[PATCH] dm crypt: move io to workqueue
[linux-2.6.git] / drivers / md / dm-crypt.c
blobc34433a6edd0fe4aceedc82b92b68ab4f741be8a
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/crypto.h>
18 #include <linux/workqueue.h>
19 #include <asm/atomic.h>
20 #include <linux/scatterlist.h>
21 #include <asm/page.h>
23 #include "dm.h"
25 #define DM_MSG_PREFIX "crypt"
26 #define MESG_STR(x) x, sizeof(x)
29 * per bio private data
31 struct crypt_io {
32 struct dm_target *target;
33 struct bio *base_bio;
34 struct bio *first_clone;
35 struct work_struct work;
36 atomic_t pending;
37 int error;
38 int post_process;
42 * context holding the current state of a multi-part conversion
44 struct convert_context {
45 struct bio *bio_in;
46 struct bio *bio_out;
47 unsigned int offset_in;
48 unsigned int offset_out;
49 unsigned int idx_in;
50 unsigned int idx_out;
51 sector_t sector;
52 int write;
55 struct crypt_config;
57 struct crypt_iv_operations {
58 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
59 const char *opts);
60 void (*dtr)(struct crypt_config *cc);
61 const char *(*status)(struct crypt_config *cc);
62 int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector);
66 * Crypt: maps a linear range of a block device
67 * and encrypts / decrypts at the same time.
69 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
70 struct crypt_config {
71 struct dm_dev *dev;
72 sector_t start;
75 * pool for per bio private data and
76 * for encryption buffer pages
78 mempool_t *io_pool;
79 mempool_t *page_pool;
82 * crypto related data
84 struct crypt_iv_operations *iv_gen_ops;
85 char *iv_mode;
86 struct crypto_cipher *iv_gen_private;
87 sector_t iv_offset;
88 unsigned int iv_size;
90 char cipher[CRYPTO_MAX_ALG_NAME];
91 char chainmode[CRYPTO_MAX_ALG_NAME];
92 struct crypto_blkcipher *tfm;
93 unsigned long flags;
94 unsigned int key_size;
95 u8 key[0];
98 #define MIN_IOS 256
99 #define MIN_POOL_PAGES 32
100 #define MIN_BIO_PAGES 8
102 static kmem_cache_t *_crypt_io_pool;
105 * Different IV generation algorithms:
107 * plain: the initial vector is the 32-bit little-endian version of the sector
108 * number, padded with zeros if neccessary.
110 * essiv: "encrypted sector|salt initial vector", the sector number is
111 * encrypted with the bulk cipher using a salt as key. The salt
112 * should be derived from the bulk cipher's key via hashing.
114 * plumb: unimplemented, see:
115 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
118 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
120 memset(iv, 0, cc->iv_size);
121 *(u32 *)iv = cpu_to_le32(sector & 0xffffffff);
123 return 0;
126 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
127 const char *opts)
129 struct crypto_cipher *essiv_tfm;
130 struct crypto_hash *hash_tfm;
131 struct hash_desc desc;
132 struct scatterlist sg;
133 unsigned int saltsize;
134 u8 *salt;
135 int err;
137 if (opts == NULL) {
138 ti->error = "Digest algorithm missing for ESSIV mode";
139 return -EINVAL;
142 /* Hash the cipher key with the given hash algorithm */
143 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
144 if (IS_ERR(hash_tfm)) {
145 ti->error = "Error initializing ESSIV hash";
146 return PTR_ERR(hash_tfm);
149 saltsize = crypto_hash_digestsize(hash_tfm);
150 salt = kmalloc(saltsize, GFP_KERNEL);
151 if (salt == NULL) {
152 ti->error = "Error kmallocing salt storage in ESSIV";
153 crypto_free_hash(hash_tfm);
154 return -ENOMEM;
157 sg_set_buf(&sg, cc->key, cc->key_size);
158 desc.tfm = hash_tfm;
159 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
160 err = crypto_hash_digest(&desc, &sg, cc->key_size, salt);
161 crypto_free_hash(hash_tfm);
163 if (err) {
164 ti->error = "Error calculating hash in ESSIV";
165 return err;
168 /* Setup the essiv_tfm with the given salt */
169 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
170 if (IS_ERR(essiv_tfm)) {
171 ti->error = "Error allocating crypto tfm for ESSIV";
172 kfree(salt);
173 return PTR_ERR(essiv_tfm);
175 if (crypto_cipher_blocksize(essiv_tfm) !=
176 crypto_blkcipher_ivsize(cc->tfm)) {
177 ti->error = "Block size of ESSIV cipher does "
178 "not match IV size of block cipher";
179 crypto_free_cipher(essiv_tfm);
180 kfree(salt);
181 return -EINVAL;
183 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
184 if (err) {
185 ti->error = "Failed to set key for ESSIV cipher";
186 crypto_free_cipher(essiv_tfm);
187 kfree(salt);
188 return err;
190 kfree(salt);
192 cc->iv_gen_private = essiv_tfm;
193 return 0;
196 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
198 crypto_free_cipher(cc->iv_gen_private);
199 cc->iv_gen_private = NULL;
202 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector)
204 memset(iv, 0, cc->iv_size);
205 *(u64 *)iv = cpu_to_le64(sector);
206 crypto_cipher_encrypt_one(cc->iv_gen_private, iv, iv);
207 return 0;
210 static struct crypt_iv_operations crypt_iv_plain_ops = {
211 .generator = crypt_iv_plain_gen
214 static struct crypt_iv_operations crypt_iv_essiv_ops = {
215 .ctr = crypt_iv_essiv_ctr,
216 .dtr = crypt_iv_essiv_dtr,
217 .generator = crypt_iv_essiv_gen
221 static int
222 crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out,
223 struct scatterlist *in, unsigned int length,
224 int write, sector_t sector)
226 u8 iv[cc->iv_size];
227 struct blkcipher_desc desc = {
228 .tfm = cc->tfm,
229 .info = iv,
230 .flags = CRYPTO_TFM_REQ_MAY_SLEEP,
232 int r;
234 if (cc->iv_gen_ops) {
235 r = cc->iv_gen_ops->generator(cc, iv, sector);
236 if (r < 0)
237 return r;
239 if (write)
240 r = crypto_blkcipher_encrypt_iv(&desc, out, in, length);
241 else
242 r = crypto_blkcipher_decrypt_iv(&desc, out, in, length);
243 } else {
244 if (write)
245 r = crypto_blkcipher_encrypt(&desc, out, in, length);
246 else
247 r = crypto_blkcipher_decrypt(&desc, out, in, length);
250 return r;
253 static void
254 crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx,
255 struct bio *bio_out, struct bio *bio_in,
256 sector_t sector, int write)
258 ctx->bio_in = bio_in;
259 ctx->bio_out = bio_out;
260 ctx->offset_in = 0;
261 ctx->offset_out = 0;
262 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
263 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
264 ctx->sector = sector + cc->iv_offset;
265 ctx->write = write;
269 * Encrypt / decrypt data from one bio to another one (can be the same one)
271 static int crypt_convert(struct crypt_config *cc,
272 struct convert_context *ctx)
274 int r = 0;
276 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
277 ctx->idx_out < ctx->bio_out->bi_vcnt) {
278 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
279 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
280 struct scatterlist sg_in = {
281 .page = bv_in->bv_page,
282 .offset = bv_in->bv_offset + ctx->offset_in,
283 .length = 1 << SECTOR_SHIFT
285 struct scatterlist sg_out = {
286 .page = bv_out->bv_page,
287 .offset = bv_out->bv_offset + ctx->offset_out,
288 .length = 1 << SECTOR_SHIFT
291 ctx->offset_in += sg_in.length;
292 if (ctx->offset_in >= bv_in->bv_len) {
293 ctx->offset_in = 0;
294 ctx->idx_in++;
297 ctx->offset_out += sg_out.length;
298 if (ctx->offset_out >= bv_out->bv_len) {
299 ctx->offset_out = 0;
300 ctx->idx_out++;
303 r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length,
304 ctx->write, ctx->sector);
305 if (r < 0)
306 break;
308 ctx->sector++;
311 return r;
315 * Generate a new unfragmented bio with the given size
316 * This should never violate the device limitations
317 * May return a smaller bio when running out of pages
319 static struct bio *
320 crypt_alloc_buffer(struct crypt_config *cc, unsigned int size,
321 struct bio *base_bio, unsigned int *bio_vec_idx)
323 struct bio *clone;
324 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
325 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
326 unsigned int i;
329 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
330 * to fail earlier. This is not necessary but increases throughput.
331 * FIXME: Is this really intelligent?
333 if (base_bio)
334 clone = bio_clone(base_bio, GFP_NOIO|__GFP_NOMEMALLOC);
335 else
336 clone = bio_alloc(GFP_NOIO|__GFP_NOMEMALLOC, nr_iovecs);
337 if (!clone)
338 return NULL;
340 /* if the last bio was not complete, continue where that one ended */
341 clone->bi_idx = *bio_vec_idx;
342 clone->bi_vcnt = *bio_vec_idx;
343 clone->bi_size = 0;
344 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
346 /* clone->bi_idx pages have already been allocated */
347 size -= clone->bi_idx * PAGE_SIZE;
349 for (i = clone->bi_idx; i < nr_iovecs; i++) {
350 struct bio_vec *bv = bio_iovec_idx(clone, i);
352 bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask);
353 if (!bv->bv_page)
354 break;
357 * if additional pages cannot be allocated without waiting,
358 * return a partially allocated bio, the caller will then try
359 * to allocate additional bios while submitting this partial bio
361 if ((i - clone->bi_idx) == (MIN_BIO_PAGES - 1))
362 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
364 bv->bv_offset = 0;
365 if (size > PAGE_SIZE)
366 bv->bv_len = PAGE_SIZE;
367 else
368 bv->bv_len = size;
370 clone->bi_size += bv->bv_len;
371 clone->bi_vcnt++;
372 size -= bv->bv_len;
375 if (!clone->bi_size) {
376 bio_put(clone);
377 return NULL;
381 * Remember the last bio_vec allocated to be able
382 * to correctly continue after the splitting.
384 *bio_vec_idx = clone->bi_vcnt;
386 return clone;
389 static void crypt_free_buffer_pages(struct crypt_config *cc,
390 struct bio *clone, unsigned int bytes)
392 unsigned int i, start, end;
393 struct bio_vec *bv;
396 * This is ugly, but Jens Axboe thinks that using bi_idx in the
397 * endio function is too dangerous at the moment, so I calculate the
398 * correct position using bi_vcnt and bi_size.
399 * The bv_offset and bv_len fields might already be modified but we
400 * know that we always allocated whole pages.
401 * A fix to the bi_idx issue in the kernel is in the works, so
402 * we will hopefully be able to revert to the cleaner solution soon.
404 i = clone->bi_vcnt - 1;
405 bv = bio_iovec_idx(clone, i);
406 end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - clone->bi_size;
407 start = end - bytes;
409 start >>= PAGE_SHIFT;
410 if (!clone->bi_size)
411 end = clone->bi_vcnt;
412 else
413 end >>= PAGE_SHIFT;
415 for (i = start; i < end; i++) {
416 bv = bio_iovec_idx(clone, i);
417 BUG_ON(!bv->bv_page);
418 mempool_free(bv->bv_page, cc->page_pool);
419 bv->bv_page = NULL;
424 * One of the bios was finished. Check for completion of
425 * the whole request and correctly clean up the buffer.
427 static void dec_pending(struct crypt_io *io, int error)
429 struct crypt_config *cc = (struct crypt_config *) io->target->private;
431 if (error < 0)
432 io->error = error;
434 if (!atomic_dec_and_test(&io->pending))
435 return;
437 if (io->first_clone)
438 bio_put(io->first_clone);
440 bio_endio(io->base_bio, io->base_bio->bi_size, io->error);
442 mempool_free(io, cc->io_pool);
446 * kcryptd:
448 * Needed because it would be very unwise to do decryption in an
449 * interrupt context.
451 static struct workqueue_struct *_kcryptd_workqueue;
452 static void kcryptd_do_work(void *data);
454 static void kcryptd_queue_io(struct crypt_io *io)
456 INIT_WORK(&io->work, kcryptd_do_work, io);
457 queue_work(_kcryptd_workqueue, &io->work);
460 static int crypt_endio(struct bio *clone, unsigned int done, int error)
462 struct crypt_io *io = clone->bi_private;
463 struct crypt_config *cc = io->target->private;
464 unsigned read_io = bio_data_dir(clone) == READ;
467 * free the processed pages, even if
468 * it's only a partially completed write
470 if (!read_io)
471 crypt_free_buffer_pages(cc, clone, done);
473 /* keep going - not finished yet */
474 if (unlikely(clone->bi_size))
475 return 1;
477 if (!read_io)
478 goto out;
480 if (unlikely(!bio_flagged(clone, BIO_UPTODATE))) {
481 error = -EIO;
482 goto out;
485 bio_put(clone);
486 io->post_process = 1;
487 kcryptd_queue_io(io);
488 return 0;
490 out:
491 bio_put(clone);
492 dec_pending(io, error);
493 return error;
496 static void clone_init(struct crypt_io *io, struct bio *clone)
498 struct crypt_config *cc = io->target->private;
500 clone->bi_private = io;
501 clone->bi_end_io = crypt_endio;
502 clone->bi_bdev = cc->dev->bdev;
503 clone->bi_rw = io->base_bio->bi_rw;
506 static void process_read(struct crypt_io *io)
508 struct crypt_config *cc = io->target->private;
509 struct bio *base_bio = io->base_bio;
510 struct bio *clone;
511 sector_t sector = base_bio->bi_sector - io->target->begin;
513 atomic_inc(&io->pending);
516 * The block layer might modify the bvec array, so always
517 * copy the required bvecs because we need the original
518 * one in order to decrypt the whole bio data *afterwards*.
520 clone = bio_alloc(GFP_NOIO, bio_segments(base_bio));
521 if (unlikely(!clone)) {
522 dec_pending(io, -ENOMEM);
523 return;
526 clone_init(io, clone);
527 clone->bi_idx = 0;
528 clone->bi_vcnt = bio_segments(base_bio);
529 clone->bi_size = base_bio->bi_size;
530 clone->bi_sector = cc->start + sector;
531 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
532 sizeof(struct bio_vec) * clone->bi_vcnt);
534 generic_make_request(clone);
537 static void process_write(struct crypt_io *io)
539 struct crypt_config *cc = io->target->private;
540 struct bio *base_bio = io->base_bio;
541 struct bio *clone;
542 struct convert_context ctx;
543 unsigned remaining = base_bio->bi_size;
544 sector_t sector = base_bio->bi_sector - io->target->begin;
545 unsigned bvec_idx = 0;
547 atomic_inc(&io->pending);
549 crypt_convert_init(cc, &ctx, NULL, base_bio, sector, 1);
552 * The allocated buffers can be smaller than the whole bio,
553 * so repeat the whole process until all the data can be handled.
555 while (remaining) {
556 clone = crypt_alloc_buffer(cc, base_bio->bi_size,
557 io->first_clone, &bvec_idx);
558 if (unlikely(!clone)) {
559 dec_pending(io, -ENOMEM);
560 return;
563 ctx.bio_out = clone;
565 if (unlikely(crypt_convert(cc, &ctx) < 0)) {
566 crypt_free_buffer_pages(cc, clone, clone->bi_size);
567 bio_put(clone);
568 dec_pending(io, -EIO);
569 return;
572 clone_init(io, clone);
573 clone->bi_sector = cc->start + sector;
575 if (!io->first_clone) {
577 * hold a reference to the first clone, because it
578 * holds the bio_vec array and that can't be freed
579 * before all other clones are released
581 bio_get(clone);
582 io->first_clone = clone;
585 remaining -= clone->bi_size;
586 sector += bio_sectors(clone);
588 /* prevent bio_put of first_clone */
589 if (remaining)
590 atomic_inc(&io->pending);
592 generic_make_request(clone);
594 /* out of memory -> run queues */
595 if (remaining)
596 blk_congestion_wait(bio_data_dir(clone), HZ/100);
601 static void process_read_endio(struct crypt_io *io)
603 struct crypt_config *cc = io->target->private;
604 struct convert_context ctx;
606 crypt_convert_init(cc, &ctx, io->base_bio, io->base_bio,
607 io->base_bio->bi_sector - io->target->begin, 0);
609 dec_pending(io, crypt_convert(cc, &ctx));
612 static void kcryptd_do_work(void *data)
614 struct crypt_io *io = data;
616 if (io->post_process)
617 process_read_endio(io);
618 else if (bio_data_dir(io->base_bio) == READ)
619 process_read(io);
620 else
621 process_write(io);
625 * Decode key from its hex representation
627 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
629 char buffer[3];
630 char *endp;
631 unsigned int i;
633 buffer[2] = '\0';
635 for (i = 0; i < size; i++) {
636 buffer[0] = *hex++;
637 buffer[1] = *hex++;
639 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
641 if (endp != &buffer[2])
642 return -EINVAL;
645 if (*hex != '\0')
646 return -EINVAL;
648 return 0;
652 * Encode key into its hex representation
654 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
656 unsigned int i;
658 for (i = 0; i < size; i++) {
659 sprintf(hex, "%02x", *key);
660 hex += 2;
661 key++;
665 static int crypt_set_key(struct crypt_config *cc, char *key)
667 unsigned key_size = strlen(key) >> 1;
669 if (cc->key_size && cc->key_size != key_size)
670 return -EINVAL;
672 cc->key_size = key_size; /* initial settings */
674 if ((!key_size && strcmp(key, "-")) ||
675 (key_size && crypt_decode_key(cc->key, key, key_size) < 0))
676 return -EINVAL;
678 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
680 return 0;
683 static int crypt_wipe_key(struct crypt_config *cc)
685 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
686 memset(&cc->key, 0, cc->key_size * sizeof(u8));
687 return 0;
691 * Construct an encryption mapping:
692 * <cipher> <key> <iv_offset> <dev_path> <start>
694 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
696 struct crypt_config *cc;
697 struct crypto_blkcipher *tfm;
698 char *tmp;
699 char *cipher;
700 char *chainmode;
701 char *ivmode;
702 char *ivopts;
703 unsigned int key_size;
704 unsigned long long tmpll;
706 if (argc != 5) {
707 ti->error = "Not enough arguments";
708 return -EINVAL;
711 tmp = argv[0];
712 cipher = strsep(&tmp, "-");
713 chainmode = strsep(&tmp, "-");
714 ivopts = strsep(&tmp, "-");
715 ivmode = strsep(&ivopts, ":");
717 if (tmp)
718 DMWARN("Unexpected additional cipher options");
720 key_size = strlen(argv[1]) >> 1;
722 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
723 if (cc == NULL) {
724 ti->error =
725 "Cannot allocate transparent encryption context";
726 return -ENOMEM;
729 if (crypt_set_key(cc, argv[1])) {
730 ti->error = "Error decoding key";
731 goto bad1;
734 /* Compatiblity mode for old dm-crypt cipher strings */
735 if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) {
736 chainmode = "cbc";
737 ivmode = "plain";
740 if (strcmp(chainmode, "ecb") && !ivmode) {
741 ti->error = "This chaining mode requires an IV mechanism";
742 goto bad1;
745 if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", chainmode,
746 cipher) >= CRYPTO_MAX_ALG_NAME) {
747 ti->error = "Chain mode + cipher name is too long";
748 goto bad1;
751 tfm = crypto_alloc_blkcipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
752 if (IS_ERR(tfm)) {
753 ti->error = "Error allocating crypto tfm";
754 goto bad1;
757 strcpy(cc->cipher, cipher);
758 strcpy(cc->chainmode, chainmode);
759 cc->tfm = tfm;
762 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
763 * See comments at iv code
766 if (ivmode == NULL)
767 cc->iv_gen_ops = NULL;
768 else if (strcmp(ivmode, "plain") == 0)
769 cc->iv_gen_ops = &crypt_iv_plain_ops;
770 else if (strcmp(ivmode, "essiv") == 0)
771 cc->iv_gen_ops = &crypt_iv_essiv_ops;
772 else {
773 ti->error = "Invalid IV mode";
774 goto bad2;
777 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr &&
778 cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0)
779 goto bad2;
781 cc->iv_size = crypto_blkcipher_ivsize(tfm);
782 if (cc->iv_size)
783 /* at least a 64 bit sector number should fit in our buffer */
784 cc->iv_size = max(cc->iv_size,
785 (unsigned int)(sizeof(u64) / sizeof(u8)));
786 else {
787 if (cc->iv_gen_ops) {
788 DMWARN("Selected cipher does not support IVs");
789 if (cc->iv_gen_ops->dtr)
790 cc->iv_gen_ops->dtr(cc);
791 cc->iv_gen_ops = NULL;
795 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
796 if (!cc->io_pool) {
797 ti->error = "Cannot allocate crypt io mempool";
798 goto bad3;
801 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
802 if (!cc->page_pool) {
803 ti->error = "Cannot allocate page mempool";
804 goto bad4;
807 if (crypto_blkcipher_setkey(tfm, cc->key, key_size) < 0) {
808 ti->error = "Error setting key";
809 goto bad5;
812 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
813 ti->error = "Invalid iv_offset sector";
814 goto bad5;
816 cc->iv_offset = tmpll;
818 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
819 ti->error = "Invalid device sector";
820 goto bad5;
822 cc->start = tmpll;
824 if (dm_get_device(ti, argv[3], cc->start, ti->len,
825 dm_table_get_mode(ti->table), &cc->dev)) {
826 ti->error = "Device lookup failed";
827 goto bad5;
830 if (ivmode && cc->iv_gen_ops) {
831 if (ivopts)
832 *(ivopts - 1) = ':';
833 cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL);
834 if (!cc->iv_mode) {
835 ti->error = "Error kmallocing iv_mode string";
836 goto bad5;
838 strcpy(cc->iv_mode, ivmode);
839 } else
840 cc->iv_mode = NULL;
842 ti->private = cc;
843 return 0;
845 bad5:
846 mempool_destroy(cc->page_pool);
847 bad4:
848 mempool_destroy(cc->io_pool);
849 bad3:
850 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
851 cc->iv_gen_ops->dtr(cc);
852 bad2:
853 crypto_free_blkcipher(tfm);
854 bad1:
855 /* Must zero key material before freeing */
856 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
857 kfree(cc);
858 return -EINVAL;
861 static void crypt_dtr(struct dm_target *ti)
863 struct crypt_config *cc = (struct crypt_config *) ti->private;
865 mempool_destroy(cc->page_pool);
866 mempool_destroy(cc->io_pool);
868 kfree(cc->iv_mode);
869 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
870 cc->iv_gen_ops->dtr(cc);
871 crypto_free_blkcipher(cc->tfm);
872 dm_put_device(ti, cc->dev);
874 /* Must zero key material before freeing */
875 memset(cc, 0, sizeof(*cc) + cc->key_size * sizeof(u8));
876 kfree(cc);
879 static int crypt_map(struct dm_target *ti, struct bio *bio,
880 union map_info *map_context)
882 struct crypt_config *cc = ti->private;
883 struct crypt_io *io;
885 io = mempool_alloc(cc->io_pool, GFP_NOIO);
886 io->target = ti;
887 io->base_bio = bio;
888 io->first_clone = NULL;
889 io->error = io->post_process = 0;
890 atomic_set(&io->pending, 0);
891 kcryptd_queue_io(io);
893 return 0;
896 static int crypt_status(struct dm_target *ti, status_type_t type,
897 char *result, unsigned int maxlen)
899 struct crypt_config *cc = (struct crypt_config *) ti->private;
900 const char *cipher;
901 const char *chainmode = NULL;
902 unsigned int sz = 0;
904 switch (type) {
905 case STATUSTYPE_INFO:
906 result[0] = '\0';
907 break;
909 case STATUSTYPE_TABLE:
910 cipher = crypto_blkcipher_name(cc->tfm);
912 chainmode = cc->chainmode;
914 if (cc->iv_mode)
915 DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode);
916 else
917 DMEMIT("%s-%s ", cipher, chainmode);
919 if (cc->key_size > 0) {
920 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
921 return -ENOMEM;
923 crypt_encode_key(result + sz, cc->key, cc->key_size);
924 sz += cc->key_size << 1;
925 } else {
926 if (sz >= maxlen)
927 return -ENOMEM;
928 result[sz++] = '-';
931 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
932 cc->dev->name, (unsigned long long)cc->start);
933 break;
935 return 0;
938 static void crypt_postsuspend(struct dm_target *ti)
940 struct crypt_config *cc = ti->private;
942 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
945 static int crypt_preresume(struct dm_target *ti)
947 struct crypt_config *cc = ti->private;
949 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
950 DMERR("aborting resume - crypt key is not set.");
951 return -EAGAIN;
954 return 0;
957 static void crypt_resume(struct dm_target *ti)
959 struct crypt_config *cc = ti->private;
961 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
964 /* Message interface
965 * key set <key>
966 * key wipe
968 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
970 struct crypt_config *cc = ti->private;
972 if (argc < 2)
973 goto error;
975 if (!strnicmp(argv[0], MESG_STR("key"))) {
976 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
977 DMWARN("not suspended during key manipulation.");
978 return -EINVAL;
980 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set")))
981 return crypt_set_key(cc, argv[2]);
982 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe")))
983 return crypt_wipe_key(cc);
986 error:
987 DMWARN("unrecognised message received.");
988 return -EINVAL;
991 static struct target_type crypt_target = {
992 .name = "crypt",
993 .version= {1, 3, 0},
994 .module = THIS_MODULE,
995 .ctr = crypt_ctr,
996 .dtr = crypt_dtr,
997 .map = crypt_map,
998 .status = crypt_status,
999 .postsuspend = crypt_postsuspend,
1000 .preresume = crypt_preresume,
1001 .resume = crypt_resume,
1002 .message = crypt_message,
1005 static int __init dm_crypt_init(void)
1007 int r;
1009 _crypt_io_pool = kmem_cache_create("dm-crypt_io",
1010 sizeof(struct crypt_io),
1011 0, 0, NULL, NULL);
1012 if (!_crypt_io_pool)
1013 return -ENOMEM;
1015 _kcryptd_workqueue = create_workqueue("kcryptd");
1016 if (!_kcryptd_workqueue) {
1017 r = -ENOMEM;
1018 DMERR("couldn't create kcryptd");
1019 goto bad1;
1022 r = dm_register_target(&crypt_target);
1023 if (r < 0) {
1024 DMERR("register failed %d", r);
1025 goto bad2;
1028 return 0;
1030 bad2:
1031 destroy_workqueue(_kcryptd_workqueue);
1032 bad1:
1033 kmem_cache_destroy(_crypt_io_pool);
1034 return r;
1037 static void __exit dm_crypt_exit(void)
1039 int r = dm_unregister_target(&crypt_target);
1041 if (r < 0)
1042 DMERR("unregister failed %d", r);
1044 destroy_workqueue(_kcryptd_workqueue);
1045 kmem_cache_destroy(_crypt_io_pool);
1048 module_init(dm_crypt_init);
1049 module_exit(dm_crypt_exit);
1051 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1052 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1053 MODULE_LICENSE("GPL");