4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <linux/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
64 * Workqueue for cpuset related tasks.
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
69 static struct workqueue_struct
*cpuset_wq
;
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
76 int number_of_cpusets __read_mostly
;
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys
;
82 /* See "Frequency meter" comments, below. */
85 int cnt
; /* unprocessed events count */
86 int val
; /* most recent output value */
87 time_t time
; /* clock (secs) when val computed */
88 spinlock_t lock
; /* guards read or write of above */
92 struct cgroup_subsys_state css
;
94 unsigned long flags
; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed
; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed
; /* Memory Nodes allowed to tasks */
98 struct cpuset
*parent
; /* my parent */
100 struct fmeter fmeter
; /* memory_pressure filter */
102 /* partition number for rebuild_sched_domains() */
105 /* for custom sched domain */
106 int relax_domain_level
;
108 /* used for walking a cpuset hierarchy */
109 struct list_head stack_list
;
112 /* Retrieve the cpuset for a cgroup */
113 static inline struct cpuset
*cgroup_cs(struct cgroup
*cont
)
115 return container_of(cgroup_subsys_state(cont
, cpuset_subsys_id
),
119 /* Retrieve the cpuset for a task */
120 static inline struct cpuset
*task_cs(struct task_struct
*task
)
122 return container_of(task_subsys_state(task
, cpuset_subsys_id
),
126 /* bits in struct cpuset flags field */
132 CS_SCHED_LOAD_BALANCE
,
137 /* convenient tests for these bits */
138 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
140 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
143 static inline int is_mem_exclusive(const struct cpuset
*cs
)
145 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
148 static inline int is_mem_hardwall(const struct cpuset
*cs
)
150 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
153 static inline int is_sched_load_balance(const struct cpuset
*cs
)
155 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
158 static inline int is_memory_migrate(const struct cpuset
*cs
)
160 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
163 static inline int is_spread_page(const struct cpuset
*cs
)
165 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
168 static inline int is_spread_slab(const struct cpuset
*cs
)
170 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
173 static struct cpuset top_cpuset
= {
174 .flags
= ((1 << CS_CPU_EXCLUSIVE
) | (1 << CS_MEM_EXCLUSIVE
)),
178 * There are two global mutexes guarding cpuset structures. The first
179 * is the main control groups cgroup_mutex, accessed via
180 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
181 * callback_mutex, below. They can nest. It is ok to first take
182 * cgroup_mutex, then nest callback_mutex. We also require taking
183 * task_lock() when dereferencing a task's cpuset pointer. See "The
184 * task_lock() exception", at the end of this comment.
186 * A task must hold both mutexes to modify cpusets. If a task
187 * holds cgroup_mutex, then it blocks others wanting that mutex,
188 * ensuring that it is the only task able to also acquire callback_mutex
189 * and be able to modify cpusets. It can perform various checks on
190 * the cpuset structure first, knowing nothing will change. It can
191 * also allocate memory while just holding cgroup_mutex. While it is
192 * performing these checks, various callback routines can briefly
193 * acquire callback_mutex to query cpusets. Once it is ready to make
194 * the changes, it takes callback_mutex, blocking everyone else.
196 * Calls to the kernel memory allocator can not be made while holding
197 * callback_mutex, as that would risk double tripping on callback_mutex
198 * from one of the callbacks into the cpuset code from within
201 * If a task is only holding callback_mutex, then it has read-only
204 * Now, the task_struct fields mems_allowed and mempolicy may be changed
205 * by other task, we use alloc_lock in the task_struct fields to protect
208 * The cpuset_common_file_read() handlers only hold callback_mutex across
209 * small pieces of code, such as when reading out possibly multi-word
210 * cpumasks and nodemasks.
212 * Accessing a task's cpuset should be done in accordance with the
213 * guidelines for accessing subsystem state in kernel/cgroup.c
216 static DEFINE_MUTEX(callback_mutex
);
219 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
220 * buffers. They are statically allocated to prevent using excess stack
221 * when calling cpuset_print_task_mems_allowed().
223 #define CPUSET_NAME_LEN (128)
224 #define CPUSET_NODELIST_LEN (256)
225 static char cpuset_name
[CPUSET_NAME_LEN
];
226 static char cpuset_nodelist
[CPUSET_NODELIST_LEN
];
227 static DEFINE_SPINLOCK(cpuset_buffer_lock
);
230 * This is ugly, but preserves the userspace API for existing cpuset
231 * users. If someone tries to mount the "cpuset" filesystem, we
232 * silently switch it to mount "cgroup" instead
234 static struct dentry
*cpuset_mount(struct file_system_type
*fs_type
,
235 int flags
, const char *unused_dev_name
, void *data
)
237 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
238 struct dentry
*ret
= ERR_PTR(-ENODEV
);
242 "release_agent=/sbin/cpuset_release_agent";
243 ret
= cgroup_fs
->mount(cgroup_fs
, flags
,
244 unused_dev_name
, mountopts
);
245 put_filesystem(cgroup_fs
);
250 static struct file_system_type cpuset_fs_type
= {
252 .mount
= cpuset_mount
,
256 * Return in pmask the portion of a cpusets's cpus_allowed that
257 * are online. If none are online, walk up the cpuset hierarchy
258 * until we find one that does have some online cpus. If we get
259 * all the way to the top and still haven't found any online cpus,
260 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
261 * task, return cpu_online_map.
263 * One way or another, we guarantee to return some non-empty subset
266 * Call with callback_mutex held.
269 static void guarantee_online_cpus(const struct cpuset
*cs
,
270 struct cpumask
*pmask
)
272 while (cs
&& !cpumask_intersects(cs
->cpus_allowed
, cpu_online_mask
))
275 cpumask_and(pmask
, cs
->cpus_allowed
, cpu_online_mask
);
277 cpumask_copy(pmask
, cpu_online_mask
);
278 BUG_ON(!cpumask_intersects(pmask
, cpu_online_mask
));
282 * Return in *pmask the portion of a cpusets's mems_allowed that
283 * are online, with memory. If none are online with memory, walk
284 * up the cpuset hierarchy until we find one that does have some
285 * online mems. If we get all the way to the top and still haven't
286 * found any online mems, return node_states[N_HIGH_MEMORY].
288 * One way or another, we guarantee to return some non-empty subset
289 * of node_states[N_HIGH_MEMORY].
291 * Call with callback_mutex held.
294 static void guarantee_online_mems(const struct cpuset
*cs
, nodemask_t
*pmask
)
296 while (cs
&& !nodes_intersects(cs
->mems_allowed
,
297 node_states
[N_HIGH_MEMORY
]))
300 nodes_and(*pmask
, cs
->mems_allowed
,
301 node_states
[N_HIGH_MEMORY
]);
303 *pmask
= node_states
[N_HIGH_MEMORY
];
304 BUG_ON(!nodes_intersects(*pmask
, node_states
[N_HIGH_MEMORY
]));
308 * update task's spread flag if cpuset's page/slab spread flag is set
310 * Called with callback_mutex/cgroup_mutex held
312 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
313 struct task_struct
*tsk
)
315 if (is_spread_page(cs
))
316 tsk
->flags
|= PF_SPREAD_PAGE
;
318 tsk
->flags
&= ~PF_SPREAD_PAGE
;
319 if (is_spread_slab(cs
))
320 tsk
->flags
|= PF_SPREAD_SLAB
;
322 tsk
->flags
&= ~PF_SPREAD_SLAB
;
326 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
328 * One cpuset is a subset of another if all its allowed CPUs and
329 * Memory Nodes are a subset of the other, and its exclusive flags
330 * are only set if the other's are set. Call holding cgroup_mutex.
333 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
335 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
336 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
337 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
338 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
342 * alloc_trial_cpuset - allocate a trial cpuset
343 * @cs: the cpuset that the trial cpuset duplicates
345 static struct cpuset
*alloc_trial_cpuset(const struct cpuset
*cs
)
347 struct cpuset
*trial
;
349 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
353 if (!alloc_cpumask_var(&trial
->cpus_allowed
, GFP_KERNEL
)) {
357 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
363 * free_trial_cpuset - free the trial cpuset
364 * @trial: the trial cpuset to be freed
366 static void free_trial_cpuset(struct cpuset
*trial
)
368 free_cpumask_var(trial
->cpus_allowed
);
373 * validate_change() - Used to validate that any proposed cpuset change
374 * follows the structural rules for cpusets.
376 * If we replaced the flag and mask values of the current cpuset
377 * (cur) with those values in the trial cpuset (trial), would
378 * our various subset and exclusive rules still be valid? Presumes
381 * 'cur' is the address of an actual, in-use cpuset. Operations
382 * such as list traversal that depend on the actual address of the
383 * cpuset in the list must use cur below, not trial.
385 * 'trial' is the address of bulk structure copy of cur, with
386 * perhaps one or more of the fields cpus_allowed, mems_allowed,
387 * or flags changed to new, trial values.
389 * Return 0 if valid, -errno if not.
392 static int validate_change(const struct cpuset
*cur
, const struct cpuset
*trial
)
395 struct cpuset
*c
, *par
;
397 /* Each of our child cpusets must be a subset of us */
398 list_for_each_entry(cont
, &cur
->css
.cgroup
->children
, sibling
) {
399 if (!is_cpuset_subset(cgroup_cs(cont
), trial
))
403 /* Remaining checks don't apply to root cpuset */
404 if (cur
== &top_cpuset
)
409 /* We must be a subset of our parent cpuset */
410 if (!is_cpuset_subset(trial
, par
))
414 * If either I or some sibling (!= me) is exclusive, we can't
417 list_for_each_entry(cont
, &par
->css
.cgroup
->children
, sibling
) {
419 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
421 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
423 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
425 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
429 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
430 if (cgroup_task_count(cur
->css
.cgroup
)) {
431 if (cpumask_empty(trial
->cpus_allowed
) ||
432 nodes_empty(trial
->mems_allowed
)) {
442 * Helper routine for generate_sched_domains().
443 * Do cpusets a, b have overlapping cpus_allowed masks?
445 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
447 return cpumask_intersects(a
->cpus_allowed
, b
->cpus_allowed
);
451 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
453 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
454 dattr
->relax_domain_level
= c
->relax_domain_level
;
459 update_domain_attr_tree(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
463 list_add(&c
->stack_list
, &q
);
464 while (!list_empty(&q
)) {
467 struct cpuset
*child
;
469 cp
= list_first_entry(&q
, struct cpuset
, stack_list
);
472 if (cpumask_empty(cp
->cpus_allowed
))
475 if (is_sched_load_balance(cp
))
476 update_domain_attr(dattr
, cp
);
478 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
479 child
= cgroup_cs(cont
);
480 list_add_tail(&child
->stack_list
, &q
);
486 * generate_sched_domains()
488 * This function builds a partial partition of the systems CPUs
489 * A 'partial partition' is a set of non-overlapping subsets whose
490 * union is a subset of that set.
491 * The output of this function needs to be passed to kernel/sched.c
492 * partition_sched_domains() routine, which will rebuild the scheduler's
493 * load balancing domains (sched domains) as specified by that partial
496 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
497 * for a background explanation of this.
499 * Does not return errors, on the theory that the callers of this
500 * routine would rather not worry about failures to rebuild sched
501 * domains when operating in the severe memory shortage situations
502 * that could cause allocation failures below.
504 * Must be called with cgroup_lock held.
506 * The three key local variables below are:
507 * q - a linked-list queue of cpuset pointers, used to implement a
508 * top-down scan of all cpusets. This scan loads a pointer
509 * to each cpuset marked is_sched_load_balance into the
510 * array 'csa'. For our purposes, rebuilding the schedulers
511 * sched domains, we can ignore !is_sched_load_balance cpusets.
512 * csa - (for CpuSet Array) Array of pointers to all the cpusets
513 * that need to be load balanced, for convenient iterative
514 * access by the subsequent code that finds the best partition,
515 * i.e the set of domains (subsets) of CPUs such that the
516 * cpus_allowed of every cpuset marked is_sched_load_balance
517 * is a subset of one of these domains, while there are as
518 * many such domains as possible, each as small as possible.
519 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
520 * the kernel/sched.c routine partition_sched_domains() in a
521 * convenient format, that can be easily compared to the prior
522 * value to determine what partition elements (sched domains)
523 * were changed (added or removed.)
525 * Finding the best partition (set of domains):
526 * The triple nested loops below over i, j, k scan over the
527 * load balanced cpusets (using the array of cpuset pointers in
528 * csa[]) looking for pairs of cpusets that have overlapping
529 * cpus_allowed, but which don't have the same 'pn' partition
530 * number and gives them in the same partition number. It keeps
531 * looping on the 'restart' label until it can no longer find
534 * The union of the cpus_allowed masks from the set of
535 * all cpusets having the same 'pn' value then form the one
536 * element of the partition (one sched domain) to be passed to
537 * partition_sched_domains().
539 static int generate_sched_domains(cpumask_var_t
**domains
,
540 struct sched_domain_attr
**attributes
)
542 LIST_HEAD(q
); /* queue of cpusets to be scanned */
543 struct cpuset
*cp
; /* scans q */
544 struct cpuset
**csa
; /* array of all cpuset ptrs */
545 int csn
; /* how many cpuset ptrs in csa so far */
546 int i
, j
, k
; /* indices for partition finding loops */
547 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
548 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
549 int ndoms
= 0; /* number of sched domains in result */
550 int nslot
; /* next empty doms[] struct cpumask slot */
556 /* Special case for the 99% of systems with one, full, sched domain */
557 if (is_sched_load_balance(&top_cpuset
)) {
559 doms
= alloc_sched_domains(ndoms
);
563 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
565 *dattr
= SD_ATTR_INIT
;
566 update_domain_attr_tree(dattr
, &top_cpuset
);
568 cpumask_copy(doms
[0], top_cpuset
.cpus_allowed
);
573 csa
= kmalloc(number_of_cpusets
* sizeof(cp
), GFP_KERNEL
);
578 list_add(&top_cpuset
.stack_list
, &q
);
579 while (!list_empty(&q
)) {
581 struct cpuset
*child
; /* scans child cpusets of cp */
583 cp
= list_first_entry(&q
, struct cpuset
, stack_list
);
586 if (cpumask_empty(cp
->cpus_allowed
))
590 * All child cpusets contain a subset of the parent's cpus, so
591 * just skip them, and then we call update_domain_attr_tree()
592 * to calc relax_domain_level of the corresponding sched
595 if (is_sched_load_balance(cp
)) {
600 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
601 child
= cgroup_cs(cont
);
602 list_add_tail(&child
->stack_list
, &q
);
606 for (i
= 0; i
< csn
; i
++)
611 /* Find the best partition (set of sched domains) */
612 for (i
= 0; i
< csn
; i
++) {
613 struct cpuset
*a
= csa
[i
];
616 for (j
= 0; j
< csn
; j
++) {
617 struct cpuset
*b
= csa
[j
];
620 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
621 for (k
= 0; k
< csn
; k
++) {
622 struct cpuset
*c
= csa
[k
];
627 ndoms
--; /* one less element */
634 * Now we know how many domains to create.
635 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
637 doms
= alloc_sched_domains(ndoms
);
642 * The rest of the code, including the scheduler, can deal with
643 * dattr==NULL case. No need to abort if alloc fails.
645 dattr
= kmalloc(ndoms
* sizeof(struct sched_domain_attr
), GFP_KERNEL
);
647 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
648 struct cpuset
*a
= csa
[i
];
653 /* Skip completed partitions */
659 if (nslot
== ndoms
) {
660 static int warnings
= 10;
663 "rebuild_sched_domains confused:"
664 " nslot %d, ndoms %d, csn %d, i %d,"
666 nslot
, ndoms
, csn
, i
, apn
);
674 *(dattr
+ nslot
) = SD_ATTR_INIT
;
675 for (j
= i
; j
< csn
; j
++) {
676 struct cpuset
*b
= csa
[j
];
679 cpumask_or(dp
, dp
, b
->cpus_allowed
);
681 update_domain_attr_tree(dattr
+ nslot
, b
);
683 /* Done with this partition */
689 BUG_ON(nslot
!= ndoms
);
695 * Fallback to the default domain if kmalloc() failed.
696 * See comments in partition_sched_domains().
707 * Rebuild scheduler domains.
709 * Call with neither cgroup_mutex held nor within get_online_cpus().
710 * Takes both cgroup_mutex and get_online_cpus().
712 * Cannot be directly called from cpuset code handling changes
713 * to the cpuset pseudo-filesystem, because it cannot be called
714 * from code that already holds cgroup_mutex.
716 static void do_rebuild_sched_domains(struct work_struct
*unused
)
718 struct sched_domain_attr
*attr
;
724 /* Generate domain masks and attrs */
726 ndoms
= generate_sched_domains(&doms
, &attr
);
729 /* Have scheduler rebuild the domains */
730 partition_sched_domains(ndoms
, doms
, attr
);
734 #else /* !CONFIG_SMP */
735 static void do_rebuild_sched_domains(struct work_struct
*unused
)
739 static int generate_sched_domains(cpumask_var_t
**domains
,
740 struct sched_domain_attr
**attributes
)
745 #endif /* CONFIG_SMP */
747 static DECLARE_WORK(rebuild_sched_domains_work
, do_rebuild_sched_domains
);
750 * Rebuild scheduler domains, asynchronously via workqueue.
752 * If the flag 'sched_load_balance' of any cpuset with non-empty
753 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
754 * which has that flag enabled, or if any cpuset with a non-empty
755 * 'cpus' is removed, then call this routine to rebuild the
756 * scheduler's dynamic sched domains.
758 * The rebuild_sched_domains() and partition_sched_domains()
759 * routines must nest cgroup_lock() inside get_online_cpus(),
760 * but such cpuset changes as these must nest that locking the
761 * other way, holding cgroup_lock() for much of the code.
763 * So in order to avoid an ABBA deadlock, the cpuset code handling
764 * these user changes delegates the actual sched domain rebuilding
765 * to a separate workqueue thread, which ends up processing the
766 * above do_rebuild_sched_domains() function.
768 static void async_rebuild_sched_domains(void)
770 queue_work(cpuset_wq
, &rebuild_sched_domains_work
);
774 * Accomplishes the same scheduler domain rebuild as the above
775 * async_rebuild_sched_domains(), however it directly calls the
776 * rebuild routine synchronously rather than calling it via an
777 * asynchronous work thread.
779 * This can only be called from code that is not holding
780 * cgroup_mutex (not nested in a cgroup_lock() call.)
782 void rebuild_sched_domains(void)
784 do_rebuild_sched_domains(NULL
);
788 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
790 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
792 * Call with cgroup_mutex held. May take callback_mutex during call.
793 * Called for each task in a cgroup by cgroup_scan_tasks().
794 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
795 * words, if its mask is not equal to its cpuset's mask).
797 static int cpuset_test_cpumask(struct task_struct
*tsk
,
798 struct cgroup_scanner
*scan
)
800 return !cpumask_equal(&tsk
->cpus_allowed
,
801 (cgroup_cs(scan
->cg
))->cpus_allowed
);
805 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
807 * @scan: struct cgroup_scanner containing the cgroup of the task
809 * Called by cgroup_scan_tasks() for each task in a cgroup whose
810 * cpus_allowed mask needs to be changed.
812 * We don't need to re-check for the cgroup/cpuset membership, since we're
813 * holding cgroup_lock() at this point.
815 static void cpuset_change_cpumask(struct task_struct
*tsk
,
816 struct cgroup_scanner
*scan
)
818 set_cpus_allowed_ptr(tsk
, ((cgroup_cs(scan
->cg
))->cpus_allowed
));
822 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
823 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
824 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
826 * Called with cgroup_mutex held
828 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
829 * calling callback functions for each.
831 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
834 static void update_tasks_cpumask(struct cpuset
*cs
, struct ptr_heap
*heap
)
836 struct cgroup_scanner scan
;
838 scan
.cg
= cs
->css
.cgroup
;
839 scan
.test_task
= cpuset_test_cpumask
;
840 scan
.process_task
= cpuset_change_cpumask
;
842 cgroup_scan_tasks(&scan
);
846 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
847 * @cs: the cpuset to consider
848 * @buf: buffer of cpu numbers written to this cpuset
850 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
853 struct ptr_heap heap
;
855 int is_load_balanced
;
857 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
858 if (cs
== &top_cpuset
)
862 * An empty cpus_allowed is ok only if the cpuset has no tasks.
863 * Since cpulist_parse() fails on an empty mask, we special case
864 * that parsing. The validate_change() call ensures that cpusets
865 * with tasks have cpus.
868 cpumask_clear(trialcs
->cpus_allowed
);
870 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
874 if (!cpumask_subset(trialcs
->cpus_allowed
, cpu_active_mask
))
877 retval
= validate_change(cs
, trialcs
);
881 /* Nothing to do if the cpus didn't change */
882 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
885 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
889 is_load_balanced
= is_sched_load_balance(trialcs
);
891 mutex_lock(&callback_mutex
);
892 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
893 mutex_unlock(&callback_mutex
);
896 * Scan tasks in the cpuset, and update the cpumasks of any
897 * that need an update.
899 update_tasks_cpumask(cs
, &heap
);
903 if (is_load_balanced
)
904 async_rebuild_sched_domains();
911 * Migrate memory region from one set of nodes to another.
913 * Temporarilly set tasks mems_allowed to target nodes of migration,
914 * so that the migration code can allocate pages on these nodes.
916 * Call holding cgroup_mutex, so current's cpuset won't change
917 * during this call, as manage_mutex holds off any cpuset_attach()
918 * calls. Therefore we don't need to take task_lock around the
919 * call to guarantee_online_mems(), as we know no one is changing
922 * While the mm_struct we are migrating is typically from some
923 * other task, the task_struct mems_allowed that we are hacking
924 * is for our current task, which must allocate new pages for that
925 * migrating memory region.
928 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
929 const nodemask_t
*to
)
931 struct task_struct
*tsk
= current
;
933 tsk
->mems_allowed
= *to
;
935 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
937 guarantee_online_mems(task_cs(tsk
),&tsk
->mems_allowed
);
941 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
942 * @tsk: the task to change
943 * @newmems: new nodes that the task will be set
945 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
946 * we structure updates as setting all new allowed nodes, then clearing newly
949 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
952 bool masks_disjoint
= !nodes_intersects(*newmems
, tsk
->mems_allowed
);
956 * Allow tasks that have access to memory reserves because they have
957 * been OOM killed to get memory anywhere.
959 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
961 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
965 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
966 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP1
);
969 * ensure checking ->mems_allowed_change_disable after setting all new
972 * the read-side task can see an nodemask with new allowed nodes and
973 * old allowed nodes. and if it allocates page when cpuset clears newly
974 * disallowed ones continuous, it can see the new allowed bits.
976 * And if setting all new allowed nodes is after the checking, setting
977 * all new allowed nodes and clearing newly disallowed ones will be done
978 * continuous, and the read-side task may find no node to alloc page.
983 * Allocation of memory is very fast, we needn't sleep when waiting
984 * for the read-side. No wait is necessary, however, if at least one
985 * node remains unchanged.
987 while (masks_disjoint
&&
988 ACCESS_ONCE(tsk
->mems_allowed_change_disable
)) {
996 * ensure checking ->mems_allowed_change_disable before clearing all new
999 * if clearing newly disallowed bits before the checking, the read-side
1000 * task may find no node to alloc page.
1004 mpol_rebind_task(tsk
, newmems
, MPOL_REBIND_STEP2
);
1005 tsk
->mems_allowed
= *newmems
;
1010 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1011 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1012 * memory_migrate flag is set. Called with cgroup_mutex held.
1014 static void cpuset_change_nodemask(struct task_struct
*p
,
1015 struct cgroup_scanner
*scan
)
1017 struct mm_struct
*mm
;
1020 const nodemask_t
*oldmem
= scan
->data
;
1021 static nodemask_t newmems
; /* protected by cgroup_mutex */
1023 cs
= cgroup_cs(scan
->cg
);
1024 guarantee_online_mems(cs
, &newmems
);
1026 cpuset_change_task_nodemask(p
, &newmems
);
1028 mm
= get_task_mm(p
);
1032 migrate
= is_memory_migrate(cs
);
1034 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1036 cpuset_migrate_mm(mm
, oldmem
, &cs
->mems_allowed
);
1040 static void *cpuset_being_rebound
;
1043 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1044 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1045 * @oldmem: old mems_allowed of cpuset cs
1046 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1048 * Called with cgroup_mutex held
1049 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1052 static void update_tasks_nodemask(struct cpuset
*cs
, const nodemask_t
*oldmem
,
1053 struct ptr_heap
*heap
)
1055 struct cgroup_scanner scan
;
1057 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1059 scan
.cg
= cs
->css
.cgroup
;
1060 scan
.test_task
= NULL
;
1061 scan
.process_task
= cpuset_change_nodemask
;
1063 scan
.data
= (nodemask_t
*)oldmem
;
1066 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1067 * take while holding tasklist_lock. Forks can happen - the
1068 * mpol_dup() cpuset_being_rebound check will catch such forks,
1069 * and rebind their vma mempolicies too. Because we still hold
1070 * the global cgroup_mutex, we know that no other rebind effort
1071 * will be contending for the global variable cpuset_being_rebound.
1072 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1073 * is idempotent. Also migrate pages in each mm to new nodes.
1075 cgroup_scan_tasks(&scan
);
1077 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1078 cpuset_being_rebound
= NULL
;
1082 * Handle user request to change the 'mems' memory placement
1083 * of a cpuset. Needs to validate the request, update the
1084 * cpusets mems_allowed, and for each task in the cpuset,
1085 * update mems_allowed and rebind task's mempolicy and any vma
1086 * mempolicies and if the cpuset is marked 'memory_migrate',
1087 * migrate the tasks pages to the new memory.
1089 * Call with cgroup_mutex held. May take callback_mutex during call.
1090 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1091 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1092 * their mempolicies to the cpusets new mems_allowed.
1094 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1097 NODEMASK_ALLOC(nodemask_t
, oldmem
, GFP_KERNEL
);
1099 struct ptr_heap heap
;
1105 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1108 if (cs
== &top_cpuset
) {
1114 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1115 * Since nodelist_parse() fails on an empty mask, we special case
1116 * that parsing. The validate_change() call ensures that cpusets
1117 * with tasks have memory.
1120 nodes_clear(trialcs
->mems_allowed
);
1122 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1126 if (!nodes_subset(trialcs
->mems_allowed
,
1127 node_states
[N_HIGH_MEMORY
])) {
1132 *oldmem
= cs
->mems_allowed
;
1133 if (nodes_equal(*oldmem
, trialcs
->mems_allowed
)) {
1134 retval
= 0; /* Too easy - nothing to do */
1137 retval
= validate_change(cs
, trialcs
);
1141 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
1145 mutex_lock(&callback_mutex
);
1146 cs
->mems_allowed
= trialcs
->mems_allowed
;
1147 mutex_unlock(&callback_mutex
);
1149 update_tasks_nodemask(cs
, oldmem
, &heap
);
1153 NODEMASK_FREE(oldmem
);
1157 int current_cpuset_is_being_rebound(void)
1159 return task_cs(current
) == cpuset_being_rebound
;
1162 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1165 if (val
< -1 || val
>= sched_domain_level_max
)
1169 if (val
!= cs
->relax_domain_level
) {
1170 cs
->relax_domain_level
= val
;
1171 if (!cpumask_empty(cs
->cpus_allowed
) &&
1172 is_sched_load_balance(cs
))
1173 async_rebuild_sched_domains();
1180 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1181 * @tsk: task to be updated
1182 * @scan: struct cgroup_scanner containing the cgroup of the task
1184 * Called by cgroup_scan_tasks() for each task in a cgroup.
1186 * We don't need to re-check for the cgroup/cpuset membership, since we're
1187 * holding cgroup_lock() at this point.
1189 static void cpuset_change_flag(struct task_struct
*tsk
,
1190 struct cgroup_scanner
*scan
)
1192 cpuset_update_task_spread_flag(cgroup_cs(scan
->cg
), tsk
);
1196 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1197 * @cs: the cpuset in which each task's spread flags needs to be changed
1198 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1200 * Called with cgroup_mutex held
1202 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1203 * calling callback functions for each.
1205 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1208 static void update_tasks_flags(struct cpuset
*cs
, struct ptr_heap
*heap
)
1210 struct cgroup_scanner scan
;
1212 scan
.cg
= cs
->css
.cgroup
;
1213 scan
.test_task
= NULL
;
1214 scan
.process_task
= cpuset_change_flag
;
1216 cgroup_scan_tasks(&scan
);
1220 * update_flag - read a 0 or a 1 in a file and update associated flag
1221 * bit: the bit to update (see cpuset_flagbits_t)
1222 * cs: the cpuset to update
1223 * turning_on: whether the flag is being set or cleared
1225 * Call with cgroup_mutex held.
1228 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1231 struct cpuset
*trialcs
;
1232 int balance_flag_changed
;
1233 int spread_flag_changed
;
1234 struct ptr_heap heap
;
1237 trialcs
= alloc_trial_cpuset(cs
);
1242 set_bit(bit
, &trialcs
->flags
);
1244 clear_bit(bit
, &trialcs
->flags
);
1246 err
= validate_change(cs
, trialcs
);
1250 err
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
1254 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1255 is_sched_load_balance(trialcs
));
1257 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1258 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1260 mutex_lock(&callback_mutex
);
1261 cs
->flags
= trialcs
->flags
;
1262 mutex_unlock(&callback_mutex
);
1264 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1265 async_rebuild_sched_domains();
1267 if (spread_flag_changed
)
1268 update_tasks_flags(cs
, &heap
);
1271 free_trial_cpuset(trialcs
);
1276 * Frequency meter - How fast is some event occurring?
1278 * These routines manage a digitally filtered, constant time based,
1279 * event frequency meter. There are four routines:
1280 * fmeter_init() - initialize a frequency meter.
1281 * fmeter_markevent() - called each time the event happens.
1282 * fmeter_getrate() - returns the recent rate of such events.
1283 * fmeter_update() - internal routine used to update fmeter.
1285 * A common data structure is passed to each of these routines,
1286 * which is used to keep track of the state required to manage the
1287 * frequency meter and its digital filter.
1289 * The filter works on the number of events marked per unit time.
1290 * The filter is single-pole low-pass recursive (IIR). The time unit
1291 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1292 * simulate 3 decimal digits of precision (multiplied by 1000).
1294 * With an FM_COEF of 933, and a time base of 1 second, the filter
1295 * has a half-life of 10 seconds, meaning that if the events quit
1296 * happening, then the rate returned from the fmeter_getrate()
1297 * will be cut in half each 10 seconds, until it converges to zero.
1299 * It is not worth doing a real infinitely recursive filter. If more
1300 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1301 * just compute FM_MAXTICKS ticks worth, by which point the level
1304 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1305 * arithmetic overflow in the fmeter_update() routine.
1307 * Given the simple 32 bit integer arithmetic used, this meter works
1308 * best for reporting rates between one per millisecond (msec) and
1309 * one per 32 (approx) seconds. At constant rates faster than one
1310 * per msec it maxes out at values just under 1,000,000. At constant
1311 * rates between one per msec, and one per second it will stabilize
1312 * to a value N*1000, where N is the rate of events per second.
1313 * At constant rates between one per second and one per 32 seconds,
1314 * it will be choppy, moving up on the seconds that have an event,
1315 * and then decaying until the next event. At rates slower than
1316 * about one in 32 seconds, it decays all the way back to zero between
1320 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1321 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1322 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1323 #define FM_SCALE 1000 /* faux fixed point scale */
1325 /* Initialize a frequency meter */
1326 static void fmeter_init(struct fmeter
*fmp
)
1331 spin_lock_init(&fmp
->lock
);
1334 /* Internal meter update - process cnt events and update value */
1335 static void fmeter_update(struct fmeter
*fmp
)
1337 time_t now
= get_seconds();
1338 time_t ticks
= now
- fmp
->time
;
1343 ticks
= min(FM_MAXTICKS
, ticks
);
1345 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1348 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1352 /* Process any previous ticks, then bump cnt by one (times scale). */
1353 static void fmeter_markevent(struct fmeter
*fmp
)
1355 spin_lock(&fmp
->lock
);
1357 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1358 spin_unlock(&fmp
->lock
);
1361 /* Process any previous ticks, then return current value. */
1362 static int fmeter_getrate(struct fmeter
*fmp
)
1366 spin_lock(&fmp
->lock
);
1369 spin_unlock(&fmp
->lock
);
1373 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1374 static int cpuset_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cont
,
1375 struct task_struct
*tsk
)
1377 struct cpuset
*cs
= cgroup_cs(cont
);
1379 if (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
))
1383 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1384 * cannot change their cpu affinity and isolating such threads by their
1385 * set of allowed nodes is unnecessary. Thus, cpusets are not
1386 * applicable for such threads. This prevents checking for success of
1387 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1390 if (tsk
->flags
& PF_THREAD_BOUND
)
1396 static int cpuset_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*task
)
1398 return security_task_setscheduler(task
);
1402 * Protected by cgroup_lock. The nodemasks must be stored globally because
1403 * dynamically allocating them is not allowed in pre_attach, and they must
1404 * persist among pre_attach, attach_task, and attach.
1406 static cpumask_var_t cpus_attach
;
1407 static nodemask_t cpuset_attach_nodemask_from
;
1408 static nodemask_t cpuset_attach_nodemask_to
;
1410 /* Set-up work for before attaching each task. */
1411 static void cpuset_pre_attach(struct cgroup
*cont
)
1413 struct cpuset
*cs
= cgroup_cs(cont
);
1415 if (cs
== &top_cpuset
)
1416 cpumask_copy(cpus_attach
, cpu_possible_mask
);
1418 guarantee_online_cpus(cs
, cpus_attach
);
1420 guarantee_online_mems(cs
, &cpuset_attach_nodemask_to
);
1423 /* Per-thread attachment work. */
1424 static void cpuset_attach_task(struct cgroup
*cont
, struct task_struct
*tsk
)
1427 struct cpuset
*cs
= cgroup_cs(cont
);
1430 * can_attach beforehand should guarantee that this doesn't fail.
1431 * TODO: have a better way to handle failure here
1433 err
= set_cpus_allowed_ptr(tsk
, cpus_attach
);
1436 cpuset_change_task_nodemask(tsk
, &cpuset_attach_nodemask_to
);
1437 cpuset_update_task_spread_flag(cs
, tsk
);
1440 static void cpuset_attach(struct cgroup_subsys
*ss
, struct cgroup
*cont
,
1441 struct cgroup
*oldcont
, struct task_struct
*tsk
)
1443 struct mm_struct
*mm
;
1444 struct cpuset
*cs
= cgroup_cs(cont
);
1445 struct cpuset
*oldcs
= cgroup_cs(oldcont
);
1448 * Change mm, possibly for multiple threads in a threadgroup. This is
1449 * expensive and may sleep.
1451 cpuset_attach_nodemask_from
= oldcs
->mems_allowed
;
1452 cpuset_attach_nodemask_to
= cs
->mems_allowed
;
1453 mm
= get_task_mm(tsk
);
1455 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
1456 if (is_memory_migrate(cs
))
1457 cpuset_migrate_mm(mm
, &cpuset_attach_nodemask_from
,
1458 &cpuset_attach_nodemask_to
);
1463 /* The various types of files and directories in a cpuset file system */
1466 FILE_MEMORY_MIGRATE
,
1472 FILE_SCHED_LOAD_BALANCE
,
1473 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1474 FILE_MEMORY_PRESSURE_ENABLED
,
1475 FILE_MEMORY_PRESSURE
,
1478 } cpuset_filetype_t
;
1480 static int cpuset_write_u64(struct cgroup
*cgrp
, struct cftype
*cft
, u64 val
)
1483 struct cpuset
*cs
= cgroup_cs(cgrp
);
1484 cpuset_filetype_t type
= cft
->private;
1486 if (!cgroup_lock_live_group(cgrp
))
1490 case FILE_CPU_EXCLUSIVE
:
1491 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
1493 case FILE_MEM_EXCLUSIVE
:
1494 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
1496 case FILE_MEM_HARDWALL
:
1497 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
1499 case FILE_SCHED_LOAD_BALANCE
:
1500 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
1502 case FILE_MEMORY_MIGRATE
:
1503 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
1505 case FILE_MEMORY_PRESSURE_ENABLED
:
1506 cpuset_memory_pressure_enabled
= !!val
;
1508 case FILE_MEMORY_PRESSURE
:
1511 case FILE_SPREAD_PAGE
:
1512 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
1514 case FILE_SPREAD_SLAB
:
1515 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
1525 static int cpuset_write_s64(struct cgroup
*cgrp
, struct cftype
*cft
, s64 val
)
1528 struct cpuset
*cs
= cgroup_cs(cgrp
);
1529 cpuset_filetype_t type
= cft
->private;
1531 if (!cgroup_lock_live_group(cgrp
))
1535 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1536 retval
= update_relax_domain_level(cs
, val
);
1547 * Common handling for a write to a "cpus" or "mems" file.
1549 static int cpuset_write_resmask(struct cgroup
*cgrp
, struct cftype
*cft
,
1553 struct cpuset
*cs
= cgroup_cs(cgrp
);
1554 struct cpuset
*trialcs
;
1556 if (!cgroup_lock_live_group(cgrp
))
1559 trialcs
= alloc_trial_cpuset(cs
);
1565 switch (cft
->private) {
1567 retval
= update_cpumask(cs
, trialcs
, buf
);
1570 retval
= update_nodemask(cs
, trialcs
, buf
);
1577 free_trial_cpuset(trialcs
);
1584 * These ascii lists should be read in a single call, by using a user
1585 * buffer large enough to hold the entire map. If read in smaller
1586 * chunks, there is no guarantee of atomicity. Since the display format
1587 * used, list of ranges of sequential numbers, is variable length,
1588 * and since these maps can change value dynamically, one could read
1589 * gibberish by doing partial reads while a list was changing.
1590 * A single large read to a buffer that crosses a page boundary is
1591 * ok, because the result being copied to user land is not recomputed
1592 * across a page fault.
1595 static size_t cpuset_sprintf_cpulist(char *page
, struct cpuset
*cs
)
1599 mutex_lock(&callback_mutex
);
1600 count
= cpulist_scnprintf(page
, PAGE_SIZE
, cs
->cpus_allowed
);
1601 mutex_unlock(&callback_mutex
);
1606 static size_t cpuset_sprintf_memlist(char *page
, struct cpuset
*cs
)
1610 mutex_lock(&callback_mutex
);
1611 count
= nodelist_scnprintf(page
, PAGE_SIZE
, cs
->mems_allowed
);
1612 mutex_unlock(&callback_mutex
);
1617 static ssize_t
cpuset_common_file_read(struct cgroup
*cont
,
1621 size_t nbytes
, loff_t
*ppos
)
1623 struct cpuset
*cs
= cgroup_cs(cont
);
1624 cpuset_filetype_t type
= cft
->private;
1629 if (!(page
= (char *)__get_free_page(GFP_TEMPORARY
)))
1636 s
+= cpuset_sprintf_cpulist(s
, cs
);
1639 s
+= cpuset_sprintf_memlist(s
, cs
);
1647 retval
= simple_read_from_buffer(buf
, nbytes
, ppos
, page
, s
- page
);
1649 free_page((unsigned long)page
);
1653 static u64
cpuset_read_u64(struct cgroup
*cont
, struct cftype
*cft
)
1655 struct cpuset
*cs
= cgroup_cs(cont
);
1656 cpuset_filetype_t type
= cft
->private;
1658 case FILE_CPU_EXCLUSIVE
:
1659 return is_cpu_exclusive(cs
);
1660 case FILE_MEM_EXCLUSIVE
:
1661 return is_mem_exclusive(cs
);
1662 case FILE_MEM_HARDWALL
:
1663 return is_mem_hardwall(cs
);
1664 case FILE_SCHED_LOAD_BALANCE
:
1665 return is_sched_load_balance(cs
);
1666 case FILE_MEMORY_MIGRATE
:
1667 return is_memory_migrate(cs
);
1668 case FILE_MEMORY_PRESSURE_ENABLED
:
1669 return cpuset_memory_pressure_enabled
;
1670 case FILE_MEMORY_PRESSURE
:
1671 return fmeter_getrate(&cs
->fmeter
);
1672 case FILE_SPREAD_PAGE
:
1673 return is_spread_page(cs
);
1674 case FILE_SPREAD_SLAB
:
1675 return is_spread_slab(cs
);
1680 /* Unreachable but makes gcc happy */
1684 static s64
cpuset_read_s64(struct cgroup
*cont
, struct cftype
*cft
)
1686 struct cpuset
*cs
= cgroup_cs(cont
);
1687 cpuset_filetype_t type
= cft
->private;
1689 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1690 return cs
->relax_domain_level
;
1695 /* Unrechable but makes gcc happy */
1701 * for the common functions, 'private' gives the type of file
1704 static struct cftype files
[] = {
1707 .read
= cpuset_common_file_read
,
1708 .write_string
= cpuset_write_resmask
,
1709 .max_write_len
= (100U + 6 * NR_CPUS
),
1710 .private = FILE_CPULIST
,
1715 .read
= cpuset_common_file_read
,
1716 .write_string
= cpuset_write_resmask
,
1717 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
1718 .private = FILE_MEMLIST
,
1722 .name
= "cpu_exclusive",
1723 .read_u64
= cpuset_read_u64
,
1724 .write_u64
= cpuset_write_u64
,
1725 .private = FILE_CPU_EXCLUSIVE
,
1729 .name
= "mem_exclusive",
1730 .read_u64
= cpuset_read_u64
,
1731 .write_u64
= cpuset_write_u64
,
1732 .private = FILE_MEM_EXCLUSIVE
,
1736 .name
= "mem_hardwall",
1737 .read_u64
= cpuset_read_u64
,
1738 .write_u64
= cpuset_write_u64
,
1739 .private = FILE_MEM_HARDWALL
,
1743 .name
= "sched_load_balance",
1744 .read_u64
= cpuset_read_u64
,
1745 .write_u64
= cpuset_write_u64
,
1746 .private = FILE_SCHED_LOAD_BALANCE
,
1750 .name
= "sched_relax_domain_level",
1751 .read_s64
= cpuset_read_s64
,
1752 .write_s64
= cpuset_write_s64
,
1753 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1757 .name
= "memory_migrate",
1758 .read_u64
= cpuset_read_u64
,
1759 .write_u64
= cpuset_write_u64
,
1760 .private = FILE_MEMORY_MIGRATE
,
1764 .name
= "memory_pressure",
1765 .read_u64
= cpuset_read_u64
,
1766 .write_u64
= cpuset_write_u64
,
1767 .private = FILE_MEMORY_PRESSURE
,
1772 .name
= "memory_spread_page",
1773 .read_u64
= cpuset_read_u64
,
1774 .write_u64
= cpuset_write_u64
,
1775 .private = FILE_SPREAD_PAGE
,
1779 .name
= "memory_spread_slab",
1780 .read_u64
= cpuset_read_u64
,
1781 .write_u64
= cpuset_write_u64
,
1782 .private = FILE_SPREAD_SLAB
,
1786 static struct cftype cft_memory_pressure_enabled
= {
1787 .name
= "memory_pressure_enabled",
1788 .read_u64
= cpuset_read_u64
,
1789 .write_u64
= cpuset_write_u64
,
1790 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1793 static int cpuset_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1797 err
= cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
1800 /* memory_pressure_enabled is in root cpuset only */
1802 err
= cgroup_add_file(cont
, ss
,
1803 &cft_memory_pressure_enabled
);
1808 * post_clone() is called during cgroup_create() when the
1809 * clone_children mount argument was specified. The cgroup
1810 * can not yet have any tasks.
1812 * Currently we refuse to set up the cgroup - thereby
1813 * refusing the task to be entered, and as a result refusing
1814 * the sys_unshare() or clone() which initiated it - if any
1815 * sibling cpusets have exclusive cpus or mem.
1817 * If this becomes a problem for some users who wish to
1818 * allow that scenario, then cpuset_post_clone() could be
1819 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1820 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1823 static void cpuset_post_clone(struct cgroup_subsys
*ss
,
1824 struct cgroup
*cgroup
)
1826 struct cgroup
*parent
, *child
;
1827 struct cpuset
*cs
, *parent_cs
;
1829 parent
= cgroup
->parent
;
1830 list_for_each_entry(child
, &parent
->children
, sibling
) {
1831 cs
= cgroup_cs(child
);
1832 if (is_mem_exclusive(cs
) || is_cpu_exclusive(cs
))
1835 cs
= cgroup_cs(cgroup
);
1836 parent_cs
= cgroup_cs(parent
);
1838 mutex_lock(&callback_mutex
);
1839 cs
->mems_allowed
= parent_cs
->mems_allowed
;
1840 cpumask_copy(cs
->cpus_allowed
, parent_cs
->cpus_allowed
);
1841 mutex_unlock(&callback_mutex
);
1846 * cpuset_create - create a cpuset
1847 * ss: cpuset cgroup subsystem
1848 * cont: control group that the new cpuset will be part of
1851 static struct cgroup_subsys_state
*cpuset_create(
1852 struct cgroup_subsys
*ss
,
1853 struct cgroup
*cont
)
1856 struct cpuset
*parent
;
1858 if (!cont
->parent
) {
1859 return &top_cpuset
.css
;
1861 parent
= cgroup_cs(cont
->parent
);
1862 cs
= kmalloc(sizeof(*cs
), GFP_KERNEL
);
1864 return ERR_PTR(-ENOMEM
);
1865 if (!alloc_cpumask_var(&cs
->cpus_allowed
, GFP_KERNEL
)) {
1867 return ERR_PTR(-ENOMEM
);
1871 if (is_spread_page(parent
))
1872 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1873 if (is_spread_slab(parent
))
1874 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1875 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1876 cpumask_clear(cs
->cpus_allowed
);
1877 nodes_clear(cs
->mems_allowed
);
1878 fmeter_init(&cs
->fmeter
);
1879 cs
->relax_domain_level
= -1;
1881 cs
->parent
= parent
;
1882 number_of_cpusets
++;
1887 * If the cpuset being removed has its flag 'sched_load_balance'
1888 * enabled, then simulate turning sched_load_balance off, which
1889 * will call async_rebuild_sched_domains().
1892 static void cpuset_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1894 struct cpuset
*cs
= cgroup_cs(cont
);
1896 if (is_sched_load_balance(cs
))
1897 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
1899 number_of_cpusets
--;
1900 free_cpumask_var(cs
->cpus_allowed
);
1904 struct cgroup_subsys cpuset_subsys
= {
1906 .create
= cpuset_create
,
1907 .destroy
= cpuset_destroy
,
1908 .can_attach
= cpuset_can_attach
,
1909 .can_attach_task
= cpuset_can_attach_task
,
1910 .pre_attach
= cpuset_pre_attach
,
1911 .attach_task
= cpuset_attach_task
,
1912 .attach
= cpuset_attach
,
1913 .populate
= cpuset_populate
,
1914 .post_clone
= cpuset_post_clone
,
1915 .subsys_id
= cpuset_subsys_id
,
1920 * cpuset_init - initialize cpusets at system boot
1922 * Description: Initialize top_cpuset and the cpuset internal file system,
1925 int __init
cpuset_init(void)
1929 if (!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
))
1932 cpumask_setall(top_cpuset
.cpus_allowed
);
1933 nodes_setall(top_cpuset
.mems_allowed
);
1935 fmeter_init(&top_cpuset
.fmeter
);
1936 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
1937 top_cpuset
.relax_domain_level
= -1;
1939 err
= register_filesystem(&cpuset_fs_type
);
1943 if (!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
))
1946 number_of_cpusets
= 1;
1951 * cpuset_do_move_task - move a given task to another cpuset
1952 * @tsk: pointer to task_struct the task to move
1953 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1955 * Called by cgroup_scan_tasks() for each task in a cgroup.
1956 * Return nonzero to stop the walk through the tasks.
1958 static void cpuset_do_move_task(struct task_struct
*tsk
,
1959 struct cgroup_scanner
*scan
)
1961 struct cgroup
*new_cgroup
= scan
->data
;
1963 cgroup_attach_task(new_cgroup
, tsk
);
1967 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1968 * @from: cpuset in which the tasks currently reside
1969 * @to: cpuset to which the tasks will be moved
1971 * Called with cgroup_mutex held
1972 * callback_mutex must not be held, as cpuset_attach() will take it.
1974 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1975 * calling callback functions for each.
1977 static void move_member_tasks_to_cpuset(struct cpuset
*from
, struct cpuset
*to
)
1979 struct cgroup_scanner scan
;
1981 scan
.cg
= from
->css
.cgroup
;
1982 scan
.test_task
= NULL
; /* select all tasks in cgroup */
1983 scan
.process_task
= cpuset_do_move_task
;
1985 scan
.data
= to
->css
.cgroup
;
1987 if (cgroup_scan_tasks(&scan
))
1988 printk(KERN_ERR
"move_member_tasks_to_cpuset: "
1989 "cgroup_scan_tasks failed\n");
1993 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1994 * or memory nodes, we need to walk over the cpuset hierarchy,
1995 * removing that CPU or node from all cpusets. If this removes the
1996 * last CPU or node from a cpuset, then move the tasks in the empty
1997 * cpuset to its next-highest non-empty parent.
1999 * Called with cgroup_mutex held
2000 * callback_mutex must not be held, as cpuset_attach() will take it.
2002 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2004 struct cpuset
*parent
;
2007 * The cgroup's css_sets list is in use if there are tasks
2008 * in the cpuset; the list is empty if there are none;
2009 * the cs->css.refcnt seems always 0.
2011 if (list_empty(&cs
->css
.cgroup
->css_sets
))
2015 * Find its next-highest non-empty parent, (top cpuset
2016 * has online cpus, so can't be empty).
2018 parent
= cs
->parent
;
2019 while (cpumask_empty(parent
->cpus_allowed
) ||
2020 nodes_empty(parent
->mems_allowed
))
2021 parent
= parent
->parent
;
2023 move_member_tasks_to_cpuset(cs
, parent
);
2027 * Walk the specified cpuset subtree and look for empty cpusets.
2028 * The tasks of such cpuset must be moved to a parent cpuset.
2030 * Called with cgroup_mutex held. We take callback_mutex to modify
2031 * cpus_allowed and mems_allowed.
2033 * This walk processes the tree from top to bottom, completing one layer
2034 * before dropping down to the next. It always processes a node before
2035 * any of its children.
2037 * For now, since we lack memory hot unplug, we'll never see a cpuset
2038 * that has tasks along with an empty 'mems'. But if we did see such
2039 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2041 static void scan_for_empty_cpusets(struct cpuset
*root
)
2044 struct cpuset
*cp
; /* scans cpusets being updated */
2045 struct cpuset
*child
; /* scans child cpusets of cp */
2046 struct cgroup
*cont
;
2047 static nodemask_t oldmems
; /* protected by cgroup_mutex */
2049 list_add_tail((struct list_head
*)&root
->stack_list
, &queue
);
2051 while (!list_empty(&queue
)) {
2052 cp
= list_first_entry(&queue
, struct cpuset
, stack_list
);
2053 list_del(queue
.next
);
2054 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
2055 child
= cgroup_cs(cont
);
2056 list_add_tail(&child
->stack_list
, &queue
);
2059 /* Continue past cpusets with all cpus, mems online */
2060 if (cpumask_subset(cp
->cpus_allowed
, cpu_active_mask
) &&
2061 nodes_subset(cp
->mems_allowed
, node_states
[N_HIGH_MEMORY
]))
2064 oldmems
= cp
->mems_allowed
;
2066 /* Remove offline cpus and mems from this cpuset. */
2067 mutex_lock(&callback_mutex
);
2068 cpumask_and(cp
->cpus_allowed
, cp
->cpus_allowed
,
2070 nodes_and(cp
->mems_allowed
, cp
->mems_allowed
,
2071 node_states
[N_HIGH_MEMORY
]);
2072 mutex_unlock(&callback_mutex
);
2074 /* Move tasks from the empty cpuset to a parent */
2075 if (cpumask_empty(cp
->cpus_allowed
) ||
2076 nodes_empty(cp
->mems_allowed
))
2077 remove_tasks_in_empty_cpuset(cp
);
2079 update_tasks_cpumask(cp
, NULL
);
2080 update_tasks_nodemask(cp
, &oldmems
, NULL
);
2086 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2087 * period. This is necessary in order to make cpusets transparent
2088 * (of no affect) on systems that are actively using CPU hotplug
2089 * but making no active use of cpusets.
2091 * This routine ensures that top_cpuset.cpus_allowed tracks
2092 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2094 * Called within get_online_cpus(). Needs to call cgroup_lock()
2095 * before calling generate_sched_domains().
2097 void cpuset_update_active_cpus(void)
2099 struct sched_domain_attr
*attr
;
2100 cpumask_var_t
*doms
;
2104 mutex_lock(&callback_mutex
);
2105 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
2106 mutex_unlock(&callback_mutex
);
2107 scan_for_empty_cpusets(&top_cpuset
);
2108 ndoms
= generate_sched_domains(&doms
, &attr
);
2111 /* Have scheduler rebuild the domains */
2112 partition_sched_domains(ndoms
, doms
, attr
);
2115 #ifdef CONFIG_MEMORY_HOTPLUG
2117 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2118 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2119 * See also the previous routine cpuset_track_online_cpus().
2121 static int cpuset_track_online_nodes(struct notifier_block
*self
,
2122 unsigned long action
, void *arg
)
2124 static nodemask_t oldmems
; /* protected by cgroup_mutex */
2129 oldmems
= top_cpuset
.mems_allowed
;
2130 mutex_lock(&callback_mutex
);
2131 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
2132 mutex_unlock(&callback_mutex
);
2133 update_tasks_nodemask(&top_cpuset
, &oldmems
, NULL
);
2137 * needn't update top_cpuset.mems_allowed explicitly because
2138 * scan_for_empty_cpusets() will update it.
2140 scan_for_empty_cpusets(&top_cpuset
);
2152 * cpuset_init_smp - initialize cpus_allowed
2154 * Description: Finish top cpuset after cpu, node maps are initialized
2157 void __init
cpuset_init_smp(void)
2159 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
2160 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
2162 hotplug_memory_notifier(cpuset_track_online_nodes
, 10);
2164 cpuset_wq
= create_singlethread_workqueue("cpuset");
2169 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2170 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2171 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2173 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2174 * attached to the specified @tsk. Guaranteed to return some non-empty
2175 * subset of cpu_online_map, even if this means going outside the
2179 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
2181 mutex_lock(&callback_mutex
);
2183 guarantee_online_cpus(task_cs(tsk
), pmask
);
2185 mutex_unlock(&callback_mutex
);
2188 int cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
2190 const struct cpuset
*cs
;
2196 do_set_cpus_allowed(tsk
, cs
->cpus_allowed
);
2200 * We own tsk->cpus_allowed, nobody can change it under us.
2202 * But we used cs && cs->cpus_allowed lockless and thus can
2203 * race with cgroup_attach_task() or update_cpumask() and get
2204 * the wrong tsk->cpus_allowed. However, both cases imply the
2205 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2206 * which takes task_rq_lock().
2208 * If we are called after it dropped the lock we must see all
2209 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2210 * set any mask even if it is not right from task_cs() pov,
2211 * the pending set_cpus_allowed_ptr() will fix things.
2214 cpu
= cpumask_any_and(&tsk
->cpus_allowed
, cpu_active_mask
);
2215 if (cpu
>= nr_cpu_ids
) {
2217 * Either tsk->cpus_allowed is wrong (see above) or it
2218 * is actually empty. The latter case is only possible
2219 * if we are racing with remove_tasks_in_empty_cpuset().
2220 * Like above we can temporary set any mask and rely on
2221 * set_cpus_allowed_ptr() as synchronization point.
2223 do_set_cpus_allowed(tsk
, cpu_possible_mask
);
2224 cpu
= cpumask_any(cpu_active_mask
);
2230 void cpuset_init_current_mems_allowed(void)
2232 nodes_setall(current
->mems_allowed
);
2236 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2237 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2239 * Description: Returns the nodemask_t mems_allowed of the cpuset
2240 * attached to the specified @tsk. Guaranteed to return some non-empty
2241 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2245 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2249 mutex_lock(&callback_mutex
);
2251 guarantee_online_mems(task_cs(tsk
), &mask
);
2253 mutex_unlock(&callback_mutex
);
2259 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2260 * @nodemask: the nodemask to be checked
2262 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2264 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
2266 return nodes_intersects(*nodemask
, current
->mems_allowed
);
2270 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2271 * mem_hardwall ancestor to the specified cpuset. Call holding
2272 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2273 * (an unusual configuration), then returns the root cpuset.
2275 static const struct cpuset
*nearest_hardwall_ancestor(const struct cpuset
*cs
)
2277 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && cs
->parent
)
2283 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2284 * @node: is this an allowed node?
2285 * @gfp_mask: memory allocation flags
2287 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2288 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2289 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2290 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2291 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2295 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2296 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2297 * might sleep, and might allow a node from an enclosing cpuset.
2299 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2300 * cpusets, and never sleeps.
2302 * The __GFP_THISNODE placement logic is really handled elsewhere,
2303 * by forcibly using a zonelist starting at a specified node, and by
2304 * (in get_page_from_freelist()) refusing to consider the zones for
2305 * any node on the zonelist except the first. By the time any such
2306 * calls get to this routine, we should just shut up and say 'yes'.
2308 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2309 * and do not allow allocations outside the current tasks cpuset
2310 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2311 * GFP_KERNEL allocations are not so marked, so can escape to the
2312 * nearest enclosing hardwalled ancestor cpuset.
2314 * Scanning up parent cpusets requires callback_mutex. The
2315 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2316 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2317 * current tasks mems_allowed came up empty on the first pass over
2318 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2319 * cpuset are short of memory, might require taking the callback_mutex
2322 * The first call here from mm/page_alloc:get_page_from_freelist()
2323 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2324 * so no allocation on a node outside the cpuset is allowed (unless
2325 * in interrupt, of course).
2327 * The second pass through get_page_from_freelist() doesn't even call
2328 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2329 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2330 * in alloc_flags. That logic and the checks below have the combined
2332 * in_interrupt - any node ok (current task context irrelevant)
2333 * GFP_ATOMIC - any node ok
2334 * TIF_MEMDIE - any node ok
2335 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2336 * GFP_USER - only nodes in current tasks mems allowed ok.
2339 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2340 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2341 * the code that might scan up ancestor cpusets and sleep.
2343 int __cpuset_node_allowed_softwall(int node
, gfp_t gfp_mask
)
2345 const struct cpuset
*cs
; /* current cpuset ancestors */
2346 int allowed
; /* is allocation in zone z allowed? */
2348 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2350 might_sleep_if(!(gfp_mask
& __GFP_HARDWALL
));
2351 if (node_isset(node
, current
->mems_allowed
))
2354 * Allow tasks that have access to memory reserves because they have
2355 * been OOM killed to get memory anywhere.
2357 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2359 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2362 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2365 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2366 mutex_lock(&callback_mutex
);
2369 cs
= nearest_hardwall_ancestor(task_cs(current
));
2370 task_unlock(current
);
2372 allowed
= node_isset(node
, cs
->mems_allowed
);
2373 mutex_unlock(&callback_mutex
);
2378 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2379 * @node: is this an allowed node?
2380 * @gfp_mask: memory allocation flags
2382 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2383 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2384 * yes. If the task has been OOM killed and has access to memory reserves as
2385 * specified by the TIF_MEMDIE flag, yes.
2388 * The __GFP_THISNODE placement logic is really handled elsewhere,
2389 * by forcibly using a zonelist starting at a specified node, and by
2390 * (in get_page_from_freelist()) refusing to consider the zones for
2391 * any node on the zonelist except the first. By the time any such
2392 * calls get to this routine, we should just shut up and say 'yes'.
2394 * Unlike the cpuset_node_allowed_softwall() variant, above,
2395 * this variant requires that the node be in the current task's
2396 * mems_allowed or that we're in interrupt. It does not scan up the
2397 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2400 int __cpuset_node_allowed_hardwall(int node
, gfp_t gfp_mask
)
2402 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2404 if (node_isset(node
, current
->mems_allowed
))
2407 * Allow tasks that have access to memory reserves because they have
2408 * been OOM killed to get memory anywhere.
2410 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2416 * cpuset_unlock - release lock on cpuset changes
2418 * Undo the lock taken in a previous cpuset_lock() call.
2421 void cpuset_unlock(void)
2423 mutex_unlock(&callback_mutex
);
2427 * cpuset_mem_spread_node() - On which node to begin search for a file page
2428 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2430 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2431 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2432 * and if the memory allocation used cpuset_mem_spread_node()
2433 * to determine on which node to start looking, as it will for
2434 * certain page cache or slab cache pages such as used for file
2435 * system buffers and inode caches, then instead of starting on the
2436 * local node to look for a free page, rather spread the starting
2437 * node around the tasks mems_allowed nodes.
2439 * We don't have to worry about the returned node being offline
2440 * because "it can't happen", and even if it did, it would be ok.
2442 * The routines calling guarantee_online_mems() are careful to
2443 * only set nodes in task->mems_allowed that are online. So it
2444 * should not be possible for the following code to return an
2445 * offline node. But if it did, that would be ok, as this routine
2446 * is not returning the node where the allocation must be, only
2447 * the node where the search should start. The zonelist passed to
2448 * __alloc_pages() will include all nodes. If the slab allocator
2449 * is passed an offline node, it will fall back to the local node.
2450 * See kmem_cache_alloc_node().
2453 static int cpuset_spread_node(int *rotor
)
2457 node
= next_node(*rotor
, current
->mems_allowed
);
2458 if (node
== MAX_NUMNODES
)
2459 node
= first_node(current
->mems_allowed
);
2464 int cpuset_mem_spread_node(void)
2466 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
2467 current
->cpuset_mem_spread_rotor
=
2468 node_random(¤t
->mems_allowed
);
2470 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
2473 int cpuset_slab_spread_node(void)
2475 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
2476 current
->cpuset_slab_spread_rotor
=
2477 node_random(¤t
->mems_allowed
);
2479 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
2482 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2485 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2486 * @tsk1: pointer to task_struct of some task.
2487 * @tsk2: pointer to task_struct of some other task.
2489 * Description: Return true if @tsk1's mems_allowed intersects the
2490 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2491 * one of the task's memory usage might impact the memory available
2495 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2496 const struct task_struct
*tsk2
)
2498 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2502 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2503 * @task: pointer to task_struct of some task.
2505 * Description: Prints @task's name, cpuset name, and cached copy of its
2506 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2507 * dereferencing task_cs(task).
2509 void cpuset_print_task_mems_allowed(struct task_struct
*tsk
)
2511 struct dentry
*dentry
;
2513 dentry
= task_cs(tsk
)->css
.cgroup
->dentry
;
2514 spin_lock(&cpuset_buffer_lock
);
2515 snprintf(cpuset_name
, CPUSET_NAME_LEN
,
2516 dentry
? (const char *)dentry
->d_name
.name
: "/");
2517 nodelist_scnprintf(cpuset_nodelist
, CPUSET_NODELIST_LEN
,
2519 printk(KERN_INFO
"%s cpuset=%s mems_allowed=%s\n",
2520 tsk
->comm
, cpuset_name
, cpuset_nodelist
);
2521 spin_unlock(&cpuset_buffer_lock
);
2525 * Collection of memory_pressure is suppressed unless
2526 * this flag is enabled by writing "1" to the special
2527 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2530 int cpuset_memory_pressure_enabled __read_mostly
;
2533 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2535 * Keep a running average of the rate of synchronous (direct)
2536 * page reclaim efforts initiated by tasks in each cpuset.
2538 * This represents the rate at which some task in the cpuset
2539 * ran low on memory on all nodes it was allowed to use, and
2540 * had to enter the kernels page reclaim code in an effort to
2541 * create more free memory by tossing clean pages or swapping
2542 * or writing dirty pages.
2544 * Display to user space in the per-cpuset read-only file
2545 * "memory_pressure". Value displayed is an integer
2546 * representing the recent rate of entry into the synchronous
2547 * (direct) page reclaim by any task attached to the cpuset.
2550 void __cpuset_memory_pressure_bump(void)
2553 fmeter_markevent(&task_cs(current
)->fmeter
);
2554 task_unlock(current
);
2557 #ifdef CONFIG_PROC_PID_CPUSET
2559 * proc_cpuset_show()
2560 * - Print tasks cpuset path into seq_file.
2561 * - Used for /proc/<pid>/cpuset.
2562 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2563 * doesn't really matter if tsk->cpuset changes after we read it,
2564 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2567 static int proc_cpuset_show(struct seq_file
*m
, void *unused_v
)
2570 struct task_struct
*tsk
;
2572 struct cgroup_subsys_state
*css
;
2576 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2582 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2588 css
= task_subsys_state(tsk
, cpuset_subsys_id
);
2589 retval
= cgroup_path(css
->cgroup
, buf
, PAGE_SIZE
);
2596 put_task_struct(tsk
);
2603 static int cpuset_open(struct inode
*inode
, struct file
*file
)
2605 struct pid
*pid
= PROC_I(inode
)->pid
;
2606 return single_open(file
, proc_cpuset_show
, pid
);
2609 const struct file_operations proc_cpuset_operations
= {
2610 .open
= cpuset_open
,
2612 .llseek
= seq_lseek
,
2613 .release
= single_release
,
2615 #endif /* CONFIG_PROC_PID_CPUSET */
2617 /* Display task mems_allowed in /proc/<pid>/status file. */
2618 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2620 seq_printf(m
, "Mems_allowed:\t");
2621 seq_nodemask(m
, &task
->mems_allowed
);
2622 seq_printf(m
, "\n");
2623 seq_printf(m
, "Mems_allowed_list:\t");
2624 seq_nodemask_list(m
, &task
->mems_allowed
);
2625 seq_printf(m
, "\n");