ARM: tegra: Rename tegra20 clock file
[linux-2.6.git] / fs / btrfs / super.c
blob83d6f9f9c2209861efdec86dec9ad54d629deeb9
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 char nbuf[16])
68 char *errstr = NULL;
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 default:
84 if (nbuf) {
85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 errstr = nbuf;
88 break;
91 return errstr;
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
97 * today we only save the error info into ram. Long term we'll
98 * also send it down to the disk
100 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
103 static void save_error_info(struct btrfs_fs_info *fs_info)
105 __save_error_info(fs_info);
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 struct super_block *sb = fs_info->sb;
113 if (sb->s_flags & MS_RDONLY)
114 return;
116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 sb->s_flags |= MS_RDONLY;
118 printk(KERN_INFO "btrfs is forced readonly\n");
119 __btrfs_scrub_cancel(fs_info);
120 // WARN_ON(1);
124 #ifdef CONFIG_PRINTK
126 * __btrfs_std_error decodes expected errors from the caller and
127 * invokes the approciate error response.
129 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
130 unsigned int line, int errno, const char *fmt, ...)
132 struct super_block *sb = fs_info->sb;
133 char nbuf[16];
134 const char *errstr;
135 va_list args;
136 va_start(args, fmt);
139 * Special case: if the error is EROFS, and we're already
140 * under MS_RDONLY, then it is safe here.
142 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143 return;
145 errstr = btrfs_decode_error(fs_info, errno, nbuf);
146 if (fmt) {
147 struct va_format vaf = {
148 .fmt = fmt,
149 .va = &args,
152 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
153 sb->s_id, function, line, errstr, &vaf);
154 } else {
155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
156 sb->s_id, function, line, errstr);
159 /* Don't go through full error handling during mount */
160 if (sb->s_flags & MS_BORN) {
161 save_error_info(fs_info);
162 btrfs_handle_error(fs_info);
164 va_end(args);
167 static const char * const logtypes[] = {
168 "emergency",
169 "alert",
170 "critical",
171 "error",
172 "warning",
173 "notice",
174 "info",
175 "debug",
178 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
180 struct super_block *sb = fs_info->sb;
181 char lvl[4];
182 struct va_format vaf;
183 va_list args;
184 const char *type = logtypes[4];
185 int kern_level;
187 va_start(args, fmt);
189 kern_level = printk_get_level(fmt);
190 if (kern_level) {
191 size_t size = printk_skip_level(fmt) - fmt;
192 memcpy(lvl, fmt, size);
193 lvl[size] = '\0';
194 fmt += size;
195 type = logtypes[kern_level - '0'];
196 } else
197 *lvl = '\0';
199 vaf.fmt = fmt;
200 vaf.va = &args;
202 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
204 va_end(args);
207 #else
209 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
210 unsigned int line, int errno, const char *fmt, ...)
212 struct super_block *sb = fs_info->sb;
215 * Special case: if the error is EROFS, and we're already
216 * under MS_RDONLY, then it is safe here.
218 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
219 return;
221 /* Don't go through full error handling during mount */
222 if (sb->s_flags & MS_BORN) {
223 save_error_info(fs_info);
224 btrfs_handle_error(fs_info);
227 #endif
230 * We only mark the transaction aborted and then set the file system read-only.
231 * This will prevent new transactions from starting or trying to join this
232 * one.
234 * This means that error recovery at the call site is limited to freeing
235 * any local memory allocations and passing the error code up without
236 * further cleanup. The transaction should complete as it normally would
237 * in the call path but will return -EIO.
239 * We'll complete the cleanup in btrfs_end_transaction and
240 * btrfs_commit_transaction.
242 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
243 struct btrfs_root *root, const char *function,
244 unsigned int line, int errno)
246 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
247 trans->aborted = errno;
248 /* Nothing used. The other threads that have joined this
249 * transaction may be able to continue. */
250 if (!trans->blocks_used) {
251 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
252 return;
254 trans->transaction->aborted = errno;
255 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
258 * __btrfs_panic decodes unexpected, fatal errors from the caller,
259 * issues an alert, and either panics or BUGs, depending on mount options.
261 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
262 unsigned int line, int errno, const char *fmt, ...)
264 char nbuf[16];
265 char *s_id = "<unknown>";
266 const char *errstr;
267 struct va_format vaf = { .fmt = fmt };
268 va_list args;
270 if (fs_info)
271 s_id = fs_info->sb->s_id;
273 va_start(args, fmt);
274 vaf.va = &args;
276 errstr = btrfs_decode_error(fs_info, errno, nbuf);
277 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
278 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
279 s_id, function, line, &vaf, errstr);
281 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
282 s_id, function, line, &vaf, errstr);
283 va_end(args);
284 /* Caller calls BUG() */
287 static void btrfs_put_super(struct super_block *sb)
289 (void)close_ctree(btrfs_sb(sb)->tree_root);
290 /* FIXME: need to fix VFS to return error? */
291 /* AV: return it _where_? ->put_super() can be triggered by any number
292 * of async events, up to and including delivery of SIGKILL to the
293 * last process that kept it busy. Or segfault in the aforementioned
294 * process... Whom would you report that to?
298 enum {
299 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
300 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
301 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
302 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
303 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
304 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
305 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
306 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
307 Opt_check_integrity, Opt_check_integrity_including_extent_data,
308 Opt_check_integrity_print_mask, Opt_fatal_errors,
309 Opt_err,
312 static match_table_t tokens = {
313 {Opt_degraded, "degraded"},
314 {Opt_subvol, "subvol=%s"},
315 {Opt_subvolid, "subvolid=%d"},
316 {Opt_device, "device=%s"},
317 {Opt_nodatasum, "nodatasum"},
318 {Opt_nodatacow, "nodatacow"},
319 {Opt_nobarrier, "nobarrier"},
320 {Opt_max_inline, "max_inline=%s"},
321 {Opt_alloc_start, "alloc_start=%s"},
322 {Opt_thread_pool, "thread_pool=%d"},
323 {Opt_compress, "compress"},
324 {Opt_compress_type, "compress=%s"},
325 {Opt_compress_force, "compress-force"},
326 {Opt_compress_force_type, "compress-force=%s"},
327 {Opt_ssd, "ssd"},
328 {Opt_ssd_spread, "ssd_spread"},
329 {Opt_nossd, "nossd"},
330 {Opt_noacl, "noacl"},
331 {Opt_notreelog, "notreelog"},
332 {Opt_flushoncommit, "flushoncommit"},
333 {Opt_ratio, "metadata_ratio=%d"},
334 {Opt_discard, "discard"},
335 {Opt_space_cache, "space_cache"},
336 {Opt_clear_cache, "clear_cache"},
337 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
338 {Opt_enospc_debug, "enospc_debug"},
339 {Opt_subvolrootid, "subvolrootid=%d"},
340 {Opt_defrag, "autodefrag"},
341 {Opt_inode_cache, "inode_cache"},
342 {Opt_no_space_cache, "nospace_cache"},
343 {Opt_recovery, "recovery"},
344 {Opt_skip_balance, "skip_balance"},
345 {Opt_check_integrity, "check_int"},
346 {Opt_check_integrity_including_extent_data, "check_int_data"},
347 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
348 {Opt_fatal_errors, "fatal_errors=%s"},
349 {Opt_err, NULL},
353 * Regular mount options parser. Everything that is needed only when
354 * reading in a new superblock is parsed here.
355 * XXX JDM: This needs to be cleaned up for remount.
357 int btrfs_parse_options(struct btrfs_root *root, char *options)
359 struct btrfs_fs_info *info = root->fs_info;
360 substring_t args[MAX_OPT_ARGS];
361 char *p, *num, *orig = NULL;
362 u64 cache_gen;
363 int intarg;
364 int ret = 0;
365 char *compress_type;
366 bool compress_force = false;
368 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
369 if (cache_gen)
370 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
372 if (!options)
373 goto out;
376 * strsep changes the string, duplicate it because parse_options
377 * gets called twice
379 options = kstrdup(options, GFP_NOFS);
380 if (!options)
381 return -ENOMEM;
383 orig = options;
385 while ((p = strsep(&options, ",")) != NULL) {
386 int token;
387 if (!*p)
388 continue;
390 token = match_token(p, tokens, args);
391 switch (token) {
392 case Opt_degraded:
393 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
394 btrfs_set_opt(info->mount_opt, DEGRADED);
395 break;
396 case Opt_subvol:
397 case Opt_subvolid:
398 case Opt_subvolrootid:
399 case Opt_device:
401 * These are parsed by btrfs_parse_early_options
402 * and can be happily ignored here.
404 break;
405 case Opt_nodatasum:
406 printk(KERN_INFO "btrfs: setting nodatasum\n");
407 btrfs_set_opt(info->mount_opt, NODATASUM);
408 break;
409 case Opt_nodatacow:
410 printk(KERN_INFO "btrfs: setting nodatacow\n");
411 btrfs_set_opt(info->mount_opt, NODATACOW);
412 btrfs_set_opt(info->mount_opt, NODATASUM);
413 break;
414 case Opt_compress_force:
415 case Opt_compress_force_type:
416 compress_force = true;
417 case Opt_compress:
418 case Opt_compress_type:
419 if (token == Opt_compress ||
420 token == Opt_compress_force ||
421 strcmp(args[0].from, "zlib") == 0) {
422 compress_type = "zlib";
423 info->compress_type = BTRFS_COMPRESS_ZLIB;
424 btrfs_set_opt(info->mount_opt, COMPRESS);
425 } else if (strcmp(args[0].from, "lzo") == 0) {
426 compress_type = "lzo";
427 info->compress_type = BTRFS_COMPRESS_LZO;
428 btrfs_set_opt(info->mount_opt, COMPRESS);
429 btrfs_set_fs_incompat(info, COMPRESS_LZO);
430 } else if (strncmp(args[0].from, "no", 2) == 0) {
431 compress_type = "no";
432 info->compress_type = BTRFS_COMPRESS_NONE;
433 btrfs_clear_opt(info->mount_opt, COMPRESS);
434 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
435 compress_force = false;
436 } else {
437 ret = -EINVAL;
438 goto out;
441 if (compress_force) {
442 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
443 pr_info("btrfs: force %s compression\n",
444 compress_type);
445 } else
446 pr_info("btrfs: use %s compression\n",
447 compress_type);
448 break;
449 case Opt_ssd:
450 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
451 btrfs_set_opt(info->mount_opt, SSD);
452 break;
453 case Opt_ssd_spread:
454 printk(KERN_INFO "btrfs: use spread ssd "
455 "allocation scheme\n");
456 btrfs_set_opt(info->mount_opt, SSD);
457 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
458 break;
459 case Opt_nossd:
460 printk(KERN_INFO "btrfs: not using ssd allocation "
461 "scheme\n");
462 btrfs_set_opt(info->mount_opt, NOSSD);
463 btrfs_clear_opt(info->mount_opt, SSD);
464 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
465 break;
466 case Opt_nobarrier:
467 printk(KERN_INFO "btrfs: turning off barriers\n");
468 btrfs_set_opt(info->mount_opt, NOBARRIER);
469 break;
470 case Opt_thread_pool:
471 intarg = 0;
472 match_int(&args[0], &intarg);
473 if (intarg)
474 info->thread_pool_size = intarg;
475 break;
476 case Opt_max_inline:
477 num = match_strdup(&args[0]);
478 if (num) {
479 info->max_inline = memparse(num, NULL);
480 kfree(num);
482 if (info->max_inline) {
483 info->max_inline = max_t(u64,
484 info->max_inline,
485 root->sectorsize);
487 printk(KERN_INFO "btrfs: max_inline at %llu\n",
488 (unsigned long long)info->max_inline);
490 break;
491 case Opt_alloc_start:
492 num = match_strdup(&args[0]);
493 if (num) {
494 info->alloc_start = memparse(num, NULL);
495 kfree(num);
496 printk(KERN_INFO
497 "btrfs: allocations start at %llu\n",
498 (unsigned long long)info->alloc_start);
500 break;
501 case Opt_noacl:
502 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
503 break;
504 case Opt_notreelog:
505 printk(KERN_INFO "btrfs: disabling tree log\n");
506 btrfs_set_opt(info->mount_opt, NOTREELOG);
507 break;
508 case Opt_flushoncommit:
509 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
510 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
511 break;
512 case Opt_ratio:
513 intarg = 0;
514 match_int(&args[0], &intarg);
515 if (intarg) {
516 info->metadata_ratio = intarg;
517 printk(KERN_INFO "btrfs: metadata ratio %d\n",
518 info->metadata_ratio);
520 break;
521 case Opt_discard:
522 btrfs_set_opt(info->mount_opt, DISCARD);
523 break;
524 case Opt_space_cache:
525 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
526 break;
527 case Opt_no_space_cache:
528 printk(KERN_INFO "btrfs: disabling disk space caching\n");
529 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
530 break;
531 case Opt_inode_cache:
532 printk(KERN_INFO "btrfs: enabling inode map caching\n");
533 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
534 break;
535 case Opt_clear_cache:
536 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
537 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
538 break;
539 case Opt_user_subvol_rm_allowed:
540 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
541 break;
542 case Opt_enospc_debug:
543 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
544 break;
545 case Opt_defrag:
546 printk(KERN_INFO "btrfs: enabling auto defrag");
547 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
548 break;
549 case Opt_recovery:
550 printk(KERN_INFO "btrfs: enabling auto recovery");
551 btrfs_set_opt(info->mount_opt, RECOVERY);
552 break;
553 case Opt_skip_balance:
554 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
555 break;
556 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
557 case Opt_check_integrity_including_extent_data:
558 printk(KERN_INFO "btrfs: enabling check integrity"
559 " including extent data\n");
560 btrfs_set_opt(info->mount_opt,
561 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
562 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
563 break;
564 case Opt_check_integrity:
565 printk(KERN_INFO "btrfs: enabling check integrity\n");
566 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
567 break;
568 case Opt_check_integrity_print_mask:
569 intarg = 0;
570 match_int(&args[0], &intarg);
571 if (intarg) {
572 info->check_integrity_print_mask = intarg;
573 printk(KERN_INFO "btrfs:"
574 " check_integrity_print_mask 0x%x\n",
575 info->check_integrity_print_mask);
577 break;
578 #else
579 case Opt_check_integrity_including_extent_data:
580 case Opt_check_integrity:
581 case Opt_check_integrity_print_mask:
582 printk(KERN_ERR "btrfs: support for check_integrity*"
583 " not compiled in!\n");
584 ret = -EINVAL;
585 goto out;
586 #endif
587 case Opt_fatal_errors:
588 if (strcmp(args[0].from, "panic") == 0)
589 btrfs_set_opt(info->mount_opt,
590 PANIC_ON_FATAL_ERROR);
591 else if (strcmp(args[0].from, "bug") == 0)
592 btrfs_clear_opt(info->mount_opt,
593 PANIC_ON_FATAL_ERROR);
594 else {
595 ret = -EINVAL;
596 goto out;
598 break;
599 case Opt_err:
600 printk(KERN_INFO "btrfs: unrecognized mount option "
601 "'%s'\n", p);
602 ret = -EINVAL;
603 goto out;
604 default:
605 break;
608 out:
609 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
610 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
611 kfree(orig);
612 return ret;
616 * Parse mount options that are required early in the mount process.
618 * All other options will be parsed on much later in the mount process and
619 * only when we need to allocate a new super block.
621 static int btrfs_parse_early_options(const char *options, fmode_t flags,
622 void *holder, char **subvol_name, u64 *subvol_objectid,
623 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
625 substring_t args[MAX_OPT_ARGS];
626 char *device_name, *opts, *orig, *p;
627 int error = 0;
628 int intarg;
630 if (!options)
631 return 0;
634 * strsep changes the string, duplicate it because parse_options
635 * gets called twice
637 opts = kstrdup(options, GFP_KERNEL);
638 if (!opts)
639 return -ENOMEM;
640 orig = opts;
642 while ((p = strsep(&opts, ",")) != NULL) {
643 int token;
644 if (!*p)
645 continue;
647 token = match_token(p, tokens, args);
648 switch (token) {
649 case Opt_subvol:
650 kfree(*subvol_name);
651 *subvol_name = match_strdup(&args[0]);
652 break;
653 case Opt_subvolid:
654 intarg = 0;
655 error = match_int(&args[0], &intarg);
656 if (!error) {
657 /* we want the original fs_tree */
658 if (!intarg)
659 *subvol_objectid =
660 BTRFS_FS_TREE_OBJECTID;
661 else
662 *subvol_objectid = intarg;
664 break;
665 case Opt_subvolrootid:
666 intarg = 0;
667 error = match_int(&args[0], &intarg);
668 if (!error) {
669 /* we want the original fs_tree */
670 if (!intarg)
671 *subvol_rootid =
672 BTRFS_FS_TREE_OBJECTID;
673 else
674 *subvol_rootid = intarg;
676 break;
677 case Opt_device:
678 device_name = match_strdup(&args[0]);
679 if (!device_name) {
680 error = -ENOMEM;
681 goto out;
683 error = btrfs_scan_one_device(device_name,
684 flags, holder, fs_devices);
685 kfree(device_name);
686 if (error)
687 goto out;
688 break;
689 default:
690 break;
694 out:
695 kfree(orig);
696 return error;
699 static struct dentry *get_default_root(struct super_block *sb,
700 u64 subvol_objectid)
702 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
703 struct btrfs_root *root = fs_info->tree_root;
704 struct btrfs_root *new_root;
705 struct btrfs_dir_item *di;
706 struct btrfs_path *path;
707 struct btrfs_key location;
708 struct inode *inode;
709 u64 dir_id;
710 int new = 0;
713 * We have a specific subvol we want to mount, just setup location and
714 * go look up the root.
716 if (subvol_objectid) {
717 location.objectid = subvol_objectid;
718 location.type = BTRFS_ROOT_ITEM_KEY;
719 location.offset = (u64)-1;
720 goto find_root;
723 path = btrfs_alloc_path();
724 if (!path)
725 return ERR_PTR(-ENOMEM);
726 path->leave_spinning = 1;
729 * Find the "default" dir item which points to the root item that we
730 * will mount by default if we haven't been given a specific subvolume
731 * to mount.
733 dir_id = btrfs_super_root_dir(fs_info->super_copy);
734 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
735 if (IS_ERR(di)) {
736 btrfs_free_path(path);
737 return ERR_CAST(di);
739 if (!di) {
741 * Ok the default dir item isn't there. This is weird since
742 * it's always been there, but don't freak out, just try and
743 * mount to root most subvolume.
745 btrfs_free_path(path);
746 dir_id = BTRFS_FIRST_FREE_OBJECTID;
747 new_root = fs_info->fs_root;
748 goto setup_root;
751 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
752 btrfs_free_path(path);
754 find_root:
755 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
756 if (IS_ERR(new_root))
757 return ERR_CAST(new_root);
759 if (btrfs_root_refs(&new_root->root_item) == 0)
760 return ERR_PTR(-ENOENT);
762 dir_id = btrfs_root_dirid(&new_root->root_item);
763 setup_root:
764 location.objectid = dir_id;
765 location.type = BTRFS_INODE_ITEM_KEY;
766 location.offset = 0;
768 inode = btrfs_iget(sb, &location, new_root, &new);
769 if (IS_ERR(inode))
770 return ERR_CAST(inode);
773 * If we're just mounting the root most subvol put the inode and return
774 * a reference to the dentry. We will have already gotten a reference
775 * to the inode in btrfs_fill_super so we're good to go.
777 if (!new && sb->s_root->d_inode == inode) {
778 iput(inode);
779 return dget(sb->s_root);
782 return d_obtain_alias(inode);
785 static int btrfs_fill_super(struct super_block *sb,
786 struct btrfs_fs_devices *fs_devices,
787 void *data, int silent)
789 struct inode *inode;
790 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
791 struct btrfs_key key;
792 int err;
794 sb->s_maxbytes = MAX_LFS_FILESIZE;
795 sb->s_magic = BTRFS_SUPER_MAGIC;
796 sb->s_op = &btrfs_super_ops;
797 sb->s_d_op = &btrfs_dentry_operations;
798 sb->s_export_op = &btrfs_export_ops;
799 sb->s_xattr = btrfs_xattr_handlers;
800 sb->s_time_gran = 1;
801 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
802 sb->s_flags |= MS_POSIXACL;
803 #endif
804 sb->s_flags |= MS_I_VERSION;
805 err = open_ctree(sb, fs_devices, (char *)data);
806 if (err) {
807 printk("btrfs: open_ctree failed\n");
808 return err;
811 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
812 key.type = BTRFS_INODE_ITEM_KEY;
813 key.offset = 0;
814 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
815 if (IS_ERR(inode)) {
816 err = PTR_ERR(inode);
817 goto fail_close;
820 sb->s_root = d_make_root(inode);
821 if (!sb->s_root) {
822 err = -ENOMEM;
823 goto fail_close;
826 save_mount_options(sb, data);
827 cleancache_init_fs(sb);
828 sb->s_flags |= MS_ACTIVE;
829 return 0;
831 fail_close:
832 close_ctree(fs_info->tree_root);
833 return err;
836 int btrfs_sync_fs(struct super_block *sb, int wait)
838 struct btrfs_trans_handle *trans;
839 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
840 struct btrfs_root *root = fs_info->tree_root;
842 trace_btrfs_sync_fs(wait);
844 if (!wait) {
845 filemap_flush(fs_info->btree_inode->i_mapping);
846 return 0;
849 btrfs_wait_ordered_extents(root, 0, 0);
851 spin_lock(&fs_info->trans_lock);
852 if (!fs_info->running_transaction) {
853 spin_unlock(&fs_info->trans_lock);
854 return 0;
856 spin_unlock(&fs_info->trans_lock);
858 trans = btrfs_join_transaction(root);
859 if (IS_ERR(trans))
860 return PTR_ERR(trans);
861 return btrfs_commit_transaction(trans, root);
864 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
866 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
867 struct btrfs_root *root = info->tree_root;
868 char *compress_type;
870 if (btrfs_test_opt(root, DEGRADED))
871 seq_puts(seq, ",degraded");
872 if (btrfs_test_opt(root, NODATASUM))
873 seq_puts(seq, ",nodatasum");
874 if (btrfs_test_opt(root, NODATACOW))
875 seq_puts(seq, ",nodatacow");
876 if (btrfs_test_opt(root, NOBARRIER))
877 seq_puts(seq, ",nobarrier");
878 if (info->max_inline != 8192 * 1024)
879 seq_printf(seq, ",max_inline=%llu",
880 (unsigned long long)info->max_inline);
881 if (info->alloc_start != 0)
882 seq_printf(seq, ",alloc_start=%llu",
883 (unsigned long long)info->alloc_start);
884 if (info->thread_pool_size != min_t(unsigned long,
885 num_online_cpus() + 2, 8))
886 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
887 if (btrfs_test_opt(root, COMPRESS)) {
888 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
889 compress_type = "zlib";
890 else
891 compress_type = "lzo";
892 if (btrfs_test_opt(root, FORCE_COMPRESS))
893 seq_printf(seq, ",compress-force=%s", compress_type);
894 else
895 seq_printf(seq, ",compress=%s", compress_type);
897 if (btrfs_test_opt(root, NOSSD))
898 seq_puts(seq, ",nossd");
899 if (btrfs_test_opt(root, SSD_SPREAD))
900 seq_puts(seq, ",ssd_spread");
901 else if (btrfs_test_opt(root, SSD))
902 seq_puts(seq, ",ssd");
903 if (btrfs_test_opt(root, NOTREELOG))
904 seq_puts(seq, ",notreelog");
905 if (btrfs_test_opt(root, FLUSHONCOMMIT))
906 seq_puts(seq, ",flushoncommit");
907 if (btrfs_test_opt(root, DISCARD))
908 seq_puts(seq, ",discard");
909 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
910 seq_puts(seq, ",noacl");
911 if (btrfs_test_opt(root, SPACE_CACHE))
912 seq_puts(seq, ",space_cache");
913 else
914 seq_puts(seq, ",nospace_cache");
915 if (btrfs_test_opt(root, CLEAR_CACHE))
916 seq_puts(seq, ",clear_cache");
917 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
918 seq_puts(seq, ",user_subvol_rm_allowed");
919 if (btrfs_test_opt(root, ENOSPC_DEBUG))
920 seq_puts(seq, ",enospc_debug");
921 if (btrfs_test_opt(root, AUTO_DEFRAG))
922 seq_puts(seq, ",autodefrag");
923 if (btrfs_test_opt(root, INODE_MAP_CACHE))
924 seq_puts(seq, ",inode_cache");
925 if (btrfs_test_opt(root, SKIP_BALANCE))
926 seq_puts(seq, ",skip_balance");
927 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
928 seq_puts(seq, ",fatal_errors=panic");
929 return 0;
932 static int btrfs_test_super(struct super_block *s, void *data)
934 struct btrfs_fs_info *p = data;
935 struct btrfs_fs_info *fs_info = btrfs_sb(s);
937 return fs_info->fs_devices == p->fs_devices;
940 static int btrfs_set_super(struct super_block *s, void *data)
942 int err = set_anon_super(s, data);
943 if (!err)
944 s->s_fs_info = data;
945 return err;
949 * subvolumes are identified by ino 256
951 static inline int is_subvolume_inode(struct inode *inode)
953 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
954 return 1;
955 return 0;
959 * This will strip out the subvol=%s argument for an argument string and add
960 * subvolid=0 to make sure we get the actual tree root for path walking to the
961 * subvol we want.
963 static char *setup_root_args(char *args)
965 unsigned len = strlen(args) + 2 + 1;
966 char *src, *dst, *buf;
969 * We need the same args as before, but with this substitution:
970 * s!subvol=[^,]+!subvolid=0!
972 * Since the replacement string is up to 2 bytes longer than the
973 * original, allocate strlen(args) + 2 + 1 bytes.
976 src = strstr(args, "subvol=");
977 /* This shouldn't happen, but just in case.. */
978 if (!src)
979 return NULL;
981 buf = dst = kmalloc(len, GFP_NOFS);
982 if (!buf)
983 return NULL;
986 * If the subvol= arg is not at the start of the string,
987 * copy whatever precedes it into buf.
989 if (src != args) {
990 *src++ = '\0';
991 strcpy(buf, args);
992 dst += strlen(args);
995 strcpy(dst, "subvolid=0");
996 dst += strlen("subvolid=0");
999 * If there is a "," after the original subvol=... string,
1000 * copy that suffix into our buffer. Otherwise, we're done.
1002 src = strchr(src, ',');
1003 if (src)
1004 strcpy(dst, src);
1006 return buf;
1009 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1010 const char *device_name, char *data)
1012 struct dentry *root;
1013 struct vfsmount *mnt;
1014 char *newargs;
1016 newargs = setup_root_args(data);
1017 if (!newargs)
1018 return ERR_PTR(-ENOMEM);
1019 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1020 newargs);
1021 kfree(newargs);
1022 if (IS_ERR(mnt))
1023 return ERR_CAST(mnt);
1025 root = mount_subtree(mnt, subvol_name);
1027 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1028 struct super_block *s = root->d_sb;
1029 dput(root);
1030 root = ERR_PTR(-EINVAL);
1031 deactivate_locked_super(s);
1032 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1033 subvol_name);
1036 return root;
1040 * Find a superblock for the given device / mount point.
1042 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1043 * for multiple device setup. Make sure to keep it in sync.
1045 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1046 const char *device_name, void *data)
1048 struct block_device *bdev = NULL;
1049 struct super_block *s;
1050 struct dentry *root;
1051 struct btrfs_fs_devices *fs_devices = NULL;
1052 struct btrfs_fs_info *fs_info = NULL;
1053 fmode_t mode = FMODE_READ;
1054 char *subvol_name = NULL;
1055 u64 subvol_objectid = 0;
1056 u64 subvol_rootid = 0;
1057 int error = 0;
1059 if (!(flags & MS_RDONLY))
1060 mode |= FMODE_WRITE;
1062 error = btrfs_parse_early_options(data, mode, fs_type,
1063 &subvol_name, &subvol_objectid,
1064 &subvol_rootid, &fs_devices);
1065 if (error) {
1066 kfree(subvol_name);
1067 return ERR_PTR(error);
1070 if (subvol_name) {
1071 root = mount_subvol(subvol_name, flags, device_name, data);
1072 kfree(subvol_name);
1073 return root;
1076 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1077 if (error)
1078 return ERR_PTR(error);
1081 * Setup a dummy root and fs_info for test/set super. This is because
1082 * we don't actually fill this stuff out until open_ctree, but we need
1083 * it for searching for existing supers, so this lets us do that and
1084 * then open_ctree will properly initialize everything later.
1086 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1087 if (!fs_info)
1088 return ERR_PTR(-ENOMEM);
1090 fs_info->fs_devices = fs_devices;
1092 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1093 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1094 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1095 error = -ENOMEM;
1096 goto error_fs_info;
1099 error = btrfs_open_devices(fs_devices, mode, fs_type);
1100 if (error)
1101 goto error_fs_info;
1103 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1104 error = -EACCES;
1105 goto error_close_devices;
1108 bdev = fs_devices->latest_bdev;
1109 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1110 fs_info);
1111 if (IS_ERR(s)) {
1112 error = PTR_ERR(s);
1113 goto error_close_devices;
1116 if (s->s_root) {
1117 btrfs_close_devices(fs_devices);
1118 free_fs_info(fs_info);
1119 if ((flags ^ s->s_flags) & MS_RDONLY)
1120 error = -EBUSY;
1121 } else {
1122 char b[BDEVNAME_SIZE];
1124 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1125 btrfs_sb(s)->bdev_holder = fs_type;
1126 error = btrfs_fill_super(s, fs_devices, data,
1127 flags & MS_SILENT ? 1 : 0);
1130 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1131 if (IS_ERR(root))
1132 deactivate_locked_super(s);
1134 return root;
1136 error_close_devices:
1137 btrfs_close_devices(fs_devices);
1138 error_fs_info:
1139 free_fs_info(fs_info);
1140 return ERR_PTR(error);
1143 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1145 spin_lock_irq(&workers->lock);
1146 workers->max_workers = new_limit;
1147 spin_unlock_irq(&workers->lock);
1150 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1151 int new_pool_size, int old_pool_size)
1153 if (new_pool_size == old_pool_size)
1154 return;
1156 fs_info->thread_pool_size = new_pool_size;
1158 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1159 old_pool_size, new_pool_size);
1161 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1162 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1163 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1164 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1165 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1166 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1167 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1168 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1169 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1170 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1171 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1172 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1173 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1174 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1177 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1179 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1180 struct btrfs_root *root = fs_info->tree_root;
1181 unsigned old_flags = sb->s_flags;
1182 unsigned long old_opts = fs_info->mount_opt;
1183 unsigned long old_compress_type = fs_info->compress_type;
1184 u64 old_max_inline = fs_info->max_inline;
1185 u64 old_alloc_start = fs_info->alloc_start;
1186 int old_thread_pool_size = fs_info->thread_pool_size;
1187 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1188 int ret;
1190 ret = btrfs_parse_options(root, data);
1191 if (ret) {
1192 ret = -EINVAL;
1193 goto restore;
1196 btrfs_resize_thread_pool(fs_info,
1197 fs_info->thread_pool_size, old_thread_pool_size);
1199 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1200 return 0;
1202 if (*flags & MS_RDONLY) {
1203 sb->s_flags |= MS_RDONLY;
1205 ret = btrfs_commit_super(root);
1206 if (ret)
1207 goto restore;
1208 } else {
1209 if (fs_info->fs_devices->rw_devices == 0) {
1210 ret = -EACCES;
1211 goto restore;
1214 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1215 ret = -EINVAL;
1216 goto restore;
1219 ret = btrfs_cleanup_fs_roots(fs_info);
1220 if (ret)
1221 goto restore;
1223 /* recover relocation */
1224 ret = btrfs_recover_relocation(root);
1225 if (ret)
1226 goto restore;
1228 ret = btrfs_resume_balance_async(fs_info);
1229 if (ret)
1230 goto restore;
1232 sb->s_flags &= ~MS_RDONLY;
1235 return 0;
1237 restore:
1238 /* We've hit an error - don't reset MS_RDONLY */
1239 if (sb->s_flags & MS_RDONLY)
1240 old_flags |= MS_RDONLY;
1241 sb->s_flags = old_flags;
1242 fs_info->mount_opt = old_opts;
1243 fs_info->compress_type = old_compress_type;
1244 fs_info->max_inline = old_max_inline;
1245 fs_info->alloc_start = old_alloc_start;
1246 btrfs_resize_thread_pool(fs_info,
1247 old_thread_pool_size, fs_info->thread_pool_size);
1248 fs_info->metadata_ratio = old_metadata_ratio;
1249 return ret;
1252 /* Used to sort the devices by max_avail(descending sort) */
1253 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1254 const void *dev_info2)
1256 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1257 ((struct btrfs_device_info *)dev_info2)->max_avail)
1258 return -1;
1259 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1260 ((struct btrfs_device_info *)dev_info2)->max_avail)
1261 return 1;
1262 else
1263 return 0;
1267 * sort the devices by max_avail, in which max free extent size of each device
1268 * is stored.(Descending Sort)
1270 static inline void btrfs_descending_sort_devices(
1271 struct btrfs_device_info *devices,
1272 size_t nr_devices)
1274 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1275 btrfs_cmp_device_free_bytes, NULL);
1279 * The helper to calc the free space on the devices that can be used to store
1280 * file data.
1282 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1284 struct btrfs_fs_info *fs_info = root->fs_info;
1285 struct btrfs_device_info *devices_info;
1286 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1287 struct btrfs_device *device;
1288 u64 skip_space;
1289 u64 type;
1290 u64 avail_space;
1291 u64 used_space;
1292 u64 min_stripe_size;
1293 int min_stripes = 1, num_stripes = 1;
1294 int i = 0, nr_devices;
1295 int ret;
1297 nr_devices = fs_info->fs_devices->open_devices;
1298 BUG_ON(!nr_devices);
1300 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1301 GFP_NOFS);
1302 if (!devices_info)
1303 return -ENOMEM;
1305 /* calc min stripe number for data space alloction */
1306 type = btrfs_get_alloc_profile(root, 1);
1307 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1308 min_stripes = 2;
1309 num_stripes = nr_devices;
1310 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1311 min_stripes = 2;
1312 num_stripes = 2;
1313 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1314 min_stripes = 4;
1315 num_stripes = 4;
1318 if (type & BTRFS_BLOCK_GROUP_DUP)
1319 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1320 else
1321 min_stripe_size = BTRFS_STRIPE_LEN;
1323 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1324 if (!device->in_fs_metadata || !device->bdev)
1325 continue;
1327 avail_space = device->total_bytes - device->bytes_used;
1329 /* align with stripe_len */
1330 do_div(avail_space, BTRFS_STRIPE_LEN);
1331 avail_space *= BTRFS_STRIPE_LEN;
1334 * In order to avoid overwritting the superblock on the drive,
1335 * btrfs starts at an offset of at least 1MB when doing chunk
1336 * allocation.
1338 skip_space = 1024 * 1024;
1340 /* user can set the offset in fs_info->alloc_start. */
1341 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1342 device->total_bytes)
1343 skip_space = max(fs_info->alloc_start, skip_space);
1346 * btrfs can not use the free space in [0, skip_space - 1],
1347 * we must subtract it from the total. In order to implement
1348 * it, we account the used space in this range first.
1350 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1351 &used_space);
1352 if (ret) {
1353 kfree(devices_info);
1354 return ret;
1357 /* calc the free space in [0, skip_space - 1] */
1358 skip_space -= used_space;
1361 * we can use the free space in [0, skip_space - 1], subtract
1362 * it from the total.
1364 if (avail_space && avail_space >= skip_space)
1365 avail_space -= skip_space;
1366 else
1367 avail_space = 0;
1369 if (avail_space < min_stripe_size)
1370 continue;
1372 devices_info[i].dev = device;
1373 devices_info[i].max_avail = avail_space;
1375 i++;
1378 nr_devices = i;
1380 btrfs_descending_sort_devices(devices_info, nr_devices);
1382 i = nr_devices - 1;
1383 avail_space = 0;
1384 while (nr_devices >= min_stripes) {
1385 if (num_stripes > nr_devices)
1386 num_stripes = nr_devices;
1388 if (devices_info[i].max_avail >= min_stripe_size) {
1389 int j;
1390 u64 alloc_size;
1392 avail_space += devices_info[i].max_avail * num_stripes;
1393 alloc_size = devices_info[i].max_avail;
1394 for (j = i + 1 - num_stripes; j <= i; j++)
1395 devices_info[j].max_avail -= alloc_size;
1397 i--;
1398 nr_devices--;
1401 kfree(devices_info);
1402 *free_bytes = avail_space;
1403 return 0;
1406 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1408 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1409 struct btrfs_super_block *disk_super = fs_info->super_copy;
1410 struct list_head *head = &fs_info->space_info;
1411 struct btrfs_space_info *found;
1412 u64 total_used = 0;
1413 u64 total_free_data = 0;
1414 int bits = dentry->d_sb->s_blocksize_bits;
1415 __be32 *fsid = (__be32 *)fs_info->fsid;
1416 int ret;
1418 /* holding chunk_muext to avoid allocating new chunks */
1419 mutex_lock(&fs_info->chunk_mutex);
1420 rcu_read_lock();
1421 list_for_each_entry_rcu(found, head, list) {
1422 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1423 total_free_data += found->disk_total - found->disk_used;
1424 total_free_data -=
1425 btrfs_account_ro_block_groups_free_space(found);
1428 total_used += found->disk_used;
1430 rcu_read_unlock();
1432 buf->f_namelen = BTRFS_NAME_LEN;
1433 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1434 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1435 buf->f_bsize = dentry->d_sb->s_blocksize;
1436 buf->f_type = BTRFS_SUPER_MAGIC;
1437 buf->f_bavail = total_free_data;
1438 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1439 if (ret) {
1440 mutex_unlock(&fs_info->chunk_mutex);
1441 return ret;
1443 buf->f_bavail += total_free_data;
1444 buf->f_bavail = buf->f_bavail >> bits;
1445 mutex_unlock(&fs_info->chunk_mutex);
1447 /* We treat it as constant endianness (it doesn't matter _which_)
1448 because we want the fsid to come out the same whether mounted
1449 on a big-endian or little-endian host */
1450 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1451 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1452 /* Mask in the root object ID too, to disambiguate subvols */
1453 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1454 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1456 return 0;
1459 static void btrfs_kill_super(struct super_block *sb)
1461 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1462 kill_anon_super(sb);
1463 free_fs_info(fs_info);
1466 static struct file_system_type btrfs_fs_type = {
1467 .owner = THIS_MODULE,
1468 .name = "btrfs",
1469 .mount = btrfs_mount,
1470 .kill_sb = btrfs_kill_super,
1471 .fs_flags = FS_REQUIRES_DEV,
1475 * used by btrfsctl to scan devices when no FS is mounted
1477 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1478 unsigned long arg)
1480 struct btrfs_ioctl_vol_args *vol;
1481 struct btrfs_fs_devices *fs_devices;
1482 int ret = -ENOTTY;
1484 if (!capable(CAP_SYS_ADMIN))
1485 return -EPERM;
1487 vol = memdup_user((void __user *)arg, sizeof(*vol));
1488 if (IS_ERR(vol))
1489 return PTR_ERR(vol);
1491 switch (cmd) {
1492 case BTRFS_IOC_SCAN_DEV:
1493 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1494 &btrfs_fs_type, &fs_devices);
1495 break;
1496 case BTRFS_IOC_DEVICES_READY:
1497 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1498 &btrfs_fs_type, &fs_devices);
1499 if (ret)
1500 break;
1501 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1502 break;
1505 kfree(vol);
1506 return ret;
1509 static int btrfs_freeze(struct super_block *sb)
1511 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1512 mutex_lock(&fs_info->transaction_kthread_mutex);
1513 mutex_lock(&fs_info->cleaner_mutex);
1514 return 0;
1517 static int btrfs_unfreeze(struct super_block *sb)
1519 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1520 mutex_unlock(&fs_info->cleaner_mutex);
1521 mutex_unlock(&fs_info->transaction_kthread_mutex);
1522 return 0;
1525 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1527 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1528 struct btrfs_fs_devices *cur_devices;
1529 struct btrfs_device *dev, *first_dev = NULL;
1530 struct list_head *head;
1531 struct rcu_string *name;
1533 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1534 cur_devices = fs_info->fs_devices;
1535 while (cur_devices) {
1536 head = &cur_devices->devices;
1537 list_for_each_entry(dev, head, dev_list) {
1538 if (dev->missing)
1539 continue;
1540 if (!first_dev || dev->devid < first_dev->devid)
1541 first_dev = dev;
1543 cur_devices = cur_devices->seed;
1546 if (first_dev) {
1547 rcu_read_lock();
1548 name = rcu_dereference(first_dev->name);
1549 seq_escape(m, name->str, " \t\n\\");
1550 rcu_read_unlock();
1551 } else {
1552 WARN_ON(1);
1554 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1555 return 0;
1558 static const struct super_operations btrfs_super_ops = {
1559 .drop_inode = btrfs_drop_inode,
1560 .evict_inode = btrfs_evict_inode,
1561 .put_super = btrfs_put_super,
1562 .sync_fs = btrfs_sync_fs,
1563 .show_options = btrfs_show_options,
1564 .show_devname = btrfs_show_devname,
1565 .write_inode = btrfs_write_inode,
1566 .alloc_inode = btrfs_alloc_inode,
1567 .destroy_inode = btrfs_destroy_inode,
1568 .statfs = btrfs_statfs,
1569 .remount_fs = btrfs_remount,
1570 .freeze_fs = btrfs_freeze,
1571 .unfreeze_fs = btrfs_unfreeze,
1574 static const struct file_operations btrfs_ctl_fops = {
1575 .unlocked_ioctl = btrfs_control_ioctl,
1576 .compat_ioctl = btrfs_control_ioctl,
1577 .owner = THIS_MODULE,
1578 .llseek = noop_llseek,
1581 static struct miscdevice btrfs_misc = {
1582 .minor = BTRFS_MINOR,
1583 .name = "btrfs-control",
1584 .fops = &btrfs_ctl_fops
1587 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1588 MODULE_ALIAS("devname:btrfs-control");
1590 static int btrfs_interface_init(void)
1592 return misc_register(&btrfs_misc);
1595 static void btrfs_interface_exit(void)
1597 if (misc_deregister(&btrfs_misc) < 0)
1598 printk(KERN_INFO "misc_deregister failed for control device");
1601 static int __init init_btrfs_fs(void)
1603 int err;
1605 err = btrfs_init_sysfs();
1606 if (err)
1607 return err;
1609 btrfs_init_compress();
1611 err = btrfs_init_cachep();
1612 if (err)
1613 goto free_compress;
1615 err = extent_io_init();
1616 if (err)
1617 goto free_cachep;
1619 err = extent_map_init();
1620 if (err)
1621 goto free_extent_io;
1623 err = btrfs_delayed_inode_init();
1624 if (err)
1625 goto free_extent_map;
1627 err = btrfs_interface_init();
1628 if (err)
1629 goto free_delayed_inode;
1631 err = register_filesystem(&btrfs_fs_type);
1632 if (err)
1633 goto unregister_ioctl;
1635 btrfs_init_lockdep();
1637 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1638 return 0;
1640 unregister_ioctl:
1641 btrfs_interface_exit();
1642 free_delayed_inode:
1643 btrfs_delayed_inode_exit();
1644 free_extent_map:
1645 extent_map_exit();
1646 free_extent_io:
1647 extent_io_exit();
1648 free_cachep:
1649 btrfs_destroy_cachep();
1650 free_compress:
1651 btrfs_exit_compress();
1652 btrfs_exit_sysfs();
1653 return err;
1656 static void __exit exit_btrfs_fs(void)
1658 btrfs_destroy_cachep();
1659 btrfs_delayed_inode_exit();
1660 extent_map_exit();
1661 extent_io_exit();
1662 btrfs_interface_exit();
1663 unregister_filesystem(&btrfs_fs_type);
1664 btrfs_exit_sysfs();
1665 btrfs_cleanup_fs_uuids();
1666 btrfs_exit_compress();
1669 module_init(init_btrfs_fs)
1670 module_exit(exit_btrfs_fs)
1672 MODULE_LICENSE("GPL");