threadgroup: rename signal->threadgroup_fork_lock to ->group_rwsem
[linux-2.6.git] / kernel / cgroup.c
blobb409df3b2e9d82e6ad14e53e619ef669be3362a3
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
64 #include <linux/atomic.h>
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
82 static DEFINE_MUTEX(cgroup_mutex);
83 static DEFINE_MUTEX(cgroup_root_mutex);
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
91 #define SUBSYS(_x) &_x ## _subsys,
92 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
93 #include <linux/cgroup_subsys.h>
96 #define MAX_CGROUP_ROOT_NAMELEN 64
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
103 struct cgroupfs_root {
104 struct super_block *sb;
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
110 unsigned long subsys_bits;
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
127 /* A list running through the active hierarchies */
128 struct list_head root_list;
130 /* Hierarchy-specific flags */
131 unsigned long flags;
133 /* The path to use for release notifications. */
134 char release_agent_path[PATH_MAX];
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
145 static struct cgroupfs_root rootnode;
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
151 #define CSS_ID_MAX (65535)
152 struct css_id {
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
160 struct cgroup_subsys_state __rcu *css;
162 * ID of this css.
164 unsigned short id;
166 * Depth in hierarchy which this ID belongs to.
168 unsigned short depth;
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
172 struct rcu_head rcu_head;
174 * Hierarchy of CSS ID belongs to.
176 unsigned short stack[0]; /* Array of Length (depth+1) */
180 * cgroup_event represents events which userspace want to receive.
182 struct cgroup_event {
184 * Cgroup which the event belongs to.
186 struct cgroup *cgrp;
188 * Control file which the event associated.
190 struct cftype *cft;
192 * eventfd to signal userspace about the event.
194 struct eventfd_ctx *eventfd;
196 * Each of these stored in a list by the cgroup.
198 struct list_head list;
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
209 /* The list of hierarchy roots */
211 static LIST_HEAD(roots);
212 static int root_count;
214 static DEFINE_IDA(hierarchy_ida);
215 static int next_hierarchy_id;
216 static DEFINE_SPINLOCK(hierarchy_id_lock);
218 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219 #define dummytop (&rootnode.top_cgroup)
221 /* This flag indicates whether tasks in the fork and exit paths should
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
226 static int need_forkexit_callback __read_mostly;
228 #ifdef CONFIG_PROVE_LOCKING
229 int cgroup_lock_is_held(void)
231 return lockdep_is_held(&cgroup_mutex);
233 #else /* #ifdef CONFIG_PROVE_LOCKING */
234 int cgroup_lock_is_held(void)
236 return mutex_is_locked(&cgroup_mutex);
238 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
240 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
242 /* convenient tests for these bits */
243 inline int cgroup_is_removed(const struct cgroup *cgrp)
245 return test_bit(CGRP_REMOVED, &cgrp->flags);
248 /* bits in struct cgroupfs_root flags field */
249 enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
253 static int cgroup_is_releasable(const struct cgroup *cgrp)
255 const int bits =
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
261 static int notify_on_release(const struct cgroup *cgrp)
263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
266 static int clone_children(const struct cgroup *cgrp)
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
275 #define for_each_subsys(_root, _ss) \
276 list_for_each_entry(_ss, &_root->subsys_list, sibling)
278 /* for_each_active_root() allows you to iterate across the active hierarchies */
279 #define for_each_active_root(_root) \
280 list_for_each_entry(_root, &roots, root_list)
282 /* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284 static LIST_HEAD(release_list);
285 static DEFINE_RAW_SPINLOCK(release_list_lock);
286 static void cgroup_release_agent(struct work_struct *work);
287 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
288 static void check_for_release(struct cgroup *cgrp);
290 /* Link structure for associating css_set objects with cgroups */
291 struct cg_cgroup_link {
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
296 struct list_head cgrp_link_list;
297 struct cgroup *cgrp;
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
302 struct list_head cg_link_list;
303 struct css_set *cg;
306 /* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
313 static struct css_set init_css_set;
314 static struct cg_cgroup_link init_css_set_link;
316 static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
319 /* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322 static DEFINE_RWLOCK(css_set_lock);
323 static int css_set_count;
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
330 #define CSS_SET_HASH_BITS 7
331 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
334 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
346 return &css_set_table[index];
349 /* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
353 static int use_task_css_set_links __read_mostly;
355 static void __put_css_set(struct css_set *cg, int taskexit)
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
383 if (taskexit)
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
388 kfree(link);
391 write_unlock(&css_set_lock);
392 kfree_rcu(cg, rcu_head);
396 * refcounted get/put for css_set objects
398 static inline void get_css_set(struct css_set *cg)
400 atomic_inc(&cg->refcount);
403 static inline void put_css_set(struct css_set *cg)
405 __put_css_set(cg, 0);
408 static inline void put_css_set_taskexit(struct css_set *cg)
410 __put_css_set(cg, 1);
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
423 static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
428 struct list_head *l1, *l2;
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
482 return true;
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
488 * css_set is suitable.
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
493 * cgrp: the cgroup that we're moving into
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
498 static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
500 struct cgroup *cgrp,
501 struct cgroup_subsys_state *template[])
503 int i;
504 struct cgroupfs_root *root = cgrp->root;
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
515 if (root->subsys_bits & (1UL << i)) {
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
519 template[i] = cgrp->subsys[i];
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
532 /* This css_set matches what we need */
533 return cg;
536 /* No existing cgroup group matched */
537 return NULL;
540 static void free_cg_links(struct list_head *tmp)
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
554 * success or a negative error
556 static int allocate_cg_links(int count, struct list_head *tmp)
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
564 free_cg_links(tmp);
565 return -ENOMEM;
567 list_add(&link->cgrp_link_list, tmp);
569 return 0;
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
578 static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
581 struct cg_cgroup_link *link;
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
587 link->cgrp = cgrp;
588 atomic_inc(&cgrp->count);
589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
604 static struct css_set *find_css_set(
605 struct css_set *oldcg, struct cgroup *cgrp)
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
610 struct list_head tmp_cg_links;
612 struct hlist_head *hhead;
613 struct cg_cgroup_link *link;
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
617 read_lock(&css_set_lock);
618 res = find_existing_css_set(oldcg, cgrp, template);
619 if (res)
620 get_css_set(res);
621 read_unlock(&css_set_lock);
623 if (res)
624 return res;
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
636 atomic_set(&res->refcount, 1);
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
639 INIT_HLIST_NODE(&res->hlist);
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
654 BUG_ON(!list_empty(&tmp_cg_links));
656 css_set_count++;
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
662 write_unlock(&css_set_lock);
664 return res;
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
671 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
674 struct css_set *css;
675 struct cgroup *res = NULL;
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
707 * A task must hold cgroup_mutex to modify cgroups.
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
712 * cgroup_attach_task() can increment it again. Because a count of zero
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
736 * The task_lock() exception
738 * The need for this exception arises from the action of
739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
740 * another. It does so using cgroup_mutex, however there are
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
748 * P.S. One more locking exception. RCU is used to guard the
749 * update of a tasks cgroup pointer by cgroup_attach_task()
753 * cgroup_lock - lock out any changes to cgroup structures
756 void cgroup_lock(void)
758 mutex_lock(&cgroup_mutex);
760 EXPORT_SYMBOL_GPL(cgroup_lock);
763 * cgroup_unlock - release lock on cgroup changes
765 * Undo the lock taken in a previous cgroup_lock() call.
767 void cgroup_unlock(void)
769 mutex_unlock(&cgroup_mutex);
771 EXPORT_SYMBOL_GPL(cgroup_unlock);
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
780 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
781 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
782 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
783 static int cgroup_populate_dir(struct cgroup *cgrp);
784 static const struct inode_operations cgroup_dir_inode_operations;
785 static const struct file_operations proc_cgroupstats_operations;
787 static struct backing_dev_info cgroup_backing_dev_info = {
788 .name = "cgroup",
789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
792 static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
795 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
797 struct inode *inode = new_inode(sb);
799 if (inode) {
800 inode->i_ino = get_next_ino();
801 inode->i_mode = mode;
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
807 return inode;
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
814 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
816 struct cgroup_subsys *ss;
817 int ret = 0;
819 for_each_subsys(cgrp->root, ss)
820 if (ss->pre_destroy) {
821 ret = ss->pre_destroy(ss, cgrp);
822 if (ret)
823 break;
826 return ret;
829 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
833 struct cgroup *cgrp = dentry->d_fsdata;
834 struct cgroup_subsys *ss;
835 BUG_ON(!(cgroup_is_removed(cgrp)));
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
844 mutex_lock(&cgroup_mutex);
846 * Release the subsystem state objects.
848 for_each_subsys(cgrp->root, ss)
849 ss->destroy(ss, cgrp);
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
858 deactivate_super(cgrp->root->sb);
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
864 BUG_ON(!list_empty(&cgrp->pidlists));
866 kfree_rcu(cgrp, rcu_head);
868 iput(inode);
871 static int cgroup_delete(const struct dentry *d)
873 return 1;
876 static void remove_dir(struct dentry *d)
878 struct dentry *parent = dget(d->d_parent);
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
885 static void cgroup_clear_directory(struct dentry *dentry)
887 struct list_head *node;
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
890 spin_lock(&dentry->d_lock);
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
901 dget_dlock(d);
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
910 node = dentry->d_subdirs.next;
912 spin_unlock(&dentry->d_lock);
916 * NOTE : the dentry must have been dget()'ed
918 static void cgroup_d_remove_dir(struct dentry *dentry)
920 struct dentry *parent;
922 cgroup_clear_directory(dentry);
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
927 list_del_init(&dentry->d_u.d_child);
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
930 remove_dir(dentry);
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
941 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
943 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
946 wake_up_all(&cgroup_rmdir_waitq);
949 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
951 css_get(css);
954 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
965 static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
968 unsigned long added_bits, removed_bits;
969 struct cgroup *cgrp = &root->top_cgroup;
970 int i;
972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
979 unsigned long bit = 1UL << i;
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
988 BUG_ON(ss == NULL);
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
999 if (root->number_of_cgroups > 1)
1000 return -EBUSY;
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
1008 BUG_ON(ss == NULL);
1009 BUG_ON(cgrp->subsys[i]);
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1012 mutex_lock(&ss->hierarchy_mutex);
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
1015 list_move(&ss->sibling, &root->subsys_list);
1016 ss->root = root;
1017 if (ss->bind)
1018 ss->bind(ss, cgrp);
1019 mutex_unlock(&ss->hierarchy_mutex);
1020 /* refcount was already taken, and we're keeping it */
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
1023 BUG_ON(ss == NULL);
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1026 mutex_lock(&ss->hierarchy_mutex);
1027 if (ss->bind)
1028 ss->bind(ss, dummytop);
1029 dummytop->subsys[i]->cgroup = dummytop;
1030 cgrp->subsys[i] = NULL;
1031 subsys[i]->root = &rootnode;
1032 list_move(&ss->sibling, &rootnode.subsys_list);
1033 mutex_unlock(&ss->hierarchy_mutex);
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
1038 BUG_ON(ss == NULL);
1039 BUG_ON(!cgrp->subsys[i]);
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1044 module_put(ss->module);
1045 #ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047 #endif
1048 } else {
1049 /* Subsystem state shouldn't exist */
1050 BUG_ON(cgrp->subsys[i]);
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1056 return 0;
1059 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1061 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1062 struct cgroup_subsys *ss;
1064 mutex_lock(&cgroup_root_mutex);
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
1075 mutex_unlock(&cgroup_root_mutex);
1076 return 0;
1079 struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
1082 char *release_agent;
1083 bool clone_children;
1084 char *name;
1085 /* User explicitly requested empty subsystem */
1086 bool none;
1088 struct cgroupfs_root *new_root;
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
1098 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
1102 unsigned long mask = (unsigned long)-1;
1103 int i;
1104 bool module_pin_failed = false;
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1108 #ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110 #endif
1112 memset(opts, 0, sizeof(*opts));
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
1117 if (!strcmp(token, "none")) {
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
1120 continue;
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1129 if (!strcmp(token, "noprefix")) {
1130 set_bit(ROOT_NOPREFIX, &opts->flags);
1131 continue;
1133 if (!strcmp(token, "clone_children")) {
1134 opts->clone_children = true;
1135 continue;
1137 if (!strncmp(token, "release_agent=", 14)) {
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
1141 opts->release_agent =
1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1143 if (!opts->release_agent)
1144 return -ENOMEM;
1145 continue;
1147 if (!strncmp(token, "name=", 5)) {
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
1165 MAX_CGROUP_ROOT_NAMELEN - 1,
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
1170 continue;
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1188 break;
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1195 * If the 'all' option was specified select all the subsystems,
1196 * otherwise 'all, 'none' and a subsystem name options were not
1197 * specified, let's default to 'all'
1199 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
1210 /* Consistency checks */
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1230 if (!opts->subsys_bits && !opts->name)
1231 return -EINVAL;
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1249 if (module_pin_failed) {
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1263 return -ENOENT;
1266 return 0;
1269 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1281 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
1285 struct cgroup *cgrp = &root->top_cgroup;
1286 struct cgroup_sb_opts opts;
1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1289 mutex_lock(&cgroup_mutex);
1290 mutex_lock(&cgroup_root_mutex);
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1297 /* Don't allow flags or name to change at remount */
1298 if (opts.flags != root->flags ||
1299 (opts.name && strcmp(opts.name, root->name))) {
1300 ret = -EINVAL;
1301 drop_parsed_module_refcounts(opts.subsys_bits);
1302 goto out_unlock;
1305 ret = rebind_subsystems(root, opts.subsys_bits);
1306 if (ret) {
1307 drop_parsed_module_refcounts(opts.subsys_bits);
1308 goto out_unlock;
1311 /* (re)populate subsystem files */
1312 cgroup_populate_dir(cgrp);
1314 if (opts.release_agent)
1315 strcpy(root->release_agent_path, opts.release_agent);
1316 out_unlock:
1317 kfree(opts.release_agent);
1318 kfree(opts.name);
1319 mutex_unlock(&cgroup_root_mutex);
1320 mutex_unlock(&cgroup_mutex);
1321 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1322 return ret;
1325 static const struct super_operations cgroup_ops = {
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 .show_options = cgroup_show_options,
1329 .remount_fs = cgroup_remount,
1332 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1334 INIT_LIST_HEAD(&cgrp->sibling);
1335 INIT_LIST_HEAD(&cgrp->children);
1336 INIT_LIST_HEAD(&cgrp->css_sets);
1337 INIT_LIST_HEAD(&cgrp->release_list);
1338 INIT_LIST_HEAD(&cgrp->pidlists);
1339 mutex_init(&cgrp->pidlist_mutex);
1340 INIT_LIST_HEAD(&cgrp->event_list);
1341 spin_lock_init(&cgrp->event_list_lock);
1344 static void init_cgroup_root(struct cgroupfs_root *root)
1346 struct cgroup *cgrp = &root->top_cgroup;
1347 INIT_LIST_HEAD(&root->subsys_list);
1348 INIT_LIST_HEAD(&root->root_list);
1349 root->number_of_cgroups = 1;
1350 cgrp->root = root;
1351 cgrp->top_cgroup = cgrp;
1352 init_cgroup_housekeeping(cgrp);
1355 static bool init_root_id(struct cgroupfs_root *root)
1357 int ret = 0;
1359 do {
1360 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 return false;
1362 spin_lock(&hierarchy_id_lock);
1363 /* Try to allocate the next unused ID */
1364 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 &root->hierarchy_id);
1366 if (ret == -ENOSPC)
1367 /* Try again starting from 0 */
1368 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 if (!ret) {
1370 next_hierarchy_id = root->hierarchy_id + 1;
1371 } else if (ret != -EAGAIN) {
1372 /* Can only get here if the 31-bit IDR is full ... */
1373 BUG_ON(ret);
1375 spin_unlock(&hierarchy_id_lock);
1376 } while (ret);
1377 return true;
1380 static int cgroup_test_super(struct super_block *sb, void *data)
1382 struct cgroup_sb_opts *opts = data;
1383 struct cgroupfs_root *root = sb->s_fs_info;
1385 /* If we asked for a name then it must match */
1386 if (opts->name && strcmp(opts->name, root->name))
1387 return 0;
1390 * If we asked for subsystems (or explicitly for no
1391 * subsystems) then they must match
1393 if ((opts->subsys_bits || opts->none)
1394 && (opts->subsys_bits != root->subsys_bits))
1395 return 0;
1397 return 1;
1400 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1402 struct cgroupfs_root *root;
1404 if (!opts->subsys_bits && !opts->none)
1405 return NULL;
1407 root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1411 if (!init_root_id(root)) {
1412 kfree(root);
1413 return ERR_PTR(-ENOMEM);
1415 init_cgroup_root(root);
1417 root->subsys_bits = opts->subsys_bits;
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
1423 if (opts->clone_children)
1424 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1425 return root;
1428 static void cgroup_drop_root(struct cgroupfs_root *root)
1430 if (!root)
1431 return;
1433 BUG_ON(!root->hierarchy_id);
1434 spin_lock(&hierarchy_id_lock);
1435 ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 spin_unlock(&hierarchy_id_lock);
1437 kfree(root);
1440 static int cgroup_set_super(struct super_block *sb, void *data)
1442 int ret;
1443 struct cgroup_sb_opts *opts = data;
1445 /* If we don't have a new root, we can't set up a new sb */
1446 if (!opts->new_root)
1447 return -EINVAL;
1449 BUG_ON(!opts->subsys_bits && !opts->none);
1451 ret = set_anon_super(sb, NULL);
1452 if (ret)
1453 return ret;
1455 sb->s_fs_info = opts->new_root;
1456 opts->new_root->sb = sb;
1458 sb->s_blocksize = PAGE_CACHE_SIZE;
1459 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 sb->s_magic = CGROUP_SUPER_MAGIC;
1461 sb->s_op = &cgroup_ops;
1463 return 0;
1466 static int cgroup_get_rootdir(struct super_block *sb)
1468 static const struct dentry_operations cgroup_dops = {
1469 .d_iput = cgroup_diput,
1470 .d_delete = cgroup_delete,
1473 struct inode *inode =
1474 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475 struct dentry *dentry;
1477 if (!inode)
1478 return -ENOMEM;
1480 inode->i_fop = &simple_dir_operations;
1481 inode->i_op = &cgroup_dir_inode_operations;
1482 /* directories start off with i_nlink == 2 (for "." entry) */
1483 inc_nlink(inode);
1484 dentry = d_alloc_root(inode);
1485 if (!dentry) {
1486 iput(inode);
1487 return -ENOMEM;
1489 sb->s_root = dentry;
1490 /* for everything else we want ->d_op set */
1491 sb->s_d_op = &cgroup_dops;
1492 return 0;
1495 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1496 int flags, const char *unused_dev_name,
1497 void *data)
1499 struct cgroup_sb_opts opts;
1500 struct cgroupfs_root *root;
1501 int ret = 0;
1502 struct super_block *sb;
1503 struct cgroupfs_root *new_root;
1504 struct inode *inode;
1506 /* First find the desired set of subsystems */
1507 mutex_lock(&cgroup_mutex);
1508 ret = parse_cgroupfs_options(data, &opts);
1509 mutex_unlock(&cgroup_mutex);
1510 if (ret)
1511 goto out_err;
1514 * Allocate a new cgroup root. We may not need it if we're
1515 * reusing an existing hierarchy.
1517 new_root = cgroup_root_from_opts(&opts);
1518 if (IS_ERR(new_root)) {
1519 ret = PTR_ERR(new_root);
1520 goto drop_modules;
1522 opts.new_root = new_root;
1524 /* Locate an existing or new sb for this hierarchy */
1525 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1526 if (IS_ERR(sb)) {
1527 ret = PTR_ERR(sb);
1528 cgroup_drop_root(opts.new_root);
1529 goto drop_modules;
1532 root = sb->s_fs_info;
1533 BUG_ON(!root);
1534 if (root == opts.new_root) {
1535 /* We used the new root structure, so this is a new hierarchy */
1536 struct list_head tmp_cg_links;
1537 struct cgroup *root_cgrp = &root->top_cgroup;
1538 struct cgroupfs_root *existing_root;
1539 const struct cred *cred;
1540 int i;
1542 BUG_ON(sb->s_root != NULL);
1544 ret = cgroup_get_rootdir(sb);
1545 if (ret)
1546 goto drop_new_super;
1547 inode = sb->s_root->d_inode;
1549 mutex_lock(&inode->i_mutex);
1550 mutex_lock(&cgroup_mutex);
1551 mutex_lock(&cgroup_root_mutex);
1553 /* Check for name clashes with existing mounts */
1554 ret = -EBUSY;
1555 if (strlen(root->name))
1556 for_each_active_root(existing_root)
1557 if (!strcmp(existing_root->name, root->name))
1558 goto unlock_drop;
1561 * We're accessing css_set_count without locking
1562 * css_set_lock here, but that's OK - it can only be
1563 * increased by someone holding cgroup_lock, and
1564 * that's us. The worst that can happen is that we
1565 * have some link structures left over
1567 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1568 if (ret)
1569 goto unlock_drop;
1571 ret = rebind_subsystems(root, root->subsys_bits);
1572 if (ret == -EBUSY) {
1573 free_cg_links(&tmp_cg_links);
1574 goto unlock_drop;
1577 * There must be no failure case after here, since rebinding
1578 * takes care of subsystems' refcounts, which are explicitly
1579 * dropped in the failure exit path.
1582 /* EBUSY should be the only error here */
1583 BUG_ON(ret);
1585 list_add(&root->root_list, &roots);
1586 root_count++;
1588 sb->s_root->d_fsdata = root_cgrp;
1589 root->top_cgroup.dentry = sb->s_root;
1591 /* Link the top cgroup in this hierarchy into all
1592 * the css_set objects */
1593 write_lock(&css_set_lock);
1594 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1595 struct hlist_head *hhead = &css_set_table[i];
1596 struct hlist_node *node;
1597 struct css_set *cg;
1599 hlist_for_each_entry(cg, node, hhead, hlist)
1600 link_css_set(&tmp_cg_links, cg, root_cgrp);
1602 write_unlock(&css_set_lock);
1604 free_cg_links(&tmp_cg_links);
1606 BUG_ON(!list_empty(&root_cgrp->sibling));
1607 BUG_ON(!list_empty(&root_cgrp->children));
1608 BUG_ON(root->number_of_cgroups != 1);
1610 cred = override_creds(&init_cred);
1611 cgroup_populate_dir(root_cgrp);
1612 revert_creds(cred);
1613 mutex_unlock(&cgroup_root_mutex);
1614 mutex_unlock(&cgroup_mutex);
1615 mutex_unlock(&inode->i_mutex);
1616 } else {
1618 * We re-used an existing hierarchy - the new root (if
1619 * any) is not needed
1621 cgroup_drop_root(opts.new_root);
1622 /* no subsys rebinding, so refcounts don't change */
1623 drop_parsed_module_refcounts(opts.subsys_bits);
1626 kfree(opts.release_agent);
1627 kfree(opts.name);
1628 return dget(sb->s_root);
1630 unlock_drop:
1631 mutex_unlock(&cgroup_root_mutex);
1632 mutex_unlock(&cgroup_mutex);
1633 mutex_unlock(&inode->i_mutex);
1634 drop_new_super:
1635 deactivate_locked_super(sb);
1636 drop_modules:
1637 drop_parsed_module_refcounts(opts.subsys_bits);
1638 out_err:
1639 kfree(opts.release_agent);
1640 kfree(opts.name);
1641 return ERR_PTR(ret);
1644 static void cgroup_kill_sb(struct super_block *sb) {
1645 struct cgroupfs_root *root = sb->s_fs_info;
1646 struct cgroup *cgrp = &root->top_cgroup;
1647 int ret;
1648 struct cg_cgroup_link *link;
1649 struct cg_cgroup_link *saved_link;
1651 BUG_ON(!root);
1653 BUG_ON(root->number_of_cgroups != 1);
1654 BUG_ON(!list_empty(&cgrp->children));
1655 BUG_ON(!list_empty(&cgrp->sibling));
1657 mutex_lock(&cgroup_mutex);
1658 mutex_lock(&cgroup_root_mutex);
1660 /* Rebind all subsystems back to the default hierarchy */
1661 ret = rebind_subsystems(root, 0);
1662 /* Shouldn't be able to fail ... */
1663 BUG_ON(ret);
1666 * Release all the links from css_sets to this hierarchy's
1667 * root cgroup
1669 write_lock(&css_set_lock);
1671 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1672 cgrp_link_list) {
1673 list_del(&link->cg_link_list);
1674 list_del(&link->cgrp_link_list);
1675 kfree(link);
1677 write_unlock(&css_set_lock);
1679 if (!list_empty(&root->root_list)) {
1680 list_del(&root->root_list);
1681 root_count--;
1684 mutex_unlock(&cgroup_root_mutex);
1685 mutex_unlock(&cgroup_mutex);
1687 kill_litter_super(sb);
1688 cgroup_drop_root(root);
1691 static struct file_system_type cgroup_fs_type = {
1692 .name = "cgroup",
1693 .mount = cgroup_mount,
1694 .kill_sb = cgroup_kill_sb,
1697 static struct kobject *cgroup_kobj;
1699 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1701 return dentry->d_fsdata;
1704 static inline struct cftype *__d_cft(struct dentry *dentry)
1706 return dentry->d_fsdata;
1710 * cgroup_path - generate the path of a cgroup
1711 * @cgrp: the cgroup in question
1712 * @buf: the buffer to write the path into
1713 * @buflen: the length of the buffer
1715 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716 * reference. Writes path of cgroup into buf. Returns 0 on success,
1717 * -errno on error.
1719 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1721 char *start;
1722 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1723 cgroup_lock_is_held());
1725 if (!dentry || cgrp == dummytop) {
1727 * Inactive subsystems have no dentry for their root
1728 * cgroup
1730 strcpy(buf, "/");
1731 return 0;
1734 start = buf + buflen;
1736 *--start = '\0';
1737 for (;;) {
1738 int len = dentry->d_name.len;
1740 if ((start -= len) < buf)
1741 return -ENAMETOOLONG;
1742 memcpy(start, dentry->d_name.name, len);
1743 cgrp = cgrp->parent;
1744 if (!cgrp)
1745 break;
1747 dentry = rcu_dereference_check(cgrp->dentry,
1748 cgroup_lock_is_held());
1749 if (!cgrp->parent)
1750 continue;
1751 if (--start < buf)
1752 return -ENAMETOOLONG;
1753 *start = '/';
1755 memmove(buf, start, buf + buflen - start);
1756 return 0;
1758 EXPORT_SYMBOL_GPL(cgroup_path);
1761 * cgroup_task_migrate - move a task from one cgroup to another.
1763 * 'guarantee' is set if the caller promises that a new css_set for the task
1764 * will already exist. If not set, this function might sleep, and can fail with
1765 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1767 static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1768 struct task_struct *tsk, bool guarantee)
1770 struct css_set *oldcg;
1771 struct css_set *newcg;
1774 * get old css_set. we need to take task_lock and refcount it, because
1775 * an exiting task can change its css_set to init_css_set and drop its
1776 * old one without taking cgroup_mutex.
1778 task_lock(tsk);
1779 oldcg = tsk->cgroups;
1780 get_css_set(oldcg);
1781 task_unlock(tsk);
1783 /* locate or allocate a new css_set for this task. */
1784 if (guarantee) {
1785 /* we know the css_set we want already exists. */
1786 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1787 read_lock(&css_set_lock);
1788 newcg = find_existing_css_set(oldcg, cgrp, template);
1789 BUG_ON(!newcg);
1790 get_css_set(newcg);
1791 read_unlock(&css_set_lock);
1792 } else {
1793 might_sleep();
1794 /* find_css_set will give us newcg already referenced. */
1795 newcg = find_css_set(oldcg, cgrp);
1796 if (!newcg) {
1797 put_css_set(oldcg);
1798 return -ENOMEM;
1801 put_css_set(oldcg);
1803 /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1804 task_lock(tsk);
1805 if (tsk->flags & PF_EXITING) {
1806 task_unlock(tsk);
1807 put_css_set(newcg);
1808 return -ESRCH;
1810 rcu_assign_pointer(tsk->cgroups, newcg);
1811 task_unlock(tsk);
1813 /* Update the css_set linked lists if we're using them */
1814 write_lock(&css_set_lock);
1815 if (!list_empty(&tsk->cg_list))
1816 list_move(&tsk->cg_list, &newcg->tasks);
1817 write_unlock(&css_set_lock);
1820 * We just gained a reference on oldcg by taking it from the task. As
1821 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1822 * it here; it will be freed under RCU.
1824 put_css_set(oldcg);
1826 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1827 return 0;
1831 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1832 * @cgrp: the cgroup the task is attaching to
1833 * @tsk: the task to be attached
1835 * Call holding cgroup_mutex. May take task_lock of
1836 * the task 'tsk' during call.
1838 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1840 int retval;
1841 struct cgroup_subsys *ss, *failed_ss = NULL;
1842 struct cgroup *oldcgrp;
1843 struct cgroupfs_root *root = cgrp->root;
1845 /* Nothing to do if the task is already in that cgroup */
1846 oldcgrp = task_cgroup_from_root(tsk, root);
1847 if (cgrp == oldcgrp)
1848 return 0;
1850 for_each_subsys(root, ss) {
1851 if (ss->can_attach) {
1852 retval = ss->can_attach(ss, cgrp, tsk);
1853 if (retval) {
1855 * Remember on which subsystem the can_attach()
1856 * failed, so that we only call cancel_attach()
1857 * against the subsystems whose can_attach()
1858 * succeeded. (See below)
1860 failed_ss = ss;
1861 goto out;
1864 if (ss->can_attach_task) {
1865 retval = ss->can_attach_task(cgrp, tsk);
1866 if (retval) {
1867 failed_ss = ss;
1868 goto out;
1873 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1874 if (retval)
1875 goto out;
1877 for_each_subsys(root, ss) {
1878 if (ss->pre_attach)
1879 ss->pre_attach(cgrp);
1880 if (ss->attach_task)
1881 ss->attach_task(cgrp, tsk);
1882 if (ss->attach)
1883 ss->attach(ss, cgrp, oldcgrp, tsk);
1886 synchronize_rcu();
1889 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1890 * is no longer empty.
1892 cgroup_wakeup_rmdir_waiter(cgrp);
1893 out:
1894 if (retval) {
1895 for_each_subsys(root, ss) {
1896 if (ss == failed_ss)
1898 * This subsystem was the one that failed the
1899 * can_attach() check earlier, so we don't need
1900 * to call cancel_attach() against it or any
1901 * remaining subsystems.
1903 break;
1904 if (ss->cancel_attach)
1905 ss->cancel_attach(ss, cgrp, tsk);
1908 return retval;
1912 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1913 * @from: attach to all cgroups of a given task
1914 * @tsk: the task to be attached
1916 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1918 struct cgroupfs_root *root;
1919 int retval = 0;
1921 cgroup_lock();
1922 for_each_active_root(root) {
1923 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1925 retval = cgroup_attach_task(from_cg, tsk);
1926 if (retval)
1927 break;
1929 cgroup_unlock();
1931 return retval;
1933 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1936 * cgroup_attach_proc works in two stages, the first of which prefetches all
1937 * new css_sets needed (to make sure we have enough memory before committing
1938 * to the move) and stores them in a list of entries of the following type.
1939 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1941 struct cg_list_entry {
1942 struct css_set *cg;
1943 struct list_head links;
1946 static bool css_set_check_fetched(struct cgroup *cgrp,
1947 struct task_struct *tsk, struct css_set *cg,
1948 struct list_head *newcg_list)
1950 struct css_set *newcg;
1951 struct cg_list_entry *cg_entry;
1952 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1954 read_lock(&css_set_lock);
1955 newcg = find_existing_css_set(cg, cgrp, template);
1956 if (newcg)
1957 get_css_set(newcg);
1958 read_unlock(&css_set_lock);
1960 /* doesn't exist at all? */
1961 if (!newcg)
1962 return false;
1963 /* see if it's already in the list */
1964 list_for_each_entry(cg_entry, newcg_list, links) {
1965 if (cg_entry->cg == newcg) {
1966 put_css_set(newcg);
1967 return true;
1971 /* not found */
1972 put_css_set(newcg);
1973 return false;
1977 * Find the new css_set and store it in the list in preparation for moving the
1978 * given task to the given cgroup. Returns 0 or -ENOMEM.
1980 static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1981 struct list_head *newcg_list)
1983 struct css_set *newcg;
1984 struct cg_list_entry *cg_entry;
1986 /* ensure a new css_set will exist for this thread */
1987 newcg = find_css_set(cg, cgrp);
1988 if (!newcg)
1989 return -ENOMEM;
1990 /* add it to the list */
1991 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1992 if (!cg_entry) {
1993 put_css_set(newcg);
1994 return -ENOMEM;
1996 cg_entry->cg = newcg;
1997 list_add(&cg_entry->links, newcg_list);
1998 return 0;
2002 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2003 * @cgrp: the cgroup to attach to
2004 * @leader: the threadgroup leader task_struct of the group to be attached
2006 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2007 * task_lock of each thread in leader's threadgroup individually in turn.
2009 int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2011 int retval, i, group_size;
2012 struct cgroup_subsys *ss, *failed_ss = NULL;
2013 bool cancel_failed_ss = false;
2014 /* guaranteed to be initialized later, but the compiler needs this */
2015 struct cgroup *oldcgrp = NULL;
2016 struct css_set *oldcg;
2017 struct cgroupfs_root *root = cgrp->root;
2018 /* threadgroup list cursor and array */
2019 struct task_struct *tsk;
2020 struct flex_array *group;
2022 * we need to make sure we have css_sets for all the tasks we're
2023 * going to move -before- we actually start moving them, so that in
2024 * case we get an ENOMEM we can bail out before making any changes.
2026 struct list_head newcg_list;
2027 struct cg_list_entry *cg_entry, *temp_nobe;
2030 * step 0: in order to do expensive, possibly blocking operations for
2031 * every thread, we cannot iterate the thread group list, since it needs
2032 * rcu or tasklist locked. instead, build an array of all threads in the
2033 * group - group_rwsem prevents new threads from appearing, and if
2034 * threads exit, this will just be an over-estimate.
2036 group_size = get_nr_threads(leader);
2037 /* flex_array supports very large thread-groups better than kmalloc. */
2038 group = flex_array_alloc(sizeof(struct task_struct *), group_size,
2039 GFP_KERNEL);
2040 if (!group)
2041 return -ENOMEM;
2042 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2043 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2044 if (retval)
2045 goto out_free_group_list;
2047 /* prevent changes to the threadgroup list while we take a snapshot. */
2048 read_lock(&tasklist_lock);
2049 if (!thread_group_leader(leader)) {
2051 * a race with de_thread from another thread's exec() may strip
2052 * us of our leadership, making while_each_thread unsafe to use
2053 * on this task. if this happens, there is no choice but to
2054 * throw this task away and try again (from cgroup_procs_write);
2055 * this is "double-double-toil-and-trouble-check locking".
2057 read_unlock(&tasklist_lock);
2058 retval = -EAGAIN;
2059 goto out_free_group_list;
2061 /* take a reference on each task in the group to go in the array. */
2062 tsk = leader;
2063 i = 0;
2064 do {
2065 /* as per above, nr_threads may decrease, but not increase. */
2066 BUG_ON(i >= group_size);
2067 get_task_struct(tsk);
2069 * saying GFP_ATOMIC has no effect here because we did prealloc
2070 * earlier, but it's good form to communicate our expectations.
2072 retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
2073 BUG_ON(retval != 0);
2074 i++;
2075 } while_each_thread(leader, tsk);
2076 /* remember the number of threads in the array for later. */
2077 group_size = i;
2078 read_unlock(&tasklist_lock);
2081 * step 1: check that we can legitimately attach to the cgroup.
2083 for_each_subsys(root, ss) {
2084 if (ss->can_attach) {
2085 retval = ss->can_attach(ss, cgrp, leader);
2086 if (retval) {
2087 failed_ss = ss;
2088 goto out_cancel_attach;
2091 /* a callback to be run on every thread in the threadgroup. */
2092 if (ss->can_attach_task) {
2093 /* run on each task in the threadgroup. */
2094 for (i = 0; i < group_size; i++) {
2095 tsk = flex_array_get_ptr(group, i);
2096 retval = ss->can_attach_task(cgrp, tsk);
2097 if (retval) {
2098 failed_ss = ss;
2099 cancel_failed_ss = true;
2100 goto out_cancel_attach;
2107 * step 2: make sure css_sets exist for all threads to be migrated.
2108 * we use find_css_set, which allocates a new one if necessary.
2110 INIT_LIST_HEAD(&newcg_list);
2111 for (i = 0; i < group_size; i++) {
2112 tsk = flex_array_get_ptr(group, i);
2113 /* nothing to do if this task is already in the cgroup */
2114 oldcgrp = task_cgroup_from_root(tsk, root);
2115 if (cgrp == oldcgrp)
2116 continue;
2117 /* get old css_set pointer */
2118 task_lock(tsk);
2119 if (tsk->flags & PF_EXITING) {
2120 /* ignore this task if it's going away */
2121 task_unlock(tsk);
2122 continue;
2124 oldcg = tsk->cgroups;
2125 get_css_set(oldcg);
2126 task_unlock(tsk);
2127 /* see if the new one for us is already in the list? */
2128 if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2129 /* was already there, nothing to do. */
2130 put_css_set(oldcg);
2131 } else {
2132 /* we don't already have it. get new one. */
2133 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2134 put_css_set(oldcg);
2135 if (retval)
2136 goto out_list_teardown;
2141 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2142 * to move all tasks to the new cgroup, calling ss->attach_task for each
2143 * one along the way. there are no failure cases after here, so this is
2144 * the commit point.
2146 for_each_subsys(root, ss) {
2147 if (ss->pre_attach)
2148 ss->pre_attach(cgrp);
2150 for (i = 0; i < group_size; i++) {
2151 tsk = flex_array_get_ptr(group, i);
2152 /* leave current thread as it is if it's already there */
2153 oldcgrp = task_cgroup_from_root(tsk, root);
2154 if (cgrp == oldcgrp)
2155 continue;
2156 /* if the thread is PF_EXITING, it can just get skipped. */
2157 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
2158 if (retval == 0) {
2159 /* attach each task to each subsystem */
2160 for_each_subsys(root, ss) {
2161 if (ss->attach_task)
2162 ss->attach_task(cgrp, tsk);
2164 } else {
2165 BUG_ON(retval != -ESRCH);
2168 /* nothing is sensitive to fork() after this point. */
2171 * step 4: do expensive, non-thread-specific subsystem callbacks.
2172 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2173 * being moved, this call will need to be reworked to communicate that.
2175 for_each_subsys(root, ss) {
2176 if (ss->attach)
2177 ss->attach(ss, cgrp, oldcgrp, leader);
2181 * step 5: success! and cleanup
2183 synchronize_rcu();
2184 cgroup_wakeup_rmdir_waiter(cgrp);
2185 retval = 0;
2186 out_list_teardown:
2187 /* clean up the list of prefetched css_sets. */
2188 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2189 list_del(&cg_entry->links);
2190 put_css_set(cg_entry->cg);
2191 kfree(cg_entry);
2193 out_cancel_attach:
2194 /* same deal as in cgroup_attach_task */
2195 if (retval) {
2196 for_each_subsys(root, ss) {
2197 if (ss == failed_ss) {
2198 if (cancel_failed_ss && ss->cancel_attach)
2199 ss->cancel_attach(ss, cgrp, leader);
2200 break;
2202 if (ss->cancel_attach)
2203 ss->cancel_attach(ss, cgrp, leader);
2206 /* clean up the array of referenced threads in the group. */
2207 for (i = 0; i < group_size; i++) {
2208 tsk = flex_array_get_ptr(group, i);
2209 put_task_struct(tsk);
2211 out_free_group_list:
2212 flex_array_free(group);
2213 return retval;
2217 * Find the task_struct of the task to attach by vpid and pass it along to the
2218 * function to attach either it or all tasks in its threadgroup. Will take
2219 * cgroup_mutex; may take task_lock of task.
2221 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2223 struct task_struct *tsk;
2224 const struct cred *cred = current_cred(), *tcred;
2225 int ret;
2227 if (!cgroup_lock_live_group(cgrp))
2228 return -ENODEV;
2230 if (pid) {
2231 rcu_read_lock();
2232 tsk = find_task_by_vpid(pid);
2233 if (!tsk) {
2234 rcu_read_unlock();
2235 cgroup_unlock();
2236 return -ESRCH;
2238 if (threadgroup) {
2240 * RCU protects this access, since tsk was found in the
2241 * tid map. a race with de_thread may cause group_leader
2242 * to stop being the leader, but cgroup_attach_proc will
2243 * detect it later.
2245 tsk = tsk->group_leader;
2246 } else if (tsk->flags & PF_EXITING) {
2247 /* optimization for the single-task-only case */
2248 rcu_read_unlock();
2249 cgroup_unlock();
2250 return -ESRCH;
2253 * even if we're attaching all tasks in the thread group, we
2254 * only need to check permissions on one of them.
2256 tcred = __task_cred(tsk);
2257 if (cred->euid &&
2258 cred->euid != tcred->uid &&
2259 cred->euid != tcred->suid) {
2260 rcu_read_unlock();
2261 cgroup_unlock();
2262 return -EACCES;
2264 get_task_struct(tsk);
2265 rcu_read_unlock();
2266 } else {
2267 if (threadgroup)
2268 tsk = current->group_leader;
2269 else
2270 tsk = current;
2271 get_task_struct(tsk);
2274 if (threadgroup) {
2275 threadgroup_lock(tsk);
2276 ret = cgroup_attach_proc(cgrp, tsk);
2277 threadgroup_unlock(tsk);
2278 } else {
2279 ret = cgroup_attach_task(cgrp, tsk);
2281 put_task_struct(tsk);
2282 cgroup_unlock();
2283 return ret;
2286 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2288 return attach_task_by_pid(cgrp, pid, false);
2291 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2293 int ret;
2294 do {
2296 * attach_proc fails with -EAGAIN if threadgroup leadership
2297 * changes in the middle of the operation, in which case we need
2298 * to find the task_struct for the new leader and start over.
2300 ret = attach_task_by_pid(cgrp, tgid, true);
2301 } while (ret == -EAGAIN);
2302 return ret;
2306 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2307 * @cgrp: the cgroup to be checked for liveness
2309 * On success, returns true; the lock should be later released with
2310 * cgroup_unlock(). On failure returns false with no lock held.
2312 bool cgroup_lock_live_group(struct cgroup *cgrp)
2314 mutex_lock(&cgroup_mutex);
2315 if (cgroup_is_removed(cgrp)) {
2316 mutex_unlock(&cgroup_mutex);
2317 return false;
2319 return true;
2321 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2323 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2324 const char *buffer)
2326 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2327 if (strlen(buffer) >= PATH_MAX)
2328 return -EINVAL;
2329 if (!cgroup_lock_live_group(cgrp))
2330 return -ENODEV;
2331 mutex_lock(&cgroup_root_mutex);
2332 strcpy(cgrp->root->release_agent_path, buffer);
2333 mutex_unlock(&cgroup_root_mutex);
2334 cgroup_unlock();
2335 return 0;
2338 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2339 struct seq_file *seq)
2341 if (!cgroup_lock_live_group(cgrp))
2342 return -ENODEV;
2343 seq_puts(seq, cgrp->root->release_agent_path);
2344 seq_putc(seq, '\n');
2345 cgroup_unlock();
2346 return 0;
2349 /* A buffer size big enough for numbers or short strings */
2350 #define CGROUP_LOCAL_BUFFER_SIZE 64
2352 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2353 struct file *file,
2354 const char __user *userbuf,
2355 size_t nbytes, loff_t *unused_ppos)
2357 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2358 int retval = 0;
2359 char *end;
2361 if (!nbytes)
2362 return -EINVAL;
2363 if (nbytes >= sizeof(buffer))
2364 return -E2BIG;
2365 if (copy_from_user(buffer, userbuf, nbytes))
2366 return -EFAULT;
2368 buffer[nbytes] = 0; /* nul-terminate */
2369 if (cft->write_u64) {
2370 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2371 if (*end)
2372 return -EINVAL;
2373 retval = cft->write_u64(cgrp, cft, val);
2374 } else {
2375 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2376 if (*end)
2377 return -EINVAL;
2378 retval = cft->write_s64(cgrp, cft, val);
2380 if (!retval)
2381 retval = nbytes;
2382 return retval;
2385 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2386 struct file *file,
2387 const char __user *userbuf,
2388 size_t nbytes, loff_t *unused_ppos)
2390 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2391 int retval = 0;
2392 size_t max_bytes = cft->max_write_len;
2393 char *buffer = local_buffer;
2395 if (!max_bytes)
2396 max_bytes = sizeof(local_buffer) - 1;
2397 if (nbytes >= max_bytes)
2398 return -E2BIG;
2399 /* Allocate a dynamic buffer if we need one */
2400 if (nbytes >= sizeof(local_buffer)) {
2401 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2402 if (buffer == NULL)
2403 return -ENOMEM;
2405 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2406 retval = -EFAULT;
2407 goto out;
2410 buffer[nbytes] = 0; /* nul-terminate */
2411 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2412 if (!retval)
2413 retval = nbytes;
2414 out:
2415 if (buffer != local_buffer)
2416 kfree(buffer);
2417 return retval;
2420 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2421 size_t nbytes, loff_t *ppos)
2423 struct cftype *cft = __d_cft(file->f_dentry);
2424 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2426 if (cgroup_is_removed(cgrp))
2427 return -ENODEV;
2428 if (cft->write)
2429 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2430 if (cft->write_u64 || cft->write_s64)
2431 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2432 if (cft->write_string)
2433 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2434 if (cft->trigger) {
2435 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2436 return ret ? ret : nbytes;
2438 return -EINVAL;
2441 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2442 struct file *file,
2443 char __user *buf, size_t nbytes,
2444 loff_t *ppos)
2446 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2447 u64 val = cft->read_u64(cgrp, cft);
2448 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2450 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2453 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2454 struct file *file,
2455 char __user *buf, size_t nbytes,
2456 loff_t *ppos)
2458 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2459 s64 val = cft->read_s64(cgrp, cft);
2460 int len = sprintf(tmp, "%lld\n", (long long) val);
2462 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2465 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2466 size_t nbytes, loff_t *ppos)
2468 struct cftype *cft = __d_cft(file->f_dentry);
2469 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2471 if (cgroup_is_removed(cgrp))
2472 return -ENODEV;
2474 if (cft->read)
2475 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2476 if (cft->read_u64)
2477 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2478 if (cft->read_s64)
2479 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2480 return -EINVAL;
2484 * seqfile ops/methods for returning structured data. Currently just
2485 * supports string->u64 maps, but can be extended in future.
2488 struct cgroup_seqfile_state {
2489 struct cftype *cft;
2490 struct cgroup *cgroup;
2493 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2495 struct seq_file *sf = cb->state;
2496 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2499 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2501 struct cgroup_seqfile_state *state = m->private;
2502 struct cftype *cft = state->cft;
2503 if (cft->read_map) {
2504 struct cgroup_map_cb cb = {
2505 .fill = cgroup_map_add,
2506 .state = m,
2508 return cft->read_map(state->cgroup, cft, &cb);
2510 return cft->read_seq_string(state->cgroup, cft, m);
2513 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2515 struct seq_file *seq = file->private_data;
2516 kfree(seq->private);
2517 return single_release(inode, file);
2520 static const struct file_operations cgroup_seqfile_operations = {
2521 .read = seq_read,
2522 .write = cgroup_file_write,
2523 .llseek = seq_lseek,
2524 .release = cgroup_seqfile_release,
2527 static int cgroup_file_open(struct inode *inode, struct file *file)
2529 int err;
2530 struct cftype *cft;
2532 err = generic_file_open(inode, file);
2533 if (err)
2534 return err;
2535 cft = __d_cft(file->f_dentry);
2537 if (cft->read_map || cft->read_seq_string) {
2538 struct cgroup_seqfile_state *state =
2539 kzalloc(sizeof(*state), GFP_USER);
2540 if (!state)
2541 return -ENOMEM;
2542 state->cft = cft;
2543 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2544 file->f_op = &cgroup_seqfile_operations;
2545 err = single_open(file, cgroup_seqfile_show, state);
2546 if (err < 0)
2547 kfree(state);
2548 } else if (cft->open)
2549 err = cft->open(inode, file);
2550 else
2551 err = 0;
2553 return err;
2556 static int cgroup_file_release(struct inode *inode, struct file *file)
2558 struct cftype *cft = __d_cft(file->f_dentry);
2559 if (cft->release)
2560 return cft->release(inode, file);
2561 return 0;
2565 * cgroup_rename - Only allow simple rename of directories in place.
2567 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2568 struct inode *new_dir, struct dentry *new_dentry)
2570 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2571 return -ENOTDIR;
2572 if (new_dentry->d_inode)
2573 return -EEXIST;
2574 if (old_dir != new_dir)
2575 return -EIO;
2576 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2579 static const struct file_operations cgroup_file_operations = {
2580 .read = cgroup_file_read,
2581 .write = cgroup_file_write,
2582 .llseek = generic_file_llseek,
2583 .open = cgroup_file_open,
2584 .release = cgroup_file_release,
2587 static const struct inode_operations cgroup_dir_inode_operations = {
2588 .lookup = cgroup_lookup,
2589 .mkdir = cgroup_mkdir,
2590 .rmdir = cgroup_rmdir,
2591 .rename = cgroup_rename,
2594 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2596 if (dentry->d_name.len > NAME_MAX)
2597 return ERR_PTR(-ENAMETOOLONG);
2598 d_add(dentry, NULL);
2599 return NULL;
2603 * Check if a file is a control file
2605 static inline struct cftype *__file_cft(struct file *file)
2607 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2608 return ERR_PTR(-EINVAL);
2609 return __d_cft(file->f_dentry);
2612 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2613 struct super_block *sb)
2615 struct inode *inode;
2617 if (!dentry)
2618 return -ENOENT;
2619 if (dentry->d_inode)
2620 return -EEXIST;
2622 inode = cgroup_new_inode(mode, sb);
2623 if (!inode)
2624 return -ENOMEM;
2626 if (S_ISDIR(mode)) {
2627 inode->i_op = &cgroup_dir_inode_operations;
2628 inode->i_fop = &simple_dir_operations;
2630 /* start off with i_nlink == 2 (for "." entry) */
2631 inc_nlink(inode);
2633 /* start with the directory inode held, so that we can
2634 * populate it without racing with another mkdir */
2635 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2636 } else if (S_ISREG(mode)) {
2637 inode->i_size = 0;
2638 inode->i_fop = &cgroup_file_operations;
2640 d_instantiate(dentry, inode);
2641 dget(dentry); /* Extra count - pin the dentry in core */
2642 return 0;
2646 * cgroup_create_dir - create a directory for an object.
2647 * @cgrp: the cgroup we create the directory for. It must have a valid
2648 * ->parent field. And we are going to fill its ->dentry field.
2649 * @dentry: dentry of the new cgroup
2650 * @mode: mode to set on new directory.
2652 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2653 mode_t mode)
2655 struct dentry *parent;
2656 int error = 0;
2658 parent = cgrp->parent->dentry;
2659 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2660 if (!error) {
2661 dentry->d_fsdata = cgrp;
2662 inc_nlink(parent->d_inode);
2663 rcu_assign_pointer(cgrp->dentry, dentry);
2664 dget(dentry);
2666 dput(dentry);
2668 return error;
2672 * cgroup_file_mode - deduce file mode of a control file
2673 * @cft: the control file in question
2675 * returns cft->mode if ->mode is not 0
2676 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2677 * returns S_IRUGO if it has only a read handler
2678 * returns S_IWUSR if it has only a write hander
2680 static mode_t cgroup_file_mode(const struct cftype *cft)
2682 mode_t mode = 0;
2684 if (cft->mode)
2685 return cft->mode;
2687 if (cft->read || cft->read_u64 || cft->read_s64 ||
2688 cft->read_map || cft->read_seq_string)
2689 mode |= S_IRUGO;
2691 if (cft->write || cft->write_u64 || cft->write_s64 ||
2692 cft->write_string || cft->trigger)
2693 mode |= S_IWUSR;
2695 return mode;
2698 int cgroup_add_file(struct cgroup *cgrp,
2699 struct cgroup_subsys *subsys,
2700 const struct cftype *cft)
2702 struct dentry *dir = cgrp->dentry;
2703 struct dentry *dentry;
2704 int error;
2705 mode_t mode;
2707 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2708 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2709 strcpy(name, subsys->name);
2710 strcat(name, ".");
2712 strcat(name, cft->name);
2713 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2714 dentry = lookup_one_len(name, dir, strlen(name));
2715 if (!IS_ERR(dentry)) {
2716 mode = cgroup_file_mode(cft);
2717 error = cgroup_create_file(dentry, mode | S_IFREG,
2718 cgrp->root->sb);
2719 if (!error)
2720 dentry->d_fsdata = (void *)cft;
2721 dput(dentry);
2722 } else
2723 error = PTR_ERR(dentry);
2724 return error;
2726 EXPORT_SYMBOL_GPL(cgroup_add_file);
2728 int cgroup_add_files(struct cgroup *cgrp,
2729 struct cgroup_subsys *subsys,
2730 const struct cftype cft[],
2731 int count)
2733 int i, err;
2734 for (i = 0; i < count; i++) {
2735 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2736 if (err)
2737 return err;
2739 return 0;
2741 EXPORT_SYMBOL_GPL(cgroup_add_files);
2744 * cgroup_task_count - count the number of tasks in a cgroup.
2745 * @cgrp: the cgroup in question
2747 * Return the number of tasks in the cgroup.
2749 int cgroup_task_count(const struct cgroup *cgrp)
2751 int count = 0;
2752 struct cg_cgroup_link *link;
2754 read_lock(&css_set_lock);
2755 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2756 count += atomic_read(&link->cg->refcount);
2758 read_unlock(&css_set_lock);
2759 return count;
2763 * Advance a list_head iterator. The iterator should be positioned at
2764 * the start of a css_set
2766 static void cgroup_advance_iter(struct cgroup *cgrp,
2767 struct cgroup_iter *it)
2769 struct list_head *l = it->cg_link;
2770 struct cg_cgroup_link *link;
2771 struct css_set *cg;
2773 /* Advance to the next non-empty css_set */
2774 do {
2775 l = l->next;
2776 if (l == &cgrp->css_sets) {
2777 it->cg_link = NULL;
2778 return;
2780 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2781 cg = link->cg;
2782 } while (list_empty(&cg->tasks));
2783 it->cg_link = l;
2784 it->task = cg->tasks.next;
2788 * To reduce the fork() overhead for systems that are not actually
2789 * using their cgroups capability, we don't maintain the lists running
2790 * through each css_set to its tasks until we see the list actually
2791 * used - in other words after the first call to cgroup_iter_start().
2793 * The tasklist_lock is not held here, as do_each_thread() and
2794 * while_each_thread() are protected by RCU.
2796 static void cgroup_enable_task_cg_lists(void)
2798 struct task_struct *p, *g;
2799 write_lock(&css_set_lock);
2800 use_task_css_set_links = 1;
2801 do_each_thread(g, p) {
2802 task_lock(p);
2804 * We should check if the process is exiting, otherwise
2805 * it will race with cgroup_exit() in that the list
2806 * entry won't be deleted though the process has exited.
2808 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2809 list_add(&p->cg_list, &p->cgroups->tasks);
2810 task_unlock(p);
2811 } while_each_thread(g, p);
2812 write_unlock(&css_set_lock);
2815 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2818 * The first time anyone tries to iterate across a cgroup,
2819 * we need to enable the list linking each css_set to its
2820 * tasks, and fix up all existing tasks.
2822 if (!use_task_css_set_links)
2823 cgroup_enable_task_cg_lists();
2825 read_lock(&css_set_lock);
2826 it->cg_link = &cgrp->css_sets;
2827 cgroup_advance_iter(cgrp, it);
2830 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2831 struct cgroup_iter *it)
2833 struct task_struct *res;
2834 struct list_head *l = it->task;
2835 struct cg_cgroup_link *link;
2837 /* If the iterator cg is NULL, we have no tasks */
2838 if (!it->cg_link)
2839 return NULL;
2840 res = list_entry(l, struct task_struct, cg_list);
2841 /* Advance iterator to find next entry */
2842 l = l->next;
2843 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2844 if (l == &link->cg->tasks) {
2845 /* We reached the end of this task list - move on to
2846 * the next cg_cgroup_link */
2847 cgroup_advance_iter(cgrp, it);
2848 } else {
2849 it->task = l;
2851 return res;
2854 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2856 read_unlock(&css_set_lock);
2859 static inline int started_after_time(struct task_struct *t1,
2860 struct timespec *time,
2861 struct task_struct *t2)
2863 int start_diff = timespec_compare(&t1->start_time, time);
2864 if (start_diff > 0) {
2865 return 1;
2866 } else if (start_diff < 0) {
2867 return 0;
2868 } else {
2870 * Arbitrarily, if two processes started at the same
2871 * time, we'll say that the lower pointer value
2872 * started first. Note that t2 may have exited by now
2873 * so this may not be a valid pointer any longer, but
2874 * that's fine - it still serves to distinguish
2875 * between two tasks started (effectively) simultaneously.
2877 return t1 > t2;
2882 * This function is a callback from heap_insert() and is used to order
2883 * the heap.
2884 * In this case we order the heap in descending task start time.
2886 static inline int started_after(void *p1, void *p2)
2888 struct task_struct *t1 = p1;
2889 struct task_struct *t2 = p2;
2890 return started_after_time(t1, &t2->start_time, t2);
2894 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2895 * @scan: struct cgroup_scanner containing arguments for the scan
2897 * Arguments include pointers to callback functions test_task() and
2898 * process_task().
2899 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2900 * and if it returns true, call process_task() for it also.
2901 * The test_task pointer may be NULL, meaning always true (select all tasks).
2902 * Effectively duplicates cgroup_iter_{start,next,end}()
2903 * but does not lock css_set_lock for the call to process_task().
2904 * The struct cgroup_scanner may be embedded in any structure of the caller's
2905 * creation.
2906 * It is guaranteed that process_task() will act on every task that
2907 * is a member of the cgroup for the duration of this call. This
2908 * function may or may not call process_task() for tasks that exit
2909 * or move to a different cgroup during the call, or are forked or
2910 * move into the cgroup during the call.
2912 * Note that test_task() may be called with locks held, and may in some
2913 * situations be called multiple times for the same task, so it should
2914 * be cheap.
2915 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2916 * pre-allocated and will be used for heap operations (and its "gt" member will
2917 * be overwritten), else a temporary heap will be used (allocation of which
2918 * may cause this function to fail).
2920 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2922 int retval, i;
2923 struct cgroup_iter it;
2924 struct task_struct *p, *dropped;
2925 /* Never dereference latest_task, since it's not refcounted */
2926 struct task_struct *latest_task = NULL;
2927 struct ptr_heap tmp_heap;
2928 struct ptr_heap *heap;
2929 struct timespec latest_time = { 0, 0 };
2931 if (scan->heap) {
2932 /* The caller supplied our heap and pre-allocated its memory */
2933 heap = scan->heap;
2934 heap->gt = &started_after;
2935 } else {
2936 /* We need to allocate our own heap memory */
2937 heap = &tmp_heap;
2938 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2939 if (retval)
2940 /* cannot allocate the heap */
2941 return retval;
2944 again:
2946 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2947 * to determine which are of interest, and using the scanner's
2948 * "process_task" callback to process any of them that need an update.
2949 * Since we don't want to hold any locks during the task updates,
2950 * gather tasks to be processed in a heap structure.
2951 * The heap is sorted by descending task start time.
2952 * If the statically-sized heap fills up, we overflow tasks that
2953 * started later, and in future iterations only consider tasks that
2954 * started after the latest task in the previous pass. This
2955 * guarantees forward progress and that we don't miss any tasks.
2957 heap->size = 0;
2958 cgroup_iter_start(scan->cg, &it);
2959 while ((p = cgroup_iter_next(scan->cg, &it))) {
2961 * Only affect tasks that qualify per the caller's callback,
2962 * if he provided one
2964 if (scan->test_task && !scan->test_task(p, scan))
2965 continue;
2967 * Only process tasks that started after the last task
2968 * we processed
2970 if (!started_after_time(p, &latest_time, latest_task))
2971 continue;
2972 dropped = heap_insert(heap, p);
2973 if (dropped == NULL) {
2975 * The new task was inserted; the heap wasn't
2976 * previously full
2978 get_task_struct(p);
2979 } else if (dropped != p) {
2981 * The new task was inserted, and pushed out a
2982 * different task
2984 get_task_struct(p);
2985 put_task_struct(dropped);
2988 * Else the new task was newer than anything already in
2989 * the heap and wasn't inserted
2992 cgroup_iter_end(scan->cg, &it);
2994 if (heap->size) {
2995 for (i = 0; i < heap->size; i++) {
2996 struct task_struct *q = heap->ptrs[i];
2997 if (i == 0) {
2998 latest_time = q->start_time;
2999 latest_task = q;
3001 /* Process the task per the caller's callback */
3002 scan->process_task(q, scan);
3003 put_task_struct(q);
3006 * If we had to process any tasks at all, scan again
3007 * in case some of them were in the middle of forking
3008 * children that didn't get processed.
3009 * Not the most efficient way to do it, but it avoids
3010 * having to take callback_mutex in the fork path
3012 goto again;
3014 if (heap == &tmp_heap)
3015 heap_free(&tmp_heap);
3016 return 0;
3020 * Stuff for reading the 'tasks'/'procs' files.
3022 * Reading this file can return large amounts of data if a cgroup has
3023 * *lots* of attached tasks. So it may need several calls to read(),
3024 * but we cannot guarantee that the information we produce is correct
3025 * unless we produce it entirely atomically.
3030 * The following two functions "fix" the issue where there are more pids
3031 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3032 * TODO: replace with a kernel-wide solution to this problem
3034 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3035 static void *pidlist_allocate(int count)
3037 if (PIDLIST_TOO_LARGE(count))
3038 return vmalloc(count * sizeof(pid_t));
3039 else
3040 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3042 static void pidlist_free(void *p)
3044 if (is_vmalloc_addr(p))
3045 vfree(p);
3046 else
3047 kfree(p);
3049 static void *pidlist_resize(void *p, int newcount)
3051 void *newlist;
3052 /* note: if new alloc fails, old p will still be valid either way */
3053 if (is_vmalloc_addr(p)) {
3054 newlist = vmalloc(newcount * sizeof(pid_t));
3055 if (!newlist)
3056 return NULL;
3057 memcpy(newlist, p, newcount * sizeof(pid_t));
3058 vfree(p);
3059 } else {
3060 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3062 return newlist;
3066 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3067 * If the new stripped list is sufficiently smaller and there's enough memory
3068 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3069 * number of unique elements.
3071 /* is the size difference enough that we should re-allocate the array? */
3072 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3073 static int pidlist_uniq(pid_t **p, int length)
3075 int src, dest = 1;
3076 pid_t *list = *p;
3077 pid_t *newlist;
3080 * we presume the 0th element is unique, so i starts at 1. trivial
3081 * edge cases first; no work needs to be done for either
3083 if (length == 0 || length == 1)
3084 return length;
3085 /* src and dest walk down the list; dest counts unique elements */
3086 for (src = 1; src < length; src++) {
3087 /* find next unique element */
3088 while (list[src] == list[src-1]) {
3089 src++;
3090 if (src == length)
3091 goto after;
3093 /* dest always points to where the next unique element goes */
3094 list[dest] = list[src];
3095 dest++;
3097 after:
3099 * if the length difference is large enough, we want to allocate a
3100 * smaller buffer to save memory. if this fails due to out of memory,
3101 * we'll just stay with what we've got.
3103 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3104 newlist = pidlist_resize(list, dest);
3105 if (newlist)
3106 *p = newlist;
3108 return dest;
3111 static int cmppid(const void *a, const void *b)
3113 return *(pid_t *)a - *(pid_t *)b;
3117 * find the appropriate pidlist for our purpose (given procs vs tasks)
3118 * returns with the lock on that pidlist already held, and takes care
3119 * of the use count, or returns NULL with no locks held if we're out of
3120 * memory.
3122 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3123 enum cgroup_filetype type)
3125 struct cgroup_pidlist *l;
3126 /* don't need task_nsproxy() if we're looking at ourself */
3127 struct pid_namespace *ns = current->nsproxy->pid_ns;
3130 * We can't drop the pidlist_mutex before taking the l->mutex in case
3131 * the last ref-holder is trying to remove l from the list at the same
3132 * time. Holding the pidlist_mutex precludes somebody taking whichever
3133 * list we find out from under us - compare release_pid_array().
3135 mutex_lock(&cgrp->pidlist_mutex);
3136 list_for_each_entry(l, &cgrp->pidlists, links) {
3137 if (l->key.type == type && l->key.ns == ns) {
3138 /* make sure l doesn't vanish out from under us */
3139 down_write(&l->mutex);
3140 mutex_unlock(&cgrp->pidlist_mutex);
3141 return l;
3144 /* entry not found; create a new one */
3145 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3146 if (!l) {
3147 mutex_unlock(&cgrp->pidlist_mutex);
3148 return l;
3150 init_rwsem(&l->mutex);
3151 down_write(&l->mutex);
3152 l->key.type = type;
3153 l->key.ns = get_pid_ns(ns);
3154 l->use_count = 0; /* don't increment here */
3155 l->list = NULL;
3156 l->owner = cgrp;
3157 list_add(&l->links, &cgrp->pidlists);
3158 mutex_unlock(&cgrp->pidlist_mutex);
3159 return l;
3163 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3165 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3166 struct cgroup_pidlist **lp)
3168 pid_t *array;
3169 int length;
3170 int pid, n = 0; /* used for populating the array */
3171 struct cgroup_iter it;
3172 struct task_struct *tsk;
3173 struct cgroup_pidlist *l;
3176 * If cgroup gets more users after we read count, we won't have
3177 * enough space - tough. This race is indistinguishable to the
3178 * caller from the case that the additional cgroup users didn't
3179 * show up until sometime later on.
3181 length = cgroup_task_count(cgrp);
3182 array = pidlist_allocate(length);
3183 if (!array)
3184 return -ENOMEM;
3185 /* now, populate the array */
3186 cgroup_iter_start(cgrp, &it);
3187 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3188 if (unlikely(n == length))
3189 break;
3190 /* get tgid or pid for procs or tasks file respectively */
3191 if (type == CGROUP_FILE_PROCS)
3192 pid = task_tgid_vnr(tsk);
3193 else
3194 pid = task_pid_vnr(tsk);
3195 if (pid > 0) /* make sure to only use valid results */
3196 array[n++] = pid;
3198 cgroup_iter_end(cgrp, &it);
3199 length = n;
3200 /* now sort & (if procs) strip out duplicates */
3201 sort(array, length, sizeof(pid_t), cmppid, NULL);
3202 if (type == CGROUP_FILE_PROCS)
3203 length = pidlist_uniq(&array, length);
3204 l = cgroup_pidlist_find(cgrp, type);
3205 if (!l) {
3206 pidlist_free(array);
3207 return -ENOMEM;
3209 /* store array, freeing old if necessary - lock already held */
3210 pidlist_free(l->list);
3211 l->list = array;
3212 l->length = length;
3213 l->use_count++;
3214 up_write(&l->mutex);
3215 *lp = l;
3216 return 0;
3220 * cgroupstats_build - build and fill cgroupstats
3221 * @stats: cgroupstats to fill information into
3222 * @dentry: A dentry entry belonging to the cgroup for which stats have
3223 * been requested.
3225 * Build and fill cgroupstats so that taskstats can export it to user
3226 * space.
3228 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3230 int ret = -EINVAL;
3231 struct cgroup *cgrp;
3232 struct cgroup_iter it;
3233 struct task_struct *tsk;
3236 * Validate dentry by checking the superblock operations,
3237 * and make sure it's a directory.
3239 if (dentry->d_sb->s_op != &cgroup_ops ||
3240 !S_ISDIR(dentry->d_inode->i_mode))
3241 goto err;
3243 ret = 0;
3244 cgrp = dentry->d_fsdata;
3246 cgroup_iter_start(cgrp, &it);
3247 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3248 switch (tsk->state) {
3249 case TASK_RUNNING:
3250 stats->nr_running++;
3251 break;
3252 case TASK_INTERRUPTIBLE:
3253 stats->nr_sleeping++;
3254 break;
3255 case TASK_UNINTERRUPTIBLE:
3256 stats->nr_uninterruptible++;
3257 break;
3258 case TASK_STOPPED:
3259 stats->nr_stopped++;
3260 break;
3261 default:
3262 if (delayacct_is_task_waiting_on_io(tsk))
3263 stats->nr_io_wait++;
3264 break;
3267 cgroup_iter_end(cgrp, &it);
3269 err:
3270 return ret;
3275 * seq_file methods for the tasks/procs files. The seq_file position is the
3276 * next pid to display; the seq_file iterator is a pointer to the pid
3277 * in the cgroup->l->list array.
3280 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3283 * Initially we receive a position value that corresponds to
3284 * one more than the last pid shown (or 0 on the first call or
3285 * after a seek to the start). Use a binary-search to find the
3286 * next pid to display, if any
3288 struct cgroup_pidlist *l = s->private;
3289 int index = 0, pid = *pos;
3290 int *iter;
3292 down_read(&l->mutex);
3293 if (pid) {
3294 int end = l->length;
3296 while (index < end) {
3297 int mid = (index + end) / 2;
3298 if (l->list[mid] == pid) {
3299 index = mid;
3300 break;
3301 } else if (l->list[mid] <= pid)
3302 index = mid + 1;
3303 else
3304 end = mid;
3307 /* If we're off the end of the array, we're done */
3308 if (index >= l->length)
3309 return NULL;
3310 /* Update the abstract position to be the actual pid that we found */
3311 iter = l->list + index;
3312 *pos = *iter;
3313 return iter;
3316 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3318 struct cgroup_pidlist *l = s->private;
3319 up_read(&l->mutex);
3322 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3324 struct cgroup_pidlist *l = s->private;
3325 pid_t *p = v;
3326 pid_t *end = l->list + l->length;
3328 * Advance to the next pid in the array. If this goes off the
3329 * end, we're done
3331 p++;
3332 if (p >= end) {
3333 return NULL;
3334 } else {
3335 *pos = *p;
3336 return p;
3340 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3342 return seq_printf(s, "%d\n", *(int *)v);
3346 * seq_operations functions for iterating on pidlists through seq_file -
3347 * independent of whether it's tasks or procs
3349 static const struct seq_operations cgroup_pidlist_seq_operations = {
3350 .start = cgroup_pidlist_start,
3351 .stop = cgroup_pidlist_stop,
3352 .next = cgroup_pidlist_next,
3353 .show = cgroup_pidlist_show,
3356 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3359 * the case where we're the last user of this particular pidlist will
3360 * have us remove it from the cgroup's list, which entails taking the
3361 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3362 * pidlist_mutex, we have to take pidlist_mutex first.
3364 mutex_lock(&l->owner->pidlist_mutex);
3365 down_write(&l->mutex);
3366 BUG_ON(!l->use_count);
3367 if (!--l->use_count) {
3368 /* we're the last user if refcount is 0; remove and free */
3369 list_del(&l->links);
3370 mutex_unlock(&l->owner->pidlist_mutex);
3371 pidlist_free(l->list);
3372 put_pid_ns(l->key.ns);
3373 up_write(&l->mutex);
3374 kfree(l);
3375 return;
3377 mutex_unlock(&l->owner->pidlist_mutex);
3378 up_write(&l->mutex);
3381 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3383 struct cgroup_pidlist *l;
3384 if (!(file->f_mode & FMODE_READ))
3385 return 0;
3387 * the seq_file will only be initialized if the file was opened for
3388 * reading; hence we check if it's not null only in that case.
3390 l = ((struct seq_file *)file->private_data)->private;
3391 cgroup_release_pid_array(l);
3392 return seq_release(inode, file);
3395 static const struct file_operations cgroup_pidlist_operations = {
3396 .read = seq_read,
3397 .llseek = seq_lseek,
3398 .write = cgroup_file_write,
3399 .release = cgroup_pidlist_release,
3403 * The following functions handle opens on a file that displays a pidlist
3404 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3405 * in the cgroup.
3407 /* helper function for the two below it */
3408 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3410 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3411 struct cgroup_pidlist *l;
3412 int retval;
3414 /* Nothing to do for write-only files */
3415 if (!(file->f_mode & FMODE_READ))
3416 return 0;
3418 /* have the array populated */
3419 retval = pidlist_array_load(cgrp, type, &l);
3420 if (retval)
3421 return retval;
3422 /* configure file information */
3423 file->f_op = &cgroup_pidlist_operations;
3425 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3426 if (retval) {
3427 cgroup_release_pid_array(l);
3428 return retval;
3430 ((struct seq_file *)file->private_data)->private = l;
3431 return 0;
3433 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3435 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3437 static int cgroup_procs_open(struct inode *unused, struct file *file)
3439 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3442 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3443 struct cftype *cft)
3445 return notify_on_release(cgrp);
3448 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3449 struct cftype *cft,
3450 u64 val)
3452 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3453 if (val)
3454 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3455 else
3456 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3457 return 0;
3461 * Unregister event and free resources.
3463 * Gets called from workqueue.
3465 static void cgroup_event_remove(struct work_struct *work)
3467 struct cgroup_event *event = container_of(work, struct cgroup_event,
3468 remove);
3469 struct cgroup *cgrp = event->cgrp;
3471 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3473 eventfd_ctx_put(event->eventfd);
3474 kfree(event);
3475 dput(cgrp->dentry);
3479 * Gets called on POLLHUP on eventfd when user closes it.
3481 * Called with wqh->lock held and interrupts disabled.
3483 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3484 int sync, void *key)
3486 struct cgroup_event *event = container_of(wait,
3487 struct cgroup_event, wait);
3488 struct cgroup *cgrp = event->cgrp;
3489 unsigned long flags = (unsigned long)key;
3491 if (flags & POLLHUP) {
3492 __remove_wait_queue(event->wqh, &event->wait);
3493 spin_lock(&cgrp->event_list_lock);
3494 list_del(&event->list);
3495 spin_unlock(&cgrp->event_list_lock);
3497 * We are in atomic context, but cgroup_event_remove() may
3498 * sleep, so we have to call it in workqueue.
3500 schedule_work(&event->remove);
3503 return 0;
3506 static void cgroup_event_ptable_queue_proc(struct file *file,
3507 wait_queue_head_t *wqh, poll_table *pt)
3509 struct cgroup_event *event = container_of(pt,
3510 struct cgroup_event, pt);
3512 event->wqh = wqh;
3513 add_wait_queue(wqh, &event->wait);
3517 * Parse input and register new cgroup event handler.
3519 * Input must be in format '<event_fd> <control_fd> <args>'.
3520 * Interpretation of args is defined by control file implementation.
3522 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3523 const char *buffer)
3525 struct cgroup_event *event = NULL;
3526 unsigned int efd, cfd;
3527 struct file *efile = NULL;
3528 struct file *cfile = NULL;
3529 char *endp;
3530 int ret;
3532 efd = simple_strtoul(buffer, &endp, 10);
3533 if (*endp != ' ')
3534 return -EINVAL;
3535 buffer = endp + 1;
3537 cfd = simple_strtoul(buffer, &endp, 10);
3538 if ((*endp != ' ') && (*endp != '\0'))
3539 return -EINVAL;
3540 buffer = endp + 1;
3542 event = kzalloc(sizeof(*event), GFP_KERNEL);
3543 if (!event)
3544 return -ENOMEM;
3545 event->cgrp = cgrp;
3546 INIT_LIST_HEAD(&event->list);
3547 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3548 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3549 INIT_WORK(&event->remove, cgroup_event_remove);
3551 efile = eventfd_fget(efd);
3552 if (IS_ERR(efile)) {
3553 ret = PTR_ERR(efile);
3554 goto fail;
3557 event->eventfd = eventfd_ctx_fileget(efile);
3558 if (IS_ERR(event->eventfd)) {
3559 ret = PTR_ERR(event->eventfd);
3560 goto fail;
3563 cfile = fget(cfd);
3564 if (!cfile) {
3565 ret = -EBADF;
3566 goto fail;
3569 /* the process need read permission on control file */
3570 /* AV: shouldn't we check that it's been opened for read instead? */
3571 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3572 if (ret < 0)
3573 goto fail;
3575 event->cft = __file_cft(cfile);
3576 if (IS_ERR(event->cft)) {
3577 ret = PTR_ERR(event->cft);
3578 goto fail;
3581 if (!event->cft->register_event || !event->cft->unregister_event) {
3582 ret = -EINVAL;
3583 goto fail;
3586 ret = event->cft->register_event(cgrp, event->cft,
3587 event->eventfd, buffer);
3588 if (ret)
3589 goto fail;
3591 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3592 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3593 ret = 0;
3594 goto fail;
3598 * Events should be removed after rmdir of cgroup directory, but before
3599 * destroying subsystem state objects. Let's take reference to cgroup
3600 * directory dentry to do that.
3602 dget(cgrp->dentry);
3604 spin_lock(&cgrp->event_list_lock);
3605 list_add(&event->list, &cgrp->event_list);
3606 spin_unlock(&cgrp->event_list_lock);
3608 fput(cfile);
3609 fput(efile);
3611 return 0;
3613 fail:
3614 if (cfile)
3615 fput(cfile);
3617 if (event && event->eventfd && !IS_ERR(event->eventfd))
3618 eventfd_ctx_put(event->eventfd);
3620 if (!IS_ERR_OR_NULL(efile))
3621 fput(efile);
3623 kfree(event);
3625 return ret;
3628 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3629 struct cftype *cft)
3631 return clone_children(cgrp);
3634 static int cgroup_clone_children_write(struct cgroup *cgrp,
3635 struct cftype *cft,
3636 u64 val)
3638 if (val)
3639 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3640 else
3641 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3642 return 0;
3646 * for the common functions, 'private' gives the type of file
3648 /* for hysterical raisins, we can't put this on the older files */
3649 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3650 static struct cftype files[] = {
3652 .name = "tasks",
3653 .open = cgroup_tasks_open,
3654 .write_u64 = cgroup_tasks_write,
3655 .release = cgroup_pidlist_release,
3656 .mode = S_IRUGO | S_IWUSR,
3659 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3660 .open = cgroup_procs_open,
3661 .write_u64 = cgroup_procs_write,
3662 .release = cgroup_pidlist_release,
3663 .mode = S_IRUGO | S_IWUSR,
3666 .name = "notify_on_release",
3667 .read_u64 = cgroup_read_notify_on_release,
3668 .write_u64 = cgroup_write_notify_on_release,
3671 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3672 .write_string = cgroup_write_event_control,
3673 .mode = S_IWUGO,
3676 .name = "cgroup.clone_children",
3677 .read_u64 = cgroup_clone_children_read,
3678 .write_u64 = cgroup_clone_children_write,
3682 static struct cftype cft_release_agent = {
3683 .name = "release_agent",
3684 .read_seq_string = cgroup_release_agent_show,
3685 .write_string = cgroup_release_agent_write,
3686 .max_write_len = PATH_MAX,
3689 static int cgroup_populate_dir(struct cgroup *cgrp)
3691 int err;
3692 struct cgroup_subsys *ss;
3694 /* First clear out any existing files */
3695 cgroup_clear_directory(cgrp->dentry);
3697 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3698 if (err < 0)
3699 return err;
3701 if (cgrp == cgrp->top_cgroup) {
3702 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3703 return err;
3706 for_each_subsys(cgrp->root, ss) {
3707 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3708 return err;
3710 /* This cgroup is ready now */
3711 for_each_subsys(cgrp->root, ss) {
3712 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3714 * Update id->css pointer and make this css visible from
3715 * CSS ID functions. This pointer will be dereferened
3716 * from RCU-read-side without locks.
3718 if (css->id)
3719 rcu_assign_pointer(css->id->css, css);
3722 return 0;
3725 static void init_cgroup_css(struct cgroup_subsys_state *css,
3726 struct cgroup_subsys *ss,
3727 struct cgroup *cgrp)
3729 css->cgroup = cgrp;
3730 atomic_set(&css->refcnt, 1);
3731 css->flags = 0;
3732 css->id = NULL;
3733 if (cgrp == dummytop)
3734 set_bit(CSS_ROOT, &css->flags);
3735 BUG_ON(cgrp->subsys[ss->subsys_id]);
3736 cgrp->subsys[ss->subsys_id] = css;
3739 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3741 /* We need to take each hierarchy_mutex in a consistent order */
3742 int i;
3745 * No worry about a race with rebind_subsystems that might mess up the
3746 * locking order, since both parties are under cgroup_mutex.
3748 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3749 struct cgroup_subsys *ss = subsys[i];
3750 if (ss == NULL)
3751 continue;
3752 if (ss->root == root)
3753 mutex_lock(&ss->hierarchy_mutex);
3757 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3759 int i;
3761 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3762 struct cgroup_subsys *ss = subsys[i];
3763 if (ss == NULL)
3764 continue;
3765 if (ss->root == root)
3766 mutex_unlock(&ss->hierarchy_mutex);
3771 * cgroup_create - create a cgroup
3772 * @parent: cgroup that will be parent of the new cgroup
3773 * @dentry: dentry of the new cgroup
3774 * @mode: mode to set on new inode
3776 * Must be called with the mutex on the parent inode held
3778 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3779 mode_t mode)
3781 struct cgroup *cgrp;
3782 struct cgroupfs_root *root = parent->root;
3783 int err = 0;
3784 struct cgroup_subsys *ss;
3785 struct super_block *sb = root->sb;
3787 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3788 if (!cgrp)
3789 return -ENOMEM;
3791 /* Grab a reference on the superblock so the hierarchy doesn't
3792 * get deleted on unmount if there are child cgroups. This
3793 * can be done outside cgroup_mutex, since the sb can't
3794 * disappear while someone has an open control file on the
3795 * fs */
3796 atomic_inc(&sb->s_active);
3798 mutex_lock(&cgroup_mutex);
3800 init_cgroup_housekeeping(cgrp);
3802 cgrp->parent = parent;
3803 cgrp->root = parent->root;
3804 cgrp->top_cgroup = parent->top_cgroup;
3806 if (notify_on_release(parent))
3807 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3809 if (clone_children(parent))
3810 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3812 for_each_subsys(root, ss) {
3813 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3815 if (IS_ERR(css)) {
3816 err = PTR_ERR(css);
3817 goto err_destroy;
3819 init_cgroup_css(css, ss, cgrp);
3820 if (ss->use_id) {
3821 err = alloc_css_id(ss, parent, cgrp);
3822 if (err)
3823 goto err_destroy;
3825 /* At error, ->destroy() callback has to free assigned ID. */
3826 if (clone_children(parent) && ss->post_clone)
3827 ss->post_clone(ss, cgrp);
3830 cgroup_lock_hierarchy(root);
3831 list_add(&cgrp->sibling, &cgrp->parent->children);
3832 cgroup_unlock_hierarchy(root);
3833 root->number_of_cgroups++;
3835 err = cgroup_create_dir(cgrp, dentry, mode);
3836 if (err < 0)
3837 goto err_remove;
3839 /* The cgroup directory was pre-locked for us */
3840 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3842 err = cgroup_populate_dir(cgrp);
3843 /* If err < 0, we have a half-filled directory - oh well ;) */
3845 mutex_unlock(&cgroup_mutex);
3846 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3848 return 0;
3850 err_remove:
3852 cgroup_lock_hierarchy(root);
3853 list_del(&cgrp->sibling);
3854 cgroup_unlock_hierarchy(root);
3855 root->number_of_cgroups--;
3857 err_destroy:
3859 for_each_subsys(root, ss) {
3860 if (cgrp->subsys[ss->subsys_id])
3861 ss->destroy(ss, cgrp);
3864 mutex_unlock(&cgroup_mutex);
3866 /* Release the reference count that we took on the superblock */
3867 deactivate_super(sb);
3869 kfree(cgrp);
3870 return err;
3873 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3875 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3877 /* the vfs holds inode->i_mutex already */
3878 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3881 static int cgroup_has_css_refs(struct cgroup *cgrp)
3883 /* Check the reference count on each subsystem. Since we
3884 * already established that there are no tasks in the
3885 * cgroup, if the css refcount is also 1, then there should
3886 * be no outstanding references, so the subsystem is safe to
3887 * destroy. We scan across all subsystems rather than using
3888 * the per-hierarchy linked list of mounted subsystems since
3889 * we can be called via check_for_release() with no
3890 * synchronization other than RCU, and the subsystem linked
3891 * list isn't RCU-safe */
3892 int i;
3894 * We won't need to lock the subsys array, because the subsystems
3895 * we're concerned about aren't going anywhere since our cgroup root
3896 * has a reference on them.
3898 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3899 struct cgroup_subsys *ss = subsys[i];
3900 struct cgroup_subsys_state *css;
3901 /* Skip subsystems not present or not in this hierarchy */
3902 if (ss == NULL || ss->root != cgrp->root)
3903 continue;
3904 css = cgrp->subsys[ss->subsys_id];
3905 /* When called from check_for_release() it's possible
3906 * that by this point the cgroup has been removed
3907 * and the css deleted. But a false-positive doesn't
3908 * matter, since it can only happen if the cgroup
3909 * has been deleted and hence no longer needs the
3910 * release agent to be called anyway. */
3911 if (css && (atomic_read(&css->refcnt) > 1))
3912 return 1;
3914 return 0;
3918 * Atomically mark all (or else none) of the cgroup's CSS objects as
3919 * CSS_REMOVED. Return true on success, or false if the cgroup has
3920 * busy subsystems. Call with cgroup_mutex held
3923 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3925 struct cgroup_subsys *ss;
3926 unsigned long flags;
3927 bool failed = false;
3928 local_irq_save(flags);
3929 for_each_subsys(cgrp->root, ss) {
3930 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3931 int refcnt;
3932 while (1) {
3933 /* We can only remove a CSS with a refcnt==1 */
3934 refcnt = atomic_read(&css->refcnt);
3935 if (refcnt > 1) {
3936 failed = true;
3937 goto done;
3939 BUG_ON(!refcnt);
3941 * Drop the refcnt to 0 while we check other
3942 * subsystems. This will cause any racing
3943 * css_tryget() to spin until we set the
3944 * CSS_REMOVED bits or abort
3946 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3947 break;
3948 cpu_relax();
3951 done:
3952 for_each_subsys(cgrp->root, ss) {
3953 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3954 if (failed) {
3956 * Restore old refcnt if we previously managed
3957 * to clear it from 1 to 0
3959 if (!atomic_read(&css->refcnt))
3960 atomic_set(&css->refcnt, 1);
3961 } else {
3962 /* Commit the fact that the CSS is removed */
3963 set_bit(CSS_REMOVED, &css->flags);
3966 local_irq_restore(flags);
3967 return !failed;
3970 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3972 struct cgroup *cgrp = dentry->d_fsdata;
3973 struct dentry *d;
3974 struct cgroup *parent;
3975 DEFINE_WAIT(wait);
3976 struct cgroup_event *event, *tmp;
3977 int ret;
3979 /* the vfs holds both inode->i_mutex already */
3980 again:
3981 mutex_lock(&cgroup_mutex);
3982 if (atomic_read(&cgrp->count) != 0) {
3983 mutex_unlock(&cgroup_mutex);
3984 return -EBUSY;
3986 if (!list_empty(&cgrp->children)) {
3987 mutex_unlock(&cgroup_mutex);
3988 return -EBUSY;
3990 mutex_unlock(&cgroup_mutex);
3993 * In general, subsystem has no css->refcnt after pre_destroy(). But
3994 * in racy cases, subsystem may have to get css->refcnt after
3995 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3996 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3997 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3998 * and subsystem's reference count handling. Please see css_get/put
3999 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4001 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4004 * Call pre_destroy handlers of subsys. Notify subsystems
4005 * that rmdir() request comes.
4007 ret = cgroup_call_pre_destroy(cgrp);
4008 if (ret) {
4009 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4010 return ret;
4013 mutex_lock(&cgroup_mutex);
4014 parent = cgrp->parent;
4015 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4016 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4017 mutex_unlock(&cgroup_mutex);
4018 return -EBUSY;
4020 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4021 if (!cgroup_clear_css_refs(cgrp)) {
4022 mutex_unlock(&cgroup_mutex);
4024 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4025 * prepare_to_wait(), we need to check this flag.
4027 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4028 schedule();
4029 finish_wait(&cgroup_rmdir_waitq, &wait);
4030 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4031 if (signal_pending(current))
4032 return -EINTR;
4033 goto again;
4035 /* NO css_tryget() can success after here. */
4036 finish_wait(&cgroup_rmdir_waitq, &wait);
4037 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4039 raw_spin_lock(&release_list_lock);
4040 set_bit(CGRP_REMOVED, &cgrp->flags);
4041 if (!list_empty(&cgrp->release_list))
4042 list_del_init(&cgrp->release_list);
4043 raw_spin_unlock(&release_list_lock);
4045 cgroup_lock_hierarchy(cgrp->root);
4046 /* delete this cgroup from parent->children */
4047 list_del_init(&cgrp->sibling);
4048 cgroup_unlock_hierarchy(cgrp->root);
4050 d = dget(cgrp->dentry);
4052 cgroup_d_remove_dir(d);
4053 dput(d);
4055 set_bit(CGRP_RELEASABLE, &parent->flags);
4056 check_for_release(parent);
4059 * Unregister events and notify userspace.
4060 * Notify userspace about cgroup removing only after rmdir of cgroup
4061 * directory to avoid race between userspace and kernelspace
4063 spin_lock(&cgrp->event_list_lock);
4064 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4065 list_del(&event->list);
4066 remove_wait_queue(event->wqh, &event->wait);
4067 eventfd_signal(event->eventfd, 1);
4068 schedule_work(&event->remove);
4070 spin_unlock(&cgrp->event_list_lock);
4072 mutex_unlock(&cgroup_mutex);
4073 return 0;
4076 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4078 struct cgroup_subsys_state *css;
4080 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4082 /* Create the top cgroup state for this subsystem */
4083 list_add(&ss->sibling, &rootnode.subsys_list);
4084 ss->root = &rootnode;
4085 css = ss->create(ss, dummytop);
4086 /* We don't handle early failures gracefully */
4087 BUG_ON(IS_ERR(css));
4088 init_cgroup_css(css, ss, dummytop);
4090 /* Update the init_css_set to contain a subsys
4091 * pointer to this state - since the subsystem is
4092 * newly registered, all tasks and hence the
4093 * init_css_set is in the subsystem's top cgroup. */
4094 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4096 need_forkexit_callback |= ss->fork || ss->exit;
4098 /* At system boot, before all subsystems have been
4099 * registered, no tasks have been forked, so we don't
4100 * need to invoke fork callbacks here. */
4101 BUG_ON(!list_empty(&init_task.tasks));
4103 mutex_init(&ss->hierarchy_mutex);
4104 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4105 ss->active = 1;
4107 /* this function shouldn't be used with modular subsystems, since they
4108 * need to register a subsys_id, among other things */
4109 BUG_ON(ss->module);
4113 * cgroup_load_subsys: load and register a modular subsystem at runtime
4114 * @ss: the subsystem to load
4116 * This function should be called in a modular subsystem's initcall. If the
4117 * subsystem is built as a module, it will be assigned a new subsys_id and set
4118 * up for use. If the subsystem is built-in anyway, work is delegated to the
4119 * simpler cgroup_init_subsys.
4121 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4123 int i;
4124 struct cgroup_subsys_state *css;
4126 /* check name and function validity */
4127 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4128 ss->create == NULL || ss->destroy == NULL)
4129 return -EINVAL;
4132 * we don't support callbacks in modular subsystems. this check is
4133 * before the ss->module check for consistency; a subsystem that could
4134 * be a module should still have no callbacks even if the user isn't
4135 * compiling it as one.
4137 if (ss->fork || ss->exit)
4138 return -EINVAL;
4141 * an optionally modular subsystem is built-in: we want to do nothing,
4142 * since cgroup_init_subsys will have already taken care of it.
4144 if (ss->module == NULL) {
4145 /* a few sanity checks */
4146 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4147 BUG_ON(subsys[ss->subsys_id] != ss);
4148 return 0;
4152 * need to register a subsys id before anything else - for example,
4153 * init_cgroup_css needs it.
4155 mutex_lock(&cgroup_mutex);
4156 /* find the first empty slot in the array */
4157 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4158 if (subsys[i] == NULL)
4159 break;
4161 if (i == CGROUP_SUBSYS_COUNT) {
4162 /* maximum number of subsystems already registered! */
4163 mutex_unlock(&cgroup_mutex);
4164 return -EBUSY;
4166 /* assign ourselves the subsys_id */
4167 ss->subsys_id = i;
4168 subsys[i] = ss;
4171 * no ss->create seems to need anything important in the ss struct, so
4172 * this can happen first (i.e. before the rootnode attachment).
4174 css = ss->create(ss, dummytop);
4175 if (IS_ERR(css)) {
4176 /* failure case - need to deassign the subsys[] slot. */
4177 subsys[i] = NULL;
4178 mutex_unlock(&cgroup_mutex);
4179 return PTR_ERR(css);
4182 list_add(&ss->sibling, &rootnode.subsys_list);
4183 ss->root = &rootnode;
4185 /* our new subsystem will be attached to the dummy hierarchy. */
4186 init_cgroup_css(css, ss, dummytop);
4187 /* init_idr must be after init_cgroup_css because it sets css->id. */
4188 if (ss->use_id) {
4189 int ret = cgroup_init_idr(ss, css);
4190 if (ret) {
4191 dummytop->subsys[ss->subsys_id] = NULL;
4192 ss->destroy(ss, dummytop);
4193 subsys[i] = NULL;
4194 mutex_unlock(&cgroup_mutex);
4195 return ret;
4200 * Now we need to entangle the css into the existing css_sets. unlike
4201 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4202 * will need a new pointer to it; done by iterating the css_set_table.
4203 * furthermore, modifying the existing css_sets will corrupt the hash
4204 * table state, so each changed css_set will need its hash recomputed.
4205 * this is all done under the css_set_lock.
4207 write_lock(&css_set_lock);
4208 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4209 struct css_set *cg;
4210 struct hlist_node *node, *tmp;
4211 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4213 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4214 /* skip entries that we already rehashed */
4215 if (cg->subsys[ss->subsys_id])
4216 continue;
4217 /* remove existing entry */
4218 hlist_del(&cg->hlist);
4219 /* set new value */
4220 cg->subsys[ss->subsys_id] = css;
4221 /* recompute hash and restore entry */
4222 new_bucket = css_set_hash(cg->subsys);
4223 hlist_add_head(&cg->hlist, new_bucket);
4226 write_unlock(&css_set_lock);
4228 mutex_init(&ss->hierarchy_mutex);
4229 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4230 ss->active = 1;
4232 /* success! */
4233 mutex_unlock(&cgroup_mutex);
4234 return 0;
4236 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4239 * cgroup_unload_subsys: unload a modular subsystem
4240 * @ss: the subsystem to unload
4242 * This function should be called in a modular subsystem's exitcall. When this
4243 * function is invoked, the refcount on the subsystem's module will be 0, so
4244 * the subsystem will not be attached to any hierarchy.
4246 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4248 struct cg_cgroup_link *link;
4249 struct hlist_head *hhead;
4251 BUG_ON(ss->module == NULL);
4254 * we shouldn't be called if the subsystem is in use, and the use of
4255 * try_module_get in parse_cgroupfs_options should ensure that it
4256 * doesn't start being used while we're killing it off.
4258 BUG_ON(ss->root != &rootnode);
4260 mutex_lock(&cgroup_mutex);
4261 /* deassign the subsys_id */
4262 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4263 subsys[ss->subsys_id] = NULL;
4265 /* remove subsystem from rootnode's list of subsystems */
4266 list_del_init(&ss->sibling);
4269 * disentangle the css from all css_sets attached to the dummytop. as
4270 * in loading, we need to pay our respects to the hashtable gods.
4272 write_lock(&css_set_lock);
4273 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4274 struct css_set *cg = link->cg;
4276 hlist_del(&cg->hlist);
4277 BUG_ON(!cg->subsys[ss->subsys_id]);
4278 cg->subsys[ss->subsys_id] = NULL;
4279 hhead = css_set_hash(cg->subsys);
4280 hlist_add_head(&cg->hlist, hhead);
4282 write_unlock(&css_set_lock);
4285 * remove subsystem's css from the dummytop and free it - need to free
4286 * before marking as null because ss->destroy needs the cgrp->subsys
4287 * pointer to find their state. note that this also takes care of
4288 * freeing the css_id.
4290 ss->destroy(ss, dummytop);
4291 dummytop->subsys[ss->subsys_id] = NULL;
4293 mutex_unlock(&cgroup_mutex);
4295 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4298 * cgroup_init_early - cgroup initialization at system boot
4300 * Initialize cgroups at system boot, and initialize any
4301 * subsystems that request early init.
4303 int __init cgroup_init_early(void)
4305 int i;
4306 atomic_set(&init_css_set.refcount, 1);
4307 INIT_LIST_HEAD(&init_css_set.cg_links);
4308 INIT_LIST_HEAD(&init_css_set.tasks);
4309 INIT_HLIST_NODE(&init_css_set.hlist);
4310 css_set_count = 1;
4311 init_cgroup_root(&rootnode);
4312 root_count = 1;
4313 init_task.cgroups = &init_css_set;
4315 init_css_set_link.cg = &init_css_set;
4316 init_css_set_link.cgrp = dummytop;
4317 list_add(&init_css_set_link.cgrp_link_list,
4318 &rootnode.top_cgroup.css_sets);
4319 list_add(&init_css_set_link.cg_link_list,
4320 &init_css_set.cg_links);
4322 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4323 INIT_HLIST_HEAD(&css_set_table[i]);
4325 /* at bootup time, we don't worry about modular subsystems */
4326 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4327 struct cgroup_subsys *ss = subsys[i];
4329 BUG_ON(!ss->name);
4330 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4331 BUG_ON(!ss->create);
4332 BUG_ON(!ss->destroy);
4333 if (ss->subsys_id != i) {
4334 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4335 ss->name, ss->subsys_id);
4336 BUG();
4339 if (ss->early_init)
4340 cgroup_init_subsys(ss);
4342 return 0;
4346 * cgroup_init - cgroup initialization
4348 * Register cgroup filesystem and /proc file, and initialize
4349 * any subsystems that didn't request early init.
4351 int __init cgroup_init(void)
4353 int err;
4354 int i;
4355 struct hlist_head *hhead;
4357 err = bdi_init(&cgroup_backing_dev_info);
4358 if (err)
4359 return err;
4361 /* at bootup time, we don't worry about modular subsystems */
4362 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4363 struct cgroup_subsys *ss = subsys[i];
4364 if (!ss->early_init)
4365 cgroup_init_subsys(ss);
4366 if (ss->use_id)
4367 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4370 /* Add init_css_set to the hash table */
4371 hhead = css_set_hash(init_css_set.subsys);
4372 hlist_add_head(&init_css_set.hlist, hhead);
4373 BUG_ON(!init_root_id(&rootnode));
4375 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4376 if (!cgroup_kobj) {
4377 err = -ENOMEM;
4378 goto out;
4381 err = register_filesystem(&cgroup_fs_type);
4382 if (err < 0) {
4383 kobject_put(cgroup_kobj);
4384 goto out;
4387 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4389 out:
4390 if (err)
4391 bdi_destroy(&cgroup_backing_dev_info);
4393 return err;
4397 * proc_cgroup_show()
4398 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4399 * - Used for /proc/<pid>/cgroup.
4400 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4401 * doesn't really matter if tsk->cgroup changes after we read it,
4402 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4403 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4404 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4405 * cgroup to top_cgroup.
4408 /* TODO: Use a proper seq_file iterator */
4409 static int proc_cgroup_show(struct seq_file *m, void *v)
4411 struct pid *pid;
4412 struct task_struct *tsk;
4413 char *buf;
4414 int retval;
4415 struct cgroupfs_root *root;
4417 retval = -ENOMEM;
4418 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4419 if (!buf)
4420 goto out;
4422 retval = -ESRCH;
4423 pid = m->private;
4424 tsk = get_pid_task(pid, PIDTYPE_PID);
4425 if (!tsk)
4426 goto out_free;
4428 retval = 0;
4430 mutex_lock(&cgroup_mutex);
4432 for_each_active_root(root) {
4433 struct cgroup_subsys *ss;
4434 struct cgroup *cgrp;
4435 int count = 0;
4437 seq_printf(m, "%d:", root->hierarchy_id);
4438 for_each_subsys(root, ss)
4439 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4440 if (strlen(root->name))
4441 seq_printf(m, "%sname=%s", count ? "," : "",
4442 root->name);
4443 seq_putc(m, ':');
4444 cgrp = task_cgroup_from_root(tsk, root);
4445 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4446 if (retval < 0)
4447 goto out_unlock;
4448 seq_puts(m, buf);
4449 seq_putc(m, '\n');
4452 out_unlock:
4453 mutex_unlock(&cgroup_mutex);
4454 put_task_struct(tsk);
4455 out_free:
4456 kfree(buf);
4457 out:
4458 return retval;
4461 static int cgroup_open(struct inode *inode, struct file *file)
4463 struct pid *pid = PROC_I(inode)->pid;
4464 return single_open(file, proc_cgroup_show, pid);
4467 const struct file_operations proc_cgroup_operations = {
4468 .open = cgroup_open,
4469 .read = seq_read,
4470 .llseek = seq_lseek,
4471 .release = single_release,
4474 /* Display information about each subsystem and each hierarchy */
4475 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4477 int i;
4479 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4481 * ideally we don't want subsystems moving around while we do this.
4482 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4483 * subsys/hierarchy state.
4485 mutex_lock(&cgroup_mutex);
4486 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4487 struct cgroup_subsys *ss = subsys[i];
4488 if (ss == NULL)
4489 continue;
4490 seq_printf(m, "%s\t%d\t%d\t%d\n",
4491 ss->name, ss->root->hierarchy_id,
4492 ss->root->number_of_cgroups, !ss->disabled);
4494 mutex_unlock(&cgroup_mutex);
4495 return 0;
4498 static int cgroupstats_open(struct inode *inode, struct file *file)
4500 return single_open(file, proc_cgroupstats_show, NULL);
4503 static const struct file_operations proc_cgroupstats_operations = {
4504 .open = cgroupstats_open,
4505 .read = seq_read,
4506 .llseek = seq_lseek,
4507 .release = single_release,
4511 * cgroup_fork - attach newly forked task to its parents cgroup.
4512 * @child: pointer to task_struct of forking parent process.
4514 * Description: A task inherits its parent's cgroup at fork().
4516 * A pointer to the shared css_set was automatically copied in
4517 * fork.c by dup_task_struct(). However, we ignore that copy, since
4518 * it was not made under the protection of RCU or cgroup_mutex, so
4519 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4520 * have already changed current->cgroups, allowing the previously
4521 * referenced cgroup group to be removed and freed.
4523 * At the point that cgroup_fork() is called, 'current' is the parent
4524 * task, and the passed argument 'child' points to the child task.
4526 void cgroup_fork(struct task_struct *child)
4528 task_lock(current);
4529 child->cgroups = current->cgroups;
4530 get_css_set(child->cgroups);
4531 task_unlock(current);
4532 INIT_LIST_HEAD(&child->cg_list);
4536 * cgroup_fork_callbacks - run fork callbacks
4537 * @child: the new task
4539 * Called on a new task very soon before adding it to the
4540 * tasklist. No need to take any locks since no-one can
4541 * be operating on this task.
4543 void cgroup_fork_callbacks(struct task_struct *child)
4545 if (need_forkexit_callback) {
4546 int i;
4548 * forkexit callbacks are only supported for builtin
4549 * subsystems, and the builtin section of the subsys array is
4550 * immutable, so we don't need to lock the subsys array here.
4552 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4553 struct cgroup_subsys *ss = subsys[i];
4554 if (ss->fork)
4555 ss->fork(ss, child);
4561 * cgroup_post_fork - called on a new task after adding it to the task list
4562 * @child: the task in question
4564 * Adds the task to the list running through its css_set if necessary.
4565 * Has to be after the task is visible on the task list in case we race
4566 * with the first call to cgroup_iter_start() - to guarantee that the
4567 * new task ends up on its list.
4569 void cgroup_post_fork(struct task_struct *child)
4571 if (use_task_css_set_links) {
4572 write_lock(&css_set_lock);
4573 task_lock(child);
4574 if (list_empty(&child->cg_list))
4575 list_add(&child->cg_list, &child->cgroups->tasks);
4576 task_unlock(child);
4577 write_unlock(&css_set_lock);
4581 * cgroup_exit - detach cgroup from exiting task
4582 * @tsk: pointer to task_struct of exiting process
4583 * @run_callback: run exit callbacks?
4585 * Description: Detach cgroup from @tsk and release it.
4587 * Note that cgroups marked notify_on_release force every task in
4588 * them to take the global cgroup_mutex mutex when exiting.
4589 * This could impact scaling on very large systems. Be reluctant to
4590 * use notify_on_release cgroups where very high task exit scaling
4591 * is required on large systems.
4593 * the_top_cgroup_hack:
4595 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4597 * We call cgroup_exit() while the task is still competent to
4598 * handle notify_on_release(), then leave the task attached to the
4599 * root cgroup in each hierarchy for the remainder of its exit.
4601 * To do this properly, we would increment the reference count on
4602 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4603 * code we would add a second cgroup function call, to drop that
4604 * reference. This would just create an unnecessary hot spot on
4605 * the top_cgroup reference count, to no avail.
4607 * Normally, holding a reference to a cgroup without bumping its
4608 * count is unsafe. The cgroup could go away, or someone could
4609 * attach us to a different cgroup, decrementing the count on
4610 * the first cgroup that we never incremented. But in this case,
4611 * top_cgroup isn't going away, and either task has PF_EXITING set,
4612 * which wards off any cgroup_attach_task() attempts, or task is a failed
4613 * fork, never visible to cgroup_attach_task.
4615 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4617 struct css_set *cg;
4618 int i;
4621 * Unlink from the css_set task list if necessary.
4622 * Optimistically check cg_list before taking
4623 * css_set_lock
4625 if (!list_empty(&tsk->cg_list)) {
4626 write_lock(&css_set_lock);
4627 if (!list_empty(&tsk->cg_list))
4628 list_del_init(&tsk->cg_list);
4629 write_unlock(&css_set_lock);
4632 /* Reassign the task to the init_css_set. */
4633 task_lock(tsk);
4634 cg = tsk->cgroups;
4635 tsk->cgroups = &init_css_set;
4637 if (run_callbacks && need_forkexit_callback) {
4639 * modular subsystems can't use callbacks, so no need to lock
4640 * the subsys array
4642 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4643 struct cgroup_subsys *ss = subsys[i];
4644 if (ss->exit) {
4645 struct cgroup *old_cgrp =
4646 rcu_dereference_raw(cg->subsys[i])->cgroup;
4647 struct cgroup *cgrp = task_cgroup(tsk, i);
4648 ss->exit(ss, cgrp, old_cgrp, tsk);
4652 task_unlock(tsk);
4654 if (cg)
4655 put_css_set_taskexit(cg);
4659 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4660 * @cgrp: the cgroup in question
4661 * @task: the task in question
4663 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4664 * hierarchy.
4666 * If we are sending in dummytop, then presumably we are creating
4667 * the top cgroup in the subsystem.
4669 * Called only by the ns (nsproxy) cgroup.
4671 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4673 int ret;
4674 struct cgroup *target;
4676 if (cgrp == dummytop)
4677 return 1;
4679 target = task_cgroup_from_root(task, cgrp->root);
4680 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4681 cgrp = cgrp->parent;
4682 ret = (cgrp == target);
4683 return ret;
4686 static void check_for_release(struct cgroup *cgrp)
4688 /* All of these checks rely on RCU to keep the cgroup
4689 * structure alive */
4690 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4691 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4692 /* Control Group is currently removeable. If it's not
4693 * already queued for a userspace notification, queue
4694 * it now */
4695 int need_schedule_work = 0;
4696 raw_spin_lock(&release_list_lock);
4697 if (!cgroup_is_removed(cgrp) &&
4698 list_empty(&cgrp->release_list)) {
4699 list_add(&cgrp->release_list, &release_list);
4700 need_schedule_work = 1;
4702 raw_spin_unlock(&release_list_lock);
4703 if (need_schedule_work)
4704 schedule_work(&release_agent_work);
4708 /* Caller must verify that the css is not for root cgroup */
4709 void __css_put(struct cgroup_subsys_state *css, int count)
4711 struct cgroup *cgrp = css->cgroup;
4712 int val;
4713 rcu_read_lock();
4714 val = atomic_sub_return(count, &css->refcnt);
4715 if (val == 1) {
4716 if (notify_on_release(cgrp)) {
4717 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4718 check_for_release(cgrp);
4720 cgroup_wakeup_rmdir_waiter(cgrp);
4722 rcu_read_unlock();
4723 WARN_ON_ONCE(val < 1);
4725 EXPORT_SYMBOL_GPL(__css_put);
4728 * Notify userspace when a cgroup is released, by running the
4729 * configured release agent with the name of the cgroup (path
4730 * relative to the root of cgroup file system) as the argument.
4732 * Most likely, this user command will try to rmdir this cgroup.
4734 * This races with the possibility that some other task will be
4735 * attached to this cgroup before it is removed, or that some other
4736 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4737 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4738 * unused, and this cgroup will be reprieved from its death sentence,
4739 * to continue to serve a useful existence. Next time it's released,
4740 * we will get notified again, if it still has 'notify_on_release' set.
4742 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4743 * means only wait until the task is successfully execve()'d. The
4744 * separate release agent task is forked by call_usermodehelper(),
4745 * then control in this thread returns here, without waiting for the
4746 * release agent task. We don't bother to wait because the caller of
4747 * this routine has no use for the exit status of the release agent
4748 * task, so no sense holding our caller up for that.
4750 static void cgroup_release_agent(struct work_struct *work)
4752 BUG_ON(work != &release_agent_work);
4753 mutex_lock(&cgroup_mutex);
4754 raw_spin_lock(&release_list_lock);
4755 while (!list_empty(&release_list)) {
4756 char *argv[3], *envp[3];
4757 int i;
4758 char *pathbuf = NULL, *agentbuf = NULL;
4759 struct cgroup *cgrp = list_entry(release_list.next,
4760 struct cgroup,
4761 release_list);
4762 list_del_init(&cgrp->release_list);
4763 raw_spin_unlock(&release_list_lock);
4764 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4765 if (!pathbuf)
4766 goto continue_free;
4767 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4768 goto continue_free;
4769 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4770 if (!agentbuf)
4771 goto continue_free;
4773 i = 0;
4774 argv[i++] = agentbuf;
4775 argv[i++] = pathbuf;
4776 argv[i] = NULL;
4778 i = 0;
4779 /* minimal command environment */
4780 envp[i++] = "HOME=/";
4781 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4782 envp[i] = NULL;
4784 /* Drop the lock while we invoke the usermode helper,
4785 * since the exec could involve hitting disk and hence
4786 * be a slow process */
4787 mutex_unlock(&cgroup_mutex);
4788 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4789 mutex_lock(&cgroup_mutex);
4790 continue_free:
4791 kfree(pathbuf);
4792 kfree(agentbuf);
4793 raw_spin_lock(&release_list_lock);
4795 raw_spin_unlock(&release_list_lock);
4796 mutex_unlock(&cgroup_mutex);
4799 static int __init cgroup_disable(char *str)
4801 int i;
4802 char *token;
4804 while ((token = strsep(&str, ",")) != NULL) {
4805 if (!*token)
4806 continue;
4808 * cgroup_disable, being at boot time, can't know about module
4809 * subsystems, so we don't worry about them.
4811 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4812 struct cgroup_subsys *ss = subsys[i];
4814 if (!strcmp(token, ss->name)) {
4815 ss->disabled = 1;
4816 printk(KERN_INFO "Disabling %s control group"
4817 " subsystem\n", ss->name);
4818 break;
4822 return 1;
4824 __setup("cgroup_disable=", cgroup_disable);
4827 * Functons for CSS ID.
4831 *To get ID other than 0, this should be called when !cgroup_is_removed().
4833 unsigned short css_id(struct cgroup_subsys_state *css)
4835 struct css_id *cssid;
4838 * This css_id() can return correct value when somone has refcnt
4839 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4840 * it's unchanged until freed.
4842 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4844 if (cssid)
4845 return cssid->id;
4846 return 0;
4848 EXPORT_SYMBOL_GPL(css_id);
4850 unsigned short css_depth(struct cgroup_subsys_state *css)
4852 struct css_id *cssid;
4854 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
4856 if (cssid)
4857 return cssid->depth;
4858 return 0;
4860 EXPORT_SYMBOL_GPL(css_depth);
4863 * css_is_ancestor - test "root" css is an ancestor of "child"
4864 * @child: the css to be tested.
4865 * @root: the css supporsed to be an ancestor of the child.
4867 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4868 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4869 * But, considering usual usage, the csses should be valid objects after test.
4870 * Assuming that the caller will do some action to the child if this returns
4871 * returns true, the caller must take "child";s reference count.
4872 * If "child" is valid object and this returns true, "root" is valid, too.
4875 bool css_is_ancestor(struct cgroup_subsys_state *child,
4876 const struct cgroup_subsys_state *root)
4878 struct css_id *child_id;
4879 struct css_id *root_id;
4880 bool ret = true;
4882 rcu_read_lock();
4883 child_id = rcu_dereference(child->id);
4884 root_id = rcu_dereference(root->id);
4885 if (!child_id
4886 || !root_id
4887 || (child_id->depth < root_id->depth)
4888 || (child_id->stack[root_id->depth] != root_id->id))
4889 ret = false;
4890 rcu_read_unlock();
4891 return ret;
4894 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4896 struct css_id *id = css->id;
4897 /* When this is called before css_id initialization, id can be NULL */
4898 if (!id)
4899 return;
4901 BUG_ON(!ss->use_id);
4903 rcu_assign_pointer(id->css, NULL);
4904 rcu_assign_pointer(css->id, NULL);
4905 write_lock(&ss->id_lock);
4906 idr_remove(&ss->idr, id->id);
4907 write_unlock(&ss->id_lock);
4908 kfree_rcu(id, rcu_head);
4910 EXPORT_SYMBOL_GPL(free_css_id);
4913 * This is called by init or create(). Then, calls to this function are
4914 * always serialized (By cgroup_mutex() at create()).
4917 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4919 struct css_id *newid;
4920 int myid, error, size;
4922 BUG_ON(!ss->use_id);
4924 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4925 newid = kzalloc(size, GFP_KERNEL);
4926 if (!newid)
4927 return ERR_PTR(-ENOMEM);
4928 /* get id */
4929 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4930 error = -ENOMEM;
4931 goto err_out;
4933 write_lock(&ss->id_lock);
4934 /* Don't use 0. allocates an ID of 1-65535 */
4935 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4936 write_unlock(&ss->id_lock);
4938 /* Returns error when there are no free spaces for new ID.*/
4939 if (error) {
4940 error = -ENOSPC;
4941 goto err_out;
4943 if (myid > CSS_ID_MAX)
4944 goto remove_idr;
4946 newid->id = myid;
4947 newid->depth = depth;
4948 return newid;
4949 remove_idr:
4950 error = -ENOSPC;
4951 write_lock(&ss->id_lock);
4952 idr_remove(&ss->idr, myid);
4953 write_unlock(&ss->id_lock);
4954 err_out:
4955 kfree(newid);
4956 return ERR_PTR(error);
4960 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4961 struct cgroup_subsys_state *rootcss)
4963 struct css_id *newid;
4965 rwlock_init(&ss->id_lock);
4966 idr_init(&ss->idr);
4968 newid = get_new_cssid(ss, 0);
4969 if (IS_ERR(newid))
4970 return PTR_ERR(newid);
4972 newid->stack[0] = newid->id;
4973 newid->css = rootcss;
4974 rootcss->id = newid;
4975 return 0;
4978 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4979 struct cgroup *child)
4981 int subsys_id, i, depth = 0;
4982 struct cgroup_subsys_state *parent_css, *child_css;
4983 struct css_id *child_id, *parent_id;
4985 subsys_id = ss->subsys_id;
4986 parent_css = parent->subsys[subsys_id];
4987 child_css = child->subsys[subsys_id];
4988 parent_id = parent_css->id;
4989 depth = parent_id->depth + 1;
4991 child_id = get_new_cssid(ss, depth);
4992 if (IS_ERR(child_id))
4993 return PTR_ERR(child_id);
4995 for (i = 0; i < depth; i++)
4996 child_id->stack[i] = parent_id->stack[i];
4997 child_id->stack[depth] = child_id->id;
4999 * child_id->css pointer will be set after this cgroup is available
5000 * see cgroup_populate_dir()
5002 rcu_assign_pointer(child_css->id, child_id);
5004 return 0;
5008 * css_lookup - lookup css by id
5009 * @ss: cgroup subsys to be looked into.
5010 * @id: the id
5012 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5013 * NULL if not. Should be called under rcu_read_lock()
5015 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5017 struct css_id *cssid = NULL;
5019 BUG_ON(!ss->use_id);
5020 cssid = idr_find(&ss->idr, id);
5022 if (unlikely(!cssid))
5023 return NULL;
5025 return rcu_dereference(cssid->css);
5027 EXPORT_SYMBOL_GPL(css_lookup);
5030 * css_get_next - lookup next cgroup under specified hierarchy.
5031 * @ss: pointer to subsystem
5032 * @id: current position of iteration.
5033 * @root: pointer to css. search tree under this.
5034 * @foundid: position of found object.
5036 * Search next css under the specified hierarchy of rootid. Calling under
5037 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5039 struct cgroup_subsys_state *
5040 css_get_next(struct cgroup_subsys *ss, int id,
5041 struct cgroup_subsys_state *root, int *foundid)
5043 struct cgroup_subsys_state *ret = NULL;
5044 struct css_id *tmp;
5045 int tmpid;
5046 int rootid = css_id(root);
5047 int depth = css_depth(root);
5049 if (!rootid)
5050 return NULL;
5052 BUG_ON(!ss->use_id);
5053 /* fill start point for scan */
5054 tmpid = id;
5055 while (1) {
5057 * scan next entry from bitmap(tree), tmpid is updated after
5058 * idr_get_next().
5060 read_lock(&ss->id_lock);
5061 tmp = idr_get_next(&ss->idr, &tmpid);
5062 read_unlock(&ss->id_lock);
5064 if (!tmp)
5065 break;
5066 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5067 ret = rcu_dereference(tmp->css);
5068 if (ret) {
5069 *foundid = tmpid;
5070 break;
5073 /* continue to scan from next id */
5074 tmpid = tmpid + 1;
5076 return ret;
5080 * get corresponding css from file open on cgroupfs directory
5082 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5084 struct cgroup *cgrp;
5085 struct inode *inode;
5086 struct cgroup_subsys_state *css;
5088 inode = f->f_dentry->d_inode;
5089 /* check in cgroup filesystem dir */
5090 if (inode->i_op != &cgroup_dir_inode_operations)
5091 return ERR_PTR(-EBADF);
5093 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5094 return ERR_PTR(-EINVAL);
5096 /* get cgroup */
5097 cgrp = __d_cgrp(f->f_dentry);
5098 css = cgrp->subsys[id];
5099 return css ? css : ERR_PTR(-ENOENT);
5102 #ifdef CONFIG_CGROUP_DEBUG
5103 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5104 struct cgroup *cont)
5106 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5108 if (!css)
5109 return ERR_PTR(-ENOMEM);
5111 return css;
5114 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5116 kfree(cont->subsys[debug_subsys_id]);
5119 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5121 return atomic_read(&cont->count);
5124 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5126 return cgroup_task_count(cont);
5129 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5131 return (u64)(unsigned long)current->cgroups;
5134 static u64 current_css_set_refcount_read(struct cgroup *cont,
5135 struct cftype *cft)
5137 u64 count;
5139 rcu_read_lock();
5140 count = atomic_read(&current->cgroups->refcount);
5141 rcu_read_unlock();
5142 return count;
5145 static int current_css_set_cg_links_read(struct cgroup *cont,
5146 struct cftype *cft,
5147 struct seq_file *seq)
5149 struct cg_cgroup_link *link;
5150 struct css_set *cg;
5152 read_lock(&css_set_lock);
5153 rcu_read_lock();
5154 cg = rcu_dereference(current->cgroups);
5155 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5156 struct cgroup *c = link->cgrp;
5157 const char *name;
5159 if (c->dentry)
5160 name = c->dentry->d_name.name;
5161 else
5162 name = "?";
5163 seq_printf(seq, "Root %d group %s\n",
5164 c->root->hierarchy_id, name);
5166 rcu_read_unlock();
5167 read_unlock(&css_set_lock);
5168 return 0;
5171 #define MAX_TASKS_SHOWN_PER_CSS 25
5172 static int cgroup_css_links_read(struct cgroup *cont,
5173 struct cftype *cft,
5174 struct seq_file *seq)
5176 struct cg_cgroup_link *link;
5178 read_lock(&css_set_lock);
5179 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5180 struct css_set *cg = link->cg;
5181 struct task_struct *task;
5182 int count = 0;
5183 seq_printf(seq, "css_set %p\n", cg);
5184 list_for_each_entry(task, &cg->tasks, cg_list) {
5185 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5186 seq_puts(seq, " ...\n");
5187 break;
5188 } else {
5189 seq_printf(seq, " task %d\n",
5190 task_pid_vnr(task));
5194 read_unlock(&css_set_lock);
5195 return 0;
5198 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5200 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5203 static struct cftype debug_files[] = {
5205 .name = "cgroup_refcount",
5206 .read_u64 = cgroup_refcount_read,
5209 .name = "taskcount",
5210 .read_u64 = debug_taskcount_read,
5214 .name = "current_css_set",
5215 .read_u64 = current_css_set_read,
5219 .name = "current_css_set_refcount",
5220 .read_u64 = current_css_set_refcount_read,
5224 .name = "current_css_set_cg_links",
5225 .read_seq_string = current_css_set_cg_links_read,
5229 .name = "cgroup_css_links",
5230 .read_seq_string = cgroup_css_links_read,
5234 .name = "releasable",
5235 .read_u64 = releasable_read,
5239 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5241 return cgroup_add_files(cont, ss, debug_files,
5242 ARRAY_SIZE(debug_files));
5245 struct cgroup_subsys debug_subsys = {
5246 .name = "debug",
5247 .create = debug_create,
5248 .destroy = debug_destroy,
5249 .populate = debug_populate,
5250 .subsys_id = debug_subsys_id,
5252 #endif /* CONFIG_CGROUP_DEBUG */