6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 #include <linux/rbtree_augmented.h>
35 #include <linux/sched/sysctl.h>
37 #include <asm/uaccess.h>
38 #include <asm/cacheflush.h>
40 #include <asm/mmu_context.h>
44 #ifndef arch_mmap_check
45 #define arch_mmap_check(addr, len, flags) (0)
48 #ifndef arch_rebalance_pgtables
49 #define arch_rebalance_pgtables(addr, len) (addr)
52 static void unmap_region(struct mm_struct
*mm
,
53 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
54 unsigned long start
, unsigned long end
);
56 /* description of effects of mapping type and prot in current implementation.
57 * this is due to the limited x86 page protection hardware. The expected
58 * behavior is in parens:
61 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
62 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
63 * w: (no) no w: (no) no w: (yes) yes w: (no) no
64 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
66 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (copy) copy w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
71 pgprot_t protection_map
[16] = {
72 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
73 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
76 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
78 return __pgprot(pgprot_val(protection_map
[vm_flags
&
79 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
80 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
82 EXPORT_SYMBOL(vm_get_page_prot
);
84 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
85 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
86 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
88 * Make sure vm_committed_as in one cacheline and not cacheline shared with
89 * other variables. It can be updated by several CPUs frequently.
91 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
94 * The global memory commitment made in the system can be a metric
95 * that can be used to drive ballooning decisions when Linux is hosted
96 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
97 * balancing memory across competing virtual machines that are hosted.
98 * Several metrics drive this policy engine including the guest reported
101 unsigned long vm_memory_committed(void)
103 return percpu_counter_read_positive(&vm_committed_as
);
105 EXPORT_SYMBOL_GPL(vm_memory_committed
);
108 * Check that a process has enough memory to allocate a new virtual
109 * mapping. 0 means there is enough memory for the allocation to
110 * succeed and -ENOMEM implies there is not.
112 * We currently support three overcommit policies, which are set via the
113 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
115 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
116 * Additional code 2002 Jul 20 by Robert Love.
118 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
120 * Note this is a helper function intended to be used by LSMs which
121 * wish to use this logic.
123 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
125 unsigned long free
, allowed
;
127 vm_acct_memory(pages
);
130 * Sometimes we want to use more memory than we have
132 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
135 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
136 free
= global_page_state(NR_FREE_PAGES
);
137 free
+= global_page_state(NR_FILE_PAGES
);
140 * shmem pages shouldn't be counted as free in this
141 * case, they can't be purged, only swapped out, and
142 * that won't affect the overall amount of available
143 * memory in the system.
145 free
-= global_page_state(NR_SHMEM
);
147 free
+= get_nr_swap_pages();
150 * Any slabs which are created with the
151 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
152 * which are reclaimable, under pressure. The dentry
153 * cache and most inode caches should fall into this
155 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
158 * Leave reserved pages. The pages are not for anonymous pages.
160 if (free
<= totalreserve_pages
)
163 free
-= totalreserve_pages
;
166 * Leave the last 3% for root
177 allowed
= (totalram_pages
- hugetlb_total_pages())
178 * sysctl_overcommit_ratio
/ 100;
180 * Leave the last 3% for root
183 allowed
-= allowed
/ 32;
184 allowed
+= total_swap_pages
;
186 /* Don't let a single process grow too big:
187 leave 3% of the size of this process for other processes */
189 allowed
-= mm
->total_vm
/ 32;
191 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
194 vm_unacct_memory(pages
);
200 * Requires inode->i_mapping->i_mmap_mutex
202 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
203 struct file
*file
, struct address_space
*mapping
)
205 if (vma
->vm_flags
& VM_DENYWRITE
)
206 atomic_inc(&file_inode(file
)->i_writecount
);
207 if (vma
->vm_flags
& VM_SHARED
)
208 mapping
->i_mmap_writable
--;
210 flush_dcache_mmap_lock(mapping
);
211 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
212 list_del_init(&vma
->shared
.nonlinear
);
214 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
215 flush_dcache_mmap_unlock(mapping
);
219 * Unlink a file-based vm structure from its interval tree, to hide
220 * vma from rmap and vmtruncate before freeing its page tables.
222 void unlink_file_vma(struct vm_area_struct
*vma
)
224 struct file
*file
= vma
->vm_file
;
227 struct address_space
*mapping
= file
->f_mapping
;
228 mutex_lock(&mapping
->i_mmap_mutex
);
229 __remove_shared_vm_struct(vma
, file
, mapping
);
230 mutex_unlock(&mapping
->i_mmap_mutex
);
235 * Close a vm structure and free it, returning the next.
237 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
239 struct vm_area_struct
*next
= vma
->vm_next
;
242 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
243 vma
->vm_ops
->close(vma
);
246 mpol_put(vma_policy(vma
));
247 kmem_cache_free(vm_area_cachep
, vma
);
251 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
253 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
255 unsigned long rlim
, retval
;
256 unsigned long newbrk
, oldbrk
;
257 struct mm_struct
*mm
= current
->mm
;
258 unsigned long min_brk
;
261 down_write(&mm
->mmap_sem
);
263 #ifdef CONFIG_COMPAT_BRK
265 * CONFIG_COMPAT_BRK can still be overridden by setting
266 * randomize_va_space to 2, which will still cause mm->start_brk
267 * to be arbitrarily shifted
269 if (current
->brk_randomized
)
270 min_brk
= mm
->start_brk
;
272 min_brk
= mm
->end_data
;
274 min_brk
= mm
->start_brk
;
280 * Check against rlimit here. If this check is done later after the test
281 * of oldbrk with newbrk then it can escape the test and let the data
282 * segment grow beyond its set limit the in case where the limit is
283 * not page aligned -Ram Gupta
285 rlim
= rlimit(RLIMIT_DATA
);
286 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
287 (mm
->end_data
- mm
->start_data
) > rlim
)
290 newbrk
= PAGE_ALIGN(brk
);
291 oldbrk
= PAGE_ALIGN(mm
->brk
);
292 if (oldbrk
== newbrk
)
295 /* Always allow shrinking brk. */
296 if (brk
<= mm
->brk
) {
297 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
302 /* Check against existing mmap mappings. */
303 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
306 /* Ok, looks good - let it rip. */
307 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
312 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
313 up_write(&mm
->mmap_sem
);
315 mm_populate(oldbrk
, newbrk
- oldbrk
);
320 up_write(&mm
->mmap_sem
);
324 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
326 unsigned long max
, subtree_gap
;
329 max
-= vma
->vm_prev
->vm_end
;
330 if (vma
->vm_rb
.rb_left
) {
331 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
332 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
333 if (subtree_gap
> max
)
336 if (vma
->vm_rb
.rb_right
) {
337 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
338 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
339 if (subtree_gap
> max
)
345 #ifdef CONFIG_DEBUG_VM_RB
346 static int browse_rb(struct rb_root
*root
)
348 int i
= 0, j
, bug
= 0;
349 struct rb_node
*nd
, *pn
= NULL
;
350 unsigned long prev
= 0, pend
= 0;
352 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
353 struct vm_area_struct
*vma
;
354 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
355 if (vma
->vm_start
< prev
) {
356 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
);
359 if (vma
->vm_start
< pend
) {
360 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
363 if (vma
->vm_start
> vma
->vm_end
) {
364 printk("vm_end %lx < vm_start %lx\n",
365 vma
->vm_end
, vma
->vm_start
);
368 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
369 printk("free gap %lx, correct %lx\n",
371 vma_compute_subtree_gap(vma
));
376 prev
= vma
->vm_start
;
380 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
383 printk("backwards %d, forwards %d\n", j
, i
);
389 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
393 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
394 struct vm_area_struct
*vma
;
395 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
396 BUG_ON(vma
!= ignore
&&
397 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
));
401 void validate_mm(struct mm_struct
*mm
)
405 unsigned long highest_address
= 0;
406 struct vm_area_struct
*vma
= mm
->mmap
;
408 struct anon_vma_chain
*avc
;
409 vma_lock_anon_vma(vma
);
410 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
411 anon_vma_interval_tree_verify(avc
);
412 vma_unlock_anon_vma(vma
);
413 highest_address
= vma
->vm_end
;
417 if (i
!= mm
->map_count
) {
418 printk("map_count %d vm_next %d\n", mm
->map_count
, i
);
421 if (highest_address
!= mm
->highest_vm_end
) {
422 printk("mm->highest_vm_end %lx, found %lx\n",
423 mm
->highest_vm_end
, highest_address
);
426 i
= browse_rb(&mm
->mm_rb
);
427 if (i
!= mm
->map_count
) {
428 printk("map_count %d rb %d\n", mm
->map_count
, i
);
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
438 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
439 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
442 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
443 * vma->vm_prev->vm_end values changed, without modifying the vma's position
446 static void vma_gap_update(struct vm_area_struct
*vma
)
449 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
450 * function that does exacltly what we want.
452 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
455 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
456 struct rb_root
*root
)
458 /* All rb_subtree_gap values must be consistent prior to insertion */
459 validate_mm_rb(root
, NULL
);
461 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
464 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
467 * All rb_subtree_gap values must be consistent prior to erase,
468 * with the possible exception of the vma being erased.
470 validate_mm_rb(root
, vma
);
473 * Note rb_erase_augmented is a fairly large inline function,
474 * so make sure we instantiate it only once with our desired
475 * augmented rbtree callbacks.
477 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
481 * vma has some anon_vma assigned, and is already inserted on that
482 * anon_vma's interval trees.
484 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
485 * vma must be removed from the anon_vma's interval trees using
486 * anon_vma_interval_tree_pre_update_vma().
488 * After the update, the vma will be reinserted using
489 * anon_vma_interval_tree_post_update_vma().
491 * The entire update must be protected by exclusive mmap_sem and by
492 * the root anon_vma's mutex.
495 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
497 struct anon_vma_chain
*avc
;
499 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
500 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
504 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
506 struct anon_vma_chain
*avc
;
508 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
509 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
512 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
513 unsigned long end
, struct vm_area_struct
**pprev
,
514 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
516 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
518 __rb_link
= &mm
->mm_rb
.rb_node
;
519 rb_prev
= __rb_parent
= NULL
;
522 struct vm_area_struct
*vma_tmp
;
524 __rb_parent
= *__rb_link
;
525 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
527 if (vma_tmp
->vm_end
> addr
) {
528 /* Fail if an existing vma overlaps the area */
529 if (vma_tmp
->vm_start
< end
)
531 __rb_link
= &__rb_parent
->rb_left
;
533 rb_prev
= __rb_parent
;
534 __rb_link
= &__rb_parent
->rb_right
;
540 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
541 *rb_link
= __rb_link
;
542 *rb_parent
= __rb_parent
;
546 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
547 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
549 /* Update tracking information for the gap following the new vma. */
551 vma_gap_update(vma
->vm_next
);
553 mm
->highest_vm_end
= vma
->vm_end
;
556 * vma->vm_prev wasn't known when we followed the rbtree to find the
557 * correct insertion point for that vma. As a result, we could not
558 * update the vma vm_rb parents rb_subtree_gap values on the way down.
559 * So, we first insert the vma with a zero rb_subtree_gap value
560 * (to be consistent with what we did on the way down), and then
561 * immediately update the gap to the correct value. Finally we
562 * rebalance the rbtree after all augmented values have been set.
564 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
565 vma
->rb_subtree_gap
= 0;
567 vma_rb_insert(vma
, &mm
->mm_rb
);
570 static void __vma_link_file(struct vm_area_struct
*vma
)
576 struct address_space
*mapping
= file
->f_mapping
;
578 if (vma
->vm_flags
& VM_DENYWRITE
)
579 atomic_dec(&file_inode(file
)->i_writecount
);
580 if (vma
->vm_flags
& VM_SHARED
)
581 mapping
->i_mmap_writable
++;
583 flush_dcache_mmap_lock(mapping
);
584 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
585 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
587 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
588 flush_dcache_mmap_unlock(mapping
);
593 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
594 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
595 struct rb_node
*rb_parent
)
597 __vma_link_list(mm
, vma
, prev
, rb_parent
);
598 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
601 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
602 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
603 struct rb_node
*rb_parent
)
605 struct address_space
*mapping
= NULL
;
608 mapping
= vma
->vm_file
->f_mapping
;
611 mutex_lock(&mapping
->i_mmap_mutex
);
613 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
614 __vma_link_file(vma
);
617 mutex_unlock(&mapping
->i_mmap_mutex
);
624 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
625 * mm's list and rbtree. It has already been inserted into the interval tree.
627 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
629 struct vm_area_struct
*prev
;
630 struct rb_node
**rb_link
, *rb_parent
;
632 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
633 &prev
, &rb_link
, &rb_parent
))
635 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
640 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
641 struct vm_area_struct
*prev
)
643 struct vm_area_struct
*next
;
645 vma_rb_erase(vma
, &mm
->mm_rb
);
646 prev
->vm_next
= next
= vma
->vm_next
;
648 next
->vm_prev
= prev
;
649 if (mm
->mmap_cache
== vma
)
650 mm
->mmap_cache
= prev
;
654 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
655 * is already present in an i_mmap tree without adjusting the tree.
656 * The following helper function should be used when such adjustments
657 * are necessary. The "insert" vma (if any) is to be inserted
658 * before we drop the necessary locks.
660 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
661 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
663 struct mm_struct
*mm
= vma
->vm_mm
;
664 struct vm_area_struct
*next
= vma
->vm_next
;
665 struct vm_area_struct
*importer
= NULL
;
666 struct address_space
*mapping
= NULL
;
667 struct rb_root
*root
= NULL
;
668 struct anon_vma
*anon_vma
= NULL
;
669 struct file
*file
= vma
->vm_file
;
670 bool start_changed
= false, end_changed
= false;
671 long adjust_next
= 0;
674 if (next
&& !insert
) {
675 struct vm_area_struct
*exporter
= NULL
;
677 if (end
>= next
->vm_end
) {
679 * vma expands, overlapping all the next, and
680 * perhaps the one after too (mprotect case 6).
682 again
: remove_next
= 1 + (end
> next
->vm_end
);
686 } else if (end
> next
->vm_start
) {
688 * vma expands, overlapping part of the next:
689 * mprotect case 5 shifting the boundary up.
691 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
694 } else if (end
< vma
->vm_end
) {
696 * vma shrinks, and !insert tells it's not
697 * split_vma inserting another: so it must be
698 * mprotect case 4 shifting the boundary down.
700 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
706 * Easily overlooked: when mprotect shifts the boundary,
707 * make sure the expanding vma has anon_vma set if the
708 * shrinking vma had, to cover any anon pages imported.
710 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
711 if (anon_vma_clone(importer
, exporter
))
713 importer
->anon_vma
= exporter
->anon_vma
;
718 mapping
= file
->f_mapping
;
719 if (!(vma
->vm_flags
& VM_NONLINEAR
)) {
720 root
= &mapping
->i_mmap
;
721 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
724 uprobe_munmap(next
, next
->vm_start
,
728 mutex_lock(&mapping
->i_mmap_mutex
);
731 * Put into interval tree now, so instantiated pages
732 * are visible to arm/parisc __flush_dcache_page
733 * throughout; but we cannot insert into address
734 * space until vma start or end is updated.
736 __vma_link_file(insert
);
740 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
742 anon_vma
= vma
->anon_vma
;
743 if (!anon_vma
&& adjust_next
)
744 anon_vma
= next
->anon_vma
;
746 VM_BUG_ON(adjust_next
&& next
->anon_vma
&&
747 anon_vma
!= next
->anon_vma
);
748 anon_vma_lock_write(anon_vma
);
749 anon_vma_interval_tree_pre_update_vma(vma
);
751 anon_vma_interval_tree_pre_update_vma(next
);
755 flush_dcache_mmap_lock(mapping
);
756 vma_interval_tree_remove(vma
, root
);
758 vma_interval_tree_remove(next
, root
);
761 if (start
!= vma
->vm_start
) {
762 vma
->vm_start
= start
;
763 start_changed
= true;
765 if (end
!= vma
->vm_end
) {
769 vma
->vm_pgoff
= pgoff
;
771 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
772 next
->vm_pgoff
+= adjust_next
;
777 vma_interval_tree_insert(next
, root
);
778 vma_interval_tree_insert(vma
, root
);
779 flush_dcache_mmap_unlock(mapping
);
784 * vma_merge has merged next into vma, and needs
785 * us to remove next before dropping the locks.
787 __vma_unlink(mm
, next
, vma
);
789 __remove_shared_vm_struct(next
, file
, mapping
);
792 * split_vma has split insert from vma, and needs
793 * us to insert it before dropping the locks
794 * (it may either follow vma or precede it).
796 __insert_vm_struct(mm
, insert
);
802 mm
->highest_vm_end
= end
;
803 else if (!adjust_next
)
804 vma_gap_update(next
);
809 anon_vma_interval_tree_post_update_vma(vma
);
811 anon_vma_interval_tree_post_update_vma(next
);
812 anon_vma_unlock_write(anon_vma
);
815 mutex_unlock(&mapping
->i_mmap_mutex
);
826 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
830 anon_vma_merge(vma
, next
);
832 mpol_put(vma_policy(next
));
833 kmem_cache_free(vm_area_cachep
, next
);
835 * In mprotect's case 6 (see comments on vma_merge),
836 * we must remove another next too. It would clutter
837 * up the code too much to do both in one go.
840 if (remove_next
== 2)
843 vma_gap_update(next
);
845 mm
->highest_vm_end
= end
;
856 * If the vma has a ->close operation then the driver probably needs to release
857 * per-vma resources, so we don't attempt to merge those.
859 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
860 struct file
*file
, unsigned long vm_flags
)
862 if (vma
->vm_flags
^ vm_flags
)
864 if (vma
->vm_file
!= file
)
866 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
871 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
872 struct anon_vma
*anon_vma2
,
873 struct vm_area_struct
*vma
)
876 * The list_is_singular() test is to avoid merging VMA cloned from
877 * parents. This can improve scalability caused by anon_vma lock.
879 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
880 list_is_singular(&vma
->anon_vma_chain
)))
882 return anon_vma1
== anon_vma2
;
886 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
887 * in front of (at a lower virtual address and file offset than) the vma.
889 * We cannot merge two vmas if they have differently assigned (non-NULL)
890 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
892 * We don't check here for the merged mmap wrapping around the end of pagecache
893 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
894 * wrap, nor mmaps which cover the final page at index -1UL.
897 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
898 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
900 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
901 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
902 if (vma
->vm_pgoff
== vm_pgoff
)
909 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
910 * beyond (at a higher virtual address and file offset than) the vma.
912 * We cannot merge two vmas if they have differently assigned (non-NULL)
913 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
916 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
917 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
919 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
920 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
922 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
923 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
930 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
931 * whether that can be merged with its predecessor or its successor.
932 * Or both (it neatly fills a hole).
934 * In most cases - when called for mmap, brk or mremap - [addr,end) is
935 * certain not to be mapped by the time vma_merge is called; but when
936 * called for mprotect, it is certain to be already mapped (either at
937 * an offset within prev, or at the start of next), and the flags of
938 * this area are about to be changed to vm_flags - and the no-change
939 * case has already been eliminated.
941 * The following mprotect cases have to be considered, where AAAA is
942 * the area passed down from mprotect_fixup, never extending beyond one
943 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
945 * AAAA AAAA AAAA AAAA
946 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
947 * cannot merge might become might become might become
948 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
949 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
950 * mremap move: PPPPNNNNNNNN 8
952 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
953 * might become case 1 below case 2 below case 3 below
955 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
956 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
958 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
959 struct vm_area_struct
*prev
, unsigned long addr
,
960 unsigned long end
, unsigned long vm_flags
,
961 struct anon_vma
*anon_vma
, struct file
*file
,
962 pgoff_t pgoff
, struct mempolicy
*policy
)
964 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
965 struct vm_area_struct
*area
, *next
;
969 * We later require that vma->vm_flags == vm_flags,
970 * so this tests vma->vm_flags & VM_SPECIAL, too.
972 if (vm_flags
& VM_SPECIAL
)
976 next
= prev
->vm_next
;
980 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
981 next
= next
->vm_next
;
984 * Can it merge with the predecessor?
986 if (prev
&& prev
->vm_end
== addr
&&
987 mpol_equal(vma_policy(prev
), policy
) &&
988 can_vma_merge_after(prev
, vm_flags
,
989 anon_vma
, file
, pgoff
)) {
991 * OK, it can. Can we now merge in the successor as well?
993 if (next
&& end
== next
->vm_start
&&
994 mpol_equal(policy
, vma_policy(next
)) &&
995 can_vma_merge_before(next
, vm_flags
,
996 anon_vma
, file
, pgoff
+pglen
) &&
997 is_mergeable_anon_vma(prev
->anon_vma
,
998 next
->anon_vma
, NULL
)) {
1000 err
= vma_adjust(prev
, prev
->vm_start
,
1001 next
->vm_end
, prev
->vm_pgoff
, NULL
);
1002 } else /* cases 2, 5, 7 */
1003 err
= vma_adjust(prev
, prev
->vm_start
,
1004 end
, prev
->vm_pgoff
, NULL
);
1007 khugepaged_enter_vma_merge(prev
);
1012 * Can this new request be merged in front of next?
1014 if (next
&& end
== next
->vm_start
&&
1015 mpol_equal(policy
, vma_policy(next
)) &&
1016 can_vma_merge_before(next
, vm_flags
,
1017 anon_vma
, file
, pgoff
+pglen
)) {
1018 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1019 err
= vma_adjust(prev
, prev
->vm_start
,
1020 addr
, prev
->vm_pgoff
, NULL
);
1021 else /* cases 3, 8 */
1022 err
= vma_adjust(area
, addr
, next
->vm_end
,
1023 next
->vm_pgoff
- pglen
, NULL
);
1026 khugepaged_enter_vma_merge(area
);
1034 * Rough compatbility check to quickly see if it's even worth looking
1035 * at sharing an anon_vma.
1037 * They need to have the same vm_file, and the flags can only differ
1038 * in things that mprotect may change.
1040 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1041 * we can merge the two vma's. For example, we refuse to merge a vma if
1042 * there is a vm_ops->close() function, because that indicates that the
1043 * driver is doing some kind of reference counting. But that doesn't
1044 * really matter for the anon_vma sharing case.
1046 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1048 return a
->vm_end
== b
->vm_start
&&
1049 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1050 a
->vm_file
== b
->vm_file
&&
1051 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
)) &&
1052 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1056 * Do some basic sanity checking to see if we can re-use the anon_vma
1057 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1058 * the same as 'old', the other will be the new one that is trying
1059 * to share the anon_vma.
1061 * NOTE! This runs with mm_sem held for reading, so it is possible that
1062 * the anon_vma of 'old' is concurrently in the process of being set up
1063 * by another page fault trying to merge _that_. But that's ok: if it
1064 * is being set up, that automatically means that it will be a singleton
1065 * acceptable for merging, so we can do all of this optimistically. But
1066 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1068 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1069 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1070 * is to return an anon_vma that is "complex" due to having gone through
1073 * We also make sure that the two vma's are compatible (adjacent,
1074 * and with the same memory policies). That's all stable, even with just
1075 * a read lock on the mm_sem.
1077 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1079 if (anon_vma_compatible(a
, b
)) {
1080 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
1082 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1089 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1090 * neighbouring vmas for a suitable anon_vma, before it goes off
1091 * to allocate a new anon_vma. It checks because a repetitive
1092 * sequence of mprotects and faults may otherwise lead to distinct
1093 * anon_vmas being allocated, preventing vma merge in subsequent
1096 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1098 struct anon_vma
*anon_vma
;
1099 struct vm_area_struct
*near
;
1101 near
= vma
->vm_next
;
1105 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1109 near
= vma
->vm_prev
;
1113 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1118 * There's no absolute need to look only at touching neighbours:
1119 * we could search further afield for "compatible" anon_vmas.
1120 * But it would probably just be a waste of time searching,
1121 * or lead to too many vmas hanging off the same anon_vma.
1122 * We're trying to allow mprotect remerging later on,
1123 * not trying to minimize memory used for anon_vmas.
1128 #ifdef CONFIG_PROC_FS
1129 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
1130 struct file
*file
, long pages
)
1132 const unsigned long stack_flags
1133 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
1135 mm
->total_vm
+= pages
;
1138 mm
->shared_vm
+= pages
;
1139 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
1140 mm
->exec_vm
+= pages
;
1141 } else if (flags
& stack_flags
)
1142 mm
->stack_vm
+= pages
;
1144 #endif /* CONFIG_PROC_FS */
1147 * If a hint addr is less than mmap_min_addr change hint to be as
1148 * low as possible but still greater than mmap_min_addr
1150 static inline unsigned long round_hint_to_min(unsigned long hint
)
1153 if (((void *)hint
!= NULL
) &&
1154 (hint
< mmap_min_addr
))
1155 return PAGE_ALIGN(mmap_min_addr
);
1160 * The caller must hold down_write(¤t->mm->mmap_sem).
1163 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
1164 unsigned long len
, unsigned long prot
,
1165 unsigned long flags
, unsigned long pgoff
,
1166 unsigned long *populate
)
1168 struct mm_struct
* mm
= current
->mm
;
1169 struct inode
*inode
;
1170 vm_flags_t vm_flags
;
1175 * Does the application expect PROT_READ to imply PROT_EXEC?
1177 * (the exception is when the underlying filesystem is noexec
1178 * mounted, in which case we dont add PROT_EXEC.)
1180 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1181 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
1187 if (!(flags
& MAP_FIXED
))
1188 addr
= round_hint_to_min(addr
);
1190 /* Careful about overflows.. */
1191 len
= PAGE_ALIGN(len
);
1195 /* offset overflow? */
1196 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1199 /* Too many mappings? */
1200 if (mm
->map_count
> sysctl_max_map_count
)
1203 /* Obtain the address to map to. we verify (or select) it and ensure
1204 * that it represents a valid section of the address space.
1206 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1207 if (addr
& ~PAGE_MASK
)
1210 /* Do simple checking here so the lower-level routines won't have
1211 * to. we assume access permissions have been handled by the open
1212 * of the memory object, so we don't do any here.
1214 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1215 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1217 if (flags
& MAP_LOCKED
)
1218 if (!can_do_mlock())
1221 /* mlock MCL_FUTURE? */
1222 if (vm_flags
& VM_LOCKED
) {
1223 unsigned long locked
, lock_limit
;
1224 locked
= len
>> PAGE_SHIFT
;
1225 locked
+= mm
->locked_vm
;
1226 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1227 lock_limit
>>= PAGE_SHIFT
;
1228 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1232 inode
= file
? file_inode(file
) : NULL
;
1235 switch (flags
& MAP_TYPE
) {
1237 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1241 * Make sure we don't allow writing to an append-only
1244 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1248 * Make sure there are no mandatory locks on the file.
1250 if (locks_verify_locked(inode
))
1253 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1254 if (!(file
->f_mode
& FMODE_WRITE
))
1255 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1259 if (!(file
->f_mode
& FMODE_READ
))
1261 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1262 if (vm_flags
& VM_EXEC
)
1264 vm_flags
&= ~VM_MAYEXEC
;
1267 if (!file
->f_op
|| !file
->f_op
->mmap
)
1275 switch (flags
& MAP_TYPE
) {
1281 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1285 * Set pgoff according to addr for anon_vma.
1287 pgoff
= addr
>> PAGE_SHIFT
;
1295 * Set 'VM_NORESERVE' if we should not account for the
1296 * memory use of this mapping.
1298 if (flags
& MAP_NORESERVE
) {
1299 /* We honor MAP_NORESERVE if allowed to overcommit */
1300 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1301 vm_flags
|= VM_NORESERVE
;
1303 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1304 if (file
&& is_file_hugepages(file
))
1305 vm_flags
|= VM_NORESERVE
;
1308 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1309 if (!IS_ERR_VALUE(addr
) && (vm_flags
& VM_POPULATE
))
1314 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1315 unsigned long, prot
, unsigned long, flags
,
1316 unsigned long, fd
, unsigned long, pgoff
)
1318 struct file
*file
= NULL
;
1319 unsigned long retval
= -EBADF
;
1321 if (!(flags
& MAP_ANONYMOUS
)) {
1322 audit_mmap_fd(fd
, flags
);
1323 if (unlikely(flags
& MAP_HUGETLB
))
1328 } else if (flags
& MAP_HUGETLB
) {
1329 struct user_struct
*user
= NULL
;
1331 * VM_NORESERVE is used because the reservations will be
1332 * taken when vm_ops->mmap() is called
1333 * A dummy user value is used because we are not locking
1334 * memory so no accounting is necessary
1336 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, addr
, len
,
1338 &user
, HUGETLB_ANONHUGE_INODE
,
1339 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1341 return PTR_ERR(file
);
1344 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1346 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1353 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1354 struct mmap_arg_struct
{
1358 unsigned long flags
;
1360 unsigned long offset
;
1363 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1365 struct mmap_arg_struct a
;
1367 if (copy_from_user(&a
, arg
, sizeof(a
)))
1369 if (a
.offset
& ~PAGE_MASK
)
1372 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1373 a
.offset
>> PAGE_SHIFT
);
1375 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1378 * Some shared mappigns will want the pages marked read-only
1379 * to track write events. If so, we'll downgrade vm_page_prot
1380 * to the private version (using protection_map[] without the
1383 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1385 vm_flags_t vm_flags
= vma
->vm_flags
;
1387 /* If it was private or non-writable, the write bit is already clear */
1388 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1391 /* The backer wishes to know when pages are first written to? */
1392 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1395 /* The open routine did something to the protections already? */
1396 if (pgprot_val(vma
->vm_page_prot
) !=
1397 pgprot_val(vm_get_page_prot(vm_flags
)))
1400 /* Specialty mapping? */
1401 if (vm_flags
& VM_PFNMAP
)
1404 /* Can the mapping track the dirty pages? */
1405 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1406 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1410 * We account for memory if it's a private writeable mapping,
1411 * not hugepages and VM_NORESERVE wasn't set.
1413 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1416 * hugetlb has its own accounting separate from the core VM
1417 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1419 if (file
&& is_file_hugepages(file
))
1422 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1425 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1426 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1428 struct mm_struct
*mm
= current
->mm
;
1429 struct vm_area_struct
*vma
, *prev
;
1430 int correct_wcount
= 0;
1432 struct rb_node
**rb_link
, *rb_parent
;
1433 unsigned long charged
= 0;
1434 struct inode
*inode
= file
? file_inode(file
) : NULL
;
1436 /* Clear old maps */
1439 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
)) {
1440 if (do_munmap(mm
, addr
, len
))
1445 /* Check against address space limit. */
1446 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1450 * Private writable mapping: check memory availability
1452 if (accountable_mapping(file
, vm_flags
)) {
1453 charged
= len
>> PAGE_SHIFT
;
1454 if (security_vm_enough_memory_mm(mm
, charged
))
1456 vm_flags
|= VM_ACCOUNT
;
1460 * Can we just expand an old mapping?
1462 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1467 * Determine the object being mapped and call the appropriate
1468 * specific mapper. the address has already been validated, but
1469 * not unmapped, but the maps are removed from the list.
1471 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1478 vma
->vm_start
= addr
;
1479 vma
->vm_end
= addr
+ len
;
1480 vma
->vm_flags
= vm_flags
;
1481 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1482 vma
->vm_pgoff
= pgoff
;
1483 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1485 error
= -EINVAL
; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1488 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1490 if (vm_flags
& VM_DENYWRITE
) {
1491 error
= deny_write_access(file
);
1496 vma
->vm_file
= get_file(file
);
1497 error
= file
->f_op
->mmap(file
, vma
);
1499 goto unmap_and_free_vma
;
1501 /* Can addr have changed??
1503 * Answer: Yes, several device drivers can do it in their
1504 * f_op->mmap method. -DaveM
1505 * Bug: If addr is changed, prev, rb_link, rb_parent should
1506 * be updated for vma_link()
1508 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1510 addr
= vma
->vm_start
;
1511 pgoff
= vma
->vm_pgoff
;
1512 vm_flags
= vma
->vm_flags
;
1513 } else if (vm_flags
& VM_SHARED
) {
1514 if (unlikely(vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
)))
1516 error
= shmem_zero_setup(vma
);
1521 if (vma_wants_writenotify(vma
)) {
1522 pgprot_t pprot
= vma
->vm_page_prot
;
1524 /* Can vma->vm_page_prot have changed??
1526 * Answer: Yes, drivers may have changed it in their
1527 * f_op->mmap method.
1529 * Ensures that vmas marked as uncached stay that way.
1531 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1532 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1533 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1536 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1537 file
= vma
->vm_file
;
1539 /* Once vma denies write, undo our temporary denial count */
1541 atomic_inc(&inode
->i_writecount
);
1543 perf_event_mmap(vma
);
1545 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1546 if (vm_flags
& VM_LOCKED
) {
1547 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1548 vma
== get_gate_vma(current
->mm
)))
1549 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1551 vma
->vm_flags
&= ~VM_LOCKED
;
1561 atomic_inc(&inode
->i_writecount
);
1562 vma
->vm_file
= NULL
;
1565 /* Undo any partial mapping done by a device driver. */
1566 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1569 kmem_cache_free(vm_area_cachep
, vma
);
1572 vm_unacct_memory(charged
);
1576 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1579 * We implement the search by looking for an rbtree node that
1580 * immediately follows a suitable gap. That is,
1581 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1582 * - gap_end = vma->vm_start >= info->low_limit + length;
1583 * - gap_end - gap_start >= length
1586 struct mm_struct
*mm
= current
->mm
;
1587 struct vm_area_struct
*vma
;
1588 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1590 /* Adjust search length to account for worst case alignment overhead */
1591 length
= info
->length
+ info
->align_mask
;
1592 if (length
< info
->length
)
1595 /* Adjust search limits by the desired length */
1596 if (info
->high_limit
< length
)
1598 high_limit
= info
->high_limit
- length
;
1600 if (info
->low_limit
> high_limit
)
1602 low_limit
= info
->low_limit
+ length
;
1604 /* Check if rbtree root looks promising */
1605 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1607 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1608 if (vma
->rb_subtree_gap
< length
)
1612 /* Visit left subtree if it looks promising */
1613 gap_end
= vma
->vm_start
;
1614 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1615 struct vm_area_struct
*left
=
1616 rb_entry(vma
->vm_rb
.rb_left
,
1617 struct vm_area_struct
, vm_rb
);
1618 if (left
->rb_subtree_gap
>= length
) {
1624 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1626 /* Check if current node has a suitable gap */
1627 if (gap_start
> high_limit
)
1629 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1632 /* Visit right subtree if it looks promising */
1633 if (vma
->vm_rb
.rb_right
) {
1634 struct vm_area_struct
*right
=
1635 rb_entry(vma
->vm_rb
.rb_right
,
1636 struct vm_area_struct
, vm_rb
);
1637 if (right
->rb_subtree_gap
>= length
) {
1643 /* Go back up the rbtree to find next candidate node */
1645 struct rb_node
*prev
= &vma
->vm_rb
;
1646 if (!rb_parent(prev
))
1648 vma
= rb_entry(rb_parent(prev
),
1649 struct vm_area_struct
, vm_rb
);
1650 if (prev
== vma
->vm_rb
.rb_left
) {
1651 gap_start
= vma
->vm_prev
->vm_end
;
1652 gap_end
= vma
->vm_start
;
1659 /* Check highest gap, which does not precede any rbtree node */
1660 gap_start
= mm
->highest_vm_end
;
1661 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1662 if (gap_start
> high_limit
)
1666 /* We found a suitable gap. Clip it with the original low_limit. */
1667 if (gap_start
< info
->low_limit
)
1668 gap_start
= info
->low_limit
;
1670 /* Adjust gap address to the desired alignment */
1671 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1673 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1674 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1678 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1680 struct mm_struct
*mm
= current
->mm
;
1681 struct vm_area_struct
*vma
;
1682 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1684 /* Adjust search length to account for worst case alignment overhead */
1685 length
= info
->length
+ info
->align_mask
;
1686 if (length
< info
->length
)
1690 * Adjust search limits by the desired length.
1691 * See implementation comment at top of unmapped_area().
1693 gap_end
= info
->high_limit
;
1694 if (gap_end
< length
)
1696 high_limit
= gap_end
- length
;
1698 if (info
->low_limit
> high_limit
)
1700 low_limit
= info
->low_limit
+ length
;
1702 /* Check highest gap, which does not precede any rbtree node */
1703 gap_start
= mm
->highest_vm_end
;
1704 if (gap_start
<= high_limit
)
1707 /* Check if rbtree root looks promising */
1708 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1710 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1711 if (vma
->rb_subtree_gap
< length
)
1715 /* Visit right subtree if it looks promising */
1716 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1717 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1718 struct vm_area_struct
*right
=
1719 rb_entry(vma
->vm_rb
.rb_right
,
1720 struct vm_area_struct
, vm_rb
);
1721 if (right
->rb_subtree_gap
>= length
) {
1728 /* Check if current node has a suitable gap */
1729 gap_end
= vma
->vm_start
;
1730 if (gap_end
< low_limit
)
1732 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1735 /* Visit left subtree if it looks promising */
1736 if (vma
->vm_rb
.rb_left
) {
1737 struct vm_area_struct
*left
=
1738 rb_entry(vma
->vm_rb
.rb_left
,
1739 struct vm_area_struct
, vm_rb
);
1740 if (left
->rb_subtree_gap
>= length
) {
1746 /* Go back up the rbtree to find next candidate node */
1748 struct rb_node
*prev
= &vma
->vm_rb
;
1749 if (!rb_parent(prev
))
1751 vma
= rb_entry(rb_parent(prev
),
1752 struct vm_area_struct
, vm_rb
);
1753 if (prev
== vma
->vm_rb
.rb_right
) {
1754 gap_start
= vma
->vm_prev
?
1755 vma
->vm_prev
->vm_end
: 0;
1762 /* We found a suitable gap. Clip it with the original high_limit. */
1763 if (gap_end
> info
->high_limit
)
1764 gap_end
= info
->high_limit
;
1767 /* Compute highest gap address at the desired alignment */
1768 gap_end
-= info
->length
;
1769 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1771 VM_BUG_ON(gap_end
< info
->low_limit
);
1772 VM_BUG_ON(gap_end
< gap_start
);
1776 /* Get an address range which is currently unmapped.
1777 * For shmat() with addr=0.
1779 * Ugly calling convention alert:
1780 * Return value with the low bits set means error value,
1782 * if (ret & ~PAGE_MASK)
1785 * This function "knows" that -ENOMEM has the bits set.
1787 #ifndef HAVE_ARCH_UNMAPPED_AREA
1789 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1790 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1792 struct mm_struct
*mm
= current
->mm
;
1793 struct vm_area_struct
*vma
;
1794 struct vm_unmapped_area_info info
;
1796 if (len
> TASK_SIZE
)
1799 if (flags
& MAP_FIXED
)
1803 addr
= PAGE_ALIGN(addr
);
1804 vma
= find_vma(mm
, addr
);
1805 if (TASK_SIZE
- len
>= addr
&&
1806 (!vma
|| addr
+ len
<= vma
->vm_start
))
1812 info
.low_limit
= TASK_UNMAPPED_BASE
;
1813 info
.high_limit
= TASK_SIZE
;
1814 info
.align_mask
= 0;
1815 return vm_unmapped_area(&info
);
1819 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1822 * Is this a new hole at the lowest possible address?
1824 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
)
1825 mm
->free_area_cache
= addr
;
1829 * This mmap-allocator allocates new areas top-down from below the
1830 * stack's low limit (the base):
1832 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1834 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1835 const unsigned long len
, const unsigned long pgoff
,
1836 const unsigned long flags
)
1838 struct vm_area_struct
*vma
;
1839 struct mm_struct
*mm
= current
->mm
;
1840 unsigned long addr
= addr0
;
1841 struct vm_unmapped_area_info info
;
1843 /* requested length too big for entire address space */
1844 if (len
> TASK_SIZE
)
1847 if (flags
& MAP_FIXED
)
1850 /* requesting a specific address */
1852 addr
= PAGE_ALIGN(addr
);
1853 vma
= find_vma(mm
, addr
);
1854 if (TASK_SIZE
- len
>= addr
&&
1855 (!vma
|| addr
+ len
<= vma
->vm_start
))
1859 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1861 info
.low_limit
= PAGE_SIZE
;
1862 info
.high_limit
= mm
->mmap_base
;
1863 info
.align_mask
= 0;
1864 addr
= vm_unmapped_area(&info
);
1867 * A failed mmap() very likely causes application failure,
1868 * so fall back to the bottom-up function here. This scenario
1869 * can happen with large stack limits and large mmap()
1872 if (addr
& ~PAGE_MASK
) {
1873 VM_BUG_ON(addr
!= -ENOMEM
);
1875 info
.low_limit
= TASK_UNMAPPED_BASE
;
1876 info
.high_limit
= TASK_SIZE
;
1877 addr
= vm_unmapped_area(&info
);
1884 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1887 * Is this a new hole at the highest possible address?
1889 if (addr
> mm
->free_area_cache
)
1890 mm
->free_area_cache
= addr
;
1892 /* dont allow allocations above current base */
1893 if (mm
->free_area_cache
> mm
->mmap_base
)
1894 mm
->free_area_cache
= mm
->mmap_base
;
1898 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1899 unsigned long pgoff
, unsigned long flags
)
1901 unsigned long (*get_area
)(struct file
*, unsigned long,
1902 unsigned long, unsigned long, unsigned long);
1904 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1908 /* Careful about overflows.. */
1909 if (len
> TASK_SIZE
)
1912 get_area
= current
->mm
->get_unmapped_area
;
1913 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1914 get_area
= file
->f_op
->get_unmapped_area
;
1915 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1916 if (IS_ERR_VALUE(addr
))
1919 if (addr
> TASK_SIZE
- len
)
1921 if (addr
& ~PAGE_MASK
)
1924 addr
= arch_rebalance_pgtables(addr
, len
);
1925 error
= security_mmap_addr(addr
);
1926 return error
? error
: addr
;
1929 EXPORT_SYMBOL(get_unmapped_area
);
1931 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1932 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1934 struct vm_area_struct
*vma
= NULL
;
1936 if (WARN_ON_ONCE(!mm
)) /* Remove this in linux-3.6 */
1939 /* Check the cache first. */
1940 /* (Cache hit rate is typically around 35%.) */
1941 vma
= mm
->mmap_cache
;
1942 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1943 struct rb_node
*rb_node
;
1945 rb_node
= mm
->mm_rb
.rb_node
;
1949 struct vm_area_struct
*vma_tmp
;
1951 vma_tmp
= rb_entry(rb_node
,
1952 struct vm_area_struct
, vm_rb
);
1954 if (vma_tmp
->vm_end
> addr
) {
1956 if (vma_tmp
->vm_start
<= addr
)
1958 rb_node
= rb_node
->rb_left
;
1960 rb_node
= rb_node
->rb_right
;
1963 mm
->mmap_cache
= vma
;
1968 EXPORT_SYMBOL(find_vma
);
1971 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1973 struct vm_area_struct
*
1974 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1975 struct vm_area_struct
**pprev
)
1977 struct vm_area_struct
*vma
;
1979 vma
= find_vma(mm
, addr
);
1981 *pprev
= vma
->vm_prev
;
1983 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
1986 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1987 rb_node
= rb_node
->rb_right
;
1994 * Verify that the stack growth is acceptable and
1995 * update accounting. This is shared with both the
1996 * grow-up and grow-down cases.
1998 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
2000 struct mm_struct
*mm
= vma
->vm_mm
;
2001 struct rlimit
*rlim
= current
->signal
->rlim
;
2002 unsigned long new_start
;
2004 /* address space limit tests */
2005 if (!may_expand_vm(mm
, grow
))
2008 /* Stack limit test */
2009 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2012 /* mlock limit tests */
2013 if (vma
->vm_flags
& VM_LOCKED
) {
2014 unsigned long locked
;
2015 unsigned long limit
;
2016 locked
= mm
->locked_vm
+ grow
;
2017 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2018 limit
>>= PAGE_SHIFT
;
2019 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2023 /* Check to ensure the stack will not grow into a hugetlb-only region */
2024 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2026 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2030 * Overcommit.. This must be the final test, as it will
2031 * update security statistics.
2033 if (security_vm_enough_memory_mm(mm
, grow
))
2036 /* Ok, everything looks good - let it rip */
2037 if (vma
->vm_flags
& VM_LOCKED
)
2038 mm
->locked_vm
+= grow
;
2039 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
2043 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2045 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2046 * vma is the last one with address > vma->vm_end. Have to extend vma.
2048 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2052 if (!(vma
->vm_flags
& VM_GROWSUP
))
2056 * We must make sure the anon_vma is allocated
2057 * so that the anon_vma locking is not a noop.
2059 if (unlikely(anon_vma_prepare(vma
)))
2061 vma_lock_anon_vma(vma
);
2064 * vma->vm_start/vm_end cannot change under us because the caller
2065 * is required to hold the mmap_sem in read mode. We need the
2066 * anon_vma lock to serialize against concurrent expand_stacks.
2067 * Also guard against wrapping around to address 0.
2069 if (address
< PAGE_ALIGN(address
+4))
2070 address
= PAGE_ALIGN(address
+4);
2072 vma_unlock_anon_vma(vma
);
2077 /* Somebody else might have raced and expanded it already */
2078 if (address
> vma
->vm_end
) {
2079 unsigned long size
, grow
;
2081 size
= address
- vma
->vm_start
;
2082 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2085 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2086 error
= acct_stack_growth(vma
, size
, grow
);
2089 * vma_gap_update() doesn't support concurrent
2090 * updates, but we only hold a shared mmap_sem
2091 * lock here, so we need to protect against
2092 * concurrent vma expansions.
2093 * vma_lock_anon_vma() doesn't help here, as
2094 * we don't guarantee that all growable vmas
2095 * in a mm share the same root anon vma.
2096 * So, we reuse mm->page_table_lock to guard
2097 * against concurrent vma expansions.
2099 spin_lock(&vma
->vm_mm
->page_table_lock
);
2100 anon_vma_interval_tree_pre_update_vma(vma
);
2101 vma
->vm_end
= address
;
2102 anon_vma_interval_tree_post_update_vma(vma
);
2104 vma_gap_update(vma
->vm_next
);
2106 vma
->vm_mm
->highest_vm_end
= address
;
2107 spin_unlock(&vma
->vm_mm
->page_table_lock
);
2109 perf_event_mmap(vma
);
2113 vma_unlock_anon_vma(vma
);
2114 khugepaged_enter_vma_merge(vma
);
2115 validate_mm(vma
->vm_mm
);
2118 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2121 * vma is the first one with address < vma->vm_start. Have to extend vma.
2123 int expand_downwards(struct vm_area_struct
*vma
,
2124 unsigned long address
)
2129 * We must make sure the anon_vma is allocated
2130 * so that the anon_vma locking is not a noop.
2132 if (unlikely(anon_vma_prepare(vma
)))
2135 address
&= PAGE_MASK
;
2136 error
= security_mmap_addr(address
);
2140 vma_lock_anon_vma(vma
);
2143 * vma->vm_start/vm_end cannot change under us because the caller
2144 * is required to hold the mmap_sem in read mode. We need the
2145 * anon_vma lock to serialize against concurrent expand_stacks.
2148 /* Somebody else might have raced and expanded it already */
2149 if (address
< vma
->vm_start
) {
2150 unsigned long size
, grow
;
2152 size
= vma
->vm_end
- address
;
2153 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2156 if (grow
<= vma
->vm_pgoff
) {
2157 error
= acct_stack_growth(vma
, size
, grow
);
2160 * vma_gap_update() doesn't support concurrent
2161 * updates, but we only hold a shared mmap_sem
2162 * lock here, so we need to protect against
2163 * concurrent vma expansions.
2164 * vma_lock_anon_vma() doesn't help here, as
2165 * we don't guarantee that all growable vmas
2166 * in a mm share the same root anon vma.
2167 * So, we reuse mm->page_table_lock to guard
2168 * against concurrent vma expansions.
2170 spin_lock(&vma
->vm_mm
->page_table_lock
);
2171 anon_vma_interval_tree_pre_update_vma(vma
);
2172 vma
->vm_start
= address
;
2173 vma
->vm_pgoff
-= grow
;
2174 anon_vma_interval_tree_post_update_vma(vma
);
2175 vma_gap_update(vma
);
2176 spin_unlock(&vma
->vm_mm
->page_table_lock
);
2178 perf_event_mmap(vma
);
2182 vma_unlock_anon_vma(vma
);
2183 khugepaged_enter_vma_merge(vma
);
2184 validate_mm(vma
->vm_mm
);
2189 * Note how expand_stack() refuses to expand the stack all the way to
2190 * abut the next virtual mapping, *unless* that mapping itself is also
2191 * a stack mapping. We want to leave room for a guard page, after all
2192 * (the guard page itself is not added here, that is done by the
2193 * actual page faulting logic)
2195 * This matches the behavior of the guard page logic (see mm/memory.c:
2196 * check_stack_guard_page()), which only allows the guard page to be
2197 * removed under these circumstances.
2199 #ifdef CONFIG_STACK_GROWSUP
2200 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2202 struct vm_area_struct
*next
;
2204 address
&= PAGE_MASK
;
2205 next
= vma
->vm_next
;
2206 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2207 if (!(next
->vm_flags
& VM_GROWSUP
))
2210 return expand_upwards(vma
, address
);
2213 struct vm_area_struct
*
2214 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2216 struct vm_area_struct
*vma
, *prev
;
2219 vma
= find_vma_prev(mm
, addr
, &prev
);
2220 if (vma
&& (vma
->vm_start
<= addr
))
2222 if (!prev
|| expand_stack(prev
, addr
))
2224 if (prev
->vm_flags
& VM_LOCKED
)
2225 __mlock_vma_pages_range(prev
, addr
, prev
->vm_end
, NULL
);
2229 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2231 struct vm_area_struct
*prev
;
2233 address
&= PAGE_MASK
;
2234 prev
= vma
->vm_prev
;
2235 if (prev
&& prev
->vm_end
== address
) {
2236 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2239 return expand_downwards(vma
, address
);
2242 struct vm_area_struct
*
2243 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
2245 struct vm_area_struct
* vma
;
2246 unsigned long start
;
2249 vma
= find_vma(mm
,addr
);
2252 if (vma
->vm_start
<= addr
)
2254 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2256 start
= vma
->vm_start
;
2257 if (expand_stack(vma
, addr
))
2259 if (vma
->vm_flags
& VM_LOCKED
)
2260 __mlock_vma_pages_range(vma
, addr
, start
, NULL
);
2266 * Ok - we have the memory areas we should free on the vma list,
2267 * so release them, and do the vma updates.
2269 * Called with the mm semaphore held.
2271 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2273 unsigned long nr_accounted
= 0;
2275 /* Update high watermark before we lower total_vm */
2276 update_hiwater_vm(mm
);
2278 long nrpages
= vma_pages(vma
);
2280 if (vma
->vm_flags
& VM_ACCOUNT
)
2281 nr_accounted
+= nrpages
;
2282 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
2283 vma
= remove_vma(vma
);
2285 vm_unacct_memory(nr_accounted
);
2290 * Get rid of page table information in the indicated region.
2292 * Called with the mm semaphore held.
2294 static void unmap_region(struct mm_struct
*mm
,
2295 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2296 unsigned long start
, unsigned long end
)
2298 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2299 struct mmu_gather tlb
;
2302 tlb_gather_mmu(&tlb
, mm
, 0);
2303 update_hiwater_rss(mm
);
2304 unmap_vmas(&tlb
, vma
, start
, end
);
2305 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2306 next
? next
->vm_start
: 0);
2307 tlb_finish_mmu(&tlb
, start
, end
);
2311 * Create a list of vma's touched by the unmap, removing them from the mm's
2312 * vma list as we go..
2315 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2316 struct vm_area_struct
*prev
, unsigned long end
)
2318 struct vm_area_struct
**insertion_point
;
2319 struct vm_area_struct
*tail_vma
= NULL
;
2322 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2323 vma
->vm_prev
= NULL
;
2325 vma_rb_erase(vma
, &mm
->mm_rb
);
2329 } while (vma
&& vma
->vm_start
< end
);
2330 *insertion_point
= vma
;
2332 vma
->vm_prev
= prev
;
2333 vma_gap_update(vma
);
2335 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2336 tail_vma
->vm_next
= NULL
;
2337 if (mm
->unmap_area
== arch_unmap_area
)
2338 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
2340 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
2341 mm
->unmap_area(mm
, addr
);
2342 mm
->mmap_cache
= NULL
; /* Kill the cache. */
2346 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2347 * munmap path where it doesn't make sense to fail.
2349 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
2350 unsigned long addr
, int new_below
)
2352 struct mempolicy
*pol
;
2353 struct vm_area_struct
*new;
2356 if (is_vm_hugetlb_page(vma
) && (addr
&
2357 ~(huge_page_mask(hstate_vma(vma
)))))
2360 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2364 /* most fields are the same, copy all, and then fixup */
2367 INIT_LIST_HEAD(&new->anon_vma_chain
);
2372 new->vm_start
= addr
;
2373 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2376 pol
= mpol_dup(vma_policy(vma
));
2381 vma_set_policy(new, pol
);
2383 if (anon_vma_clone(new, vma
))
2387 get_file(new->vm_file
);
2389 if (new->vm_ops
&& new->vm_ops
->open
)
2390 new->vm_ops
->open(new);
2393 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2394 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2396 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2402 /* Clean everything up if vma_adjust failed. */
2403 if (new->vm_ops
&& new->vm_ops
->close
)
2404 new->vm_ops
->close(new);
2407 unlink_anon_vmas(new);
2411 kmem_cache_free(vm_area_cachep
, new);
2417 * Split a vma into two pieces at address 'addr', a new vma is allocated
2418 * either for the first part or the tail.
2420 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2421 unsigned long addr
, int new_below
)
2423 if (mm
->map_count
>= sysctl_max_map_count
)
2426 return __split_vma(mm
, vma
, addr
, new_below
);
2429 /* Munmap is split into 2 main parts -- this part which finds
2430 * what needs doing, and the areas themselves, which do the
2431 * work. This now handles partial unmappings.
2432 * Jeremy Fitzhardinge <jeremy@goop.org>
2434 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2437 struct vm_area_struct
*vma
, *prev
, *last
;
2439 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2442 if ((len
= PAGE_ALIGN(len
)) == 0)
2445 /* Find the first overlapping VMA */
2446 vma
= find_vma(mm
, start
);
2449 prev
= vma
->vm_prev
;
2450 /* we have start < vma->vm_end */
2452 /* if it doesn't overlap, we have nothing.. */
2454 if (vma
->vm_start
>= end
)
2458 * If we need to split any vma, do it now to save pain later.
2460 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2461 * unmapped vm_area_struct will remain in use: so lower split_vma
2462 * places tmp vma above, and higher split_vma places tmp vma below.
2464 if (start
> vma
->vm_start
) {
2468 * Make sure that map_count on return from munmap() will
2469 * not exceed its limit; but let map_count go just above
2470 * its limit temporarily, to help free resources as expected.
2472 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2475 error
= __split_vma(mm
, vma
, start
, 0);
2481 /* Does it split the last one? */
2482 last
= find_vma(mm
, end
);
2483 if (last
&& end
> last
->vm_start
) {
2484 int error
= __split_vma(mm
, last
, end
, 1);
2488 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2491 * unlock any mlock()ed ranges before detaching vmas
2493 if (mm
->locked_vm
) {
2494 struct vm_area_struct
*tmp
= vma
;
2495 while (tmp
&& tmp
->vm_start
< end
) {
2496 if (tmp
->vm_flags
& VM_LOCKED
) {
2497 mm
->locked_vm
-= vma_pages(tmp
);
2498 munlock_vma_pages_all(tmp
);
2505 * Remove the vma's, and unmap the actual pages
2507 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2508 unmap_region(mm
, vma
, prev
, start
, end
);
2510 /* Fix up all other VM information */
2511 remove_vma_list(mm
, vma
);
2516 int vm_munmap(unsigned long start
, size_t len
)
2519 struct mm_struct
*mm
= current
->mm
;
2521 down_write(&mm
->mmap_sem
);
2522 ret
= do_munmap(mm
, start
, len
);
2523 up_write(&mm
->mmap_sem
);
2526 EXPORT_SYMBOL(vm_munmap
);
2528 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2530 profile_munmap(addr
);
2531 return vm_munmap(addr
, len
);
2534 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2536 #ifdef CONFIG_DEBUG_VM
2537 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2539 up_read(&mm
->mmap_sem
);
2545 * this is really a simplified "do_mmap". it only handles
2546 * anonymous maps. eventually we may be able to do some
2547 * brk-specific accounting here.
2549 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2551 struct mm_struct
* mm
= current
->mm
;
2552 struct vm_area_struct
* vma
, * prev
;
2553 unsigned long flags
;
2554 struct rb_node
** rb_link
, * rb_parent
;
2555 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2558 len
= PAGE_ALIGN(len
);
2562 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2564 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2565 if (error
& ~PAGE_MASK
)
2571 if (mm
->def_flags
& VM_LOCKED
) {
2572 unsigned long locked
, lock_limit
;
2573 locked
= len
>> PAGE_SHIFT
;
2574 locked
+= mm
->locked_vm
;
2575 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2576 lock_limit
>>= PAGE_SHIFT
;
2577 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2582 * mm->mmap_sem is required to protect against another thread
2583 * changing the mappings in case we sleep.
2585 verify_mm_writelocked(mm
);
2588 * Clear old maps. this also does some error checking for us
2591 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
)) {
2592 if (do_munmap(mm
, addr
, len
))
2597 /* Check against address space limits *after* clearing old maps... */
2598 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2601 if (mm
->map_count
> sysctl_max_map_count
)
2604 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2607 /* Can we just expand an old private anonymous mapping? */
2608 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2609 NULL
, NULL
, pgoff
, NULL
);
2614 * create a vma struct for an anonymous mapping
2616 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2618 vm_unacct_memory(len
>> PAGE_SHIFT
);
2622 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2624 vma
->vm_start
= addr
;
2625 vma
->vm_end
= addr
+ len
;
2626 vma
->vm_pgoff
= pgoff
;
2627 vma
->vm_flags
= flags
;
2628 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2629 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2631 perf_event_mmap(vma
);
2632 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2633 if (flags
& VM_LOCKED
)
2634 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2638 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2640 struct mm_struct
*mm
= current
->mm
;
2644 down_write(&mm
->mmap_sem
);
2645 ret
= do_brk(addr
, len
);
2646 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2647 up_write(&mm
->mmap_sem
);
2649 mm_populate(addr
, len
);
2652 EXPORT_SYMBOL(vm_brk
);
2654 /* Release all mmaps. */
2655 void exit_mmap(struct mm_struct
*mm
)
2657 struct mmu_gather tlb
;
2658 struct vm_area_struct
*vma
;
2659 unsigned long nr_accounted
= 0;
2661 /* mm's last user has gone, and its about to be pulled down */
2662 mmu_notifier_release(mm
);
2664 if (mm
->locked_vm
) {
2667 if (vma
->vm_flags
& VM_LOCKED
)
2668 munlock_vma_pages_all(vma
);
2676 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2681 tlb_gather_mmu(&tlb
, mm
, 1);
2682 /* update_hiwater_rss(mm) here? but nobody should be looking */
2683 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2684 unmap_vmas(&tlb
, vma
, 0, -1);
2686 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2687 tlb_finish_mmu(&tlb
, 0, -1);
2690 * Walk the list again, actually closing and freeing it,
2691 * with preemption enabled, without holding any MM locks.
2694 if (vma
->vm_flags
& VM_ACCOUNT
)
2695 nr_accounted
+= vma_pages(vma
);
2696 vma
= remove_vma(vma
);
2698 vm_unacct_memory(nr_accounted
);
2700 WARN_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2703 /* Insert vm structure into process list sorted by address
2704 * and into the inode's i_mmap tree. If vm_file is non-NULL
2705 * then i_mmap_mutex is taken here.
2707 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2709 struct vm_area_struct
*prev
;
2710 struct rb_node
**rb_link
, *rb_parent
;
2713 * The vm_pgoff of a purely anonymous vma should be irrelevant
2714 * until its first write fault, when page's anon_vma and index
2715 * are set. But now set the vm_pgoff it will almost certainly
2716 * end up with (unless mremap moves it elsewhere before that
2717 * first wfault), so /proc/pid/maps tells a consistent story.
2719 * By setting it to reflect the virtual start address of the
2720 * vma, merges and splits can happen in a seamless way, just
2721 * using the existing file pgoff checks and manipulations.
2722 * Similarly in do_mmap_pgoff and in do_brk.
2724 if (!vma
->vm_file
) {
2725 BUG_ON(vma
->anon_vma
);
2726 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2728 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2729 &prev
, &rb_link
, &rb_parent
))
2731 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2732 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2735 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2740 * Copy the vma structure to a new location in the same mm,
2741 * prior to moving page table entries, to effect an mremap move.
2743 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2744 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2745 bool *need_rmap_locks
)
2747 struct vm_area_struct
*vma
= *vmap
;
2748 unsigned long vma_start
= vma
->vm_start
;
2749 struct mm_struct
*mm
= vma
->vm_mm
;
2750 struct vm_area_struct
*new_vma
, *prev
;
2751 struct rb_node
**rb_link
, *rb_parent
;
2752 struct mempolicy
*pol
;
2753 bool faulted_in_anon_vma
= true;
2756 * If anonymous vma has not yet been faulted, update new pgoff
2757 * to match new location, to increase its chance of merging.
2759 if (unlikely(!vma
->vm_file
&& !vma
->anon_vma
)) {
2760 pgoff
= addr
>> PAGE_SHIFT
;
2761 faulted_in_anon_vma
= false;
2764 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2765 return NULL
; /* should never get here */
2766 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2767 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2770 * Source vma may have been merged into new_vma
2772 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2773 vma_start
< new_vma
->vm_end
)) {
2775 * The only way we can get a vma_merge with
2776 * self during an mremap is if the vma hasn't
2777 * been faulted in yet and we were allowed to
2778 * reset the dst vma->vm_pgoff to the
2779 * destination address of the mremap to allow
2780 * the merge to happen. mremap must change the
2781 * vm_pgoff linearity between src and dst vmas
2782 * (in turn preventing a vma_merge) to be
2783 * safe. It is only safe to keep the vm_pgoff
2784 * linear if there are no pages mapped yet.
2786 VM_BUG_ON(faulted_in_anon_vma
);
2787 *vmap
= vma
= new_vma
;
2789 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2791 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2794 new_vma
->vm_start
= addr
;
2795 new_vma
->vm_end
= addr
+ len
;
2796 new_vma
->vm_pgoff
= pgoff
;
2797 pol
= mpol_dup(vma_policy(vma
));
2800 vma_set_policy(new_vma
, pol
);
2801 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2802 if (anon_vma_clone(new_vma
, vma
))
2803 goto out_free_mempol
;
2804 if (new_vma
->vm_file
)
2805 get_file(new_vma
->vm_file
);
2806 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2807 new_vma
->vm_ops
->open(new_vma
);
2808 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2809 *need_rmap_locks
= false;
2817 kmem_cache_free(vm_area_cachep
, new_vma
);
2822 * Return true if the calling process may expand its vm space by the passed
2825 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2827 unsigned long cur
= mm
->total_vm
; /* pages */
2830 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2832 if (cur
+ npages
> lim
)
2838 static int special_mapping_fault(struct vm_area_struct
*vma
,
2839 struct vm_fault
*vmf
)
2842 struct page
**pages
;
2845 * special mappings have no vm_file, and in that case, the mm
2846 * uses vm_pgoff internally. So we have to subtract it from here.
2847 * We are allowed to do this because we are the mm; do not copy
2848 * this code into drivers!
2850 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2852 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2856 struct page
*page
= *pages
;
2862 return VM_FAULT_SIGBUS
;
2866 * Having a close hook prevents vma merging regardless of flags.
2868 static void special_mapping_close(struct vm_area_struct
*vma
)
2872 static const struct vm_operations_struct special_mapping_vmops
= {
2873 .close
= special_mapping_close
,
2874 .fault
= special_mapping_fault
,
2878 * Called with mm->mmap_sem held for writing.
2879 * Insert a new vma covering the given region, with the given flags.
2880 * Its pages are supplied by the given array of struct page *.
2881 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2882 * The region past the last page supplied will always produce SIGBUS.
2883 * The array pointer and the pages it points to are assumed to stay alive
2884 * for as long as this mapping might exist.
2886 int install_special_mapping(struct mm_struct
*mm
,
2887 unsigned long addr
, unsigned long len
,
2888 unsigned long vm_flags
, struct page
**pages
)
2891 struct vm_area_struct
*vma
;
2893 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2894 if (unlikely(vma
== NULL
))
2897 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2899 vma
->vm_start
= addr
;
2900 vma
->vm_end
= addr
+ len
;
2902 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2903 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2905 vma
->vm_ops
= &special_mapping_vmops
;
2906 vma
->vm_private_data
= pages
;
2908 ret
= insert_vm_struct(mm
, vma
);
2912 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2914 perf_event_mmap(vma
);
2919 kmem_cache_free(vm_area_cachep
, vma
);
2923 static DEFINE_MUTEX(mm_all_locks_mutex
);
2925 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2927 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
2929 * The LSB of head.next can't change from under us
2930 * because we hold the mm_all_locks_mutex.
2932 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
2934 * We can safely modify head.next after taking the
2935 * anon_vma->root->rwsem. If some other vma in this mm shares
2936 * the same anon_vma we won't take it again.
2938 * No need of atomic instructions here, head.next
2939 * can't change from under us thanks to the
2940 * anon_vma->root->rwsem.
2942 if (__test_and_set_bit(0, (unsigned long *)
2943 &anon_vma
->root
->rb_root
.rb_node
))
2948 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2950 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2952 * AS_MM_ALL_LOCKS can't change from under us because
2953 * we hold the mm_all_locks_mutex.
2955 * Operations on ->flags have to be atomic because
2956 * even if AS_MM_ALL_LOCKS is stable thanks to the
2957 * mm_all_locks_mutex, there may be other cpus
2958 * changing other bitflags in parallel to us.
2960 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2962 mutex_lock_nest_lock(&mapping
->i_mmap_mutex
, &mm
->mmap_sem
);
2967 * This operation locks against the VM for all pte/vma/mm related
2968 * operations that could ever happen on a certain mm. This includes
2969 * vmtruncate, try_to_unmap, and all page faults.
2971 * The caller must take the mmap_sem in write mode before calling
2972 * mm_take_all_locks(). The caller isn't allowed to release the
2973 * mmap_sem until mm_drop_all_locks() returns.
2975 * mmap_sem in write mode is required in order to block all operations
2976 * that could modify pagetables and free pages without need of
2977 * altering the vma layout (for example populate_range() with
2978 * nonlinear vmas). It's also needed in write mode to avoid new
2979 * anon_vmas to be associated with existing vmas.
2981 * A single task can't take more than one mm_take_all_locks() in a row
2982 * or it would deadlock.
2984 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2985 * mapping->flags avoid to take the same lock twice, if more than one
2986 * vma in this mm is backed by the same anon_vma or address_space.
2988 * We can take all the locks in random order because the VM code
2989 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
2990 * takes more than one of them in a row. Secondly we're protected
2991 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2993 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2994 * that may have to take thousand of locks.
2996 * mm_take_all_locks() can fail if it's interrupted by signals.
2998 int mm_take_all_locks(struct mm_struct
*mm
)
3000 struct vm_area_struct
*vma
;
3001 struct anon_vma_chain
*avc
;
3003 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3005 mutex_lock(&mm_all_locks_mutex
);
3007 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3008 if (signal_pending(current
))
3010 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3011 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3014 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3015 if (signal_pending(current
))
3018 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3019 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3025 mm_drop_all_locks(mm
);
3029 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3031 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3033 * The LSB of head.next can't change to 0 from under
3034 * us because we hold the mm_all_locks_mutex.
3036 * We must however clear the bitflag before unlocking
3037 * the vma so the users using the anon_vma->rb_root will
3038 * never see our bitflag.
3040 * No need of atomic instructions here, head.next
3041 * can't change from under us until we release the
3042 * anon_vma->root->rwsem.
3044 if (!__test_and_clear_bit(0, (unsigned long *)
3045 &anon_vma
->root
->rb_root
.rb_node
))
3047 anon_vma_unlock_write(anon_vma
);
3051 static void vm_unlock_mapping(struct address_space
*mapping
)
3053 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3055 * AS_MM_ALL_LOCKS can't change to 0 from under us
3056 * because we hold the mm_all_locks_mutex.
3058 mutex_unlock(&mapping
->i_mmap_mutex
);
3059 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3066 * The mmap_sem cannot be released by the caller until
3067 * mm_drop_all_locks() returns.
3069 void mm_drop_all_locks(struct mm_struct
*mm
)
3071 struct vm_area_struct
*vma
;
3072 struct anon_vma_chain
*avc
;
3074 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3075 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3077 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3079 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3080 vm_unlock_anon_vma(avc
->anon_vma
);
3081 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3082 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3085 mutex_unlock(&mm_all_locks_mutex
);
3089 * initialise the VMA slab
3091 void __init
mmap_init(void)
3095 ret
= percpu_counter_init(&vm_committed_as
, 0);