2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31 #include <linux/aio.h>
46 * ntfs_test_inode - compare two (possibly fake) inodes for equality
47 * @vi: vfs inode which to test
48 * @na: ntfs attribute which is being tested with
50 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
51 * inode @vi for equality with the ntfs attribute @na.
53 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
54 * @na->name and @na->name_len are then ignored.
56 * Return 1 if the attributes match and 0 if not.
58 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
61 int ntfs_test_inode(struct inode
*vi
, ntfs_attr
*na
)
65 if (vi
->i_ino
!= na
->mft_no
)
68 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
69 if (likely(!NInoAttr(ni
))) {
70 /* If not looking for a normal inode this is a mismatch. */
71 if (unlikely(na
->type
!= AT_UNUSED
))
74 /* A fake inode describing an attribute. */
75 if (ni
->type
!= na
->type
)
77 if (ni
->name_len
!= na
->name_len
)
79 if (na
->name_len
&& memcmp(ni
->name
, na
->name
,
80 na
->name_len
* sizeof(ntfschar
)))
88 * ntfs_init_locked_inode - initialize an inode
89 * @vi: vfs inode to initialize
90 * @na: ntfs attribute which to initialize @vi to
92 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
93 * order to enable ntfs_test_inode() to do its work.
95 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
96 * In that case, @na->name and @na->name_len should be set to NULL and 0,
97 * respectively. Although that is not strictly necessary as
98 * ntfs_read_locked_inode() will fill them in later.
100 * Return 0 on success and -errno on error.
102 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
103 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
105 static int ntfs_init_locked_inode(struct inode
*vi
, ntfs_attr
*na
)
107 ntfs_inode
*ni
= NTFS_I(vi
);
109 vi
->i_ino
= na
->mft_no
;
112 if (na
->type
== AT_INDEX_ALLOCATION
)
113 NInoSetMstProtected(ni
);
116 ni
->name_len
= na
->name_len
;
118 /* If initializing a normal inode, we are done. */
119 if (likely(na
->type
== AT_UNUSED
)) {
121 BUG_ON(na
->name_len
);
125 /* It is a fake inode. */
129 * We have I30 global constant as an optimization as it is the name
130 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
131 * allocation but that is ok. And most attributes are unnamed anyway,
132 * thus the fraction of named attributes with name != I30 is actually
135 if (na
->name_len
&& na
->name
!= I30
) {
139 i
= na
->name_len
* sizeof(ntfschar
);
140 ni
->name
= kmalloc(i
+ sizeof(ntfschar
), GFP_ATOMIC
);
143 memcpy(ni
->name
, na
->name
, i
);
144 ni
->name
[na
->name_len
] = 0;
149 typedef int (*set_t
)(struct inode
*, void *);
150 static int ntfs_read_locked_inode(struct inode
*vi
);
151 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
);
152 static int ntfs_read_locked_index_inode(struct inode
*base_vi
,
156 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
157 * @sb: super block of mounted volume
158 * @mft_no: mft record number / inode number to obtain
160 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
161 * file or directory).
163 * If the inode is in the cache, it is just returned with an increased
164 * reference count. Otherwise, a new struct inode is allocated and initialized,
165 * and finally ntfs_read_locked_inode() is called to read in the inode and
166 * fill in the remainder of the inode structure.
168 * Return the struct inode on success. Check the return value with IS_ERR() and
169 * if true, the function failed and the error code is obtained from PTR_ERR().
171 struct inode
*ntfs_iget(struct super_block
*sb
, unsigned long mft_no
)
182 vi
= iget5_locked(sb
, mft_no
, (test_t
)ntfs_test_inode
,
183 (set_t
)ntfs_init_locked_inode
, &na
);
185 return ERR_PTR(-ENOMEM
);
189 /* If this is a freshly allocated inode, need to read it now. */
190 if (vi
->i_state
& I_NEW
) {
191 err
= ntfs_read_locked_inode(vi
);
192 unlock_new_inode(vi
);
195 * There is no point in keeping bad inodes around if the failure was
196 * due to ENOMEM. We want to be able to retry again later.
198 if (unlikely(err
== -ENOMEM
)) {
206 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
207 * @base_vi: vfs base inode containing the attribute
208 * @type: attribute type
209 * @name: Unicode name of the attribute (NULL if unnamed)
210 * @name_len: length of @name in Unicode characters (0 if unnamed)
212 * Obtain the (fake) struct inode corresponding to the attribute specified by
213 * @type, @name, and @name_len, which is present in the base mft record
214 * specified by the vfs inode @base_vi.
216 * If the attribute inode is in the cache, it is just returned with an
217 * increased reference count. Otherwise, a new struct inode is allocated and
218 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
219 * attribute and fill in the inode structure.
221 * Note, for index allocation attributes, you need to use ntfs_index_iget()
222 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
224 * Return the struct inode of the attribute inode on success. Check the return
225 * value with IS_ERR() and if true, the function failed and the error code is
226 * obtained from PTR_ERR().
228 struct inode
*ntfs_attr_iget(struct inode
*base_vi
, ATTR_TYPE type
,
229 ntfschar
*name
, u32 name_len
)
235 /* Make sure no one calls ntfs_attr_iget() for indices. */
236 BUG_ON(type
== AT_INDEX_ALLOCATION
);
238 na
.mft_no
= base_vi
->i_ino
;
241 na
.name_len
= name_len
;
243 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
244 (set_t
)ntfs_init_locked_inode
, &na
);
246 return ERR_PTR(-ENOMEM
);
250 /* If this is a freshly allocated inode, need to read it now. */
251 if (vi
->i_state
& I_NEW
) {
252 err
= ntfs_read_locked_attr_inode(base_vi
, vi
);
253 unlock_new_inode(vi
);
256 * There is no point in keeping bad attribute inodes around. This also
257 * simplifies things in that we never need to check for bad attribute
268 * ntfs_index_iget - obtain a struct inode corresponding to an index
269 * @base_vi: vfs base inode containing the index related attributes
270 * @name: Unicode name of the index
271 * @name_len: length of @name in Unicode characters
273 * Obtain the (fake) struct inode corresponding to the index specified by @name
274 * and @name_len, which is present in the base mft record specified by the vfs
277 * If the index inode is in the cache, it is just returned with an increased
278 * reference count. Otherwise, a new struct inode is allocated and
279 * initialized, and finally ntfs_read_locked_index_inode() is called to read
280 * the index related attributes and fill in the inode structure.
282 * Return the struct inode of the index inode on success. Check the return
283 * value with IS_ERR() and if true, the function failed and the error code is
284 * obtained from PTR_ERR().
286 struct inode
*ntfs_index_iget(struct inode
*base_vi
, ntfschar
*name
,
293 na
.mft_no
= base_vi
->i_ino
;
294 na
.type
= AT_INDEX_ALLOCATION
;
296 na
.name_len
= name_len
;
298 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
299 (set_t
)ntfs_init_locked_inode
, &na
);
301 return ERR_PTR(-ENOMEM
);
305 /* If this is a freshly allocated inode, need to read it now. */
306 if (vi
->i_state
& I_NEW
) {
307 err
= ntfs_read_locked_index_inode(base_vi
, vi
);
308 unlock_new_inode(vi
);
311 * There is no point in keeping bad index inodes around. This also
312 * simplifies things in that we never need to check for bad index
322 struct inode
*ntfs_alloc_big_inode(struct super_block
*sb
)
326 ntfs_debug("Entering.");
327 ni
= kmem_cache_alloc(ntfs_big_inode_cache
, GFP_NOFS
);
328 if (likely(ni
!= NULL
)) {
332 ntfs_error(sb
, "Allocation of NTFS big inode structure failed.");
336 static void ntfs_i_callback(struct rcu_head
*head
)
338 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
339 kmem_cache_free(ntfs_big_inode_cache
, NTFS_I(inode
));
342 void ntfs_destroy_big_inode(struct inode
*inode
)
344 ntfs_inode
*ni
= NTFS_I(inode
);
346 ntfs_debug("Entering.");
348 if (!atomic_dec_and_test(&ni
->count
))
350 call_rcu(&inode
->i_rcu
, ntfs_i_callback
);
353 static inline ntfs_inode
*ntfs_alloc_extent_inode(void)
357 ntfs_debug("Entering.");
358 ni
= kmem_cache_alloc(ntfs_inode_cache
, GFP_NOFS
);
359 if (likely(ni
!= NULL
)) {
363 ntfs_error(NULL
, "Allocation of NTFS inode structure failed.");
367 static void ntfs_destroy_extent_inode(ntfs_inode
*ni
)
369 ntfs_debug("Entering.");
371 if (!atomic_dec_and_test(&ni
->count
))
373 kmem_cache_free(ntfs_inode_cache
, ni
);
377 * The attribute runlist lock has separate locking rules from the
378 * normal runlist lock, so split the two lock-classes:
380 static struct lock_class_key attr_list_rl_lock_class
;
383 * __ntfs_init_inode - initialize ntfs specific part of an inode
384 * @sb: super block of mounted volume
385 * @ni: freshly allocated ntfs inode which to initialize
387 * Initialize an ntfs inode to defaults.
389 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
390 * untouched. Make sure to initialize them elsewhere.
392 * Return zero on success and -ENOMEM on error.
394 void __ntfs_init_inode(struct super_block
*sb
, ntfs_inode
*ni
)
396 ntfs_debug("Entering.");
397 rwlock_init(&ni
->size_lock
);
398 ni
->initialized_size
= ni
->allocated_size
= 0;
400 atomic_set(&ni
->count
, 1);
401 ni
->vol
= NTFS_SB(sb
);
402 ntfs_init_runlist(&ni
->runlist
);
403 mutex_init(&ni
->mrec_lock
);
406 ni
->attr_list_size
= 0;
407 ni
->attr_list
= NULL
;
408 ntfs_init_runlist(&ni
->attr_list_rl
);
409 lockdep_set_class(&ni
->attr_list_rl
.lock
,
410 &attr_list_rl_lock_class
);
411 ni
->itype
.index
.block_size
= 0;
412 ni
->itype
.index
.vcn_size
= 0;
413 ni
->itype
.index
.collation_rule
= 0;
414 ni
->itype
.index
.block_size_bits
= 0;
415 ni
->itype
.index
.vcn_size_bits
= 0;
416 mutex_init(&ni
->extent_lock
);
418 ni
->ext
.base_ntfs_ino
= NULL
;
422 * Extent inodes get MFT-mapped in a nested way, while the base inode
423 * is still mapped. Teach this nesting to the lock validator by creating
424 * a separate class for nested inode's mrec_lock's:
426 static struct lock_class_key extent_inode_mrec_lock_key
;
428 inline ntfs_inode
*ntfs_new_extent_inode(struct super_block
*sb
,
429 unsigned long mft_no
)
431 ntfs_inode
*ni
= ntfs_alloc_extent_inode();
433 ntfs_debug("Entering.");
434 if (likely(ni
!= NULL
)) {
435 __ntfs_init_inode(sb
, ni
);
436 lockdep_set_class(&ni
->mrec_lock
, &extent_inode_mrec_lock_key
);
438 ni
->type
= AT_UNUSED
;
446 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
447 * @ctx: initialized attribute search context
449 * Search all file name attributes in the inode described by the attribute
450 * search context @ctx and check if any of the names are in the $Extend system
454 * 1: file is in $Extend directory
455 * 0: file is not in $Extend directory
456 * -errno: failed to determine if the file is in the $Extend directory
458 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx
*ctx
)
462 /* Restart search. */
463 ntfs_attr_reinit_search_ctx(ctx
);
465 /* Get number of hard links. */
466 nr_links
= le16_to_cpu(ctx
->mrec
->link_count
);
468 /* Loop through all hard links. */
469 while (!(err
= ntfs_attr_lookup(AT_FILE_NAME
, NULL
, 0, 0, 0, NULL
, 0,
471 FILE_NAME_ATTR
*file_name_attr
;
472 ATTR_RECORD
*attr
= ctx
->attr
;
477 * Maximum sanity checking as we are called on an inode that
478 * we suspect might be corrupt.
480 p
= (u8
*)attr
+ le32_to_cpu(attr
->length
);
481 if (p
< (u8
*)ctx
->mrec
|| (u8
*)p
> (u8
*)ctx
->mrec
+
482 le32_to_cpu(ctx
->mrec
->bytes_in_use
)) {
484 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Corrupt file name "
485 "attribute. You should run chkdsk.");
488 if (attr
->non_resident
) {
489 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Non-resident file "
490 "name. You should run chkdsk.");
494 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "File name with "
495 "invalid flags. You should run "
499 if (!(attr
->data
.resident
.flags
& RESIDENT_ATTR_IS_INDEXED
)) {
500 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Unindexed file "
501 "name. You should run chkdsk.");
504 file_name_attr
= (FILE_NAME_ATTR
*)((u8
*)attr
+
505 le16_to_cpu(attr
->data
.resident
.value_offset
));
506 p2
= (u8
*)attr
+ le32_to_cpu(attr
->data
.resident
.value_length
);
507 if (p2
< (u8
*)attr
|| p2
> p
)
508 goto err_corrupt_attr
;
509 /* This attribute is ok, but is it in the $Extend directory? */
510 if (MREF_LE(file_name_attr
->parent_directory
) == FILE_Extend
)
511 return 1; /* YES, it's an extended system file. */
513 if (unlikely(err
!= -ENOENT
))
515 if (unlikely(nr_links
)) {
516 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Inode hard link count "
517 "doesn't match number of name attributes. You "
518 "should run chkdsk.");
521 return 0; /* NO, it is not an extended system file. */
525 * ntfs_read_locked_inode - read an inode from its device
528 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
529 * described by @vi into memory from the device.
531 * The only fields in @vi that we need to/can look at when the function is
532 * called are i_sb, pointing to the mounted device's super block, and i_ino,
533 * the number of the inode to load.
535 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
536 * for reading and sets up the necessary @vi fields as well as initializing
539 * Q: What locks are held when the function is called?
540 * A: i_state has I_NEW set, hence the inode is locked, also
541 * i_count is set to 1, so it is not going to go away
542 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
543 * is allowed to write to them. We should of course be honouring them but
544 * we need to do that using the IS_* macros defined in include/linux/fs.h.
545 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
547 * Return 0 on success and -errno on error. In the error case, the inode will
548 * have had make_bad_inode() executed on it.
550 static int ntfs_read_locked_inode(struct inode
*vi
)
552 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
557 STANDARD_INFORMATION
*si
;
558 ntfs_attr_search_ctx
*ctx
;
561 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
563 /* Setup the generic vfs inode parts now. */
566 * This is for checking whether an inode has changed w.r.t. a file so
567 * that the file can be updated if necessary (compare with f_version).
571 vi
->i_uid
= vol
->uid
;
572 vi
->i_gid
= vol
->gid
;
576 * Initialize the ntfs specific part of @vi special casing
577 * FILE_MFT which we need to do at mount time.
579 if (vi
->i_ino
!= FILE_MFT
)
580 ntfs_init_big_inode(vi
);
583 m
= map_mft_record(ni
);
588 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
594 if (!(m
->flags
& MFT_RECORD_IN_USE
)) {
595 ntfs_error(vi
->i_sb
, "Inode is not in use!");
598 if (m
->base_mft_record
) {
599 ntfs_error(vi
->i_sb
, "Inode is an extent inode!");
603 /* Transfer information from mft record into vfs and ntfs inodes. */
604 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
607 * FIXME: Keep in mind that link_count is two for files which have both
608 * a long file name and a short file name as separate entries, so if
609 * we are hiding short file names this will be too high. Either we need
610 * to account for the short file names by subtracting them or we need
611 * to make sure we delete files even though i_nlink is not zero which
612 * might be tricky due to vfs interactions. Need to think about this
613 * some more when implementing the unlink command.
615 set_nlink(vi
, le16_to_cpu(m
->link_count
));
617 * FIXME: Reparse points can have the directory bit set even though
618 * they would be S_IFLNK. Need to deal with this further below when we
619 * implement reparse points / symbolic links but it will do for now.
620 * Also if not a directory, it could be something else, rather than
621 * a regular file. But again, will do for now.
623 /* Everyone gets all permissions. */
624 vi
->i_mode
|= S_IRWXUGO
;
625 /* If read-only, no one gets write permissions. */
627 vi
->i_mode
&= ~S_IWUGO
;
628 if (m
->flags
& MFT_RECORD_IS_DIRECTORY
) {
629 vi
->i_mode
|= S_IFDIR
;
631 * Apply the directory permissions mask set in the mount
634 vi
->i_mode
&= ~vol
->dmask
;
635 /* Things break without this kludge! */
639 vi
->i_mode
|= S_IFREG
;
640 /* Apply the file permissions mask set in the mount options. */
641 vi
->i_mode
&= ~vol
->fmask
;
644 * Find the standard information attribute in the mft record. At this
645 * stage we haven't setup the attribute list stuff yet, so this could
646 * in fact fail if the standard information is in an extent record, but
647 * I don't think this actually ever happens.
649 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
652 if (err
== -ENOENT
) {
654 * TODO: We should be performing a hot fix here (if the
655 * recover mount option is set) by creating a new
658 ntfs_error(vi
->i_sb
, "$STANDARD_INFORMATION attribute "
664 /* Get the standard information attribute value. */
665 si
= (STANDARD_INFORMATION
*)((u8
*)a
+
666 le16_to_cpu(a
->data
.resident
.value_offset
));
668 /* Transfer information from the standard information into vi. */
670 * Note: The i_?times do not quite map perfectly onto the NTFS times,
671 * but they are close enough, and in the end it doesn't really matter
675 * mtime is the last change of the data within the file. Not changed
676 * when only metadata is changed, e.g. a rename doesn't affect mtime.
678 vi
->i_mtime
= ntfs2utc(si
->last_data_change_time
);
680 * ctime is the last change of the metadata of the file. This obviously
681 * always changes, when mtime is changed. ctime can be changed on its
682 * own, mtime is then not changed, e.g. when a file is renamed.
684 vi
->i_ctime
= ntfs2utc(si
->last_mft_change_time
);
686 * Last access to the data within the file. Not changed during a rename
687 * for example but changed whenever the file is written to.
689 vi
->i_atime
= ntfs2utc(si
->last_access_time
);
691 /* Find the attribute list attribute if present. */
692 ntfs_attr_reinit_search_ctx(ctx
);
693 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
695 if (unlikely(err
!= -ENOENT
)) {
696 ntfs_error(vi
->i_sb
, "Failed to lookup attribute list "
700 } else /* if (!err) */ {
701 if (vi
->i_ino
== FILE_MFT
)
702 goto skip_attr_list_load
;
703 ntfs_debug("Attribute list found in inode 0x%lx.", vi
->i_ino
);
706 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
707 ntfs_error(vi
->i_sb
, "Attribute list attribute is "
711 if (a
->flags
& ATTR_IS_ENCRYPTED
||
712 a
->flags
& ATTR_IS_SPARSE
) {
713 if (a
->non_resident
) {
714 ntfs_error(vi
->i_sb
, "Non-resident attribute "
715 "list attribute is encrypted/"
719 ntfs_warning(vi
->i_sb
, "Resident attribute list "
720 "attribute in inode 0x%lx is marked "
721 "encrypted/sparse which is not true. "
722 "However, Windows allows this and "
723 "chkdsk does not detect or correct it "
724 "so we will just ignore the invalid "
725 "flags and pretend they are not set.",
728 /* Now allocate memory for the attribute list. */
729 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
730 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
731 if (!ni
->attr_list
) {
732 ntfs_error(vi
->i_sb
, "Not enough memory to allocate "
733 "buffer for attribute list.");
737 if (a
->non_resident
) {
738 NInoSetAttrListNonResident(ni
);
739 if (a
->data
.non_resident
.lowest_vcn
) {
740 ntfs_error(vi
->i_sb
, "Attribute list has non "
745 * Setup the runlist. No need for locking as we have
746 * exclusive access to the inode at this time.
748 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
750 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
751 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
752 ni
->attr_list_rl
.rl
= NULL
;
753 ntfs_error(vi
->i_sb
, "Mapping pairs "
754 "decompression failed.");
757 /* Now load the attribute list. */
758 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
759 ni
->attr_list
, ni
->attr_list_size
,
760 sle64_to_cpu(a
->data
.non_resident
.
761 initialized_size
)))) {
762 ntfs_error(vi
->i_sb
, "Failed to load "
763 "attribute list attribute.");
766 } else /* if (!a->non_resident) */ {
767 if ((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
)
769 a
->data
.resident
.value_length
) >
770 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
771 ntfs_error(vi
->i_sb
, "Corrupt attribute list "
775 /* Now copy the attribute list. */
776 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
777 a
->data
.resident
.value_offset
),
779 a
->data
.resident
.value_length
));
784 * If an attribute list is present we now have the attribute list value
785 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
787 if (S_ISDIR(vi
->i_mode
)) {
791 u8
*ir_end
, *index_end
;
793 /* It is a directory, find index root attribute. */
794 ntfs_attr_reinit_search_ctx(ctx
);
795 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, I30
, 4, CASE_SENSITIVE
,
798 if (err
== -ENOENT
) {
799 // FIXME: File is corrupt! Hot-fix with empty
800 // index root attribute if recovery option is
802 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute "
808 /* Set up the state. */
809 if (unlikely(a
->non_resident
)) {
810 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not "
814 /* Ensure the attribute name is placed before the value. */
815 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
816 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
817 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is "
818 "placed after the attribute value.");
822 * Compressed/encrypted index root just means that the newly
823 * created files in that directory should be created compressed/
824 * encrypted. However index root cannot be both compressed and
827 if (a
->flags
& ATTR_COMPRESSION_MASK
)
828 NInoSetCompressed(ni
);
829 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
830 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
831 ntfs_error(vi
->i_sb
, "Found encrypted and "
832 "compressed attribute.");
835 NInoSetEncrypted(ni
);
837 if (a
->flags
& ATTR_IS_SPARSE
)
839 ir
= (INDEX_ROOT
*)((u8
*)a
+
840 le16_to_cpu(a
->data
.resident
.value_offset
));
841 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
842 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
843 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
847 index_end
= (u8
*)&ir
->index
+
848 le32_to_cpu(ir
->index
.index_length
);
849 if (index_end
> ir_end
) {
850 ntfs_error(vi
->i_sb
, "Directory index is corrupt.");
853 if (ir
->type
!= AT_FILE_NAME
) {
854 ntfs_error(vi
->i_sb
, "Indexed attribute is not "
858 if (ir
->collation_rule
!= COLLATION_FILE_NAME
) {
859 ntfs_error(vi
->i_sb
, "Index collation rule is not "
860 "COLLATION_FILE_NAME.");
863 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
864 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
865 if (ni
->itype
.index
.block_size
&
866 (ni
->itype
.index
.block_size
- 1)) {
867 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a "
869 ni
->itype
.index
.block_size
);
872 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
873 ntfs_error(vi
->i_sb
, "Index block size (%u) > "
874 "PAGE_CACHE_SIZE (%ld) is not "
876 ni
->itype
.index
.block_size
,
881 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
882 ntfs_error(vi
->i_sb
, "Index block size (%u) < "
883 "NTFS_BLOCK_SIZE (%i) is not "
885 ni
->itype
.index
.block_size
,
890 ni
->itype
.index
.block_size_bits
=
891 ffs(ni
->itype
.index
.block_size
) - 1;
892 /* Determine the size of a vcn in the directory index. */
893 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
894 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
895 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
897 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
898 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
901 /* Setup the index allocation attribute, even if not present. */
902 NInoSetMstProtected(ni
);
903 ni
->type
= AT_INDEX_ALLOCATION
;
907 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
908 /* No index allocation. */
909 vi
->i_size
= ni
->initialized_size
=
910 ni
->allocated_size
= 0;
911 /* We are done with the mft record, so we release it. */
912 ntfs_attr_put_search_ctx(ctx
);
913 unmap_mft_record(ni
);
916 goto skip_large_dir_stuff
;
917 } /* LARGE_INDEX: Index allocation present. Setup state. */
918 NInoSetIndexAllocPresent(ni
);
919 /* Find index allocation attribute. */
920 ntfs_attr_reinit_search_ctx(ctx
);
921 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, I30
, 4,
922 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
925 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION "
926 "attribute is not present but "
927 "$INDEX_ROOT indicated it is.");
929 ntfs_error(vi
->i_sb
, "Failed to lookup "
935 if (!a
->non_resident
) {
936 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
941 * Ensure the attribute name is placed before the mapping pairs
944 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
946 a
->data
.non_resident
.mapping_pairs_offset
)))) {
947 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name "
948 "is placed after the mapping pairs "
952 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
953 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
957 if (a
->flags
& ATTR_IS_SPARSE
) {
958 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
962 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
963 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
967 if (a
->data
.non_resident
.lowest_vcn
) {
968 ntfs_error(vi
->i_sb
, "First extent of "
969 "$INDEX_ALLOCATION attribute has non "
973 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
974 ni
->initialized_size
= sle64_to_cpu(
975 a
->data
.non_resident
.initialized_size
);
976 ni
->allocated_size
= sle64_to_cpu(
977 a
->data
.non_resident
.allocated_size
);
979 * We are done with the mft record, so we release it. Otherwise
980 * we would deadlock in ntfs_attr_iget().
982 ntfs_attr_put_search_ctx(ctx
);
983 unmap_mft_record(ni
);
986 /* Get the index bitmap attribute inode. */
987 bvi
= ntfs_attr_iget(vi
, AT_BITMAP
, I30
, 4);
989 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
994 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
996 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed "
997 "and/or encrypted and/or sparse.");
998 goto iput_unm_err_out
;
1000 /* Consistency check bitmap size vs. index allocation size. */
1001 bvi_size
= i_size_read(bvi
);
1002 if ((bvi_size
<< 3) < (vi
->i_size
>>
1003 ni
->itype
.index
.block_size_bits
)) {
1004 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) "
1005 "for index allocation (0x%llx).",
1006 bvi_size
<< 3, vi
->i_size
);
1007 goto iput_unm_err_out
;
1009 /* No longer need the bitmap attribute inode. */
1011 skip_large_dir_stuff
:
1012 /* Setup the operations for this inode. */
1013 vi
->i_op
= &ntfs_dir_inode_ops
;
1014 vi
->i_fop
= &ntfs_dir_ops
;
1017 ntfs_attr_reinit_search_ctx(ctx
);
1019 /* Setup the data attribute, even if not present. */
1024 /* Find first extent of the unnamed data attribute. */
1025 err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1026 if (unlikely(err
)) {
1027 vi
->i_size
= ni
->initialized_size
=
1028 ni
->allocated_size
= 0;
1029 if (err
!= -ENOENT
) {
1030 ntfs_error(vi
->i_sb
, "Failed to lookup $DATA "
1035 * FILE_Secure does not have an unnamed $DATA
1036 * attribute, so we special case it here.
1038 if (vi
->i_ino
== FILE_Secure
)
1039 goto no_data_attr_special_case
;
1041 * Most if not all the system files in the $Extend
1042 * system directory do not have unnamed data
1043 * attributes so we need to check if the parent
1044 * directory of the file is FILE_Extend and if it is
1045 * ignore this error. To do this we need to get the
1046 * name of this inode from the mft record as the name
1047 * contains the back reference to the parent directory.
1049 if (ntfs_is_extended_system_file(ctx
) > 0)
1050 goto no_data_attr_special_case
;
1051 // FIXME: File is corrupt! Hot-fix with empty data
1052 // attribute if recovery option is set.
1053 ntfs_error(vi
->i_sb
, "$DATA attribute is missing.");
1057 /* Setup the state. */
1058 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1059 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1060 NInoSetCompressed(ni
);
1061 if (vol
->cluster_size
> 4096) {
1062 ntfs_error(vi
->i_sb
, "Found "
1063 "compressed data but "
1066 "cluster size (%i) > "
1071 if ((a
->flags
& ATTR_COMPRESSION_MASK
)
1072 != ATTR_IS_COMPRESSED
) {
1073 ntfs_error(vi
->i_sb
, "Found unknown "
1074 "compression method "
1075 "or corrupt file.");
1079 if (a
->flags
& ATTR_IS_SPARSE
)
1082 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1083 if (NInoCompressed(ni
)) {
1084 ntfs_error(vi
->i_sb
, "Found encrypted and "
1085 "compressed data.");
1088 NInoSetEncrypted(ni
);
1090 if (a
->non_resident
) {
1091 NInoSetNonResident(ni
);
1092 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1093 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1094 compression_unit
!= 4) {
1095 ntfs_error(vi
->i_sb
, "Found "
1097 "compression unit (%u "
1099 "Cannot handle this.",
1100 a
->data
.non_resident
.
1105 if (a
->data
.non_resident
.compression_unit
) {
1106 ni
->itype
.compressed
.block_size
= 1U <<
1107 (a
->data
.non_resident
.
1109 vol
->cluster_size_bits
);
1110 ni
->itype
.compressed
.block_size_bits
=
1114 ni
->itype
.compressed
.block_clusters
=
1119 ni
->itype
.compressed
.block_size
= 0;
1120 ni
->itype
.compressed
.block_size_bits
=
1122 ni
->itype
.compressed
.block_clusters
=
1125 ni
->itype
.compressed
.size
= sle64_to_cpu(
1126 a
->data
.non_resident
.
1129 if (a
->data
.non_resident
.lowest_vcn
) {
1130 ntfs_error(vi
->i_sb
, "First extent of $DATA "
1131 "attribute has non zero "
1135 vi
->i_size
= sle64_to_cpu(
1136 a
->data
.non_resident
.data_size
);
1137 ni
->initialized_size
= sle64_to_cpu(
1138 a
->data
.non_resident
.initialized_size
);
1139 ni
->allocated_size
= sle64_to_cpu(
1140 a
->data
.non_resident
.allocated_size
);
1141 } else { /* Resident attribute. */
1142 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1143 a
->data
.resident
.value_length
);
1144 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1146 a
->data
.resident
.value_offset
);
1147 if (vi
->i_size
> ni
->allocated_size
) {
1148 ntfs_error(vi
->i_sb
, "Resident data attribute "
1149 "is corrupt (size exceeds "
1154 no_data_attr_special_case
:
1155 /* We are done with the mft record, so we release it. */
1156 ntfs_attr_put_search_ctx(ctx
);
1157 unmap_mft_record(ni
);
1160 /* Setup the operations for this inode. */
1161 vi
->i_op
= &ntfs_file_inode_ops
;
1162 vi
->i_fop
= &ntfs_file_ops
;
1164 if (NInoMstProtected(ni
))
1165 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1167 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1169 * The number of 512-byte blocks used on disk (for stat). This is in so
1170 * far inaccurate as it doesn't account for any named streams or other
1171 * special non-resident attributes, but that is how Windows works, too,
1172 * so we are at least consistent with Windows, if not entirely
1173 * consistent with the Linux Way. Doing it the Linux Way would cause a
1174 * significant slowdown as it would involve iterating over all
1175 * attributes in the mft record and adding the allocated/compressed
1176 * sizes of all non-resident attributes present to give us the Linux
1177 * correct size that should go into i_blocks (after division by 512).
1179 if (S_ISREG(vi
->i_mode
) && (NInoCompressed(ni
) || NInoSparse(ni
)))
1180 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1182 vi
->i_blocks
= ni
->allocated_size
>> 9;
1183 ntfs_debug("Done.");
1191 ntfs_attr_put_search_ctx(ctx
);
1193 unmap_mft_record(ni
);
1195 ntfs_error(vol
->sb
, "Failed with error code %i. Marking corrupt "
1196 "inode 0x%lx as bad. Run chkdsk.", err
, vi
->i_ino
);
1198 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1204 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1205 * @base_vi: base inode
1206 * @vi: attribute inode to read
1208 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1209 * attribute inode described by @vi into memory from the base mft record
1210 * described by @base_ni.
1212 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1213 * reading and looks up the attribute described by @vi before setting up the
1214 * necessary fields in @vi as well as initializing the ntfs inode.
1216 * Q: What locks are held when the function is called?
1217 * A: i_state has I_NEW set, hence the inode is locked, also
1218 * i_count is set to 1, so it is not going to go away
1220 * Return 0 on success and -errno on error. In the error case, the inode will
1221 * have had make_bad_inode() executed on it.
1223 * Note this cannot be called for AT_INDEX_ALLOCATION.
1225 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
)
1227 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1228 ntfs_inode
*ni
, *base_ni
;
1231 ntfs_attr_search_ctx
*ctx
;
1234 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1236 ntfs_init_big_inode(vi
);
1239 base_ni
= NTFS_I(base_vi
);
1241 /* Just mirror the values from the base inode. */
1242 vi
->i_version
= base_vi
->i_version
;
1243 vi
->i_uid
= base_vi
->i_uid
;
1244 vi
->i_gid
= base_vi
->i_gid
;
1245 set_nlink(vi
, base_vi
->i_nlink
);
1246 vi
->i_mtime
= base_vi
->i_mtime
;
1247 vi
->i_ctime
= base_vi
->i_ctime
;
1248 vi
->i_atime
= base_vi
->i_atime
;
1249 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1251 /* Set inode type to zero but preserve permissions. */
1252 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1254 m
= map_mft_record(base_ni
);
1259 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1264 /* Find the attribute. */
1265 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1266 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1270 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1271 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1272 NInoSetCompressed(ni
);
1273 if ((ni
->type
!= AT_DATA
) || (ni
->type
== AT_DATA
&&
1275 ntfs_error(vi
->i_sb
, "Found compressed "
1276 "non-data or named data "
1277 "attribute. Please report "
1278 "you saw this message to "
1279 "linux-ntfs-dev@lists."
1283 if (vol
->cluster_size
> 4096) {
1284 ntfs_error(vi
->i_sb
, "Found compressed "
1285 "attribute but compression is "
1286 "disabled due to cluster size "
1291 if ((a
->flags
& ATTR_COMPRESSION_MASK
) !=
1292 ATTR_IS_COMPRESSED
) {
1293 ntfs_error(vi
->i_sb
, "Found unknown "
1294 "compression method.");
1299 * The compressed/sparse flag set in an index root just means
1300 * to compress all files.
1302 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1303 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1304 "but the attribute is %s. Please "
1305 "report you saw this message to "
1306 "linux-ntfs-dev@lists.sourceforge.net",
1307 NInoCompressed(ni
) ? "compressed" :
1311 if (a
->flags
& ATTR_IS_SPARSE
)
1314 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1315 if (NInoCompressed(ni
)) {
1316 ntfs_error(vi
->i_sb
, "Found encrypted and compressed "
1321 * The encryption flag set in an index root just means to
1322 * encrypt all files.
1324 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1325 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1326 "but the attribute is encrypted. "
1327 "Please report you saw this message "
1328 "to linux-ntfs-dev@lists.sourceforge."
1332 if (ni
->type
!= AT_DATA
) {
1333 ntfs_error(vi
->i_sb
, "Found encrypted non-data "
1337 NInoSetEncrypted(ni
);
1339 if (!a
->non_resident
) {
1340 /* Ensure the attribute name is placed before the value. */
1341 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1342 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1343 ntfs_error(vol
->sb
, "Attribute name is placed after "
1344 "the attribute value.");
1347 if (NInoMstProtected(ni
)) {
1348 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1349 "but the attribute is resident. "
1350 "Please report you saw this message to "
1351 "linux-ntfs-dev@lists.sourceforge.net");
1354 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1355 a
->data
.resident
.value_length
);
1356 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1357 le16_to_cpu(a
->data
.resident
.value_offset
);
1358 if (vi
->i_size
> ni
->allocated_size
) {
1359 ntfs_error(vi
->i_sb
, "Resident attribute is corrupt "
1360 "(size exceeds allocation).");
1364 NInoSetNonResident(ni
);
1366 * Ensure the attribute name is placed before the mapping pairs
1369 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1371 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1372 ntfs_error(vol
->sb
, "Attribute name is placed after "
1373 "the mapping pairs array.");
1376 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1377 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1378 compression_unit
!= 4) {
1379 ntfs_error(vi
->i_sb
, "Found non-standard "
1380 "compression unit (%u instead "
1381 "of 4). Cannot handle this.",
1382 a
->data
.non_resident
.
1387 if (a
->data
.non_resident
.compression_unit
) {
1388 ni
->itype
.compressed
.block_size
= 1U <<
1389 (a
->data
.non_resident
.
1391 vol
->cluster_size_bits
);
1392 ni
->itype
.compressed
.block_size_bits
=
1393 ffs(ni
->itype
.compressed
.
1395 ni
->itype
.compressed
.block_clusters
= 1U <<
1396 a
->data
.non_resident
.
1399 ni
->itype
.compressed
.block_size
= 0;
1400 ni
->itype
.compressed
.block_size_bits
= 0;
1401 ni
->itype
.compressed
.block_clusters
= 0;
1403 ni
->itype
.compressed
.size
= sle64_to_cpu(
1404 a
->data
.non_resident
.compressed_size
);
1406 if (a
->data
.non_resident
.lowest_vcn
) {
1407 ntfs_error(vi
->i_sb
, "First extent of attribute has "
1408 "non-zero lowest_vcn.");
1411 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1412 ni
->initialized_size
= sle64_to_cpu(
1413 a
->data
.non_resident
.initialized_size
);
1414 ni
->allocated_size
= sle64_to_cpu(
1415 a
->data
.non_resident
.allocated_size
);
1417 if (NInoMstProtected(ni
))
1418 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1420 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1421 if ((NInoCompressed(ni
) || NInoSparse(ni
)) && ni
->type
!= AT_INDEX_ROOT
)
1422 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1424 vi
->i_blocks
= ni
->allocated_size
>> 9;
1426 * Make sure the base inode does not go away and attach it to the
1430 ni
->ext
.base_ntfs_ino
= base_ni
;
1431 ni
->nr_extents
= -1;
1433 ntfs_attr_put_search_ctx(ctx
);
1434 unmap_mft_record(base_ni
);
1436 ntfs_debug("Done.");
1443 ntfs_attr_put_search_ctx(ctx
);
1444 unmap_mft_record(base_ni
);
1446 ntfs_error(vol
->sb
, "Failed with error code %i while reading attribute "
1447 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1448 "Marking corrupt inode and base inode 0x%lx as bad. "
1449 "Run chkdsk.", err
, vi
->i_ino
, ni
->type
, ni
->name_len
,
1458 * ntfs_read_locked_index_inode - read an index inode from its base inode
1459 * @base_vi: base inode
1460 * @vi: index inode to read
1462 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1463 * index inode described by @vi into memory from the base mft record described
1466 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1467 * reading and looks up the attributes relating to the index described by @vi
1468 * before setting up the necessary fields in @vi as well as initializing the
1471 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1472 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1473 * are setup like directory inodes since directories are a special case of
1474 * indices ao they need to be treated in much the same way. Most importantly,
1475 * for small indices the index allocation attribute might not actually exist.
1476 * However, the index root attribute always exists but this does not need to
1477 * have an inode associated with it and this is why we define a new inode type
1478 * index. Also, like for directories, we need to have an attribute inode for
1479 * the bitmap attribute corresponding to the index allocation attribute and we
1480 * can store this in the appropriate field of the inode, just like we do for
1481 * normal directory inodes.
1483 * Q: What locks are held when the function is called?
1484 * A: i_state has I_NEW set, hence the inode is locked, also
1485 * i_count is set to 1, so it is not going to go away
1487 * Return 0 on success and -errno on error. In the error case, the inode will
1488 * have had make_bad_inode() executed on it.
1490 static int ntfs_read_locked_index_inode(struct inode
*base_vi
, struct inode
*vi
)
1493 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1494 ntfs_inode
*ni
, *base_ni
, *bni
;
1498 ntfs_attr_search_ctx
*ctx
;
1500 u8
*ir_end
, *index_end
;
1503 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1504 ntfs_init_big_inode(vi
);
1506 base_ni
= NTFS_I(base_vi
);
1507 /* Just mirror the values from the base inode. */
1508 vi
->i_version
= base_vi
->i_version
;
1509 vi
->i_uid
= base_vi
->i_uid
;
1510 vi
->i_gid
= base_vi
->i_gid
;
1511 set_nlink(vi
, base_vi
->i_nlink
);
1512 vi
->i_mtime
= base_vi
->i_mtime
;
1513 vi
->i_ctime
= base_vi
->i_ctime
;
1514 vi
->i_atime
= base_vi
->i_atime
;
1515 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1516 /* Set inode type to zero but preserve permissions. */
1517 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1518 /* Map the mft record for the base inode. */
1519 m
= map_mft_record(base_ni
);
1524 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1529 /* Find the index root attribute. */
1530 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, ni
->name
, ni
->name_len
,
1531 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1532 if (unlikely(err
)) {
1534 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
1539 /* Set up the state. */
1540 if (unlikely(a
->non_resident
)) {
1541 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not resident.");
1544 /* Ensure the attribute name is placed before the value. */
1545 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1546 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1547 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is placed "
1548 "after the attribute value.");
1552 * Compressed/encrypted/sparse index root is not allowed, except for
1553 * directories of course but those are not dealt with here.
1555 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_ENCRYPTED
|
1557 ntfs_error(vi
->i_sb
, "Found compressed/encrypted/sparse index "
1561 ir
= (INDEX_ROOT
*)((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
));
1562 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
1563 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1564 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is corrupt.");
1567 index_end
= (u8
*)&ir
->index
+ le32_to_cpu(ir
->index
.index_length
);
1568 if (index_end
> ir_end
) {
1569 ntfs_error(vi
->i_sb
, "Index is corrupt.");
1573 ntfs_error(vi
->i_sb
, "Index type is not 0 (type is 0x%x).",
1574 le32_to_cpu(ir
->type
));
1577 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
1578 ntfs_debug("Index collation rule is 0x%x.",
1579 le32_to_cpu(ir
->collation_rule
));
1580 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
1581 if (!is_power_of_2(ni
->itype
.index
.block_size
)) {
1582 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a power of "
1583 "two.", ni
->itype
.index
.block_size
);
1586 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
1587 ntfs_error(vi
->i_sb
, "Index block size (%u) > PAGE_CACHE_SIZE "
1588 "(%ld) is not supported. Sorry.",
1589 ni
->itype
.index
.block_size
, PAGE_CACHE_SIZE
);
1593 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
1594 ntfs_error(vi
->i_sb
, "Index block size (%u) < NTFS_BLOCK_SIZE "
1595 "(%i) is not supported. Sorry.",
1596 ni
->itype
.index
.block_size
, NTFS_BLOCK_SIZE
);
1600 ni
->itype
.index
.block_size_bits
= ffs(ni
->itype
.index
.block_size
) - 1;
1601 /* Determine the size of a vcn in the index. */
1602 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
1603 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
1604 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
1606 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
1607 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
1609 /* Check for presence of index allocation attribute. */
1610 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
1611 /* No index allocation. */
1612 vi
->i_size
= ni
->initialized_size
= ni
->allocated_size
= 0;
1613 /* We are done with the mft record, so we release it. */
1614 ntfs_attr_put_search_ctx(ctx
);
1615 unmap_mft_record(base_ni
);
1618 goto skip_large_index_stuff
;
1619 } /* LARGE_INDEX: Index allocation present. Setup state. */
1620 NInoSetIndexAllocPresent(ni
);
1621 /* Find index allocation attribute. */
1622 ntfs_attr_reinit_search_ctx(ctx
);
1623 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, ni
->name
, ni
->name_len
,
1624 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1625 if (unlikely(err
)) {
1627 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1628 "not present but $INDEX_ROOT "
1629 "indicated it is.");
1631 ntfs_error(vi
->i_sb
, "Failed to lookup "
1632 "$INDEX_ALLOCATION attribute.");
1636 if (!a
->non_resident
) {
1637 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1642 * Ensure the attribute name is placed before the mapping pairs array.
1644 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1646 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1647 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name is "
1648 "placed after the mapping pairs array.");
1651 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1652 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1656 if (a
->flags
& ATTR_IS_SPARSE
) {
1657 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is sparse.");
1660 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1661 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1665 if (a
->data
.non_resident
.lowest_vcn
) {
1666 ntfs_error(vi
->i_sb
, "First extent of $INDEX_ALLOCATION "
1667 "attribute has non zero lowest_vcn.");
1670 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1671 ni
->initialized_size
= sle64_to_cpu(
1672 a
->data
.non_resident
.initialized_size
);
1673 ni
->allocated_size
= sle64_to_cpu(a
->data
.non_resident
.allocated_size
);
1675 * We are done with the mft record, so we release it. Otherwise
1676 * we would deadlock in ntfs_attr_iget().
1678 ntfs_attr_put_search_ctx(ctx
);
1679 unmap_mft_record(base_ni
);
1682 /* Get the index bitmap attribute inode. */
1683 bvi
= ntfs_attr_iget(base_vi
, AT_BITMAP
, ni
->name
, ni
->name_len
);
1685 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
1690 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
1692 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed and/or "
1693 "encrypted and/or sparse.");
1694 goto iput_unm_err_out
;
1696 /* Consistency check bitmap size vs. index allocation size. */
1697 bvi_size
= i_size_read(bvi
);
1698 if ((bvi_size
<< 3) < (vi
->i_size
>> ni
->itype
.index
.block_size_bits
)) {
1699 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) for "
1700 "index allocation (0x%llx).", bvi_size
<< 3,
1702 goto iput_unm_err_out
;
1705 skip_large_index_stuff
:
1706 /* Setup the operations for this index inode. */
1709 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1710 vi
->i_blocks
= ni
->allocated_size
>> 9;
1712 * Make sure the base inode doesn't go away and attach it to the
1716 ni
->ext
.base_ntfs_ino
= base_ni
;
1717 ni
->nr_extents
= -1;
1719 ntfs_debug("Done.");
1727 ntfs_attr_put_search_ctx(ctx
);
1729 unmap_mft_record(base_ni
);
1731 ntfs_error(vi
->i_sb
, "Failed with error code %i while reading index "
1732 "inode (mft_no 0x%lx, name_len %i.", err
, vi
->i_ino
,
1735 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1741 * The MFT inode has special locking, so teach the lock validator
1742 * about this by splitting off the locking rules of the MFT from
1743 * the locking rules of other inodes. The MFT inode can never be
1744 * accessed from the VFS side (or even internally), only by the
1745 * map_mft functions.
1747 static struct lock_class_key mft_ni_runlist_lock_key
, mft_ni_mrec_lock_key
;
1750 * ntfs_read_inode_mount - special read_inode for mount time use only
1751 * @vi: inode to read
1753 * Read inode FILE_MFT at mount time, only called with super_block lock
1754 * held from within the read_super() code path.
1756 * This function exists because when it is called the page cache for $MFT/$DATA
1757 * is not initialized and hence we cannot get at the contents of mft records
1758 * by calling map_mft_record*().
1760 * Further it needs to cope with the circular references problem, i.e. cannot
1761 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1762 * we do not know where the other extent mft records are yet and again, because
1763 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1764 * attribute list is actually present in $MFT inode.
1766 * We solve these problems by starting with the $DATA attribute before anything
1767 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1768 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1769 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1770 * sufficient information for the next step to complete.
1772 * This should work but there are two possible pit falls (see inline comments
1773 * below), but only time will tell if they are real pits or just smoke...
1775 int ntfs_read_inode_mount(struct inode
*vi
)
1777 VCN next_vcn
, last_vcn
, highest_vcn
;
1779 struct super_block
*sb
= vi
->i_sb
;
1780 ntfs_volume
*vol
= NTFS_SB(sb
);
1781 struct buffer_head
*bh
;
1783 MFT_RECORD
*m
= NULL
;
1785 ntfs_attr_search_ctx
*ctx
;
1786 unsigned int i
, nr_blocks
;
1789 ntfs_debug("Entering.");
1791 /* Initialize the ntfs specific part of @vi. */
1792 ntfs_init_big_inode(vi
);
1796 /* Setup the data attribute. It is special as it is mst protected. */
1797 NInoSetNonResident(ni
);
1798 NInoSetMstProtected(ni
);
1799 NInoSetSparseDisabled(ni
);
1804 * This sets up our little cheat allowing us to reuse the async read io
1805 * completion handler for directories.
1807 ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1808 ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1810 /* Very important! Needed to be able to call map_mft_record*(). */
1813 /* Allocate enough memory to read the first mft record. */
1814 if (vol
->mft_record_size
> 64 * 1024) {
1815 ntfs_error(sb
, "Unsupported mft record size %i (max 64kiB).",
1816 vol
->mft_record_size
);
1819 i
= vol
->mft_record_size
;
1820 if (i
< sb
->s_blocksize
)
1821 i
= sb
->s_blocksize
;
1822 m
= (MFT_RECORD
*)ntfs_malloc_nofs(i
);
1824 ntfs_error(sb
, "Failed to allocate buffer for $MFT record 0.");
1828 /* Determine the first block of the $MFT/$DATA attribute. */
1829 block
= vol
->mft_lcn
<< vol
->cluster_size_bits
>>
1830 sb
->s_blocksize_bits
;
1831 nr_blocks
= vol
->mft_record_size
>> sb
->s_blocksize_bits
;
1835 /* Load $MFT/$DATA's first mft record. */
1836 for (i
= 0; i
< nr_blocks
; i
++) {
1837 bh
= sb_bread(sb
, block
++);
1839 ntfs_error(sb
, "Device read failed.");
1842 memcpy((char*)m
+ (i
<< sb
->s_blocksize_bits
), bh
->b_data
,
1847 /* Apply the mst fixups. */
1848 if (post_read_mst_fixup((NTFS_RECORD
*)m
, vol
->mft_record_size
)) {
1849 /* FIXME: Try to use the $MFTMirr now. */
1850 ntfs_error(sb
, "MST fixup failed. $MFT is corrupt.");
1854 /* Need this to sanity check attribute list references to $MFT. */
1855 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
1857 /* Provides readpage() and sync_page() for map_mft_record(). */
1858 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1860 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
1866 /* Find the attribute list attribute if present. */
1867 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1869 if (unlikely(err
!= -ENOENT
)) {
1870 ntfs_error(sb
, "Failed to lookup attribute list "
1871 "attribute. You should run chkdsk.");
1874 } else /* if (!err) */ {
1875 ATTR_LIST_ENTRY
*al_entry
, *next_al_entry
;
1877 static const char *es
= " Not allowed. $MFT is corrupt. "
1878 "You should run chkdsk.";
1880 ntfs_debug("Attribute list attribute found in $MFT.");
1881 NInoSetAttrList(ni
);
1883 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1884 ntfs_error(sb
, "Attribute list attribute is "
1885 "compressed.%s", es
);
1888 if (a
->flags
& ATTR_IS_ENCRYPTED
||
1889 a
->flags
& ATTR_IS_SPARSE
) {
1890 if (a
->non_resident
) {
1891 ntfs_error(sb
, "Non-resident attribute list "
1892 "attribute is encrypted/"
1896 ntfs_warning(sb
, "Resident attribute list attribute "
1897 "in $MFT system file is marked "
1898 "encrypted/sparse which is not true. "
1899 "However, Windows allows this and "
1900 "chkdsk does not detect or correct it "
1901 "so we will just ignore the invalid "
1902 "flags and pretend they are not set.");
1904 /* Now allocate memory for the attribute list. */
1905 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
1906 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
1907 if (!ni
->attr_list
) {
1908 ntfs_error(sb
, "Not enough memory to allocate buffer "
1909 "for attribute list.");
1912 if (a
->non_resident
) {
1913 NInoSetAttrListNonResident(ni
);
1914 if (a
->data
.non_resident
.lowest_vcn
) {
1915 ntfs_error(sb
, "Attribute list has non zero "
1916 "lowest_vcn. $MFT is corrupt. "
1917 "You should run chkdsk.");
1920 /* Setup the runlist. */
1921 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
1923 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
1924 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
1925 ni
->attr_list_rl
.rl
= NULL
;
1926 ntfs_error(sb
, "Mapping pairs decompression "
1927 "failed with error code %i.",
1931 /* Now load the attribute list. */
1932 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
1933 ni
->attr_list
, ni
->attr_list_size
,
1934 sle64_to_cpu(a
->data
.
1935 non_resident
.initialized_size
)))) {
1936 ntfs_error(sb
, "Failed to load attribute list "
1937 "attribute with error code %i.",
1941 } else /* if (!ctx.attr->non_resident) */ {
1942 if ((u8
*)a
+ le16_to_cpu(
1943 a
->data
.resident
.value_offset
) +
1945 a
->data
.resident
.value_length
) >
1946 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1947 ntfs_error(sb
, "Corrupt attribute list "
1951 /* Now copy the attribute list. */
1952 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
1953 a
->data
.resident
.value_offset
),
1955 a
->data
.resident
.value_length
));
1957 /* The attribute list is now setup in memory. */
1959 * FIXME: I don't know if this case is actually possible.
1960 * According to logic it is not possible but I have seen too
1961 * many weird things in MS software to rely on logic... Thus we
1962 * perform a manual search and make sure the first $MFT/$DATA
1963 * extent is in the base inode. If it is not we abort with an
1964 * error and if we ever see a report of this error we will need
1965 * to do some magic in order to have the necessary mft record
1966 * loaded and in the right place in the page cache. But
1967 * hopefully logic will prevail and this never happens...
1969 al_entry
= (ATTR_LIST_ENTRY
*)ni
->attr_list
;
1970 al_end
= (u8
*)al_entry
+ ni
->attr_list_size
;
1971 for (;; al_entry
= next_al_entry
) {
1972 /* Out of bounds check. */
1973 if ((u8
*)al_entry
< ni
->attr_list
||
1974 (u8
*)al_entry
> al_end
)
1975 goto em_put_err_out
;
1976 /* Catch the end of the attribute list. */
1977 if ((u8
*)al_entry
== al_end
)
1978 goto em_put_err_out
;
1979 if (!al_entry
->length
)
1980 goto em_put_err_out
;
1981 if ((u8
*)al_entry
+ 6 > al_end
|| (u8
*)al_entry
+
1982 le16_to_cpu(al_entry
->length
) > al_end
)
1983 goto em_put_err_out
;
1984 next_al_entry
= (ATTR_LIST_ENTRY
*)((u8
*)al_entry
+
1985 le16_to_cpu(al_entry
->length
));
1986 if (le32_to_cpu(al_entry
->type
) > le32_to_cpu(AT_DATA
))
1987 goto em_put_err_out
;
1988 if (AT_DATA
!= al_entry
->type
)
1990 /* We want an unnamed attribute. */
1991 if (al_entry
->name_length
)
1992 goto em_put_err_out
;
1993 /* Want the first entry, i.e. lowest_vcn == 0. */
1994 if (al_entry
->lowest_vcn
)
1995 goto em_put_err_out
;
1996 /* First entry has to be in the base mft record. */
1997 if (MREF_LE(al_entry
->mft_reference
) != vi
->i_ino
) {
1998 /* MFT references do not match, logic fails. */
1999 ntfs_error(sb
, "BUG: The first $DATA extent "
2000 "of $MFT is not in the base "
2001 "mft record. Please report "
2002 "you saw this message to "
2003 "linux-ntfs-dev@lists."
2007 /* Sequence numbers must match. */
2008 if (MSEQNO_LE(al_entry
->mft_reference
) !=
2010 goto em_put_err_out
;
2011 /* Got it. All is ok. We can stop now. */
2017 ntfs_attr_reinit_search_ctx(ctx
);
2019 /* Now load all attribute extents. */
2021 next_vcn
= last_vcn
= highest_vcn
= 0;
2022 while (!(err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, next_vcn
, NULL
, 0,
2024 runlist_element
*nrl
;
2026 /* Cache the current attribute. */
2028 /* $MFT must be non-resident. */
2029 if (!a
->non_resident
) {
2030 ntfs_error(sb
, "$MFT must be non-resident but a "
2031 "resident extent was found. $MFT is "
2032 "corrupt. Run chkdsk.");
2035 /* $MFT must be uncompressed and unencrypted. */
2036 if (a
->flags
& ATTR_COMPRESSION_MASK
||
2037 a
->flags
& ATTR_IS_ENCRYPTED
||
2038 a
->flags
& ATTR_IS_SPARSE
) {
2039 ntfs_error(sb
, "$MFT must be uncompressed, "
2040 "non-sparse, and unencrypted but a "
2041 "compressed/sparse/encrypted extent "
2042 "was found. $MFT is corrupt. Run "
2047 * Decompress the mapping pairs array of this extent and merge
2048 * the result into the existing runlist. No need for locking
2049 * as we have exclusive access to the inode at this time and we
2050 * are a mount in progress task, too.
2052 nrl
= ntfs_mapping_pairs_decompress(vol
, a
, ni
->runlist
.rl
);
2054 ntfs_error(sb
, "ntfs_mapping_pairs_decompress() "
2055 "failed with error code %ld. $MFT is "
2056 "corrupt.", PTR_ERR(nrl
));
2059 ni
->runlist
.rl
= nrl
;
2061 /* Are we in the first extent? */
2063 if (a
->data
.non_resident
.lowest_vcn
) {
2064 ntfs_error(sb
, "First extent of $DATA "
2065 "attribute has non zero "
2066 "lowest_vcn. $MFT is corrupt. "
2067 "You should run chkdsk.");
2070 /* Get the last vcn in the $DATA attribute. */
2071 last_vcn
= sle64_to_cpu(
2072 a
->data
.non_resident
.allocated_size
)
2073 >> vol
->cluster_size_bits
;
2074 /* Fill in the inode size. */
2075 vi
->i_size
= sle64_to_cpu(
2076 a
->data
.non_resident
.data_size
);
2077 ni
->initialized_size
= sle64_to_cpu(
2078 a
->data
.non_resident
.initialized_size
);
2079 ni
->allocated_size
= sle64_to_cpu(
2080 a
->data
.non_resident
.allocated_size
);
2082 * Verify the number of mft records does not exceed
2085 if ((vi
->i_size
>> vol
->mft_record_size_bits
) >=
2087 ntfs_error(sb
, "$MFT is too big! Aborting.");
2091 * We have got the first extent of the runlist for
2092 * $MFT which means it is now relatively safe to call
2093 * the normal ntfs_read_inode() function.
2094 * Complete reading the inode, this will actually
2095 * re-read the mft record for $MFT, this time entering
2096 * it into the page cache with which we complete the
2097 * kick start of the volume. It should be safe to do
2098 * this now as the first extent of $MFT/$DATA is
2099 * already known and we would hope that we don't need
2100 * further extents in order to find the other
2101 * attributes belonging to $MFT. Only time will tell if
2102 * this is really the case. If not we will have to play
2103 * magic at this point, possibly duplicating a lot of
2104 * ntfs_read_inode() at this point. We will need to
2105 * ensure we do enough of its work to be able to call
2106 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2107 * hope this never happens...
2109 ntfs_read_locked_inode(vi
);
2110 if (is_bad_inode(vi
)) {
2111 ntfs_error(sb
, "ntfs_read_inode() of $MFT "
2112 "failed. BUG or corrupt $MFT. "
2113 "Run chkdsk and if no errors "
2114 "are found, please report you "
2115 "saw this message to "
2116 "linux-ntfs-dev@lists."
2118 ntfs_attr_put_search_ctx(ctx
);
2119 /* Revert to the safe super operations. */
2124 * Re-initialize some specifics about $MFT's inode as
2125 * ntfs_read_inode() will have set up the default ones.
2127 /* Set uid and gid to root. */
2128 vi
->i_uid
= GLOBAL_ROOT_UID
;
2129 vi
->i_gid
= GLOBAL_ROOT_GID
;
2130 /* Regular file. No access for anyone. */
2131 vi
->i_mode
= S_IFREG
;
2132 /* No VFS initiated operations allowed for $MFT. */
2133 vi
->i_op
= &ntfs_empty_inode_ops
;
2134 vi
->i_fop
= &ntfs_empty_file_ops
;
2137 /* Get the lowest vcn for the next extent. */
2138 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2139 next_vcn
= highest_vcn
+ 1;
2141 /* Only one extent or error, which we catch below. */
2145 /* Avoid endless loops due to corruption. */
2146 if (next_vcn
< sle64_to_cpu(
2147 a
->data
.non_resident
.lowest_vcn
)) {
2148 ntfs_error(sb
, "$MFT has corrupt attribute list "
2149 "attribute. Run chkdsk.");
2153 if (err
!= -ENOENT
) {
2154 ntfs_error(sb
, "Failed to lookup $MFT/$DATA attribute extent. "
2155 "$MFT is corrupt. Run chkdsk.");
2159 ntfs_error(sb
, "$MFT/$DATA attribute not found. $MFT is "
2160 "corrupt. Run chkdsk.");
2163 if (highest_vcn
&& highest_vcn
!= last_vcn
- 1) {
2164 ntfs_error(sb
, "Failed to load the complete runlist for "
2165 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2167 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2168 (unsigned long long)highest_vcn
,
2169 (unsigned long long)last_vcn
- 1);
2172 ntfs_attr_put_search_ctx(ctx
);
2173 ntfs_debug("Done.");
2177 * Split the locking rules of the MFT inode from the
2178 * locking rules of other inodes:
2180 lockdep_set_class(&ni
->runlist
.lock
, &mft_ni_runlist_lock_key
);
2181 lockdep_set_class(&ni
->mrec_lock
, &mft_ni_mrec_lock_key
);
2186 ntfs_error(sb
, "Couldn't find first extent of $DATA attribute in "
2187 "attribute list. $MFT is corrupt. Run chkdsk.");
2189 ntfs_attr_put_search_ctx(ctx
);
2191 ntfs_error(sb
, "Failed. Marking inode as bad.");
2197 static void __ntfs_clear_inode(ntfs_inode
*ni
)
2199 /* Free all alocated memory. */
2200 down_write(&ni
->runlist
.lock
);
2201 if (ni
->runlist
.rl
) {
2202 ntfs_free(ni
->runlist
.rl
);
2203 ni
->runlist
.rl
= NULL
;
2205 up_write(&ni
->runlist
.lock
);
2207 if (ni
->attr_list
) {
2208 ntfs_free(ni
->attr_list
);
2209 ni
->attr_list
= NULL
;
2212 down_write(&ni
->attr_list_rl
.lock
);
2213 if (ni
->attr_list_rl
.rl
) {
2214 ntfs_free(ni
->attr_list_rl
.rl
);
2215 ni
->attr_list_rl
.rl
= NULL
;
2217 up_write(&ni
->attr_list_rl
.lock
);
2219 if (ni
->name_len
&& ni
->name
!= I30
) {
2226 void ntfs_clear_extent_inode(ntfs_inode
*ni
)
2228 ntfs_debug("Entering for inode 0x%lx.", ni
->mft_no
);
2230 BUG_ON(NInoAttr(ni
));
2231 BUG_ON(ni
->nr_extents
!= -1);
2234 if (NInoDirty(ni
)) {
2235 if (!is_bad_inode(VFS_I(ni
->ext
.base_ntfs_ino
)))
2236 ntfs_error(ni
->vol
->sb
, "Clearing dirty extent inode! "
2237 "Losing data! This is a BUG!!!");
2238 // FIXME: Do something!!!
2240 #endif /* NTFS_RW */
2242 __ntfs_clear_inode(ni
);
2245 ntfs_destroy_extent_inode(ni
);
2249 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2250 * @vi: vfs inode pending annihilation
2252 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2253 * is called, which deallocates all memory belonging to the NTFS specific part
2254 * of the inode and returns.
2256 * If the MFT record is dirty, we commit it before doing anything else.
2258 void ntfs_evict_big_inode(struct inode
*vi
)
2260 ntfs_inode
*ni
= NTFS_I(vi
);
2262 truncate_inode_pages(&vi
->i_data
, 0);
2266 if (NInoDirty(ni
)) {
2267 bool was_bad
= (is_bad_inode(vi
));
2269 /* Committing the inode also commits all extent inodes. */
2270 ntfs_commit_inode(vi
);
2272 if (!was_bad
&& (is_bad_inode(vi
) || NInoDirty(ni
))) {
2273 ntfs_error(vi
->i_sb
, "Failed to commit dirty inode "
2274 "0x%lx. Losing data!", vi
->i_ino
);
2275 // FIXME: Do something!!!
2278 #endif /* NTFS_RW */
2280 /* No need to lock at this stage as no one else has a reference. */
2281 if (ni
->nr_extents
> 0) {
2284 for (i
= 0; i
< ni
->nr_extents
; i
++)
2285 ntfs_clear_extent_inode(ni
->ext
.extent_ntfs_inos
[i
]);
2286 kfree(ni
->ext
.extent_ntfs_inos
);
2289 __ntfs_clear_inode(ni
);
2292 /* Release the base inode if we are holding it. */
2293 if (ni
->nr_extents
== -1) {
2294 iput(VFS_I(ni
->ext
.base_ntfs_ino
));
2296 ni
->ext
.base_ntfs_ino
= NULL
;
2303 * ntfs_show_options - show mount options in /proc/mounts
2304 * @sf: seq_file in which to write our mount options
2305 * @root: root of the mounted tree whose mount options to display
2307 * Called by the VFS once for each mounted ntfs volume when someone reads
2308 * /proc/mounts in order to display the NTFS specific mount options of each
2309 * mount. The mount options of fs specified by @root are written to the seq file
2310 * @sf and success is returned.
2312 int ntfs_show_options(struct seq_file
*sf
, struct dentry
*root
)
2314 ntfs_volume
*vol
= NTFS_SB(root
->d_sb
);
2317 seq_printf(sf
, ",uid=%i", from_kuid_munged(&init_user_ns
, vol
->uid
));
2318 seq_printf(sf
, ",gid=%i", from_kgid_munged(&init_user_ns
, vol
->gid
));
2319 if (vol
->fmask
== vol
->dmask
)
2320 seq_printf(sf
, ",umask=0%o", vol
->fmask
);
2322 seq_printf(sf
, ",fmask=0%o", vol
->fmask
);
2323 seq_printf(sf
, ",dmask=0%o", vol
->dmask
);
2325 seq_printf(sf
, ",nls=%s", vol
->nls_map
->charset
);
2326 if (NVolCaseSensitive(vol
))
2327 seq_printf(sf
, ",case_sensitive");
2328 if (NVolShowSystemFiles(vol
))
2329 seq_printf(sf
, ",show_sys_files");
2330 if (!NVolSparseEnabled(vol
))
2331 seq_printf(sf
, ",disable_sparse");
2332 for (i
= 0; on_errors_arr
[i
].val
; i
++) {
2333 if (on_errors_arr
[i
].val
& vol
->on_errors
)
2334 seq_printf(sf
, ",errors=%s", on_errors_arr
[i
].str
);
2336 seq_printf(sf
, ",mft_zone_multiplier=%i", vol
->mft_zone_multiplier
);
2342 static const char *es
= " Leaving inconsistent metadata. Unmount and run "
2346 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2347 * @vi: inode for which the i_size was changed
2349 * We only support i_size changes for normal files at present, i.e. not
2350 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2353 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2354 * that the change is allowed.
2356 * This implies for us that @vi is a file inode rather than a directory, index,
2357 * or attribute inode as well as that @vi is a base inode.
2359 * Returns 0 on success or -errno on error.
2361 * Called with ->i_mutex held.
2363 int ntfs_truncate(struct inode
*vi
)
2365 s64 new_size
, old_size
, nr_freed
, new_alloc_size
, old_alloc_size
;
2367 unsigned long flags
;
2368 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
2369 ntfs_volume
*vol
= ni
->vol
;
2370 ntfs_attr_search_ctx
*ctx
;
2373 const char *te
= " Leaving file length out of sync with i_size.";
2374 int err
, mp_size
, size_change
, alloc_change
;
2377 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2378 BUG_ON(NInoAttr(ni
));
2379 BUG_ON(S_ISDIR(vi
->i_mode
));
2380 BUG_ON(NInoMstProtected(ni
));
2381 BUG_ON(ni
->nr_extents
< 0);
2384 * Lock the runlist for writing and map the mft record to ensure it is
2385 * safe to mess with the attribute runlist and sizes.
2387 down_write(&ni
->runlist
.lock
);
2391 base_ni
= ni
->ext
.base_ntfs_ino
;
2392 m
= map_mft_record(base_ni
);
2395 ntfs_error(vi
->i_sb
, "Failed to map mft record for inode 0x%lx "
2396 "(error code %d).%s", vi
->i_ino
, err
, te
);
2401 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
2402 if (unlikely(!ctx
)) {
2403 ntfs_error(vi
->i_sb
, "Failed to allocate a search context for "
2404 "inode 0x%lx (not enough memory).%s",
2409 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
2410 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2411 if (unlikely(err
)) {
2412 if (err
== -ENOENT
) {
2413 ntfs_error(vi
->i_sb
, "Open attribute is missing from "
2414 "mft record. Inode 0x%lx is corrupt. "
2415 "Run chkdsk.%s", vi
->i_ino
, te
);
2418 ntfs_error(vi
->i_sb
, "Failed to lookup attribute in "
2419 "inode 0x%lx (error code %d).%s",
2420 vi
->i_ino
, err
, te
);
2426 * The i_size of the vfs inode is the new size for the attribute value.
2428 new_size
= i_size_read(vi
);
2429 /* The current size of the attribute value is the old size. */
2430 old_size
= ntfs_attr_size(a
);
2431 /* Calculate the new allocated size. */
2432 if (NInoNonResident(ni
))
2433 new_alloc_size
= (new_size
+ vol
->cluster_size
- 1) &
2434 ~(s64
)vol
->cluster_size_mask
;
2436 new_alloc_size
= (new_size
+ 7) & ~7;
2437 /* The current allocated size is the old allocated size. */
2438 read_lock_irqsave(&ni
->size_lock
, flags
);
2439 old_alloc_size
= ni
->allocated_size
;
2440 read_unlock_irqrestore(&ni
->size_lock
, flags
);
2442 * The change in the file size. This will be 0 if no change, >0 if the
2443 * size is growing, and <0 if the size is shrinking.
2446 if (new_size
- old_size
>= 0) {
2448 if (new_size
== old_size
)
2451 /* As above for the allocated size. */
2453 if (new_alloc_size
- old_alloc_size
>= 0) {
2455 if (new_alloc_size
== old_alloc_size
)
2459 * If neither the size nor the allocation are being changed there is
2462 if (!size_change
&& !alloc_change
)
2464 /* If the size is changing, check if new size is allowed in $AttrDef. */
2466 err
= ntfs_attr_size_bounds_check(vol
, ni
->type
, new_size
);
2467 if (unlikely(err
)) {
2468 if (err
== -ERANGE
) {
2469 ntfs_error(vol
->sb
, "Truncate would cause the "
2470 "inode 0x%lx to %simum size "
2471 "for its attribute type "
2472 "(0x%x). Aborting truncate.",
2474 new_size
> old_size
? "exceed "
2475 "the max" : "go under the min",
2476 le32_to_cpu(ni
->type
));
2479 ntfs_error(vol
->sb
, "Inode 0x%lx has unknown "
2480 "attribute type 0x%x. "
2481 "Aborting truncate.",
2483 le32_to_cpu(ni
->type
));
2486 /* Reset the vfs inode size to the old size. */
2487 i_size_write(vi
, old_size
);
2491 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2492 ntfs_warning(vi
->i_sb
, "Changes in inode size are not "
2493 "supported yet for %s files, ignoring.",
2494 NInoCompressed(ni
) ? "compressed" :
2499 if (a
->non_resident
)
2500 goto do_non_resident_truncate
;
2501 BUG_ON(NInoNonResident(ni
));
2502 /* Resize the attribute record to best fit the new attribute size. */
2503 if (new_size
< vol
->mft_record_size
&&
2504 !ntfs_resident_attr_value_resize(m
, a
, new_size
)) {
2505 /* The resize succeeded! */
2506 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2507 mark_mft_record_dirty(ctx
->ntfs_ino
);
2508 write_lock_irqsave(&ni
->size_lock
, flags
);
2509 /* Update the sizes in the ntfs inode and all is done. */
2510 ni
->allocated_size
= le32_to_cpu(a
->length
) -
2511 le16_to_cpu(a
->data
.resident
.value_offset
);
2513 * Note ntfs_resident_attr_value_resize() has already done any
2514 * necessary data clearing in the attribute record. When the
2515 * file is being shrunk vmtruncate() will already have cleared
2516 * the top part of the last partial page, i.e. since this is
2517 * the resident case this is the page with index 0. However,
2518 * when the file is being expanded, the page cache page data
2519 * between the old data_size, i.e. old_size, and the new_size
2520 * has not been zeroed. Fortunately, we do not need to zero it
2521 * either since on one hand it will either already be zero due
2522 * to both readpage and writepage clearing partial page data
2523 * beyond i_size in which case there is nothing to do or in the
2524 * case of the file being mmap()ped at the same time, POSIX
2525 * specifies that the behaviour is unspecified thus we do not
2526 * have to do anything. This means that in our implementation
2527 * in the rare case that the file is mmap()ped and a write
2528 * occurred into the mmap()ped region just beyond the file size
2529 * and writepage has not yet been called to write out the page
2530 * (which would clear the area beyond the file size) and we now
2531 * extend the file size to incorporate this dirty region
2532 * outside the file size, a write of the page would result in
2533 * this data being written to disk instead of being cleared.
2534 * Given both POSIX and the Linux mmap(2) man page specify that
2535 * this corner case is undefined, we choose to leave it like
2536 * that as this is much simpler for us as we cannot lock the
2537 * relevant page now since we are holding too many ntfs locks
2538 * which would result in a lock reversal deadlock.
2540 ni
->initialized_size
= new_size
;
2541 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2544 /* If the above resize failed, this must be an attribute extension. */
2545 BUG_ON(size_change
< 0);
2547 * We have to drop all the locks so we can call
2548 * ntfs_attr_make_non_resident(). This could be optimised by try-
2549 * locking the first page cache page and only if that fails dropping
2550 * the locks, locking the page, and redoing all the locking and
2551 * lookups. While this would be a huge optimisation, it is not worth
2552 * it as this is definitely a slow code path as it only ever can happen
2553 * once for any given file.
2555 ntfs_attr_put_search_ctx(ctx
);
2556 unmap_mft_record(base_ni
);
2557 up_write(&ni
->runlist
.lock
);
2559 * Not enough space in the mft record, try to make the attribute
2560 * non-resident and if successful restart the truncation process.
2562 err
= ntfs_attr_make_non_resident(ni
, old_size
);
2564 goto retry_truncate
;
2566 * Could not make non-resident. If this is due to this not being
2567 * permitted for this attribute type or there not being enough space,
2568 * try to make other attributes non-resident. Otherwise fail.
2570 if (unlikely(err
!= -EPERM
&& err
!= -ENOSPC
)) {
2571 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, attribute "
2572 "type 0x%x, because the conversion from "
2573 "resident to non-resident attribute failed "
2574 "with error code %i.", vi
->i_ino
,
2575 (unsigned)le32_to_cpu(ni
->type
), err
);
2580 /* TODO: Not implemented from here, abort. */
2582 ntfs_error(vol
->sb
, "Not enough space in the mft record/on "
2583 "disk for the non-resident attribute value. "
2584 "This case is not implemented yet.");
2585 else /* if (err == -EPERM) */
2586 ntfs_error(vol
->sb
, "This attribute type may not be "
2587 "non-resident. This case is not implemented "
2592 // TODO: Attempt to make other attributes non-resident.
2594 goto do_resident_extend
;
2596 * Both the attribute list attribute and the standard information
2597 * attribute must remain in the base inode. Thus, if this is one of
2598 * these attributes, we have to try to move other attributes out into
2599 * extent mft records instead.
2601 if (ni
->type
== AT_ATTRIBUTE_LIST
||
2602 ni
->type
== AT_STANDARD_INFORMATION
) {
2603 // TODO: Attempt to move other attributes into extent mft
2607 goto do_resident_extend
;
2610 // TODO: Attempt to move this attribute to an extent mft record, but
2611 // only if it is not already the only attribute in an mft record in
2612 // which case there would be nothing to gain.
2615 goto do_resident_extend
;
2616 /* There is nothing we can do to make enough space. )-: */
2619 do_non_resident_truncate
:
2620 BUG_ON(!NInoNonResident(ni
));
2621 if (alloc_change
< 0) {
2622 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2623 if (highest_vcn
> 0 &&
2624 old_alloc_size
>> vol
->cluster_size_bits
>
2627 * This attribute has multiple extents. Not yet
2630 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, "
2631 "attribute type 0x%x, because the "
2632 "attribute is highly fragmented (it "
2633 "consists of multiple extents) and "
2634 "this case is not implemented yet.",
2636 (unsigned)le32_to_cpu(ni
->type
));
2642 * If the size is shrinking, need to reduce the initialized_size and
2643 * the data_size before reducing the allocation.
2645 if (size_change
< 0) {
2647 * Make the valid size smaller (i_size is already up-to-date).
2649 write_lock_irqsave(&ni
->size_lock
, flags
);
2650 if (new_size
< ni
->initialized_size
) {
2651 ni
->initialized_size
= new_size
;
2652 a
->data
.non_resident
.initialized_size
=
2653 cpu_to_sle64(new_size
);
2655 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2656 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2657 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2658 mark_mft_record_dirty(ctx
->ntfs_ino
);
2659 /* If the allocated size is not changing, we are done. */
2663 * If the size is shrinking it makes no sense for the
2664 * allocation to be growing.
2666 BUG_ON(alloc_change
> 0);
2667 } else /* if (size_change >= 0) */ {
2669 * The file size is growing or staying the same but the
2670 * allocation can be shrinking, growing or staying the same.
2672 if (alloc_change
> 0) {
2674 * We need to extend the allocation and possibly update
2675 * the data size. If we are updating the data size,
2676 * since we are not touching the initialized_size we do
2677 * not need to worry about the actual data on disk.
2678 * And as far as the page cache is concerned, there
2679 * will be no pages beyond the old data size and any
2680 * partial region in the last page between the old and
2681 * new data size (or the end of the page if the new
2682 * data size is outside the page) does not need to be
2683 * modified as explained above for the resident
2684 * attribute truncate case. To do this, we simply drop
2685 * the locks we hold and leave all the work to our
2686 * friendly helper ntfs_attr_extend_allocation().
2688 ntfs_attr_put_search_ctx(ctx
);
2689 unmap_mft_record(base_ni
);
2690 up_write(&ni
->runlist
.lock
);
2691 err
= ntfs_attr_extend_allocation(ni
, new_size
,
2692 size_change
> 0 ? new_size
: -1, -1);
2694 * ntfs_attr_extend_allocation() will have done error
2702 /* alloc_change < 0 */
2703 /* Free the clusters. */
2704 nr_freed
= ntfs_cluster_free(ni
, new_alloc_size
>>
2705 vol
->cluster_size_bits
, -1, ctx
);
2708 if (unlikely(nr_freed
< 0)) {
2709 ntfs_error(vol
->sb
, "Failed to release cluster(s) (error code "
2710 "%lli). Unmount and run chkdsk to recover "
2711 "the lost cluster(s).", (long long)nr_freed
);
2715 /* Truncate the runlist. */
2716 err
= ntfs_rl_truncate_nolock(vol
, &ni
->runlist
,
2717 new_alloc_size
>> vol
->cluster_size_bits
);
2719 * If the runlist truncation failed and/or the search context is no
2720 * longer valid, we cannot resize the attribute record or build the
2721 * mapping pairs array thus we mark the inode bad so that no access to
2722 * the freed clusters can happen.
2724 if (unlikely(err
|| IS_ERR(m
))) {
2725 ntfs_error(vol
->sb
, "Failed to %s (error code %li).%s",
2727 "restore attribute search context" :
2728 "truncate attribute runlist",
2729 IS_ERR(m
) ? PTR_ERR(m
) : err
, es
);
2733 /* Get the size for the shrunk mapping pairs array for the runlist. */
2734 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, ni
->runlist
.rl
, 0, -1);
2735 if (unlikely(mp_size
<= 0)) {
2736 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2737 "attribute type 0x%x, because determining the "
2738 "size for the mapping pairs failed with error "
2739 "code %i.%s", vi
->i_ino
,
2740 (unsigned)le32_to_cpu(ni
->type
), mp_size
, es
);
2745 * Shrink the attribute record for the new mapping pairs array. Note,
2746 * this cannot fail since we are making the attribute smaller thus by
2747 * definition there is enough space to do so.
2749 attr_len
= le32_to_cpu(a
->length
);
2750 err
= ntfs_attr_record_resize(m
, a
, mp_size
+
2751 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
));
2754 * Generate the mapping pairs array directly into the attribute record.
2756 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+
2757 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
),
2758 mp_size
, ni
->runlist
.rl
, 0, -1, NULL
);
2759 if (unlikely(err
)) {
2760 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2761 "attribute type 0x%x, because building the "
2762 "mapping pairs failed with error code %i.%s",
2763 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
2768 /* Update the allocated/compressed size as well as the highest vcn. */
2769 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64((new_alloc_size
>>
2770 vol
->cluster_size_bits
) - 1);
2771 write_lock_irqsave(&ni
->size_lock
, flags
);
2772 ni
->allocated_size
= new_alloc_size
;
2773 a
->data
.non_resident
.allocated_size
= cpu_to_sle64(new_alloc_size
);
2774 if (NInoSparse(ni
) || NInoCompressed(ni
)) {
2776 ni
->itype
.compressed
.size
-= nr_freed
<<
2777 vol
->cluster_size_bits
;
2778 BUG_ON(ni
->itype
.compressed
.size
< 0);
2779 a
->data
.non_resident
.compressed_size
= cpu_to_sle64(
2780 ni
->itype
.compressed
.size
);
2781 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
2784 vi
->i_blocks
= new_alloc_size
>> 9;
2785 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2787 * We have shrunk the allocation. If this is a shrinking truncate we
2788 * have already dealt with the initialized_size and the data_size above
2789 * and we are done. If the truncate is only changing the allocation
2790 * and not the data_size, we are also done. If this is an extending
2791 * truncate, need to extend the data_size now which is ensured by the
2792 * fact that @size_change is positive.
2796 * If the size is growing, need to update it now. If it is shrinking,
2797 * we have already updated it above (before the allocation change).
2799 if (size_change
> 0)
2800 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2801 /* Ensure the modified mft record is written out. */
2802 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2803 mark_mft_record_dirty(ctx
->ntfs_ino
);
2805 ntfs_attr_put_search_ctx(ctx
);
2806 unmap_mft_record(base_ni
);
2807 up_write(&ni
->runlist
.lock
);
2809 /* Update the mtime and ctime on the base inode. */
2810 /* normally ->truncate shouldn't update ctime or mtime,
2811 * but ntfs did before so it got a copy & paste version
2812 * of file_update_time. one day someone should fix this
2815 if (!IS_NOCMTIME(VFS_I(base_ni
)) && !IS_RDONLY(VFS_I(base_ni
))) {
2816 struct timespec now
= current_fs_time(VFS_I(base_ni
)->i_sb
);
2819 if (!timespec_equal(&VFS_I(base_ni
)->i_mtime
, &now
) ||
2820 !timespec_equal(&VFS_I(base_ni
)->i_ctime
, &now
))
2822 VFS_I(base_ni
)->i_mtime
= now
;
2823 VFS_I(base_ni
)->i_ctime
= now
;
2826 mark_inode_dirty_sync(VFS_I(base_ni
));
2830 NInoClearTruncateFailed(ni
);
2831 ntfs_debug("Done.");
2837 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2839 if (err
!= -EOPNOTSUPP
)
2840 NInoSetTruncateFailed(ni
);
2841 else if (old_size
>= 0)
2842 i_size_write(vi
, old_size
);
2845 ntfs_attr_put_search_ctx(ctx
);
2847 unmap_mft_record(base_ni
);
2848 up_write(&ni
->runlist
.lock
);
2850 ntfs_debug("Failed. Returning error code %i.", err
);
2853 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2855 if (err
!= -EOPNOTSUPP
)
2856 NInoSetTruncateFailed(ni
);
2858 i_size_write(vi
, old_size
);
2863 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2864 * @vi: inode for which the i_size was changed
2866 * Wrapper for ntfs_truncate() that has no return value.
2868 * See ntfs_truncate() description above for details.
2871 void ntfs_truncate_vfs(struct inode
*vi
) {
2877 * ntfs_setattr - called from notify_change() when an attribute is being changed
2878 * @dentry: dentry whose attributes to change
2879 * @attr: structure describing the attributes and the changes
2881 * We have to trap VFS attempts to truncate the file described by @dentry as
2882 * soon as possible, because we do not implement changes in i_size yet. So we
2883 * abort all i_size changes here.
2885 * We also abort all changes of user, group, and mode as we do not implement
2886 * the NTFS ACLs yet.
2888 * Called with ->i_mutex held.
2890 int ntfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2892 struct inode
*vi
= dentry
->d_inode
;
2894 unsigned int ia_valid
= attr
->ia_valid
;
2896 err
= inode_change_ok(vi
, attr
);
2899 /* We do not support NTFS ACLs yet. */
2900 if (ia_valid
& (ATTR_UID
| ATTR_GID
| ATTR_MODE
)) {
2901 ntfs_warning(vi
->i_sb
, "Changes in user/group/mode are not "
2902 "supported yet, ignoring.");
2906 if (ia_valid
& ATTR_SIZE
) {
2907 if (attr
->ia_size
!= i_size_read(vi
)) {
2908 ntfs_inode
*ni
= NTFS_I(vi
);
2910 * FIXME: For now we do not support resizing of
2911 * compressed or encrypted files yet.
2913 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2914 ntfs_warning(vi
->i_sb
, "Changes in inode size "
2915 "are not supported yet for "
2916 "%s files, ignoring.",
2917 NInoCompressed(ni
) ?
2918 "compressed" : "encrypted");
2921 truncate_setsize(vi
, attr
->ia_size
);
2922 ntfs_truncate_vfs(vi
);
2924 if (err
|| ia_valid
== ATTR_SIZE
)
2928 * We skipped the truncate but must still update
2931 ia_valid
|= ATTR_MTIME
| ATTR_CTIME
;
2934 if (ia_valid
& ATTR_ATIME
)
2935 vi
->i_atime
= timespec_trunc(attr
->ia_atime
,
2936 vi
->i_sb
->s_time_gran
);
2937 if (ia_valid
& ATTR_MTIME
)
2938 vi
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
2939 vi
->i_sb
->s_time_gran
);
2940 if (ia_valid
& ATTR_CTIME
)
2941 vi
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
2942 vi
->i_sb
->s_time_gran
);
2943 mark_inode_dirty(vi
);
2949 * ntfs_write_inode - write out a dirty inode
2950 * @vi: inode to write out
2951 * @sync: if true, write out synchronously
2953 * Write out a dirty inode to disk including any extent inodes if present.
2955 * If @sync is true, commit the inode to disk and wait for io completion. This
2956 * is done using write_mft_record().
2958 * If @sync is false, just schedule the write to happen but do not wait for i/o
2959 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2960 * marking the page (and in this case mft record) dirty but we do not implement
2961 * this yet as write_mft_record() largely ignores the @sync parameter and
2962 * always performs synchronous writes.
2964 * Return 0 on success and -errno on error.
2966 int __ntfs_write_inode(struct inode
*vi
, int sync
)
2969 ntfs_inode
*ni
= NTFS_I(vi
);
2970 ntfs_attr_search_ctx
*ctx
;
2972 STANDARD_INFORMATION
*si
;
2974 bool modified
= false;
2976 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni
) ? "attr " : "",
2979 * Dirty attribute inodes are written via their real inodes so just
2980 * clean them here. Access time updates are taken care off when the
2981 * real inode is written.
2985 ntfs_debug("Done.");
2988 /* Map, pin, and lock the mft record belonging to the inode. */
2989 m
= map_mft_record(ni
);
2994 /* Update the access times in the standard information attribute. */
2995 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
2996 if (unlikely(!ctx
)) {
3000 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0,
3001 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
3002 if (unlikely(err
)) {
3003 ntfs_attr_put_search_ctx(ctx
);
3006 si
= (STANDARD_INFORMATION
*)((u8
*)ctx
->attr
+
3007 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
3008 /* Update the access times if they have changed. */
3009 nt
= utc2ntfs(vi
->i_mtime
);
3010 if (si
->last_data_change_time
!= nt
) {
3011 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3012 "new = 0x%llx", vi
->i_ino
, (long long)
3013 sle64_to_cpu(si
->last_data_change_time
),
3014 (long long)sle64_to_cpu(nt
));
3015 si
->last_data_change_time
= nt
;
3018 nt
= utc2ntfs(vi
->i_ctime
);
3019 if (si
->last_mft_change_time
!= nt
) {
3020 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3021 "new = 0x%llx", vi
->i_ino
, (long long)
3022 sle64_to_cpu(si
->last_mft_change_time
),
3023 (long long)sle64_to_cpu(nt
));
3024 si
->last_mft_change_time
= nt
;
3027 nt
= utc2ntfs(vi
->i_atime
);
3028 if (si
->last_access_time
!= nt
) {
3029 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3030 "new = 0x%llx", vi
->i_ino
,
3031 (long long)sle64_to_cpu(si
->last_access_time
),
3032 (long long)sle64_to_cpu(nt
));
3033 si
->last_access_time
= nt
;
3037 * If we just modified the standard information attribute we need to
3038 * mark the mft record it is in dirty. We do this manually so that
3039 * mark_inode_dirty() is not called which would redirty the inode and
3040 * hence result in an infinite loop of trying to write the inode.
3041 * There is no need to mark the base inode nor the base mft record
3042 * dirty, since we are going to write this mft record below in any case
3043 * and the base mft record may actually not have been modified so it
3044 * might not need to be written out.
3045 * NOTE: It is not a problem when the inode for $MFT itself is being
3046 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3047 * on the $MFT inode and hence ntfs_write_inode() will not be
3048 * re-invoked because of it which in turn is ok since the dirtied mft
3049 * record will be cleaned and written out to disk below, i.e. before
3050 * this function returns.
3053 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
3054 if (!NInoTestSetDirty(ctx
->ntfs_ino
))
3055 mark_ntfs_record_dirty(ctx
->ntfs_ino
->page
,
3056 ctx
->ntfs_ino
->page_ofs
);
3058 ntfs_attr_put_search_ctx(ctx
);
3059 /* Now the access times are updated, write the base mft record. */
3061 err
= write_mft_record(ni
, m
, sync
);
3062 /* Write all attached extent mft records. */
3063 mutex_lock(&ni
->extent_lock
);
3064 if (ni
->nr_extents
> 0) {
3065 ntfs_inode
**extent_nis
= ni
->ext
.extent_ntfs_inos
;
3068 ntfs_debug("Writing %i extent inodes.", ni
->nr_extents
);
3069 for (i
= 0; i
< ni
->nr_extents
; i
++) {
3070 ntfs_inode
*tni
= extent_nis
[i
];
3072 if (NInoDirty(tni
)) {
3073 MFT_RECORD
*tm
= map_mft_record(tni
);
3077 if (!err
|| err
== -ENOMEM
)
3081 ret
= write_mft_record(tni
, tm
, sync
);
3082 unmap_mft_record(tni
);
3083 if (unlikely(ret
)) {
3084 if (!err
|| err
== -ENOMEM
)
3090 mutex_unlock(&ni
->extent_lock
);
3091 unmap_mft_record(ni
);
3094 ntfs_debug("Done.");
3097 unmap_mft_record(ni
);
3099 if (err
== -ENOMEM
) {
3100 ntfs_warning(vi
->i_sb
, "Not enough memory to write inode. "
3101 "Marking the inode dirty again, so the VFS "
3103 mark_inode_dirty(vi
);
3105 ntfs_error(vi
->i_sb
, "Failed (error %i): Run chkdsk.", -err
);
3106 NVolSetErrors(ni
->vol
);
3111 #endif /* NTFS_RW */