2 * apb_timer.c: Driver for Langwell APB timers
4 * (C) Copyright 2009 Intel Corporation
5 * Author: Jacob Pan (jacob.jun.pan@intel.com)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 * Langwell is the south complex of Intel Moorestown MID platform. There are
14 * eight external timers in total that can be used by the operating system.
15 * The timer information, such as frequency and addresses, is provided to the
17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via
18 * individual redirection table entries (RTE).
19 * Unlike HPET, there is no master counter, therefore one of the timers are
20 * used as clocksource. The overall allocation looks like:
21 * - timer 0 - NR_CPUs for per cpu timer
22 * - one timer for clocksource
23 * - one timer for watchdog driver.
24 * It is also worth notice that APB timer does not support true one-shot mode,
25 * free-running mode will be used here to emulate one-shot mode.
26 * APB timer can also be used as broadcast timer along with per cpu local APIC
27 * timer, but by default APB timer has higher rating than local APIC timers.
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/delay.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/sysdev.h>
36 #include <linux/slab.h>
38 #include <linux/pci.h>
39 #include <linux/sfi.h>
40 #include <linux/interrupt.h>
41 #include <linux/cpu.h>
42 #include <linux/irq.h>
44 #include <asm/fixmap.h>
45 #include <asm/apb_timer.h>
48 #define APBT_MASK CLOCKSOURCE_MASK(32)
50 #define APBT_CLOCKEVENT_RATING 110
51 #define APBT_CLOCKSOURCE_RATING 250
52 #define APBT_MIN_DELTA_USEC 200
54 #define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
55 #define APBT_CLOCKEVENT0_NUM (0)
56 #define APBT_CLOCKEVENT1_NUM (1)
57 #define APBT_CLOCKSOURCE_NUM (2)
59 static unsigned long apbt_address
;
60 static int apb_timer_block_enabled
;
61 static void __iomem
*apbt_virt_address
;
62 static int phy_cs_timer_id
;
65 * Common DW APB timer info
67 static uint64_t apbt_freq
;
69 static void apbt_set_mode(enum clock_event_mode mode
,
70 struct clock_event_device
*evt
);
71 static int apbt_next_event(unsigned long delta
,
72 struct clock_event_device
*evt
);
73 static cycle_t
apbt_read_clocksource(struct clocksource
*cs
);
74 static void apbt_restart_clocksource(struct clocksource
*cs
);
77 struct clock_event_device evt
;
87 static DEFINE_PER_CPU(struct apbt_dev
, cpu_apbt_dev
);
90 static unsigned int apbt_num_timers_used
;
91 static struct apbt_dev
*apbt_devs
;
94 static inline unsigned long apbt_readl_reg(unsigned long a
)
96 return readl(apbt_virt_address
+ a
);
99 static inline void apbt_writel_reg(unsigned long d
, unsigned long a
)
101 writel(d
, apbt_virt_address
+ a
);
104 static inline unsigned long apbt_readl(int n
, unsigned long a
)
106 return readl(apbt_virt_address
+ a
+ n
* APBTMRS_REG_SIZE
);
109 static inline void apbt_writel(int n
, unsigned long d
, unsigned long a
)
111 writel(d
, apbt_virt_address
+ a
+ n
* APBTMRS_REG_SIZE
);
114 static inline void apbt_set_mapping(void)
116 struct sfi_timer_table_entry
*mtmr
;
118 if (apbt_virt_address
) {
119 pr_debug("APBT base already mapped\n");
122 mtmr
= sfi_get_mtmr(APBT_CLOCKEVENT0_NUM
);
124 printk(KERN_ERR
"Failed to get MTMR %d from SFI\n",
125 APBT_CLOCKEVENT0_NUM
);
128 apbt_address
= (unsigned long)mtmr
->phys_addr
;
130 printk(KERN_WARNING
"No timer base from SFI, use default\n");
131 apbt_address
= APBT_DEFAULT_BASE
;
133 apbt_virt_address
= ioremap_nocache(apbt_address
, APBT_MMAP_SIZE
);
134 if (apbt_virt_address
) {
135 pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
136 (void *)apbt_address
, (void *)apbt_virt_address
);
138 pr_debug("Failed mapping APBT phy address at %p\n",\
139 (void *)apbt_address
);
142 apbt_freq
= mtmr
->freq_hz
/ USEC_PER_SEC
;
145 /* Now figure out the physical timer id for clocksource device */
146 mtmr
= sfi_get_mtmr(APBT_CLOCKSOURCE_NUM
);
150 /* Now figure out the physical timer id */
151 phy_cs_timer_id
= (unsigned int)(mtmr
->phys_addr
& 0xff)
153 pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id
);
157 panic("Failed to setup APB system timer\n");
161 static inline void apbt_clear_mapping(void)
163 iounmap(apbt_virt_address
);
164 apbt_virt_address
= NULL
;
168 * APBT timer interrupt enable / disable
170 static inline int is_apbt_capable(void)
172 return apbt_virt_address
? 1 : 0;
175 static struct clocksource clocksource_apbt
= {
177 .rating
= APBT_CLOCKSOURCE_RATING
,
178 .read
= apbt_read_clocksource
,
181 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
182 .resume
= apbt_restart_clocksource
,
185 /* boot APB clock event device */
186 static struct clock_event_device apbt_clockevent
= {
188 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
189 .set_mode
= apbt_set_mode
,
190 .set_next_event
= apbt_next_event
,
193 .rating
= APBT_CLOCKEVENT_RATING
,
197 * start count down from 0xffff_ffff. this is done by toggling the enable bit
198 * then load initial load count to ~0.
200 static void apbt_start_counter(int n
)
202 unsigned long ctrl
= apbt_readl(n
, APBTMR_N_CONTROL
);
204 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
205 apbt_writel(n
, ctrl
, APBTMR_N_CONTROL
);
206 apbt_writel(n
, ~0, APBTMR_N_LOAD_COUNT
);
207 /* enable, mask interrupt */
208 ctrl
&= ~APBTMR_CONTROL_MODE_PERIODIC
;
209 ctrl
|= (APBTMR_CONTROL_ENABLE
| APBTMR_CONTROL_INT
);
210 apbt_writel(n
, ctrl
, APBTMR_N_CONTROL
);
211 /* read it once to get cached counter value initialized */
212 apbt_read_clocksource(&clocksource_apbt
);
215 static irqreturn_t
apbt_interrupt_handler(int irq
, void *data
)
217 struct apbt_dev
*dev
= (struct apbt_dev
*)data
;
218 struct clock_event_device
*aevt
= &dev
->evt
;
220 if (!aevt
->event_handler
) {
221 printk(KERN_INFO
"Spurious APBT timer interrupt on %d\n",
225 aevt
->event_handler(aevt
);
229 static void apbt_restart_clocksource(struct clocksource
*cs
)
231 apbt_start_counter(phy_cs_timer_id
);
234 static void apbt_enable_int(int n
)
236 unsigned long ctrl
= apbt_readl(n
, APBTMR_N_CONTROL
);
237 /* clear pending intr */
238 apbt_readl(n
, APBTMR_N_EOI
);
239 ctrl
&= ~APBTMR_CONTROL_INT
;
240 apbt_writel(n
, ctrl
, APBTMR_N_CONTROL
);
243 static void apbt_disable_int(int n
)
245 unsigned long ctrl
= apbt_readl(n
, APBTMR_N_CONTROL
);
247 ctrl
|= APBTMR_CONTROL_INT
;
248 apbt_writel(n
, ctrl
, APBTMR_N_CONTROL
);
252 static int __init
apbt_clockevent_register(void)
254 struct sfi_timer_table_entry
*mtmr
;
255 struct apbt_dev
*adev
= &__get_cpu_var(cpu_apbt_dev
);
257 mtmr
= sfi_get_mtmr(APBT_CLOCKEVENT0_NUM
);
259 printk(KERN_ERR
"Failed to get MTMR %d from SFI\n",
260 APBT_CLOCKEVENT0_NUM
);
265 * We need to calculate the scaled math multiplication factor for
266 * nanosecond to apbt tick conversion.
267 * mult = (nsec/cycle)*2^APBT_SHIFT
269 apbt_clockevent
.mult
= div_sc((unsigned long) mtmr
->freq_hz
270 , NSEC_PER_SEC
, APBT_SHIFT
);
272 /* Calculate the min / max delta */
273 apbt_clockevent
.max_delta_ns
= clockevent_delta2ns(0x7FFFFFFF,
275 apbt_clockevent
.min_delta_ns
= clockevent_delta2ns(
276 APBT_MIN_DELTA_USEC
*apbt_freq
,
279 * Start apbt with the boot cpu mask and make it
280 * global if not used for per cpu timer.
282 apbt_clockevent
.cpumask
= cpumask_of(smp_processor_id());
283 adev
->num
= smp_processor_id();
284 memcpy(&adev
->evt
, &apbt_clockevent
, sizeof(struct clock_event_device
));
286 if (mrst_timer_options
== MRST_TIMER_LAPIC_APBT
) {
287 adev
->evt
.rating
= APBT_CLOCKEVENT_RATING
- 100;
288 global_clock_event
= &adev
->evt
;
289 printk(KERN_DEBUG
"%s clockevent registered as global\n",
290 global_clock_event
->name
);
293 if (request_irq(apbt_clockevent
.irq
, apbt_interrupt_handler
,
294 IRQF_TIMER
| IRQF_DISABLED
| IRQF_NOBALANCING
,
295 apbt_clockevent
.name
, adev
)) {
296 printk(KERN_ERR
"Failed request IRQ for APBT%d\n",
297 apbt_clockevent
.irq
);
300 clockevents_register_device(&adev
->evt
);
301 /* Start APBT 0 interrupts */
302 apbt_enable_int(APBT_CLOCKEVENT0_NUM
);
310 static void apbt_setup_irq(struct apbt_dev
*adev
)
312 /* timer0 irq has been setup early */
316 irq_modify_status(adev
->irq
, 0, IRQ_MOVE_PCNTXT
);
317 irq_set_affinity(adev
->irq
, cpumask_of(adev
->cpu
));
318 /* APB timer irqs are set up as mp_irqs, timer is edge type */
319 __set_irq_handler(adev
->irq
, handle_edge_irq
, 0, "edge");
321 if (system_state
== SYSTEM_BOOTING
) {
322 if (request_irq(adev
->irq
, apbt_interrupt_handler
,
323 IRQF_TIMER
| IRQF_DISABLED
|
326 printk(KERN_ERR
"Failed request IRQ for APBT%d\n",
330 enable_irq(adev
->irq
);
333 /* Should be called with per cpu */
334 void apbt_setup_secondary_clock(void)
336 struct apbt_dev
*adev
;
337 struct clock_event_device
*aevt
;
340 /* Don't register boot CPU clockevent */
341 cpu
= smp_processor_id();
345 * We need to calculate the scaled math multiplication factor for
346 * nanosecond to apbt tick conversion.
347 * mult = (nsec/cycle)*2^APBT_SHIFT
349 printk(KERN_INFO
"Init per CPU clockevent %d\n", cpu
);
350 adev
= &per_cpu(cpu_apbt_dev
, cpu
);
353 memcpy(aevt
, &apbt_clockevent
, sizeof(*aevt
));
354 aevt
->cpumask
= cpumask_of(cpu
);
355 aevt
->name
= adev
->name
;
356 aevt
->mode
= CLOCK_EVT_MODE_UNUSED
;
358 printk(KERN_INFO
"Registering CPU %d clockevent device %s, mask %08x\n",
359 cpu
, aevt
->name
, *(u32
*)aevt
->cpumask
);
361 apbt_setup_irq(adev
);
363 clockevents_register_device(aevt
);
365 apbt_enable_int(cpu
);
371 * this notify handler process CPU hotplug events. in case of S0i3, nonboot
372 * cpus are disabled/enabled frequently, for performance reasons, we keep the
373 * per cpu timer irq registered so that we do need to do free_irq/request_irq.
375 * TODO: it might be more reliable to directly disable percpu clockevent device
376 * without the notifier chain. currently, cpu 0 may get interrupts from other
377 * cpu timers during the offline process due to the ordering of notification.
378 * the extra interrupt is harmless.
380 static int apbt_cpuhp_notify(struct notifier_block
*n
,
381 unsigned long action
, void *hcpu
)
383 unsigned long cpu
= (unsigned long)hcpu
;
384 struct apbt_dev
*adev
= &per_cpu(cpu_apbt_dev
, cpu
);
386 switch (action
& 0xf) {
388 disable_irq(adev
->irq
);
389 apbt_disable_int(cpu
);
390 if (system_state
== SYSTEM_RUNNING
) {
391 pr_debug("skipping APBT CPU %lu offline\n", cpu
);
393 pr_debug("APBT clockevent for cpu %lu offline\n", cpu
);
394 free_irq(adev
->irq
, adev
);
398 pr_debug("APBT notified %lu, no action\n", action
);
403 static __init
int apbt_late_init(void)
405 if (mrst_timer_options
== MRST_TIMER_LAPIC_APBT
||
406 !apb_timer_block_enabled
)
408 /* This notifier should be called after workqueue is ready */
409 hotcpu_notifier(apbt_cpuhp_notify
, -20);
412 fs_initcall(apbt_late_init
);
415 void apbt_setup_secondary_clock(void) {}
417 #endif /* CONFIG_SMP */
419 static void apbt_set_mode(enum clock_event_mode mode
,
420 struct clock_event_device
*evt
)
425 struct apbt_dev
*adev
= EVT_TO_APBT_DEV(evt
);
427 BUG_ON(!apbt_virt_address
);
429 timer_num
= adev
->num
;
430 pr_debug("%s CPU %d timer %d mode=%d\n",
431 __func__
, first_cpu(*evt
->cpumask
), timer_num
, mode
);
434 case CLOCK_EVT_MODE_PERIODIC
:
435 delta
= ((uint64_t)(NSEC_PER_SEC
/HZ
)) * apbt_clockevent
.mult
;
436 delta
>>= apbt_clockevent
.shift
;
437 ctrl
= apbt_readl(timer_num
, APBTMR_N_CONTROL
);
438 ctrl
|= APBTMR_CONTROL_MODE_PERIODIC
;
439 apbt_writel(timer_num
, ctrl
, APBTMR_N_CONTROL
);
441 * DW APB p. 46, have to disable timer before load counter,
442 * may cause sync problem.
444 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
445 apbt_writel(timer_num
, ctrl
, APBTMR_N_CONTROL
);
447 pr_debug("Setting clock period %d for HZ %d\n", (int)delta
, HZ
);
448 apbt_writel(timer_num
, delta
, APBTMR_N_LOAD_COUNT
);
449 ctrl
|= APBTMR_CONTROL_ENABLE
;
450 apbt_writel(timer_num
, ctrl
, APBTMR_N_CONTROL
);
452 /* APB timer does not have one-shot mode, use free running mode */
453 case CLOCK_EVT_MODE_ONESHOT
:
454 ctrl
= apbt_readl(timer_num
, APBTMR_N_CONTROL
);
456 * set free running mode, this mode will let timer reload max
457 * timeout which will give time (3min on 25MHz clock) to rearm
458 * the next event, therefore emulate the one-shot mode.
460 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
461 ctrl
&= ~APBTMR_CONTROL_MODE_PERIODIC
;
463 apbt_writel(timer_num
, ctrl
, APBTMR_N_CONTROL
);
464 /* write again to set free running mode */
465 apbt_writel(timer_num
, ctrl
, APBTMR_N_CONTROL
);
468 * DW APB p. 46, load counter with all 1s before starting free
471 apbt_writel(timer_num
, ~0, APBTMR_N_LOAD_COUNT
);
472 ctrl
&= ~APBTMR_CONTROL_INT
;
473 ctrl
|= APBTMR_CONTROL_ENABLE
;
474 apbt_writel(timer_num
, ctrl
, APBTMR_N_CONTROL
);
477 case CLOCK_EVT_MODE_UNUSED
:
478 case CLOCK_EVT_MODE_SHUTDOWN
:
479 apbt_disable_int(timer_num
);
480 ctrl
= apbt_readl(timer_num
, APBTMR_N_CONTROL
);
481 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
482 apbt_writel(timer_num
, ctrl
, APBTMR_N_CONTROL
);
485 case CLOCK_EVT_MODE_RESUME
:
486 apbt_enable_int(timer_num
);
491 static int apbt_next_event(unsigned long delta
,
492 struct clock_event_device
*evt
)
497 struct apbt_dev
*adev
= EVT_TO_APBT_DEV(evt
);
499 timer_num
= adev
->num
;
501 ctrl
= apbt_readl(timer_num
, APBTMR_N_CONTROL
);
502 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
503 apbt_writel(timer_num
, ctrl
, APBTMR_N_CONTROL
);
504 /* write new count */
505 apbt_writel(timer_num
, delta
, APBTMR_N_LOAD_COUNT
);
506 ctrl
|= APBTMR_CONTROL_ENABLE
;
507 apbt_writel(timer_num
, ctrl
, APBTMR_N_CONTROL
);
511 static cycle_t
apbt_read_clocksource(struct clocksource
*cs
)
513 unsigned long current_count
;
515 current_count
= apbt_readl(phy_cs_timer_id
, APBTMR_N_CURRENT_VALUE
);
516 return (cycle_t
)~current_count
;
519 static int apbt_clocksource_register(void)
524 /* Start the counter, use timer 2 as source, timer 0/1 for event */
525 apbt_start_counter(phy_cs_timer_id
);
527 /* Verify whether apbt counter works */
528 t1
= apbt_read_clocksource(&clocksource_apbt
);
532 * We don't know the TSC frequency yet, but waiting for
533 * 200000 TSC cycles is safe:
540 } while ((now
- start
) < 200000UL);
542 /* APBT is the only always on clocksource, it has to work! */
543 if (t1
== apbt_read_clocksource(&clocksource_apbt
))
544 panic("APBT counter not counting. APBT disabled\n");
547 * initialize and register APBT clocksource
548 * convert that to ns/clock cycle
549 * mult = (ns/c) * 2^APBT_SHIFT
551 clocksource_apbt
.mult
= div_sc(MSEC_PER_SEC
,
552 (unsigned long) apbt_freq
, APBT_SHIFT
);
553 clocksource_register(&clocksource_apbt
);
559 * Early setup the APBT timer, only use timer 0 for booting then switch to
560 * per CPU timer if possible.
561 * returns 1 if per cpu apbt is setup
562 * returns 0 if no per cpu apbt is chosen
563 * panic if set up failed, this is the only platform timer on Moorestown.
565 void __init
apbt_time_init(void)
569 struct sfi_timer_table_entry
*p_mtmr
;
570 unsigned int percpu_timer
;
571 struct apbt_dev
*adev
;
574 if (apb_timer_block_enabled
)
577 if (apbt_virt_address
) {
578 pr_debug("Found APBT version 0x%lx\n",\
579 apbt_readl_reg(APBTMRS_COMP_VERSION
));
583 * Read the frequency and check for a sane value, for ESL model
584 * we extend the possible clock range to allow time scaling.
587 if (apbt_freq
< APBT_MIN_FREQ
|| apbt_freq
> APBT_MAX_FREQ
) {
588 pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq
);
591 if (apbt_clocksource_register()) {
592 pr_debug("APBT has failed to register clocksource\n");
595 if (!apbt_clockevent_register())
596 apb_timer_block_enabled
= 1;
598 pr_debug("APBT has failed to register clockevent\n");
602 /* kernel cmdline disable apb timer, so we will use lapic timers */
603 if (mrst_timer_options
== MRST_TIMER_LAPIC_APBT
) {
604 printk(KERN_INFO
"apbt: disabled per cpu timer\n");
607 pr_debug("%s: %d CPUs online\n", __func__
, num_online_cpus());
608 if (num_possible_cpus() <= sfi_mtimer_num
) {
610 apbt_num_timers_used
= num_possible_cpus();
613 apbt_num_timers_used
= 1;
614 adev
= &per_cpu(cpu_apbt_dev
, 0);
615 adev
->flags
&= ~APBT_DEV_USED
;
617 pr_debug("%s: %d APB timers used\n", __func__
, apbt_num_timers_used
);
619 /* here we set up per CPU timer data structure */
620 apbt_devs
= kzalloc(sizeof(struct apbt_dev
) * apbt_num_timers_used
,
623 printk(KERN_ERR
"Failed to allocate APB timer devices\n");
626 for (i
= 0; i
< apbt_num_timers_used
; i
++) {
627 adev
= &per_cpu(cpu_apbt_dev
, i
);
630 p_mtmr
= sfi_get_mtmr(i
);
632 adev
->tick
= p_mtmr
->freq_hz
;
633 adev
->irq
= p_mtmr
->irq
;
635 printk(KERN_ERR
"Failed to get timer for cpu %d\n", i
);
637 sprintf(adev
->name
, "apbt%d", i
);
644 apbt_clear_mapping();
645 apb_timer_block_enabled
= 0;
646 panic("failed to enable APB timer\n");
649 static inline void apbt_disable(int n
)
651 if (is_apbt_capable()) {
652 unsigned long ctrl
= apbt_readl(n
, APBTMR_N_CONTROL
);
653 ctrl
&= ~APBTMR_CONTROL_ENABLE
;
654 apbt_writel(n
, ctrl
, APBTMR_N_CONTROL
);
658 /* called before apb_timer_enable, use early map */
659 unsigned long apbt_quick_calibrate()
664 unsigned long khz
= 0;
668 apbt_start_counter(phy_cs_timer_id
);
670 /* check if the timer can count down, otherwise return */
671 old
= apbt_read_clocksource(&clocksource_apbt
);
674 if (old
!= apbt_read_clocksource(&clocksource_apbt
))
681 loop
= (apbt_freq
* 1000) << 4;
683 /* restart the timer to ensure it won't get to 0 in the calibration */
684 apbt_start_counter(phy_cs_timer_id
);
686 old
= apbt_read_clocksource(&clocksource_apbt
);
689 t1
= __native_read_tsc();
692 new = apbt_read_clocksource(&clocksource_apbt
);
695 t2
= __native_read_tsc();
698 if (unlikely(loop
>> shift
== 0)) {
700 "APBT TSC calibration failed, not enough resolution\n");
703 scale
= (int)div_u64((t2
- t1
), loop
>> shift
);
704 khz
= (scale
* apbt_freq
* 1000) >> shift
;
705 printk(KERN_INFO
"TSC freq calculated by APB timer is %lu khz\n", khz
);