make dump_emit() use vfs_write() instead of banging at ->f_op->write directly
[linux-2.6.git] / drivers / cpufreq / cpufreq_conservative.c
blobf62d822048e62f0433c2b89f1b1fb5610b0493ff
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/slab.h>
15 #include "cpufreq_governor.h"
17 /* Conservative governor macros */
18 #define DEF_FREQUENCY_UP_THRESHOLD (80)
19 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
20 #define DEF_FREQUENCY_STEP (5)
21 #define DEF_SAMPLING_DOWN_FACTOR (1)
22 #define MAX_SAMPLING_DOWN_FACTOR (10)
24 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
26 static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
27 struct cpufreq_policy *policy)
29 unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
31 /* max freq cannot be less than 100. But who knows... */
32 if (unlikely(freq_target == 0))
33 freq_target = DEF_FREQUENCY_STEP;
35 return freq_target;
39 * Every sampling_rate, we check, if current idle time is less than 20%
40 * (default), then we try to increase frequency. Every sampling_rate *
41 * sampling_down_factor, we check, if current idle time is more than 80%
42 * (default), then we try to decrease frequency
44 * Any frequency increase takes it to the maximum frequency. Frequency reduction
45 * happens at minimum steps of 5% (default) of maximum frequency
47 static void cs_check_cpu(int cpu, unsigned int load)
49 struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
50 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
51 struct dbs_data *dbs_data = policy->governor_data;
52 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
55 * break out if we 'cannot' reduce the speed as the user might
56 * want freq_step to be zero
58 if (cs_tuners->freq_step == 0)
59 return;
61 /* Check for frequency increase */
62 if (load > cs_tuners->up_threshold) {
63 dbs_info->down_skip = 0;
65 /* if we are already at full speed then break out early */
66 if (dbs_info->requested_freq == policy->max)
67 return;
69 dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
71 __cpufreq_driver_target(policy, dbs_info->requested_freq,
72 CPUFREQ_RELATION_H);
73 return;
76 /* if sampling_down_factor is active break out early */
77 if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
78 return;
79 dbs_info->down_skip = 0;
81 /* Check for frequency decrease */
82 if (load < cs_tuners->down_threshold) {
84 * if we cannot reduce the frequency anymore, break out early
86 if (policy->cur == policy->min)
87 return;
89 dbs_info->requested_freq -= get_freq_target(cs_tuners, policy);
91 __cpufreq_driver_target(policy, dbs_info->requested_freq,
92 CPUFREQ_RELATION_L);
93 return;
97 static void cs_dbs_timer(struct work_struct *work)
99 struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
100 struct cs_cpu_dbs_info_s, cdbs.work.work);
101 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
102 struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
103 cpu);
104 struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
105 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
106 int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
107 bool modify_all = true;
109 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
110 if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
111 modify_all = false;
112 else
113 dbs_check_cpu(dbs_data, cpu);
115 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
116 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
119 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
120 void *data)
122 struct cpufreq_freqs *freq = data;
123 struct cs_cpu_dbs_info_s *dbs_info =
124 &per_cpu(cs_cpu_dbs_info, freq->cpu);
125 struct cpufreq_policy *policy;
127 if (!dbs_info->enable)
128 return 0;
130 policy = dbs_info->cdbs.cur_policy;
133 * we only care if our internally tracked freq moves outside the 'valid'
134 * ranges of frequency available to us otherwise we do not change it
136 if (dbs_info->requested_freq > policy->max
137 || dbs_info->requested_freq < policy->min)
138 dbs_info->requested_freq = freq->new;
140 return 0;
143 /************************** sysfs interface ************************/
144 static struct common_dbs_data cs_dbs_cdata;
146 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
147 const char *buf, size_t count)
149 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
150 unsigned int input;
151 int ret;
152 ret = sscanf(buf, "%u", &input);
154 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
155 return -EINVAL;
157 cs_tuners->sampling_down_factor = input;
158 return count;
161 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
162 size_t count)
164 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
165 unsigned int input;
166 int ret;
167 ret = sscanf(buf, "%u", &input);
169 if (ret != 1)
170 return -EINVAL;
172 cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
173 return count;
176 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
177 size_t count)
179 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
180 unsigned int input;
181 int ret;
182 ret = sscanf(buf, "%u", &input);
184 if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
185 return -EINVAL;
187 cs_tuners->up_threshold = input;
188 return count;
191 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
192 size_t count)
194 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
195 unsigned int input;
196 int ret;
197 ret = sscanf(buf, "%u", &input);
199 /* cannot be lower than 11 otherwise freq will not fall */
200 if (ret != 1 || input < 11 || input > 100 ||
201 input >= cs_tuners->up_threshold)
202 return -EINVAL;
204 cs_tuners->down_threshold = input;
205 return count;
208 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
209 const char *buf, size_t count)
211 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
212 unsigned int input, j;
213 int ret;
215 ret = sscanf(buf, "%u", &input);
216 if (ret != 1)
217 return -EINVAL;
219 if (input > 1)
220 input = 1;
222 if (input == cs_tuners->ignore_nice_load) /* nothing to do */
223 return count;
225 cs_tuners->ignore_nice_load = input;
227 /* we need to re-evaluate prev_cpu_idle */
228 for_each_online_cpu(j) {
229 struct cs_cpu_dbs_info_s *dbs_info;
230 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
231 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
232 &dbs_info->cdbs.prev_cpu_wall, 0);
233 if (cs_tuners->ignore_nice_load)
234 dbs_info->cdbs.prev_cpu_nice =
235 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
237 return count;
240 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
241 size_t count)
243 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
244 unsigned int input;
245 int ret;
246 ret = sscanf(buf, "%u", &input);
248 if (ret != 1)
249 return -EINVAL;
251 if (input > 100)
252 input = 100;
255 * no need to test here if freq_step is zero as the user might actually
256 * want this, they would be crazy though :)
258 cs_tuners->freq_step = input;
259 return count;
262 show_store_one(cs, sampling_rate);
263 show_store_one(cs, sampling_down_factor);
264 show_store_one(cs, up_threshold);
265 show_store_one(cs, down_threshold);
266 show_store_one(cs, ignore_nice_load);
267 show_store_one(cs, freq_step);
268 declare_show_sampling_rate_min(cs);
270 gov_sys_pol_attr_rw(sampling_rate);
271 gov_sys_pol_attr_rw(sampling_down_factor);
272 gov_sys_pol_attr_rw(up_threshold);
273 gov_sys_pol_attr_rw(down_threshold);
274 gov_sys_pol_attr_rw(ignore_nice_load);
275 gov_sys_pol_attr_rw(freq_step);
276 gov_sys_pol_attr_ro(sampling_rate_min);
278 static struct attribute *dbs_attributes_gov_sys[] = {
279 &sampling_rate_min_gov_sys.attr,
280 &sampling_rate_gov_sys.attr,
281 &sampling_down_factor_gov_sys.attr,
282 &up_threshold_gov_sys.attr,
283 &down_threshold_gov_sys.attr,
284 &ignore_nice_load_gov_sys.attr,
285 &freq_step_gov_sys.attr,
286 NULL
289 static struct attribute_group cs_attr_group_gov_sys = {
290 .attrs = dbs_attributes_gov_sys,
291 .name = "conservative",
294 static struct attribute *dbs_attributes_gov_pol[] = {
295 &sampling_rate_min_gov_pol.attr,
296 &sampling_rate_gov_pol.attr,
297 &sampling_down_factor_gov_pol.attr,
298 &up_threshold_gov_pol.attr,
299 &down_threshold_gov_pol.attr,
300 &ignore_nice_load_gov_pol.attr,
301 &freq_step_gov_pol.attr,
302 NULL
305 static struct attribute_group cs_attr_group_gov_pol = {
306 .attrs = dbs_attributes_gov_pol,
307 .name = "conservative",
310 /************************** sysfs end ************************/
312 static int cs_init(struct dbs_data *dbs_data)
314 struct cs_dbs_tuners *tuners;
316 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
317 if (!tuners) {
318 pr_err("%s: kzalloc failed\n", __func__);
319 return -ENOMEM;
322 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
323 tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
324 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
325 tuners->ignore_nice_load = 0;
326 tuners->freq_step = DEF_FREQUENCY_STEP;
328 dbs_data->tuners = tuners;
329 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
330 jiffies_to_usecs(10);
331 mutex_init(&dbs_data->mutex);
332 return 0;
335 static void cs_exit(struct dbs_data *dbs_data)
337 kfree(dbs_data->tuners);
340 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
342 static struct notifier_block cs_cpufreq_notifier_block = {
343 .notifier_call = dbs_cpufreq_notifier,
346 static struct cs_ops cs_ops = {
347 .notifier_block = &cs_cpufreq_notifier_block,
350 static struct common_dbs_data cs_dbs_cdata = {
351 .governor = GOV_CONSERVATIVE,
352 .attr_group_gov_sys = &cs_attr_group_gov_sys,
353 .attr_group_gov_pol = &cs_attr_group_gov_pol,
354 .get_cpu_cdbs = get_cpu_cdbs,
355 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
356 .gov_dbs_timer = cs_dbs_timer,
357 .gov_check_cpu = cs_check_cpu,
358 .gov_ops = &cs_ops,
359 .init = cs_init,
360 .exit = cs_exit,
363 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
364 unsigned int event)
366 return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
369 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
370 static
371 #endif
372 struct cpufreq_governor cpufreq_gov_conservative = {
373 .name = "conservative",
374 .governor = cs_cpufreq_governor_dbs,
375 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
376 .owner = THIS_MODULE,
379 static int __init cpufreq_gov_dbs_init(void)
381 return cpufreq_register_governor(&cpufreq_gov_conservative);
384 static void __exit cpufreq_gov_dbs_exit(void)
386 cpufreq_unregister_governor(&cpufreq_gov_conservative);
389 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
390 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
391 "Low Latency Frequency Transition capable processors "
392 "optimised for use in a battery environment");
393 MODULE_LICENSE("GPL");
395 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
396 fs_initcall(cpufreq_gov_dbs_init);
397 #else
398 module_init(cpufreq_gov_dbs_init);
399 #endif
400 module_exit(cpufreq_gov_dbs_exit);