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
59 static void btrfs_destroy_ordered_operations(struct btrfs_root
*root
);
60 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
61 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
62 struct btrfs_root
*root
);
63 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
);
64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
65 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
66 struct extent_io_tree
*dirty_pages
,
68 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
69 struct extent_io_tree
*pinned_extents
);
72 * end_io_wq structs are used to do processing in task context when an IO is
73 * complete. This is used during reads to verify checksums, and it is used
74 * by writes to insert metadata for new file extents after IO is complete.
80 struct btrfs_fs_info
*info
;
83 struct list_head list
;
84 struct btrfs_work work
;
88 * async submit bios are used to offload expensive checksumming
89 * onto the worker threads. They checksum file and metadata bios
90 * just before they are sent down the IO stack.
92 struct async_submit_bio
{
95 struct list_head list
;
96 extent_submit_bio_hook_t
*submit_bio_start
;
97 extent_submit_bio_hook_t
*submit_bio_done
;
100 unsigned long bio_flags
;
102 * bio_offset is optional, can be used if the pages in the bio
103 * can't tell us where in the file the bio should go
106 struct btrfs_work work
;
111 * Lockdep class keys for extent_buffer->lock's in this root. For a given
112 * eb, the lockdep key is determined by the btrfs_root it belongs to and
113 * the level the eb occupies in the tree.
115 * Different roots are used for different purposes and may nest inside each
116 * other and they require separate keysets. As lockdep keys should be
117 * static, assign keysets according to the purpose of the root as indicated
118 * by btrfs_root->objectid. This ensures that all special purpose roots
119 * have separate keysets.
121 * Lock-nesting across peer nodes is always done with the immediate parent
122 * node locked thus preventing deadlock. As lockdep doesn't know this, use
123 * subclass to avoid triggering lockdep warning in such cases.
125 * The key is set by the readpage_end_io_hook after the buffer has passed
126 * csum validation but before the pages are unlocked. It is also set by
127 * btrfs_init_new_buffer on freshly allocated blocks.
129 * We also add a check to make sure the highest level of the tree is the
130 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
131 * needs update as well.
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 # if BTRFS_MAX_LEVEL != 8
138 static struct btrfs_lockdep_keyset
{
139 u64 id
; /* root objectid */
140 const char *name_stem
; /* lock name stem */
141 char names
[BTRFS_MAX_LEVEL
+ 1][20];
142 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
143 } btrfs_lockdep_keysets
[] = {
144 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
145 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
146 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
147 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
148 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
149 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
150 { .id
= BTRFS_ORPHAN_OBJECTID
, .name_stem
= "orphan" },
151 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
152 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
153 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
154 { .id
= 0, .name_stem
= "tree" },
157 void __init
btrfs_init_lockdep(void)
161 /* initialize lockdep class names */
162 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
163 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
165 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
166 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
167 "btrfs-%s-%02d", ks
->name_stem
, j
);
171 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
174 struct btrfs_lockdep_keyset
*ks
;
176 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
178 /* find the matching keyset, id 0 is the default entry */
179 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
180 if (ks
->id
== objectid
)
183 lockdep_set_class_and_name(&eb
->lock
,
184 &ks
->keys
[level
], ks
->names
[level
]);
190 * extents on the btree inode are pretty simple, there's one extent
191 * that covers the entire device
193 static struct extent_map
*btree_get_extent(struct inode
*inode
,
194 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
197 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
198 struct extent_map
*em
;
201 read_lock(&em_tree
->lock
);
202 em
= lookup_extent_mapping(em_tree
, start
, len
);
205 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
206 read_unlock(&em_tree
->lock
);
209 read_unlock(&em_tree
->lock
);
211 em
= alloc_extent_map();
213 em
= ERR_PTR(-ENOMEM
);
218 em
->block_len
= (u64
)-1;
220 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
222 write_lock(&em_tree
->lock
);
223 ret
= add_extent_mapping(em_tree
, em
);
224 if (ret
== -EEXIST
) {
226 em
= lookup_extent_mapping(em_tree
, start
, len
);
233 write_unlock(&em_tree
->lock
);
239 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
241 return crc32c(seed
, data
, len
);
244 void btrfs_csum_final(u32 crc
, char *result
)
246 put_unaligned_le32(~crc
, result
);
250 * compute the csum for a btree block, and either verify it or write it
251 * into the csum field of the block.
253 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
256 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
259 unsigned long cur_len
;
260 unsigned long offset
= BTRFS_CSUM_SIZE
;
262 unsigned long map_start
;
263 unsigned long map_len
;
266 unsigned long inline_result
;
268 len
= buf
->len
- offset
;
270 err
= map_private_extent_buffer(buf
, offset
, 32,
271 &kaddr
, &map_start
, &map_len
);
274 cur_len
= min(len
, map_len
- (offset
- map_start
));
275 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
280 if (csum_size
> sizeof(inline_result
)) {
281 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
285 result
= (char *)&inline_result
;
288 btrfs_csum_final(crc
, result
);
291 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
294 memcpy(&found
, result
, csum_size
);
296 read_extent_buffer(buf
, &val
, 0, csum_size
);
297 printk_ratelimited(KERN_INFO
"btrfs: %s checksum verify "
298 "failed on %llu wanted %X found %X "
300 root
->fs_info
->sb
->s_id
,
301 (unsigned long long)buf
->start
, val
, found
,
302 btrfs_header_level(buf
));
303 if (result
!= (char *)&inline_result
)
308 write_extent_buffer(buf
, result
, 0, csum_size
);
310 if (result
!= (char *)&inline_result
)
316 * we can't consider a given block up to date unless the transid of the
317 * block matches the transid in the parent node's pointer. This is how we
318 * detect blocks that either didn't get written at all or got written
319 * in the wrong place.
321 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
322 struct extent_buffer
*eb
, u64 parent_transid
,
325 struct extent_state
*cached_state
= NULL
;
328 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
334 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
336 if (extent_buffer_uptodate(eb
) &&
337 btrfs_header_generation(eb
) == parent_transid
) {
341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
343 (unsigned long long)eb
->start
,
344 (unsigned long long)parent_transid
,
345 (unsigned long long)btrfs_header_generation(eb
));
347 clear_extent_buffer_uptodate(eb
);
349 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
350 &cached_state
, GFP_NOFS
);
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
358 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
359 struct extent_buffer
*eb
,
360 u64 start
, u64 parent_transid
)
362 struct extent_io_tree
*io_tree
;
367 int failed_mirror
= 0;
369 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
370 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
372 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
374 btree_get_extent
, mirror_num
);
376 if (!verify_parent_transid(io_tree
, eb
,
384 * This buffer's crc is fine, but its contents are corrupted, so
385 * there is no reason to read the other copies, they won't be
388 if (test_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
))
391 num_copies
= btrfs_num_copies(root
->fs_info
,
396 if (!failed_mirror
) {
398 failed_mirror
= eb
->read_mirror
;
402 if (mirror_num
== failed_mirror
)
405 if (mirror_num
> num_copies
)
409 if (failed
&& !ret
&& failed_mirror
)
410 repair_eb_io_failure(root
, eb
, failed_mirror
);
416 * checksum a dirty tree block before IO. This has extra checks to make sure
417 * we only fill in the checksum field in the first page of a multi-page block
420 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
422 struct extent_io_tree
*tree
;
423 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
425 struct extent_buffer
*eb
;
427 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
429 eb
= (struct extent_buffer
*)page
->private;
430 if (page
!= eb
->pages
[0])
432 found_start
= btrfs_header_bytenr(eb
);
433 if (found_start
!= start
) {
437 if (!PageUptodate(page
)) {
441 csum_tree_block(root
, eb
, 0);
445 static int check_tree_block_fsid(struct btrfs_root
*root
,
446 struct extent_buffer
*eb
)
448 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
449 u8 fsid
[BTRFS_UUID_SIZE
];
452 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
455 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
459 fs_devices
= fs_devices
->seed
;
464 #define CORRUPT(reason, eb, root, slot) \
465 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466 "root=%llu, slot=%d\n", reason, \
467 (unsigned long long)btrfs_header_bytenr(eb), \
468 (unsigned long long)root->objectid, slot)
470 static noinline
int check_leaf(struct btrfs_root
*root
,
471 struct extent_buffer
*leaf
)
473 struct btrfs_key key
;
474 struct btrfs_key leaf_key
;
475 u32 nritems
= btrfs_header_nritems(leaf
);
481 /* Check the 0 item */
482 if (btrfs_item_offset_nr(leaf
, 0) + btrfs_item_size_nr(leaf
, 0) !=
483 BTRFS_LEAF_DATA_SIZE(root
)) {
484 CORRUPT("invalid item offset size pair", leaf
, root
, 0);
489 * Check to make sure each items keys are in the correct order and their
490 * offsets make sense. We only have to loop through nritems-1 because
491 * we check the current slot against the next slot, which verifies the
492 * next slot's offset+size makes sense and that the current's slot
495 for (slot
= 0; slot
< nritems
- 1; slot
++) {
496 btrfs_item_key_to_cpu(leaf
, &leaf_key
, slot
);
497 btrfs_item_key_to_cpu(leaf
, &key
, slot
+ 1);
499 /* Make sure the keys are in the right order */
500 if (btrfs_comp_cpu_keys(&leaf_key
, &key
) >= 0) {
501 CORRUPT("bad key order", leaf
, root
, slot
);
506 * Make sure the offset and ends are right, remember that the
507 * item data starts at the end of the leaf and grows towards the
510 if (btrfs_item_offset_nr(leaf
, slot
) !=
511 btrfs_item_end_nr(leaf
, slot
+ 1)) {
512 CORRUPT("slot offset bad", leaf
, root
, slot
);
517 * Check to make sure that we don't point outside of the leaf,
518 * just incase all the items are consistent to eachother, but
519 * all point outside of the leaf.
521 if (btrfs_item_end_nr(leaf
, slot
) >
522 BTRFS_LEAF_DATA_SIZE(root
)) {
523 CORRUPT("slot end outside of leaf", leaf
, root
, slot
);
531 struct extent_buffer
*find_eb_for_page(struct extent_io_tree
*tree
,
532 struct page
*page
, int max_walk
)
534 struct extent_buffer
*eb
;
535 u64 start
= page_offset(page
);
539 if (start
< max_walk
)
542 min_start
= start
- max_walk
;
544 while (start
>= min_start
) {
545 eb
= find_extent_buffer(tree
, start
, 0);
548 * we found an extent buffer and it contains our page
551 if (eb
->start
<= target
&&
552 eb
->start
+ eb
->len
> target
)
555 /* we found an extent buffer that wasn't for us */
556 free_extent_buffer(eb
);
561 start
-= PAGE_CACHE_SIZE
;
566 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
567 struct extent_state
*state
, int mirror
)
569 struct extent_io_tree
*tree
;
572 struct extent_buffer
*eb
;
573 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
580 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
581 eb
= (struct extent_buffer
*)page
->private;
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
586 extent_buffer_get(eb
);
588 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
592 eb
->read_mirror
= mirror
;
593 if (test_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
)) {
598 found_start
= btrfs_header_bytenr(eb
);
599 if (found_start
!= eb
->start
) {
600 printk_ratelimited(KERN_INFO
"btrfs bad tree block start "
602 (unsigned long long)found_start
,
603 (unsigned long long)eb
->start
);
607 if (check_tree_block_fsid(root
, eb
)) {
608 printk_ratelimited(KERN_INFO
"btrfs bad fsid on block %llu\n",
609 (unsigned long long)eb
->start
);
613 found_level
= btrfs_header_level(eb
);
615 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
618 ret
= csum_tree_block(root
, eb
, 1);
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
629 if (found_level
== 0 && check_leaf(root
, eb
)) {
630 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
635 set_extent_buffer_uptodate(eb
);
637 if (test_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
)) {
638 clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
);
639 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
643 clear_extent_buffer_uptodate(eb
);
644 free_extent_buffer(eb
);
649 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
651 struct extent_buffer
*eb
;
652 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
654 eb
= (struct extent_buffer
*)page
->private;
655 set_bit(EXTENT_BUFFER_IOERR
, &eb
->bflags
);
656 eb
->read_mirror
= failed_mirror
;
657 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
658 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
659 return -EIO
; /* we fixed nothing */
662 static void end_workqueue_bio(struct bio
*bio
, int err
)
664 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
665 struct btrfs_fs_info
*fs_info
;
667 fs_info
= end_io_wq
->info
;
668 end_io_wq
->error
= err
;
669 end_io_wq
->work
.func
= end_workqueue_fn
;
670 end_io_wq
->work
.flags
= 0;
672 if (bio
->bi_rw
& REQ_WRITE
) {
673 if (end_io_wq
->metadata
== 1)
674 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
676 else if (end_io_wq
->metadata
== 2)
677 btrfs_queue_worker(&fs_info
->endio_freespace_worker
,
680 btrfs_queue_worker(&fs_info
->endio_write_workers
,
683 if (end_io_wq
->metadata
)
684 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
687 btrfs_queue_worker(&fs_info
->endio_workers
,
693 * For the metadata arg you want
696 * 1 - if normal metadta
697 * 2 - if writing to the free space cache area
699 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
702 struct end_io_wq
*end_io_wq
;
703 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
707 end_io_wq
->private = bio
->bi_private
;
708 end_io_wq
->end_io
= bio
->bi_end_io
;
709 end_io_wq
->info
= info
;
710 end_io_wq
->error
= 0;
711 end_io_wq
->bio
= bio
;
712 end_io_wq
->metadata
= metadata
;
714 bio
->bi_private
= end_io_wq
;
715 bio
->bi_end_io
= end_workqueue_bio
;
719 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
721 unsigned long limit
= min_t(unsigned long,
722 info
->workers
.max_workers
,
723 info
->fs_devices
->open_devices
);
727 static void run_one_async_start(struct btrfs_work
*work
)
729 struct async_submit_bio
*async
;
732 async
= container_of(work
, struct async_submit_bio
, work
);
733 ret
= async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
734 async
->mirror_num
, async
->bio_flags
,
740 static void run_one_async_done(struct btrfs_work
*work
)
742 struct btrfs_fs_info
*fs_info
;
743 struct async_submit_bio
*async
;
746 async
= container_of(work
, struct async_submit_bio
, work
);
747 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
749 limit
= btrfs_async_submit_limit(fs_info
);
750 limit
= limit
* 2 / 3;
752 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
753 waitqueue_active(&fs_info
->async_submit_wait
))
754 wake_up(&fs_info
->async_submit_wait
);
756 /* If an error occured we just want to clean up the bio and move on */
758 bio_endio(async
->bio
, async
->error
);
762 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
763 async
->mirror_num
, async
->bio_flags
,
767 static void run_one_async_free(struct btrfs_work
*work
)
769 struct async_submit_bio
*async
;
771 async
= container_of(work
, struct async_submit_bio
, work
);
775 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
776 int rw
, struct bio
*bio
, int mirror_num
,
777 unsigned long bio_flags
,
779 extent_submit_bio_hook_t
*submit_bio_start
,
780 extent_submit_bio_hook_t
*submit_bio_done
)
782 struct async_submit_bio
*async
;
784 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
788 async
->inode
= inode
;
791 async
->mirror_num
= mirror_num
;
792 async
->submit_bio_start
= submit_bio_start
;
793 async
->submit_bio_done
= submit_bio_done
;
795 async
->work
.func
= run_one_async_start
;
796 async
->work
.ordered_func
= run_one_async_done
;
797 async
->work
.ordered_free
= run_one_async_free
;
799 async
->work
.flags
= 0;
800 async
->bio_flags
= bio_flags
;
801 async
->bio_offset
= bio_offset
;
805 atomic_inc(&fs_info
->nr_async_submits
);
808 btrfs_set_work_high_prio(&async
->work
);
810 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
812 while (atomic_read(&fs_info
->async_submit_draining
) &&
813 atomic_read(&fs_info
->nr_async_submits
)) {
814 wait_event(fs_info
->async_submit_wait
,
815 (atomic_read(&fs_info
->nr_async_submits
) == 0));
821 static int btree_csum_one_bio(struct bio
*bio
)
823 struct bio_vec
*bvec
= bio
->bi_io_vec
;
825 struct btrfs_root
*root
;
828 WARN_ON(bio
->bi_vcnt
<= 0);
829 while (bio_index
< bio
->bi_vcnt
) {
830 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
831 ret
= csum_dirty_buffer(root
, bvec
->bv_page
);
840 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
841 struct bio
*bio
, int mirror_num
,
842 unsigned long bio_flags
,
846 * when we're called for a write, we're already in the async
847 * submission context. Just jump into btrfs_map_bio
849 return btree_csum_one_bio(bio
);
852 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
853 int mirror_num
, unsigned long bio_flags
,
859 * when we're called for a write, we're already in the async
860 * submission context. Just jump into btrfs_map_bio
862 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
868 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
870 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
879 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
880 int mirror_num
, unsigned long bio_flags
,
883 int async
= check_async_write(inode
, bio_flags
);
886 if (!(rw
& REQ_WRITE
)) {
888 * called for a read, do the setup so that checksum validation
889 * can happen in the async kernel threads
891 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
895 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
898 ret
= btree_csum_one_bio(bio
);
901 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
905 * kthread helpers are used to submit writes so that
906 * checksumming can happen in parallel across all CPUs
908 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
909 inode
, rw
, bio
, mirror_num
, 0,
911 __btree_submit_bio_start
,
912 __btree_submit_bio_done
);
922 #ifdef CONFIG_MIGRATION
923 static int btree_migratepage(struct address_space
*mapping
,
924 struct page
*newpage
, struct page
*page
,
925 enum migrate_mode mode
)
928 * we can't safely write a btree page from here,
929 * we haven't done the locking hook
934 * Buffers may be managed in a filesystem specific way.
935 * We must have no buffers or drop them.
937 if (page_has_private(page
) &&
938 !try_to_release_page(page
, GFP_KERNEL
))
940 return migrate_page(mapping
, newpage
, page
, mode
);
945 static int btree_writepages(struct address_space
*mapping
,
946 struct writeback_control
*wbc
)
948 struct extent_io_tree
*tree
;
949 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
950 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
951 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
953 unsigned long thresh
= 32 * 1024 * 1024;
955 if (wbc
->for_kupdate
)
958 /* this is a bit racy, but that's ok */
959 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
960 if (num_dirty
< thresh
)
963 return btree_write_cache_pages(mapping
, wbc
);
966 static int btree_readpage(struct file
*file
, struct page
*page
)
968 struct extent_io_tree
*tree
;
969 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
970 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
973 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
975 if (PageWriteback(page
) || PageDirty(page
))
978 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979 * slab allocation from alloc_extent_state down the callchain where
980 * it'd hit a BUG_ON as those flags are not allowed.
982 gfp_flags
&= ~GFP_SLAB_BUG_MASK
;
984 return try_release_extent_buffer(page
, gfp_flags
);
987 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
989 struct extent_io_tree
*tree
;
990 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
991 extent_invalidatepage(tree
, page
, offset
);
992 btree_releasepage(page
, GFP_NOFS
);
993 if (PagePrivate(page
)) {
994 printk(KERN_WARNING
"btrfs warning page private not zero "
995 "on page %llu\n", (unsigned long long)page_offset(page
));
996 ClearPagePrivate(page
);
997 set_page_private(page
, 0);
998 page_cache_release(page
);
1002 static int btree_set_page_dirty(struct page
*page
)
1005 struct extent_buffer
*eb
;
1007 BUG_ON(!PagePrivate(page
));
1008 eb
= (struct extent_buffer
*)page
->private;
1010 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
1011 BUG_ON(!atomic_read(&eb
->refs
));
1012 btrfs_assert_tree_locked(eb
);
1014 return __set_page_dirty_nobuffers(page
);
1017 static const struct address_space_operations btree_aops
= {
1018 .readpage
= btree_readpage
,
1019 .writepages
= btree_writepages
,
1020 .releasepage
= btree_releasepage
,
1021 .invalidatepage
= btree_invalidatepage
,
1022 #ifdef CONFIG_MIGRATION
1023 .migratepage
= btree_migratepage
,
1025 .set_page_dirty
= btree_set_page_dirty
,
1028 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1031 struct extent_buffer
*buf
= NULL
;
1032 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1035 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1038 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1039 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1040 free_extent_buffer(buf
);
1044 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
1045 int mirror_num
, struct extent_buffer
**eb
)
1047 struct extent_buffer
*buf
= NULL
;
1048 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1049 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1052 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1056 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1058 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1059 btree_get_extent
, mirror_num
);
1061 free_extent_buffer(buf
);
1065 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1066 free_extent_buffer(buf
);
1068 } else if (extent_buffer_uptodate(buf
)) {
1071 free_extent_buffer(buf
);
1076 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
1077 u64 bytenr
, u32 blocksize
)
1079 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1080 struct extent_buffer
*eb
;
1081 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1086 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1087 u64 bytenr
, u32 blocksize
)
1089 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1090 struct extent_buffer
*eb
;
1092 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
1098 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1100 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1101 buf
->start
+ buf
->len
- 1);
1104 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1106 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1107 buf
->start
, buf
->start
+ buf
->len
- 1);
1110 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1111 u32 blocksize
, u64 parent_transid
)
1113 struct extent_buffer
*buf
= NULL
;
1116 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1120 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1125 void clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1126 struct extent_buffer
*buf
)
1128 if (btrfs_header_generation(buf
) ==
1129 root
->fs_info
->running_transaction
->transid
) {
1130 btrfs_assert_tree_locked(buf
);
1132 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1133 spin_lock(&root
->fs_info
->delalloc_lock
);
1134 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
1135 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
1137 spin_unlock(&root
->fs_info
->delalloc_lock
);
1138 btrfs_panic(root
->fs_info
, -EOVERFLOW
,
1139 "Can't clear %lu bytes from "
1140 " dirty_mdatadata_bytes (%llu)",
1142 root
->fs_info
->dirty_metadata_bytes
);
1144 spin_unlock(&root
->fs_info
->delalloc_lock
);
1146 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1147 btrfs_set_lock_blocking(buf
);
1148 clear_extent_buffer_dirty(buf
);
1153 static void __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
1154 u32 stripesize
, struct btrfs_root
*root
,
1155 struct btrfs_fs_info
*fs_info
,
1159 root
->commit_root
= NULL
;
1160 root
->sectorsize
= sectorsize
;
1161 root
->nodesize
= nodesize
;
1162 root
->leafsize
= leafsize
;
1163 root
->stripesize
= stripesize
;
1165 root
->track_dirty
= 0;
1167 root
->orphan_item_inserted
= 0;
1168 root
->orphan_cleanup_state
= 0;
1170 root
->objectid
= objectid
;
1171 root
->last_trans
= 0;
1172 root
->highest_objectid
= 0;
1174 root
->inode_tree
= RB_ROOT
;
1175 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1176 root
->block_rsv
= NULL
;
1177 root
->orphan_block_rsv
= NULL
;
1179 INIT_LIST_HEAD(&root
->dirty_list
);
1180 INIT_LIST_HEAD(&root
->root_list
);
1181 spin_lock_init(&root
->orphan_lock
);
1182 spin_lock_init(&root
->inode_lock
);
1183 spin_lock_init(&root
->accounting_lock
);
1184 mutex_init(&root
->objectid_mutex
);
1185 mutex_init(&root
->log_mutex
);
1186 init_waitqueue_head(&root
->log_writer_wait
);
1187 init_waitqueue_head(&root
->log_commit_wait
[0]);
1188 init_waitqueue_head(&root
->log_commit_wait
[1]);
1189 atomic_set(&root
->log_commit
[0], 0);
1190 atomic_set(&root
->log_commit
[1], 0);
1191 atomic_set(&root
->log_writers
, 0);
1192 atomic_set(&root
->log_batch
, 0);
1193 atomic_set(&root
->orphan_inodes
, 0);
1194 root
->log_transid
= 0;
1195 root
->last_log_commit
= 0;
1196 extent_io_tree_init(&root
->dirty_log_pages
,
1197 fs_info
->btree_inode
->i_mapping
);
1199 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1200 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1201 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1202 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
1203 root
->defrag_trans_start
= fs_info
->generation
;
1204 init_completion(&root
->kobj_unregister
);
1205 root
->defrag_running
= 0;
1206 root
->root_key
.objectid
= objectid
;
1209 spin_lock_init(&root
->root_item_lock
);
1212 static int __must_check
find_and_setup_root(struct btrfs_root
*tree_root
,
1213 struct btrfs_fs_info
*fs_info
,
1215 struct btrfs_root
*root
)
1221 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1222 tree_root
->sectorsize
, tree_root
->stripesize
,
1223 root
, fs_info
, objectid
);
1224 ret
= btrfs_find_last_root(tree_root
, objectid
,
1225 &root
->root_item
, &root
->root_key
);
1231 generation
= btrfs_root_generation(&root
->root_item
);
1232 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1233 root
->commit_root
= NULL
;
1234 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1235 blocksize
, generation
);
1236 if (!root
->node
|| !btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1237 free_extent_buffer(root
->node
);
1241 root
->commit_root
= btrfs_root_node(root
);
1245 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
)
1247 struct btrfs_root
*root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1249 root
->fs_info
= fs_info
;
1253 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1254 struct btrfs_fs_info
*fs_info
,
1257 struct extent_buffer
*leaf
;
1258 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1259 struct btrfs_root
*root
;
1260 struct btrfs_key key
;
1264 root
= btrfs_alloc_root(fs_info
);
1266 return ERR_PTR(-ENOMEM
);
1268 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1269 tree_root
->sectorsize
, tree_root
->stripesize
,
1270 root
, fs_info
, objectid
);
1271 root
->root_key
.objectid
= objectid
;
1272 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1273 root
->root_key
.offset
= 0;
1275 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
1276 0, objectid
, NULL
, 0, 0, 0);
1278 ret
= PTR_ERR(leaf
);
1282 bytenr
= leaf
->start
;
1283 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1284 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1285 btrfs_set_header_generation(leaf
, trans
->transid
);
1286 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1287 btrfs_set_header_owner(leaf
, objectid
);
1290 write_extent_buffer(leaf
, fs_info
->fsid
,
1291 (unsigned long)btrfs_header_fsid(leaf
),
1293 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1294 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
1296 btrfs_mark_buffer_dirty(leaf
);
1298 root
->commit_root
= btrfs_root_node(root
);
1299 root
->track_dirty
= 1;
1302 root
->root_item
.flags
= 0;
1303 root
->root_item
.byte_limit
= 0;
1304 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1305 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1306 btrfs_set_root_level(&root
->root_item
, 0);
1307 btrfs_set_root_refs(&root
->root_item
, 1);
1308 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1309 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1310 btrfs_set_root_dirid(&root
->root_item
, 0);
1311 root
->root_item
.drop_level
= 0;
1313 key
.objectid
= objectid
;
1314 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1316 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1320 btrfs_tree_unlock(leaf
);
1324 return ERR_PTR(ret
);
1329 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1330 struct btrfs_fs_info
*fs_info
)
1332 struct btrfs_root
*root
;
1333 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1334 struct extent_buffer
*leaf
;
1336 root
= btrfs_alloc_root(fs_info
);
1338 return ERR_PTR(-ENOMEM
);
1340 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1341 tree_root
->sectorsize
, tree_root
->stripesize
,
1342 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1344 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1345 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1346 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1348 * log trees do not get reference counted because they go away
1349 * before a real commit is actually done. They do store pointers
1350 * to file data extents, and those reference counts still get
1351 * updated (along with back refs to the log tree).
1355 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1356 BTRFS_TREE_LOG_OBJECTID
, NULL
,
1360 return ERR_CAST(leaf
);
1363 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1364 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1365 btrfs_set_header_generation(leaf
, trans
->transid
);
1366 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1367 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1370 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1371 (unsigned long)btrfs_header_fsid(root
->node
),
1373 btrfs_mark_buffer_dirty(root
->node
);
1374 btrfs_tree_unlock(root
->node
);
1378 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1379 struct btrfs_fs_info
*fs_info
)
1381 struct btrfs_root
*log_root
;
1383 log_root
= alloc_log_tree(trans
, fs_info
);
1384 if (IS_ERR(log_root
))
1385 return PTR_ERR(log_root
);
1386 WARN_ON(fs_info
->log_root_tree
);
1387 fs_info
->log_root_tree
= log_root
;
1391 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1392 struct btrfs_root
*root
)
1394 struct btrfs_root
*log_root
;
1395 struct btrfs_inode_item
*inode_item
;
1397 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1398 if (IS_ERR(log_root
))
1399 return PTR_ERR(log_root
);
1401 log_root
->last_trans
= trans
->transid
;
1402 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1404 inode_item
= &log_root
->root_item
.inode
;
1405 inode_item
->generation
= cpu_to_le64(1);
1406 inode_item
->size
= cpu_to_le64(3);
1407 inode_item
->nlink
= cpu_to_le32(1);
1408 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1409 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1411 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1413 WARN_ON(root
->log_root
);
1414 root
->log_root
= log_root
;
1415 root
->log_transid
= 0;
1416 root
->last_log_commit
= 0;
1420 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1421 struct btrfs_key
*location
)
1423 struct btrfs_root
*root
;
1424 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1425 struct btrfs_path
*path
;
1426 struct extent_buffer
*l
;
1432 root
= btrfs_alloc_root(fs_info
);
1434 return ERR_PTR(-ENOMEM
);
1435 if (location
->offset
== (u64
)-1) {
1436 ret
= find_and_setup_root(tree_root
, fs_info
,
1437 location
->objectid
, root
);
1440 return ERR_PTR(ret
);
1445 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1446 tree_root
->sectorsize
, tree_root
->stripesize
,
1447 root
, fs_info
, location
->objectid
);
1449 path
= btrfs_alloc_path();
1452 return ERR_PTR(-ENOMEM
);
1454 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1457 slot
= path
->slots
[0];
1458 btrfs_read_root_item(tree_root
, l
, slot
, &root
->root_item
);
1459 memcpy(&root
->root_key
, location
, sizeof(*location
));
1461 btrfs_free_path(path
);
1466 return ERR_PTR(ret
);
1469 generation
= btrfs_root_generation(&root
->root_item
);
1470 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1471 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1472 blocksize
, generation
);
1473 root
->commit_root
= btrfs_root_node(root
);
1474 BUG_ON(!root
->node
); /* -ENOMEM */
1476 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1478 btrfs_check_and_init_root_item(&root
->root_item
);
1484 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1485 struct btrfs_key
*location
)
1487 struct btrfs_root
*root
;
1490 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1491 return fs_info
->tree_root
;
1492 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1493 return fs_info
->extent_root
;
1494 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1495 return fs_info
->chunk_root
;
1496 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1497 return fs_info
->dev_root
;
1498 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1499 return fs_info
->csum_root
;
1500 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1501 return fs_info
->quota_root
? fs_info
->quota_root
:
1504 spin_lock(&fs_info
->fs_roots_radix_lock
);
1505 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1506 (unsigned long)location
->objectid
);
1507 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1511 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1515 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1516 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1518 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1523 btrfs_init_free_ino_ctl(root
);
1524 mutex_init(&root
->fs_commit_mutex
);
1525 spin_lock_init(&root
->cache_lock
);
1526 init_waitqueue_head(&root
->cache_wait
);
1528 ret
= get_anon_bdev(&root
->anon_dev
);
1532 if (btrfs_root_refs(&root
->root_item
) == 0) {
1537 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1541 root
->orphan_item_inserted
= 1;
1543 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1547 spin_lock(&fs_info
->fs_roots_radix_lock
);
1548 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1549 (unsigned long)root
->root_key
.objectid
,
1554 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1555 radix_tree_preload_end();
1557 if (ret
== -EEXIST
) {
1564 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1565 root
->root_key
.objectid
);
1570 return ERR_PTR(ret
);
1573 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1575 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1577 struct btrfs_device
*device
;
1578 struct backing_dev_info
*bdi
;
1581 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1584 bdi
= blk_get_backing_dev_info(device
->bdev
);
1585 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1595 * If this fails, caller must call bdi_destroy() to get rid of the
1598 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1602 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1603 err
= bdi_setup_and_register(bdi
, "btrfs", BDI_CAP_MAP_COPY
);
1607 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1608 bdi
->congested_fn
= btrfs_congested_fn
;
1609 bdi
->congested_data
= info
;
1614 * called by the kthread helper functions to finally call the bio end_io
1615 * functions. This is where read checksum verification actually happens
1617 static void end_workqueue_fn(struct btrfs_work
*work
)
1620 struct end_io_wq
*end_io_wq
;
1621 struct btrfs_fs_info
*fs_info
;
1624 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1625 bio
= end_io_wq
->bio
;
1626 fs_info
= end_io_wq
->info
;
1628 error
= end_io_wq
->error
;
1629 bio
->bi_private
= end_io_wq
->private;
1630 bio
->bi_end_io
= end_io_wq
->end_io
;
1632 bio_endio(bio
, error
);
1635 static int cleaner_kthread(void *arg
)
1637 struct btrfs_root
*root
= arg
;
1640 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1641 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1642 btrfs_run_delayed_iputs(root
);
1643 btrfs_clean_old_snapshots(root
);
1644 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1645 btrfs_run_defrag_inodes(root
->fs_info
);
1648 if (!try_to_freeze()) {
1649 set_current_state(TASK_INTERRUPTIBLE
);
1650 if (!kthread_should_stop())
1652 __set_current_state(TASK_RUNNING
);
1654 } while (!kthread_should_stop());
1658 static int transaction_kthread(void *arg
)
1660 struct btrfs_root
*root
= arg
;
1661 struct btrfs_trans_handle
*trans
;
1662 struct btrfs_transaction
*cur
;
1665 unsigned long delay
;
1669 cannot_commit
= false;
1671 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1673 spin_lock(&root
->fs_info
->trans_lock
);
1674 cur
= root
->fs_info
->running_transaction
;
1676 spin_unlock(&root
->fs_info
->trans_lock
);
1680 now
= get_seconds();
1681 if (!cur
->blocked
&&
1682 (now
< cur
->start_time
|| now
- cur
->start_time
< 30)) {
1683 spin_unlock(&root
->fs_info
->trans_lock
);
1687 transid
= cur
->transid
;
1688 spin_unlock(&root
->fs_info
->trans_lock
);
1690 /* If the file system is aborted, this will always fail. */
1691 trans
= btrfs_attach_transaction(root
);
1692 if (IS_ERR(trans
)) {
1693 if (PTR_ERR(trans
) != -ENOENT
)
1694 cannot_commit
= true;
1697 if (transid
== trans
->transid
) {
1698 btrfs_commit_transaction(trans
, root
);
1700 btrfs_end_transaction(trans
, root
);
1703 wake_up_process(root
->fs_info
->cleaner_kthread
);
1704 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1706 if (!try_to_freeze()) {
1707 set_current_state(TASK_INTERRUPTIBLE
);
1708 if (!kthread_should_stop() &&
1709 (!btrfs_transaction_blocked(root
->fs_info
) ||
1711 schedule_timeout(delay
);
1712 __set_current_state(TASK_RUNNING
);
1714 } while (!kthread_should_stop());
1719 * this will find the highest generation in the array of
1720 * root backups. The index of the highest array is returned,
1721 * or -1 if we can't find anything.
1723 * We check to make sure the array is valid by comparing the
1724 * generation of the latest root in the array with the generation
1725 * in the super block. If they don't match we pitch it.
1727 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1730 int newest_index
= -1;
1731 struct btrfs_root_backup
*root_backup
;
1734 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1735 root_backup
= info
->super_copy
->super_roots
+ i
;
1736 cur
= btrfs_backup_tree_root_gen(root_backup
);
1737 if (cur
== newest_gen
)
1741 /* check to see if we actually wrapped around */
1742 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1743 root_backup
= info
->super_copy
->super_roots
;
1744 cur
= btrfs_backup_tree_root_gen(root_backup
);
1745 if (cur
== newest_gen
)
1748 return newest_index
;
1753 * find the oldest backup so we know where to store new entries
1754 * in the backup array. This will set the backup_root_index
1755 * field in the fs_info struct
1757 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1760 int newest_index
= -1;
1762 newest_index
= find_newest_super_backup(info
, newest_gen
);
1763 /* if there was garbage in there, just move along */
1764 if (newest_index
== -1) {
1765 info
->backup_root_index
= 0;
1767 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1772 * copy all the root pointers into the super backup array.
1773 * this will bump the backup pointer by one when it is
1776 static void backup_super_roots(struct btrfs_fs_info
*info
)
1779 struct btrfs_root_backup
*root_backup
;
1782 next_backup
= info
->backup_root_index
;
1783 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1784 BTRFS_NUM_BACKUP_ROOTS
;
1787 * just overwrite the last backup if we're at the same generation
1788 * this happens only at umount
1790 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1791 if (btrfs_backup_tree_root_gen(root_backup
) ==
1792 btrfs_header_generation(info
->tree_root
->node
))
1793 next_backup
= last_backup
;
1795 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1798 * make sure all of our padding and empty slots get zero filled
1799 * regardless of which ones we use today
1801 memset(root_backup
, 0, sizeof(*root_backup
));
1803 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1805 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1806 btrfs_set_backup_tree_root_gen(root_backup
,
1807 btrfs_header_generation(info
->tree_root
->node
));
1809 btrfs_set_backup_tree_root_level(root_backup
,
1810 btrfs_header_level(info
->tree_root
->node
));
1812 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1813 btrfs_set_backup_chunk_root_gen(root_backup
,
1814 btrfs_header_generation(info
->chunk_root
->node
));
1815 btrfs_set_backup_chunk_root_level(root_backup
,
1816 btrfs_header_level(info
->chunk_root
->node
));
1818 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1819 btrfs_set_backup_extent_root_gen(root_backup
,
1820 btrfs_header_generation(info
->extent_root
->node
));
1821 btrfs_set_backup_extent_root_level(root_backup
,
1822 btrfs_header_level(info
->extent_root
->node
));
1825 * we might commit during log recovery, which happens before we set
1826 * the fs_root. Make sure it is valid before we fill it in.
1828 if (info
->fs_root
&& info
->fs_root
->node
) {
1829 btrfs_set_backup_fs_root(root_backup
,
1830 info
->fs_root
->node
->start
);
1831 btrfs_set_backup_fs_root_gen(root_backup
,
1832 btrfs_header_generation(info
->fs_root
->node
));
1833 btrfs_set_backup_fs_root_level(root_backup
,
1834 btrfs_header_level(info
->fs_root
->node
));
1837 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1838 btrfs_set_backup_dev_root_gen(root_backup
,
1839 btrfs_header_generation(info
->dev_root
->node
));
1840 btrfs_set_backup_dev_root_level(root_backup
,
1841 btrfs_header_level(info
->dev_root
->node
));
1843 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1844 btrfs_set_backup_csum_root_gen(root_backup
,
1845 btrfs_header_generation(info
->csum_root
->node
));
1846 btrfs_set_backup_csum_root_level(root_backup
,
1847 btrfs_header_level(info
->csum_root
->node
));
1849 btrfs_set_backup_total_bytes(root_backup
,
1850 btrfs_super_total_bytes(info
->super_copy
));
1851 btrfs_set_backup_bytes_used(root_backup
,
1852 btrfs_super_bytes_used(info
->super_copy
));
1853 btrfs_set_backup_num_devices(root_backup
,
1854 btrfs_super_num_devices(info
->super_copy
));
1857 * if we don't copy this out to the super_copy, it won't get remembered
1858 * for the next commit
1860 memcpy(&info
->super_copy
->super_roots
,
1861 &info
->super_for_commit
->super_roots
,
1862 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
1866 * this copies info out of the root backup array and back into
1867 * the in-memory super block. It is meant to help iterate through
1868 * the array, so you send it the number of backups you've already
1869 * tried and the last backup index you used.
1871 * this returns -1 when it has tried all the backups
1873 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
1874 struct btrfs_super_block
*super
,
1875 int *num_backups_tried
, int *backup_index
)
1877 struct btrfs_root_backup
*root_backup
;
1878 int newest
= *backup_index
;
1880 if (*num_backups_tried
== 0) {
1881 u64 gen
= btrfs_super_generation(super
);
1883 newest
= find_newest_super_backup(info
, gen
);
1887 *backup_index
= newest
;
1888 *num_backups_tried
= 1;
1889 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
1890 /* we've tried all the backups, all done */
1893 /* jump to the next oldest backup */
1894 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1895 BTRFS_NUM_BACKUP_ROOTS
;
1896 *backup_index
= newest
;
1897 *num_backups_tried
+= 1;
1899 root_backup
= super
->super_roots
+ newest
;
1901 btrfs_set_super_generation(super
,
1902 btrfs_backup_tree_root_gen(root_backup
));
1903 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
1904 btrfs_set_super_root_level(super
,
1905 btrfs_backup_tree_root_level(root_backup
));
1906 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
1909 * fixme: the total bytes and num_devices need to match or we should
1912 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
1913 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
1917 /* helper to cleanup tree roots */
1918 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
1920 free_extent_buffer(info
->tree_root
->node
);
1921 free_extent_buffer(info
->tree_root
->commit_root
);
1922 free_extent_buffer(info
->dev_root
->node
);
1923 free_extent_buffer(info
->dev_root
->commit_root
);
1924 free_extent_buffer(info
->extent_root
->node
);
1925 free_extent_buffer(info
->extent_root
->commit_root
);
1926 free_extent_buffer(info
->csum_root
->node
);
1927 free_extent_buffer(info
->csum_root
->commit_root
);
1928 if (info
->quota_root
) {
1929 free_extent_buffer(info
->quota_root
->node
);
1930 free_extent_buffer(info
->quota_root
->commit_root
);
1933 info
->tree_root
->node
= NULL
;
1934 info
->tree_root
->commit_root
= NULL
;
1935 info
->dev_root
->node
= NULL
;
1936 info
->dev_root
->commit_root
= NULL
;
1937 info
->extent_root
->node
= NULL
;
1938 info
->extent_root
->commit_root
= NULL
;
1939 info
->csum_root
->node
= NULL
;
1940 info
->csum_root
->commit_root
= NULL
;
1941 if (info
->quota_root
) {
1942 info
->quota_root
->node
= NULL
;
1943 info
->quota_root
->commit_root
= NULL
;
1947 free_extent_buffer(info
->chunk_root
->node
);
1948 free_extent_buffer(info
->chunk_root
->commit_root
);
1949 info
->chunk_root
->node
= NULL
;
1950 info
->chunk_root
->commit_root
= NULL
;
1955 int open_ctree(struct super_block
*sb
,
1956 struct btrfs_fs_devices
*fs_devices
,
1966 struct btrfs_key location
;
1967 struct buffer_head
*bh
;
1968 struct btrfs_super_block
*disk_super
;
1969 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1970 struct btrfs_root
*tree_root
;
1971 struct btrfs_root
*extent_root
;
1972 struct btrfs_root
*csum_root
;
1973 struct btrfs_root
*chunk_root
;
1974 struct btrfs_root
*dev_root
;
1975 struct btrfs_root
*quota_root
;
1976 struct btrfs_root
*log_tree_root
;
1979 int num_backups_tried
= 0;
1980 int backup_index
= 0;
1982 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
);
1983 extent_root
= fs_info
->extent_root
= btrfs_alloc_root(fs_info
);
1984 csum_root
= fs_info
->csum_root
= btrfs_alloc_root(fs_info
);
1985 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
);
1986 dev_root
= fs_info
->dev_root
= btrfs_alloc_root(fs_info
);
1987 quota_root
= fs_info
->quota_root
= btrfs_alloc_root(fs_info
);
1989 if (!tree_root
|| !extent_root
|| !csum_root
||
1990 !chunk_root
|| !dev_root
|| !quota_root
) {
1995 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2001 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2007 fs_info
->btree_inode
= new_inode(sb
);
2008 if (!fs_info
->btree_inode
) {
2013 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2015 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2016 INIT_LIST_HEAD(&fs_info
->trans_list
);
2017 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2018 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2019 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
2020 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
2021 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2022 spin_lock_init(&fs_info
->delalloc_lock
);
2023 spin_lock_init(&fs_info
->trans_lock
);
2024 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2025 spin_lock_init(&fs_info
->delayed_iput_lock
);
2026 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2027 spin_lock_init(&fs_info
->free_chunk_lock
);
2028 spin_lock_init(&fs_info
->tree_mod_seq_lock
);
2029 rwlock_init(&fs_info
->tree_mod_log_lock
);
2030 mutex_init(&fs_info
->reloc_mutex
);
2032 init_completion(&fs_info
->kobj_unregister
);
2033 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2034 INIT_LIST_HEAD(&fs_info
->space_info
);
2035 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2036 btrfs_mapping_init(&fs_info
->mapping_tree
);
2037 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2038 BTRFS_BLOCK_RSV_GLOBAL
);
2039 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2040 BTRFS_BLOCK_RSV_DELALLOC
);
2041 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2042 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2043 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2044 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2045 BTRFS_BLOCK_RSV_DELOPS
);
2046 atomic_set(&fs_info
->nr_async_submits
, 0);
2047 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2048 atomic_set(&fs_info
->async_submit_draining
, 0);
2049 atomic_set(&fs_info
->nr_async_bios
, 0);
2050 atomic_set(&fs_info
->defrag_running
, 0);
2051 atomic_set(&fs_info
->tree_mod_seq
, 0);
2053 fs_info
->max_inline
= 8192 * 1024;
2054 fs_info
->metadata_ratio
= 0;
2055 fs_info
->defrag_inodes
= RB_ROOT
;
2056 fs_info
->trans_no_join
= 0;
2057 fs_info
->free_chunk_space
= 0;
2058 fs_info
->tree_mod_log
= RB_ROOT
;
2060 /* readahead state */
2061 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_WAIT
);
2062 spin_lock_init(&fs_info
->reada_lock
);
2064 fs_info
->thread_pool_size
= min_t(unsigned long,
2065 num_online_cpus() + 2, 8);
2067 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
2068 spin_lock_init(&fs_info
->ordered_extent_lock
);
2069 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2071 if (!fs_info
->delayed_root
) {
2075 btrfs_init_delayed_root(fs_info
->delayed_root
);
2077 mutex_init(&fs_info
->scrub_lock
);
2078 atomic_set(&fs_info
->scrubs_running
, 0);
2079 atomic_set(&fs_info
->scrub_pause_req
, 0);
2080 atomic_set(&fs_info
->scrubs_paused
, 0);
2081 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2082 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2083 init_rwsem(&fs_info
->scrub_super_lock
);
2084 fs_info
->scrub_workers_refcnt
= 0;
2085 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2086 fs_info
->check_integrity_print_mask
= 0;
2089 spin_lock_init(&fs_info
->balance_lock
);
2090 mutex_init(&fs_info
->balance_mutex
);
2091 atomic_set(&fs_info
->balance_running
, 0);
2092 atomic_set(&fs_info
->balance_pause_req
, 0);
2093 atomic_set(&fs_info
->balance_cancel_req
, 0);
2094 fs_info
->balance_ctl
= NULL
;
2095 init_waitqueue_head(&fs_info
->balance_wait_q
);
2097 sb
->s_blocksize
= 4096;
2098 sb
->s_blocksize_bits
= blksize_bits(4096);
2099 sb
->s_bdi
= &fs_info
->bdi
;
2101 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2102 set_nlink(fs_info
->btree_inode
, 1);
2104 * we set the i_size on the btree inode to the max possible int.
2105 * the real end of the address space is determined by all of
2106 * the devices in the system
2108 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2109 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2110 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
2112 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2113 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2114 fs_info
->btree_inode
->i_mapping
);
2115 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2116 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2118 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2120 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2121 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2122 sizeof(struct btrfs_key
));
2123 set_bit(BTRFS_INODE_DUMMY
,
2124 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2125 insert_inode_hash(fs_info
->btree_inode
);
2127 spin_lock_init(&fs_info
->block_group_cache_lock
);
2128 fs_info
->block_group_cache_tree
= RB_ROOT
;
2130 extent_io_tree_init(&fs_info
->freed_extents
[0],
2131 fs_info
->btree_inode
->i_mapping
);
2132 extent_io_tree_init(&fs_info
->freed_extents
[1],
2133 fs_info
->btree_inode
->i_mapping
);
2134 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2135 fs_info
->do_barriers
= 1;
2138 mutex_init(&fs_info
->ordered_operations_mutex
);
2139 mutex_init(&fs_info
->tree_log_mutex
);
2140 mutex_init(&fs_info
->chunk_mutex
);
2141 mutex_init(&fs_info
->transaction_kthread_mutex
);
2142 mutex_init(&fs_info
->cleaner_mutex
);
2143 mutex_init(&fs_info
->volume_mutex
);
2144 init_rwsem(&fs_info
->extent_commit_sem
);
2145 init_rwsem(&fs_info
->cleanup_work_sem
);
2146 init_rwsem(&fs_info
->subvol_sem
);
2147 fs_info
->dev_replace
.lock_owner
= 0;
2148 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2149 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2150 mutex_init(&fs_info
->dev_replace
.lock_management_lock
);
2151 mutex_init(&fs_info
->dev_replace
.lock
);
2153 spin_lock_init(&fs_info
->qgroup_lock
);
2154 fs_info
->qgroup_tree
= RB_ROOT
;
2155 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2156 fs_info
->qgroup_seq
= 1;
2157 fs_info
->quota_enabled
= 0;
2158 fs_info
->pending_quota_state
= 0;
2160 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2161 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2163 init_waitqueue_head(&fs_info
->transaction_throttle
);
2164 init_waitqueue_head(&fs_info
->transaction_wait
);
2165 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2166 init_waitqueue_head(&fs_info
->async_submit_wait
);
2168 __setup_root(4096, 4096, 4096, 4096, tree_root
,
2169 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2171 invalidate_bdev(fs_devices
->latest_bdev
);
2172 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2178 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2179 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2180 sizeof(*fs_info
->super_for_commit
));
2183 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2185 disk_super
= fs_info
->super_copy
;
2186 if (!btrfs_super_root(disk_super
))
2189 /* check FS state, whether FS is broken. */
2190 fs_info
->fs_state
|= btrfs_super_flags(disk_super
);
2192 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2194 printk(KERN_ERR
"btrfs: superblock contains fatal errors\n");
2200 * run through our array of backup supers and setup
2201 * our ring pointer to the oldest one
2203 generation
= btrfs_super_generation(disk_super
);
2204 find_oldest_super_backup(fs_info
, generation
);
2207 * In the long term, we'll store the compression type in the super
2208 * block, and it'll be used for per file compression control.
2210 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2212 ret
= btrfs_parse_options(tree_root
, options
);
2218 features
= btrfs_super_incompat_flags(disk_super
) &
2219 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2221 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2222 "unsupported optional features (%Lx).\n",
2223 (unsigned long long)features
);
2228 if (btrfs_super_leafsize(disk_super
) !=
2229 btrfs_super_nodesize(disk_super
)) {
2230 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2231 "blocksizes don't match. node %d leaf %d\n",
2232 btrfs_super_nodesize(disk_super
),
2233 btrfs_super_leafsize(disk_super
));
2237 if (btrfs_super_leafsize(disk_super
) > BTRFS_MAX_METADATA_BLOCKSIZE
) {
2238 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2239 "blocksize (%d) was too large\n",
2240 btrfs_super_leafsize(disk_super
));
2245 features
= btrfs_super_incompat_flags(disk_super
);
2246 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2247 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2248 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2251 * flag our filesystem as having big metadata blocks if
2252 * they are bigger than the page size
2254 if (btrfs_super_leafsize(disk_super
) > PAGE_CACHE_SIZE
) {
2255 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2256 printk(KERN_INFO
"btrfs flagging fs with big metadata feature\n");
2257 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2260 nodesize
= btrfs_super_nodesize(disk_super
);
2261 leafsize
= btrfs_super_leafsize(disk_super
);
2262 sectorsize
= btrfs_super_sectorsize(disk_super
);
2263 stripesize
= btrfs_super_stripesize(disk_super
);
2266 * mixed block groups end up with duplicate but slightly offset
2267 * extent buffers for the same range. It leads to corruptions
2269 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2270 (sectorsize
!= leafsize
)) {
2271 printk(KERN_WARNING
"btrfs: unequal leaf/node/sector sizes "
2272 "are not allowed for mixed block groups on %s\n",
2277 btrfs_set_super_incompat_flags(disk_super
, features
);
2279 features
= btrfs_super_compat_ro_flags(disk_super
) &
2280 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2281 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2282 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2283 "unsupported option features (%Lx).\n",
2284 (unsigned long long)features
);
2289 btrfs_init_workers(&fs_info
->generic_worker
,
2290 "genwork", 1, NULL
);
2292 btrfs_init_workers(&fs_info
->workers
, "worker",
2293 fs_info
->thread_pool_size
,
2294 &fs_info
->generic_worker
);
2296 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
2297 fs_info
->thread_pool_size
,
2298 &fs_info
->generic_worker
);
2300 btrfs_init_workers(&fs_info
->flush_workers
, "flush_delalloc",
2301 fs_info
->thread_pool_size
,
2302 &fs_info
->generic_worker
);
2304 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
2305 min_t(u64
, fs_devices
->num_devices
,
2306 fs_info
->thread_pool_size
),
2307 &fs_info
->generic_worker
);
2309 btrfs_init_workers(&fs_info
->caching_workers
, "cache",
2310 2, &fs_info
->generic_worker
);
2312 /* a higher idle thresh on the submit workers makes it much more
2313 * likely that bios will be send down in a sane order to the
2316 fs_info
->submit_workers
.idle_thresh
= 64;
2318 fs_info
->workers
.idle_thresh
= 16;
2319 fs_info
->workers
.ordered
= 1;
2321 fs_info
->delalloc_workers
.idle_thresh
= 2;
2322 fs_info
->delalloc_workers
.ordered
= 1;
2324 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
2325 &fs_info
->generic_worker
);
2326 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
2327 fs_info
->thread_pool_size
,
2328 &fs_info
->generic_worker
);
2329 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
2330 fs_info
->thread_pool_size
,
2331 &fs_info
->generic_worker
);
2332 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
2333 "endio-meta-write", fs_info
->thread_pool_size
,
2334 &fs_info
->generic_worker
);
2335 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
2336 fs_info
->thread_pool_size
,
2337 &fs_info
->generic_worker
);
2338 btrfs_init_workers(&fs_info
->endio_freespace_worker
, "freespace-write",
2339 1, &fs_info
->generic_worker
);
2340 btrfs_init_workers(&fs_info
->delayed_workers
, "delayed-meta",
2341 fs_info
->thread_pool_size
,
2342 &fs_info
->generic_worker
);
2343 btrfs_init_workers(&fs_info
->readahead_workers
, "readahead",
2344 fs_info
->thread_pool_size
,
2345 &fs_info
->generic_worker
);
2348 * endios are largely parallel and should have a very
2351 fs_info
->endio_workers
.idle_thresh
= 4;
2352 fs_info
->endio_meta_workers
.idle_thresh
= 4;
2354 fs_info
->endio_write_workers
.idle_thresh
= 2;
2355 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
2356 fs_info
->readahead_workers
.idle_thresh
= 2;
2359 * btrfs_start_workers can really only fail because of ENOMEM so just
2360 * return -ENOMEM if any of these fail.
2362 ret
= btrfs_start_workers(&fs_info
->workers
);
2363 ret
|= btrfs_start_workers(&fs_info
->generic_worker
);
2364 ret
|= btrfs_start_workers(&fs_info
->submit_workers
);
2365 ret
|= btrfs_start_workers(&fs_info
->delalloc_workers
);
2366 ret
|= btrfs_start_workers(&fs_info
->fixup_workers
);
2367 ret
|= btrfs_start_workers(&fs_info
->endio_workers
);
2368 ret
|= btrfs_start_workers(&fs_info
->endio_meta_workers
);
2369 ret
|= btrfs_start_workers(&fs_info
->endio_meta_write_workers
);
2370 ret
|= btrfs_start_workers(&fs_info
->endio_write_workers
);
2371 ret
|= btrfs_start_workers(&fs_info
->endio_freespace_worker
);
2372 ret
|= btrfs_start_workers(&fs_info
->delayed_workers
);
2373 ret
|= btrfs_start_workers(&fs_info
->caching_workers
);
2374 ret
|= btrfs_start_workers(&fs_info
->readahead_workers
);
2375 ret
|= btrfs_start_workers(&fs_info
->flush_workers
);
2378 goto fail_sb_buffer
;
2381 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2382 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2383 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2385 tree_root
->nodesize
= nodesize
;
2386 tree_root
->leafsize
= leafsize
;
2387 tree_root
->sectorsize
= sectorsize
;
2388 tree_root
->stripesize
= stripesize
;
2390 sb
->s_blocksize
= sectorsize
;
2391 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2393 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
2394 sizeof(disk_super
->magic
))) {
2395 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
2396 goto fail_sb_buffer
;
2399 if (sectorsize
!= PAGE_SIZE
) {
2400 printk(KERN_WARNING
"btrfs: Incompatible sector size(%lu) "
2401 "found on %s\n", (unsigned long)sectorsize
, sb
->s_id
);
2402 goto fail_sb_buffer
;
2405 mutex_lock(&fs_info
->chunk_mutex
);
2406 ret
= btrfs_read_sys_array(tree_root
);
2407 mutex_unlock(&fs_info
->chunk_mutex
);
2409 printk(KERN_WARNING
"btrfs: failed to read the system "
2410 "array on %s\n", sb
->s_id
);
2411 goto fail_sb_buffer
;
2414 blocksize
= btrfs_level_size(tree_root
,
2415 btrfs_super_chunk_root_level(disk_super
));
2416 generation
= btrfs_super_chunk_root_generation(disk_super
);
2418 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2419 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2421 chunk_root
->node
= read_tree_block(chunk_root
,
2422 btrfs_super_chunk_root(disk_super
),
2423 blocksize
, generation
);
2424 BUG_ON(!chunk_root
->node
); /* -ENOMEM */
2425 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
2426 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
2428 goto fail_tree_roots
;
2430 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2431 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2433 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2434 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
2437 ret
= btrfs_read_chunk_tree(chunk_root
);
2439 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
2441 goto fail_tree_roots
;
2445 * keep the device that is marked to be the target device for the
2446 * dev_replace procedure
2448 btrfs_close_extra_devices(fs_info
, fs_devices
, 0);
2450 if (!fs_devices
->latest_bdev
) {
2451 printk(KERN_CRIT
"btrfs: failed to read devices on %s\n",
2453 goto fail_tree_roots
;
2457 blocksize
= btrfs_level_size(tree_root
,
2458 btrfs_super_root_level(disk_super
));
2459 generation
= btrfs_super_generation(disk_super
);
2461 tree_root
->node
= read_tree_block(tree_root
,
2462 btrfs_super_root(disk_super
),
2463 blocksize
, generation
);
2464 if (!tree_root
->node
||
2465 !test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
2466 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
2469 goto recovery_tree_root
;
2472 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2473 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2475 ret
= find_and_setup_root(tree_root
, fs_info
,
2476 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
2478 goto recovery_tree_root
;
2479 extent_root
->track_dirty
= 1;
2481 ret
= find_and_setup_root(tree_root
, fs_info
,
2482 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
2484 goto recovery_tree_root
;
2485 dev_root
->track_dirty
= 1;
2487 ret
= find_and_setup_root(tree_root
, fs_info
,
2488 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
2490 goto recovery_tree_root
;
2491 csum_root
->track_dirty
= 1;
2493 ret
= find_and_setup_root(tree_root
, fs_info
,
2494 BTRFS_QUOTA_TREE_OBJECTID
, quota_root
);
2497 quota_root
= fs_info
->quota_root
= NULL
;
2499 quota_root
->track_dirty
= 1;
2500 fs_info
->quota_enabled
= 1;
2501 fs_info
->pending_quota_state
= 1;
2504 fs_info
->generation
= generation
;
2505 fs_info
->last_trans_committed
= generation
;
2507 ret
= btrfs_recover_balance(fs_info
);
2509 printk(KERN_WARNING
"btrfs: failed to recover balance\n");
2510 goto fail_block_groups
;
2513 ret
= btrfs_init_dev_stats(fs_info
);
2515 printk(KERN_ERR
"btrfs: failed to init dev_stats: %d\n",
2517 goto fail_block_groups
;
2520 ret
= btrfs_init_dev_replace(fs_info
);
2522 pr_err("btrfs: failed to init dev_replace: %d\n", ret
);
2523 goto fail_block_groups
;
2526 btrfs_close_extra_devices(fs_info
, fs_devices
, 1);
2528 ret
= btrfs_init_space_info(fs_info
);
2530 printk(KERN_ERR
"Failed to initial space info: %d\n", ret
);
2531 goto fail_block_groups
;
2534 ret
= btrfs_read_block_groups(extent_root
);
2536 printk(KERN_ERR
"Failed to read block groups: %d\n", ret
);
2537 goto fail_block_groups
;
2539 fs_info
->num_tolerated_disk_barrier_failures
=
2540 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2541 if (fs_info
->fs_devices
->missing_devices
>
2542 fs_info
->num_tolerated_disk_barrier_failures
&&
2543 !(sb
->s_flags
& MS_RDONLY
)) {
2545 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2546 goto fail_block_groups
;
2549 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2551 if (IS_ERR(fs_info
->cleaner_kthread
))
2552 goto fail_block_groups
;
2554 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2556 "btrfs-transaction");
2557 if (IS_ERR(fs_info
->transaction_kthread
))
2560 if (!btrfs_test_opt(tree_root
, SSD
) &&
2561 !btrfs_test_opt(tree_root
, NOSSD
) &&
2562 !fs_info
->fs_devices
->rotating
) {
2563 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
2565 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2568 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2569 if (btrfs_test_opt(tree_root
, CHECK_INTEGRITY
)) {
2570 ret
= btrfsic_mount(tree_root
, fs_devices
,
2571 btrfs_test_opt(tree_root
,
2572 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2574 fs_info
->check_integrity_print_mask
);
2576 printk(KERN_WARNING
"btrfs: failed to initialize"
2577 " integrity check module %s\n", sb
->s_id
);
2580 ret
= btrfs_read_qgroup_config(fs_info
);
2582 goto fail_trans_kthread
;
2584 /* do not make disk changes in broken FS */
2585 if (btrfs_super_log_root(disk_super
) != 0) {
2586 u64 bytenr
= btrfs_super_log_root(disk_super
);
2588 if (fs_devices
->rw_devices
== 0) {
2589 printk(KERN_WARNING
"Btrfs log replay required "
2595 btrfs_level_size(tree_root
,
2596 btrfs_super_log_root_level(disk_super
));
2598 log_tree_root
= btrfs_alloc_root(fs_info
);
2599 if (!log_tree_root
) {
2604 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
2605 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
2607 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2610 /* returns with log_tree_root freed on success */
2611 ret
= btrfs_recover_log_trees(log_tree_root
);
2613 btrfs_error(tree_root
->fs_info
, ret
,
2614 "Failed to recover log tree");
2615 free_extent_buffer(log_tree_root
->node
);
2616 kfree(log_tree_root
);
2617 goto fail_trans_kthread
;
2620 if (sb
->s_flags
& MS_RDONLY
) {
2621 ret
= btrfs_commit_super(tree_root
);
2623 goto fail_trans_kthread
;
2627 ret
= btrfs_find_orphan_roots(tree_root
);
2629 goto fail_trans_kthread
;
2631 if (!(sb
->s_flags
& MS_RDONLY
)) {
2632 ret
= btrfs_cleanup_fs_roots(fs_info
);
2634 goto fail_trans_kthread
;
2636 ret
= btrfs_recover_relocation(tree_root
);
2639 "btrfs: failed to recover relocation\n");
2645 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
2646 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2647 location
.offset
= (u64
)-1;
2649 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2650 if (!fs_info
->fs_root
)
2652 if (IS_ERR(fs_info
->fs_root
)) {
2653 err
= PTR_ERR(fs_info
->fs_root
);
2657 if (sb
->s_flags
& MS_RDONLY
)
2660 down_read(&fs_info
->cleanup_work_sem
);
2661 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
2662 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
2663 up_read(&fs_info
->cleanup_work_sem
);
2664 close_ctree(tree_root
);
2667 up_read(&fs_info
->cleanup_work_sem
);
2669 ret
= btrfs_resume_balance_async(fs_info
);
2671 printk(KERN_WARNING
"btrfs: failed to resume balance\n");
2672 close_ctree(tree_root
);
2676 ret
= btrfs_resume_dev_replace_async(fs_info
);
2678 pr_warn("btrfs: failed to resume dev_replace\n");
2679 close_ctree(tree_root
);
2686 btrfs_free_qgroup_config(fs_info
);
2688 kthread_stop(fs_info
->transaction_kthread
);
2690 kthread_stop(fs_info
->cleaner_kthread
);
2693 * make sure we're done with the btree inode before we stop our
2696 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2697 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2700 btrfs_free_block_groups(fs_info
);
2703 free_root_pointers(fs_info
, 1);
2706 btrfs_stop_workers(&fs_info
->generic_worker
);
2707 btrfs_stop_workers(&fs_info
->readahead_workers
);
2708 btrfs_stop_workers(&fs_info
->fixup_workers
);
2709 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2710 btrfs_stop_workers(&fs_info
->workers
);
2711 btrfs_stop_workers(&fs_info
->endio_workers
);
2712 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2713 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2714 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2715 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
2716 btrfs_stop_workers(&fs_info
->submit_workers
);
2717 btrfs_stop_workers(&fs_info
->delayed_workers
);
2718 btrfs_stop_workers(&fs_info
->caching_workers
);
2719 btrfs_stop_workers(&fs_info
->flush_workers
);
2722 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2724 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2725 iput(fs_info
->btree_inode
);
2727 bdi_destroy(&fs_info
->bdi
);
2729 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2731 btrfs_close_devices(fs_info
->fs_devices
);
2735 if (!btrfs_test_opt(tree_root
, RECOVERY
))
2736 goto fail_tree_roots
;
2738 free_root_pointers(fs_info
, 0);
2740 /* don't use the log in recovery mode, it won't be valid */
2741 btrfs_set_super_log_root(disk_super
, 0);
2743 /* we can't trust the free space cache either */
2744 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
2746 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
2747 &num_backups_tried
, &backup_index
);
2749 goto fail_block_groups
;
2750 goto retry_root_backup
;
2753 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2756 set_buffer_uptodate(bh
);
2758 struct btrfs_device
*device
= (struct btrfs_device
*)
2761 printk_ratelimited_in_rcu(KERN_WARNING
"lost page write due to "
2762 "I/O error on %s\n",
2763 rcu_str_deref(device
->name
));
2764 /* note, we dont' set_buffer_write_io_error because we have
2765 * our own ways of dealing with the IO errors
2767 clear_buffer_uptodate(bh
);
2768 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
2774 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2776 struct buffer_head
*bh
;
2777 struct buffer_head
*latest
= NULL
;
2778 struct btrfs_super_block
*super
;
2783 /* we would like to check all the supers, but that would make
2784 * a btrfs mount succeed after a mkfs from a different FS.
2785 * So, we need to add a special mount option to scan for
2786 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2788 for (i
= 0; i
< 1; i
++) {
2789 bytenr
= btrfs_sb_offset(i
);
2790 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2792 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2796 super
= (struct btrfs_super_block
*)bh
->b_data
;
2797 if (btrfs_super_bytenr(super
) != bytenr
||
2798 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2799 sizeof(super
->magic
))) {
2804 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2807 transid
= btrfs_super_generation(super
);
2816 * this should be called twice, once with wait == 0 and
2817 * once with wait == 1. When wait == 0 is done, all the buffer heads
2818 * we write are pinned.
2820 * They are released when wait == 1 is done.
2821 * max_mirrors must be the same for both runs, and it indicates how
2822 * many supers on this one device should be written.
2824 * max_mirrors == 0 means to write them all.
2826 static int write_dev_supers(struct btrfs_device
*device
,
2827 struct btrfs_super_block
*sb
,
2828 int do_barriers
, int wait
, int max_mirrors
)
2830 struct buffer_head
*bh
;
2837 if (max_mirrors
== 0)
2838 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2840 for (i
= 0; i
< max_mirrors
; i
++) {
2841 bytenr
= btrfs_sb_offset(i
);
2842 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2846 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2847 BTRFS_SUPER_INFO_SIZE
);
2850 if (!buffer_uptodate(bh
))
2853 /* drop our reference */
2856 /* drop the reference from the wait == 0 run */
2860 btrfs_set_super_bytenr(sb
, bytenr
);
2863 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2864 BTRFS_CSUM_SIZE
, crc
,
2865 BTRFS_SUPER_INFO_SIZE
-
2867 btrfs_csum_final(crc
, sb
->csum
);
2870 * one reference for us, and we leave it for the
2873 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2874 BTRFS_SUPER_INFO_SIZE
);
2875 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2877 /* one reference for submit_bh */
2880 set_buffer_uptodate(bh
);
2882 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2883 bh
->b_private
= device
;
2887 * we fua the first super. The others we allow
2890 ret
= btrfsic_submit_bh(WRITE_FUA
, bh
);
2894 return errors
< i
? 0 : -1;
2898 * endio for the write_dev_flush, this will wake anyone waiting
2899 * for the barrier when it is done
2901 static void btrfs_end_empty_barrier(struct bio
*bio
, int err
)
2904 if (err
== -EOPNOTSUPP
)
2905 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2906 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2908 if (bio
->bi_private
)
2909 complete(bio
->bi_private
);
2914 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2915 * sent down. With wait == 1, it waits for the previous flush.
2917 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2920 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
2925 if (device
->nobarriers
)
2929 bio
= device
->flush_bio
;
2933 wait_for_completion(&device
->flush_wait
);
2935 if (bio_flagged(bio
, BIO_EOPNOTSUPP
)) {
2936 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2937 rcu_str_deref(device
->name
));
2938 device
->nobarriers
= 1;
2939 } else if (!bio_flagged(bio
, BIO_UPTODATE
)) {
2941 btrfs_dev_stat_inc_and_print(device
,
2942 BTRFS_DEV_STAT_FLUSH_ERRS
);
2945 /* drop the reference from the wait == 0 run */
2947 device
->flush_bio
= NULL
;
2953 * one reference for us, and we leave it for the
2956 device
->flush_bio
= NULL
;
2957 bio
= bio_alloc(GFP_NOFS
, 0);
2961 bio
->bi_end_io
= btrfs_end_empty_barrier
;
2962 bio
->bi_bdev
= device
->bdev
;
2963 init_completion(&device
->flush_wait
);
2964 bio
->bi_private
= &device
->flush_wait
;
2965 device
->flush_bio
= bio
;
2968 btrfsic_submit_bio(WRITE_FLUSH
, bio
);
2974 * send an empty flush down to each device in parallel,
2975 * then wait for them
2977 static int barrier_all_devices(struct btrfs_fs_info
*info
)
2979 struct list_head
*head
;
2980 struct btrfs_device
*dev
;
2981 int errors_send
= 0;
2982 int errors_wait
= 0;
2985 /* send down all the barriers */
2986 head
= &info
->fs_devices
->devices
;
2987 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2992 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2995 ret
= write_dev_flush(dev
, 0);
3000 /* wait for all the barriers */
3001 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3006 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3009 ret
= write_dev_flush(dev
, 1);
3013 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3014 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3019 int btrfs_calc_num_tolerated_disk_barrier_failures(
3020 struct btrfs_fs_info
*fs_info
)
3022 struct btrfs_ioctl_space_info space
;
3023 struct btrfs_space_info
*sinfo
;
3024 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3025 BTRFS_BLOCK_GROUP_SYSTEM
,
3026 BTRFS_BLOCK_GROUP_METADATA
,
3027 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3031 int num_tolerated_disk_barrier_failures
=
3032 (int)fs_info
->fs_devices
->num_devices
;
3034 for (i
= 0; i
< num_types
; i
++) {
3035 struct btrfs_space_info
*tmp
;
3039 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3040 if (tmp
->flags
== types
[i
]) {
3050 down_read(&sinfo
->groups_sem
);
3051 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3052 if (!list_empty(&sinfo
->block_groups
[c
])) {
3055 btrfs_get_block_group_info(
3056 &sinfo
->block_groups
[c
], &space
);
3057 if (space
.total_bytes
== 0 ||
3058 space
.used_bytes
== 0)
3060 flags
= space
.flags
;
3063 * 0: if dup, single or RAID0 is configured for
3064 * any of metadata, system or data, else
3065 * 1: if RAID5 is configured, or if RAID1 or
3066 * RAID10 is configured and only two mirrors
3068 * 2: if RAID6 is configured, else
3069 * num_mirrors - 1: if RAID1 or RAID10 is
3070 * configured and more than
3071 * 2 mirrors are used.
3073 if (num_tolerated_disk_barrier_failures
> 0 &&
3074 ((flags
& (BTRFS_BLOCK_GROUP_DUP
|
3075 BTRFS_BLOCK_GROUP_RAID0
)) ||
3076 ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
)
3078 num_tolerated_disk_barrier_failures
= 0;
3079 else if (num_tolerated_disk_barrier_failures
> 1
3081 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3082 BTRFS_BLOCK_GROUP_RAID10
)))
3083 num_tolerated_disk_barrier_failures
= 1;
3086 up_read(&sinfo
->groups_sem
);
3089 return num_tolerated_disk_barrier_failures
;
3092 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3094 struct list_head
*head
;
3095 struct btrfs_device
*dev
;
3096 struct btrfs_super_block
*sb
;
3097 struct btrfs_dev_item
*dev_item
;
3101 int total_errors
= 0;
3104 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3105 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
3106 backup_super_roots(root
->fs_info
);
3108 sb
= root
->fs_info
->super_for_commit
;
3109 dev_item
= &sb
->dev_item
;
3111 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3112 head
= &root
->fs_info
->fs_devices
->devices
;
3115 ret
= barrier_all_devices(root
->fs_info
);
3118 &root
->fs_info
->fs_devices
->device_list_mutex
);
3119 btrfs_error(root
->fs_info
, ret
,
3120 "errors while submitting device barriers.");
3125 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3130 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3133 btrfs_set_stack_device_generation(dev_item
, 0);
3134 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3135 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3136 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
3137 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
3138 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3139 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3140 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3141 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3142 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3144 flags
= btrfs_super_flags(sb
);
3145 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3147 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3151 if (total_errors
> max_errors
) {
3152 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
3155 /* This shouldn't happen. FUA is masked off if unsupported */
3160 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3163 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3166 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3170 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3171 if (total_errors
> max_errors
) {
3172 btrfs_error(root
->fs_info
, -EIO
,
3173 "%d errors while writing supers", total_errors
);
3179 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3180 struct btrfs_root
*root
, int max_mirrors
)
3184 ret
= write_all_supers(root
, max_mirrors
);
3188 void btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
3190 spin_lock(&fs_info
->fs_roots_radix_lock
);
3191 radix_tree_delete(&fs_info
->fs_roots_radix
,
3192 (unsigned long)root
->root_key
.objectid
);
3193 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3195 if (btrfs_root_refs(&root
->root_item
) == 0)
3196 synchronize_srcu(&fs_info
->subvol_srcu
);
3198 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3199 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3203 static void free_fs_root(struct btrfs_root
*root
)
3205 iput(root
->cache_inode
);
3206 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3208 free_anon_bdev(root
->anon_dev
);
3209 free_extent_buffer(root
->node
);
3210 free_extent_buffer(root
->commit_root
);
3211 kfree(root
->free_ino_ctl
);
3212 kfree(root
->free_ino_pinned
);
3217 static void del_fs_roots(struct btrfs_fs_info
*fs_info
)
3220 struct btrfs_root
*gang
[8];
3223 while (!list_empty(&fs_info
->dead_roots
)) {
3224 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
3225 struct btrfs_root
, root_list
);
3226 list_del(&gang
[0]->root_list
);
3228 if (gang
[0]->in_radix
) {
3229 btrfs_free_fs_root(fs_info
, gang
[0]);
3231 free_extent_buffer(gang
[0]->node
);
3232 free_extent_buffer(gang
[0]->commit_root
);
3238 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3243 for (i
= 0; i
< ret
; i
++)
3244 btrfs_free_fs_root(fs_info
, gang
[i
]);
3248 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3250 u64 root_objectid
= 0;
3251 struct btrfs_root
*gang
[8];
3256 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3257 (void **)gang
, root_objectid
,
3262 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3263 for (i
= 0; i
< ret
; i
++) {
3266 root_objectid
= gang
[i
]->root_key
.objectid
;
3267 err
= btrfs_orphan_cleanup(gang
[i
]);
3276 int btrfs_commit_super(struct btrfs_root
*root
)
3278 struct btrfs_trans_handle
*trans
;
3281 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3282 btrfs_run_delayed_iputs(root
);
3283 btrfs_clean_old_snapshots(root
);
3284 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3286 /* wait until ongoing cleanup work done */
3287 down_write(&root
->fs_info
->cleanup_work_sem
);
3288 up_write(&root
->fs_info
->cleanup_work_sem
);
3290 trans
= btrfs_join_transaction(root
);
3292 return PTR_ERR(trans
);
3293 ret
= btrfs_commit_transaction(trans
, root
);
3296 /* run commit again to drop the original snapshot */
3297 trans
= btrfs_join_transaction(root
);
3299 return PTR_ERR(trans
);
3300 ret
= btrfs_commit_transaction(trans
, root
);
3303 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
3305 btrfs_error(root
->fs_info
, ret
,
3306 "Failed to sync btree inode to disk.");
3310 ret
= write_ctree_super(NULL
, root
, 0);
3314 int close_ctree(struct btrfs_root
*root
)
3316 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3319 fs_info
->closing
= 1;
3322 /* pause restriper - we want to resume on mount */
3323 btrfs_pause_balance(fs_info
);
3325 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3327 btrfs_scrub_cancel(fs_info
);
3329 /* wait for any defraggers to finish */
3330 wait_event(fs_info
->transaction_wait
,
3331 (atomic_read(&fs_info
->defrag_running
) == 0));
3333 /* clear out the rbtree of defraggable inodes */
3334 btrfs_cleanup_defrag_inodes(fs_info
);
3336 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3337 ret
= btrfs_commit_super(root
);
3339 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
3342 if (fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
3343 btrfs_error_commit_super(root
);
3345 btrfs_put_block_group_cache(fs_info
);
3347 kthread_stop(fs_info
->transaction_kthread
);
3348 kthread_stop(fs_info
->cleaner_kthread
);
3350 fs_info
->closing
= 2;
3353 btrfs_free_qgroup_config(root
->fs_info
);
3355 if (fs_info
->delalloc_bytes
) {
3356 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
3357 (unsigned long long)fs_info
->delalloc_bytes
);
3360 free_extent_buffer(fs_info
->extent_root
->node
);
3361 free_extent_buffer(fs_info
->extent_root
->commit_root
);
3362 free_extent_buffer(fs_info
->tree_root
->node
);
3363 free_extent_buffer(fs_info
->tree_root
->commit_root
);
3364 free_extent_buffer(fs_info
->chunk_root
->node
);
3365 free_extent_buffer(fs_info
->chunk_root
->commit_root
);
3366 free_extent_buffer(fs_info
->dev_root
->node
);
3367 free_extent_buffer(fs_info
->dev_root
->commit_root
);
3368 free_extent_buffer(fs_info
->csum_root
->node
);
3369 free_extent_buffer(fs_info
->csum_root
->commit_root
);
3370 if (fs_info
->quota_root
) {
3371 free_extent_buffer(fs_info
->quota_root
->node
);
3372 free_extent_buffer(fs_info
->quota_root
->commit_root
);
3375 btrfs_free_block_groups(fs_info
);
3377 del_fs_roots(fs_info
);
3379 iput(fs_info
->btree_inode
);
3381 btrfs_stop_workers(&fs_info
->generic_worker
);
3382 btrfs_stop_workers(&fs_info
->fixup_workers
);
3383 btrfs_stop_workers(&fs_info
->delalloc_workers
);
3384 btrfs_stop_workers(&fs_info
->workers
);
3385 btrfs_stop_workers(&fs_info
->endio_workers
);
3386 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
3387 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
3388 btrfs_stop_workers(&fs_info
->endio_write_workers
);
3389 btrfs_stop_workers(&fs_info
->endio_freespace_worker
);
3390 btrfs_stop_workers(&fs_info
->submit_workers
);
3391 btrfs_stop_workers(&fs_info
->delayed_workers
);
3392 btrfs_stop_workers(&fs_info
->caching_workers
);
3393 btrfs_stop_workers(&fs_info
->readahead_workers
);
3394 btrfs_stop_workers(&fs_info
->flush_workers
);
3396 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3397 if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
3398 btrfsic_unmount(root
, fs_info
->fs_devices
);
3401 btrfs_close_devices(fs_info
->fs_devices
);
3402 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3404 bdi_destroy(&fs_info
->bdi
);
3405 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3410 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3414 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3416 ret
= extent_buffer_uptodate(buf
);
3420 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3421 parent_transid
, atomic
);
3427 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3429 return set_extent_buffer_uptodate(buf
);
3432 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3434 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3435 u64 transid
= btrfs_header_generation(buf
);
3438 btrfs_assert_tree_locked(buf
);
3439 if (transid
!= root
->fs_info
->generation
)
3440 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3441 "found %llu running %llu\n",
3442 (unsigned long long)buf
->start
,
3443 (unsigned long long)transid
,
3444 (unsigned long long)root
->fs_info
->generation
);
3445 was_dirty
= set_extent_buffer_dirty(buf
);
3447 spin_lock(&root
->fs_info
->delalloc_lock
);
3448 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
3449 spin_unlock(&root
->fs_info
->delalloc_lock
);
3453 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
3457 * looks as though older kernels can get into trouble with
3458 * this code, they end up stuck in balance_dirty_pages forever
3461 unsigned long thresh
= 32 * 1024 * 1024;
3463 if (current
->flags
& PF_MEMALLOC
)
3467 btrfs_balance_delayed_items(root
);
3469 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
3471 if (num_dirty
> thresh
) {
3472 balance_dirty_pages_ratelimited(
3473 root
->fs_info
->btree_inode
->i_mapping
);
3478 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
3480 __btrfs_btree_balance_dirty(root
, 1);
3483 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
3485 __btrfs_btree_balance_dirty(root
, 0);
3488 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3490 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3491 return btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3494 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3497 if (btrfs_super_csum_type(fs_info
->super_copy
) >= ARRAY_SIZE(btrfs_csum_sizes
)) {
3498 printk(KERN_ERR
"btrfs: unsupported checksum algorithm\n");
3508 void btrfs_error_commit_super(struct btrfs_root
*root
)
3510 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3511 btrfs_run_delayed_iputs(root
);
3512 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3514 down_write(&root
->fs_info
->cleanup_work_sem
);
3515 up_write(&root
->fs_info
->cleanup_work_sem
);
3517 /* cleanup FS via transaction */
3518 btrfs_cleanup_transaction(root
);
3521 static void btrfs_destroy_ordered_operations(struct btrfs_root
*root
)
3523 struct btrfs_inode
*btrfs_inode
;
3524 struct list_head splice
;
3526 INIT_LIST_HEAD(&splice
);
3528 mutex_lock(&root
->fs_info
->ordered_operations_mutex
);
3529 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3531 list_splice_init(&root
->fs_info
->ordered_operations
, &splice
);
3532 while (!list_empty(&splice
)) {
3533 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3534 ordered_operations
);
3536 list_del_init(&btrfs_inode
->ordered_operations
);
3538 btrfs_invalidate_inodes(btrfs_inode
->root
);
3541 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3542 mutex_unlock(&root
->fs_info
->ordered_operations_mutex
);
3545 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
3547 struct list_head splice
;
3548 struct btrfs_ordered_extent
*ordered
;
3549 struct inode
*inode
;
3551 INIT_LIST_HEAD(&splice
);
3553 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3555 list_splice_init(&root
->fs_info
->ordered_extents
, &splice
);
3556 while (!list_empty(&splice
)) {
3557 ordered
= list_entry(splice
.next
, struct btrfs_ordered_extent
,
3560 list_del_init(&ordered
->root_extent_list
);
3561 atomic_inc(&ordered
->refs
);
3563 /* the inode may be getting freed (in sys_unlink path). */
3564 inode
= igrab(ordered
->inode
);
3566 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3570 atomic_set(&ordered
->refs
, 1);
3571 btrfs_put_ordered_extent(ordered
);
3573 spin_lock(&root
->fs_info
->ordered_extent_lock
);
3576 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
3579 int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
3580 struct btrfs_root
*root
)
3582 struct rb_node
*node
;
3583 struct btrfs_delayed_ref_root
*delayed_refs
;
3584 struct btrfs_delayed_ref_node
*ref
;
3587 delayed_refs
= &trans
->delayed_refs
;
3589 spin_lock(&delayed_refs
->lock
);
3590 if (delayed_refs
->num_entries
== 0) {
3591 spin_unlock(&delayed_refs
->lock
);
3592 printk(KERN_INFO
"delayed_refs has NO entry\n");
3596 while ((node
= rb_first(&delayed_refs
->root
)) != NULL
) {
3597 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
3599 atomic_set(&ref
->refs
, 1);
3600 if (btrfs_delayed_ref_is_head(ref
)) {
3601 struct btrfs_delayed_ref_head
*head
;
3603 head
= btrfs_delayed_node_to_head(ref
);
3604 if (!mutex_trylock(&head
->mutex
)) {
3605 atomic_inc(&ref
->refs
);
3606 spin_unlock(&delayed_refs
->lock
);
3608 /* Need to wait for the delayed ref to run */
3609 mutex_lock(&head
->mutex
);
3610 mutex_unlock(&head
->mutex
);
3611 btrfs_put_delayed_ref(ref
);
3613 spin_lock(&delayed_refs
->lock
);
3617 kfree(head
->extent_op
);
3618 delayed_refs
->num_heads
--;
3619 if (list_empty(&head
->cluster
))
3620 delayed_refs
->num_heads_ready
--;
3621 list_del_init(&head
->cluster
);
3624 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
3625 delayed_refs
->num_entries
--;
3627 spin_unlock(&delayed_refs
->lock
);
3628 btrfs_put_delayed_ref(ref
);
3631 spin_lock(&delayed_refs
->lock
);
3634 spin_unlock(&delayed_refs
->lock
);
3639 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction
*t
)
3641 struct btrfs_pending_snapshot
*snapshot
;
3642 struct list_head splice
;
3644 INIT_LIST_HEAD(&splice
);
3646 list_splice_init(&t
->pending_snapshots
, &splice
);
3648 while (!list_empty(&splice
)) {
3649 snapshot
= list_entry(splice
.next
,
3650 struct btrfs_pending_snapshot
,
3653 list_del_init(&snapshot
->list
);
3659 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
3661 struct btrfs_inode
*btrfs_inode
;
3662 struct list_head splice
;
3664 INIT_LIST_HEAD(&splice
);
3666 spin_lock(&root
->fs_info
->delalloc_lock
);
3667 list_splice_init(&root
->fs_info
->delalloc_inodes
, &splice
);
3669 while (!list_empty(&splice
)) {
3670 btrfs_inode
= list_entry(splice
.next
, struct btrfs_inode
,
3673 list_del_init(&btrfs_inode
->delalloc_inodes
);
3675 btrfs_invalidate_inodes(btrfs_inode
->root
);
3678 spin_unlock(&root
->fs_info
->delalloc_lock
);
3681 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
3682 struct extent_io_tree
*dirty_pages
,
3687 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
3688 struct extent_buffer
*eb
;
3692 unsigned long index
;
3695 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
3700 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
3701 while (start
<= end
) {
3702 index
= start
>> PAGE_CACHE_SHIFT
;
3703 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
3704 page
= find_get_page(btree_inode
->i_mapping
, index
);
3707 offset
= page_offset(page
);
3709 spin_lock(&dirty_pages
->buffer_lock
);
3710 eb
= radix_tree_lookup(
3711 &(&BTRFS_I(page
->mapping
->host
)->io_tree
)->buffer
,
3712 offset
>> PAGE_CACHE_SHIFT
);
3713 spin_unlock(&dirty_pages
->buffer_lock
);
3715 ret
= test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
3717 if (PageWriteback(page
))
3718 end_page_writeback(page
);
3721 if (PageDirty(page
)) {
3722 clear_page_dirty_for_io(page
);
3723 spin_lock_irq(&page
->mapping
->tree_lock
);
3724 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3726 PAGECACHE_TAG_DIRTY
);
3727 spin_unlock_irq(&page
->mapping
->tree_lock
);
3731 page_cache_release(page
);
3738 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
3739 struct extent_io_tree
*pinned_extents
)
3741 struct extent_io_tree
*unpin
;
3747 unpin
= pinned_extents
;
3750 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
3751 EXTENT_DIRTY
, NULL
);
3756 if (btrfs_test_opt(root
, DISCARD
))
3757 ret
= btrfs_error_discard_extent(root
, start
,
3761 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
3762 btrfs_error_unpin_extent_range(root
, start
, end
);
3767 if (unpin
== &root
->fs_info
->freed_extents
[0])
3768 unpin
= &root
->fs_info
->freed_extents
[1];
3770 unpin
= &root
->fs_info
->freed_extents
[0];
3778 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
3779 struct btrfs_root
*root
)
3781 btrfs_destroy_delayed_refs(cur_trans
, root
);
3782 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
3783 cur_trans
->dirty_pages
.dirty_bytes
);
3785 /* FIXME: cleanup wait for commit */
3786 cur_trans
->in_commit
= 1;
3787 cur_trans
->blocked
= 1;
3788 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3790 cur_trans
->blocked
= 0;
3791 wake_up(&root
->fs_info
->transaction_wait
);
3793 cur_trans
->commit_done
= 1;
3794 wake_up(&cur_trans
->commit_wait
);
3796 btrfs_destroy_delayed_inodes(root
);
3797 btrfs_assert_delayed_root_empty(root
);
3799 btrfs_destroy_pending_snapshots(cur_trans
);
3801 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
3803 btrfs_destroy_pinned_extent(root
,
3804 root
->fs_info
->pinned_extents
);
3807 memset(cur_trans, 0, sizeof(*cur_trans));
3808 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3812 int btrfs_cleanup_transaction(struct btrfs_root
*root
)
3814 struct btrfs_transaction
*t
;
3817 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
3819 spin_lock(&root
->fs_info
->trans_lock
);
3820 list_splice_init(&root
->fs_info
->trans_list
, &list
);
3821 root
->fs_info
->trans_no_join
= 1;
3822 spin_unlock(&root
->fs_info
->trans_lock
);
3824 while (!list_empty(&list
)) {
3825 t
= list_entry(list
.next
, struct btrfs_transaction
, list
);
3829 btrfs_destroy_ordered_operations(root
);
3831 btrfs_destroy_ordered_extents(root
);
3833 btrfs_destroy_delayed_refs(t
, root
);
3835 btrfs_block_rsv_release(root
,
3836 &root
->fs_info
->trans_block_rsv
,
3837 t
->dirty_pages
.dirty_bytes
);
3839 /* FIXME: cleanup wait for commit */
3843 if (waitqueue_active(&root
->fs_info
->transaction_blocked_wait
))
3844 wake_up(&root
->fs_info
->transaction_blocked_wait
);
3848 if (waitqueue_active(&root
->fs_info
->transaction_wait
))
3849 wake_up(&root
->fs_info
->transaction_wait
);
3853 if (waitqueue_active(&t
->commit_wait
))
3854 wake_up(&t
->commit_wait
);
3856 btrfs_destroy_delayed_inodes(root
);
3857 btrfs_assert_delayed_root_empty(root
);
3859 btrfs_destroy_pending_snapshots(t
);
3861 btrfs_destroy_delalloc_inodes(root
);
3863 spin_lock(&root
->fs_info
->trans_lock
);
3864 root
->fs_info
->running_transaction
= NULL
;
3865 spin_unlock(&root
->fs_info
->trans_lock
);
3867 btrfs_destroy_marked_extents(root
, &t
->dirty_pages
,
3870 btrfs_destroy_pinned_extent(root
,
3871 root
->fs_info
->pinned_extents
);
3873 atomic_set(&t
->use_count
, 0);
3874 list_del_init(&t
->list
);
3875 memset(t
, 0, sizeof(*t
));
3876 kmem_cache_free(btrfs_transaction_cachep
, t
);
3879 spin_lock(&root
->fs_info
->trans_lock
);
3880 root
->fs_info
->trans_no_join
= 0;
3881 spin_unlock(&root
->fs_info
->trans_lock
);
3882 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
3887 static struct extent_io_ops btree_extent_io_ops
= {
3888 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
3889 .readpage_io_failed_hook
= btree_io_failed_hook
,
3890 .submit_bio_hook
= btree_submit_bio_hook
,
3891 /* note we're sharing with inode.c for the merge bio hook */
3892 .merge_bio_hook
= btrfs_merge_bio_hook
,