4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
40 LIST_HEAD(super_blocks
);
41 DEFINE_SPINLOCK(sb_lock
);
43 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static int prune_super(struct shrinker
*shrink
, struct shrink_control
*sc
)
58 struct super_block
*sb
;
62 sb
= container_of(shrink
, struct super_block
, s_shrink
);
65 * Deadlock avoidance. We may hold various FS locks, and we don't want
66 * to recurse into the FS that called us in clear_inode() and friends..
68 if (sc
->nr_to_scan
&& !(sc
->gfp_mask
& __GFP_FS
))
71 if (!grab_super_passive(sb
))
74 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
75 fs_objects
= sb
->s_op
->nr_cached_objects(sb
);
77 total_objects
= sb
->s_nr_dentry_unused
+
78 sb
->s_nr_inodes_unused
+ fs_objects
+ 1;
84 /* proportion the scan between the caches */
85 dentries
= (sc
->nr_to_scan
* sb
->s_nr_dentry_unused
) /
87 inodes
= (sc
->nr_to_scan
* sb
->s_nr_inodes_unused
) /
90 fs_objects
= (sc
->nr_to_scan
* fs_objects
) /
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
96 prune_dcache_sb(sb
, dentries
);
97 prune_icache_sb(sb
, inodes
);
99 if (fs_objects
&& sb
->s_op
->free_cached_objects
) {
100 sb
->s_op
->free_cached_objects(sb
, fs_objects
);
101 fs_objects
= sb
->s_op
->nr_cached_objects(sb
);
103 total_objects
= sb
->s_nr_dentry_unused
+
104 sb
->s_nr_inodes_unused
+ fs_objects
;
107 total_objects
= (total_objects
/ 100) * sysctl_vfs_cache_pressure
;
109 return total_objects
;
112 static int init_sb_writers(struct super_block
*s
, struct file_system_type
*type
)
117 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
118 err
= percpu_counter_init(&s
->s_writers
.counter
[i
], 0);
121 lockdep_init_map(&s
->s_writers
.lock_map
[i
], sb_writers_name
[i
],
122 &type
->s_writers_key
[i
], 0);
124 init_waitqueue_head(&s
->s_writers
.wait
);
125 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
129 percpu_counter_destroy(&s
->s_writers
.counter
[i
]);
133 static void destroy_sb_writers(struct super_block
*s
)
137 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
138 percpu_counter_destroy(&s
->s_writers
.counter
[i
]);
142 * alloc_super - create new superblock
143 * @type: filesystem type superblock should belong to
144 * @flags: the mount flags
146 * Allocates and initializes a new &struct super_block. alloc_super()
147 * returns a pointer new superblock or %NULL if allocation had failed.
149 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
)
151 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
152 static const struct super_operations default_op
;
155 if (security_sb_alloc(s
)) {
157 * We cannot call security_sb_free() without
158 * security_sb_alloc() succeeding. So bail out manually
165 s
->s_files
= alloc_percpu(struct list_head
);
171 for_each_possible_cpu(i
)
172 INIT_LIST_HEAD(per_cpu_ptr(s
->s_files
, i
));
175 INIT_LIST_HEAD(&s
->s_files
);
177 if (init_sb_writers(s
, type
))
180 s
->s_bdi
= &default_backing_dev_info
;
181 INIT_HLIST_NODE(&s
->s_instances
);
182 INIT_HLIST_BL_HEAD(&s
->s_anon
);
183 INIT_LIST_HEAD(&s
->s_inodes
);
184 INIT_LIST_HEAD(&s
->s_dentry_lru
);
185 INIT_LIST_HEAD(&s
->s_inode_lru
);
186 spin_lock_init(&s
->s_inode_lru_lock
);
187 INIT_LIST_HEAD(&s
->s_mounts
);
188 init_rwsem(&s
->s_umount
);
189 mutex_init(&s
->s_lock
);
190 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
192 * The locking rules for s_lock are up to the
193 * filesystem. For example ext3fs has different
194 * lock ordering than usbfs:
196 lockdep_set_class(&s
->s_lock
, &type
->s_lock_key
);
198 * sget() can have s_umount recursion.
200 * When it cannot find a suitable sb, it allocates a new
201 * one (this one), and tries again to find a suitable old
204 * In case that succeeds, it will acquire the s_umount
205 * lock of the old one. Since these are clearly distrinct
206 * locks, and this object isn't exposed yet, there's no
209 * Annotate this by putting this lock in a different
212 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
214 atomic_set(&s
->s_active
, 1);
215 mutex_init(&s
->s_vfs_rename_mutex
);
216 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
217 mutex_init(&s
->s_dquot
.dqio_mutex
);
218 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
219 init_rwsem(&s
->s_dquot
.dqptr_sem
);
220 s
->s_maxbytes
= MAX_NON_LFS
;
221 s
->s_op
= &default_op
;
222 s
->s_time_gran
= 1000000000;
223 s
->cleancache_poolid
= -1;
225 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
226 s
->s_shrink
.shrink
= prune_super
;
227 s
->s_shrink
.batch
= 1024;
235 free_percpu(s
->s_files
);
237 destroy_sb_writers(s
);
244 * destroy_super - frees a superblock
245 * @s: superblock to free
247 * Frees a superblock.
249 static inline void destroy_super(struct super_block
*s
)
252 free_percpu(s
->s_files
);
254 destroy_sb_writers(s
);
256 WARN_ON(!list_empty(&s
->s_mounts
));
262 /* Superblock refcounting */
265 * Drop a superblock's refcount. The caller must hold sb_lock.
267 static void __put_super(struct super_block
*sb
)
269 if (!--sb
->s_count
) {
270 list_del_init(&sb
->s_list
);
276 * put_super - drop a temporary reference to superblock
277 * @sb: superblock in question
279 * Drops a temporary reference, frees superblock if there's no
282 static void put_super(struct super_block
*sb
)
286 spin_unlock(&sb_lock
);
291 * deactivate_locked_super - drop an active reference to superblock
292 * @s: superblock to deactivate
294 * Drops an active reference to superblock, converting it into a temprory
295 * one if there is no other active references left. In that case we
296 * tell fs driver to shut it down and drop the temporary reference we
299 * Caller holds exclusive lock on superblock; that lock is released.
301 void deactivate_locked_super(struct super_block
*s
)
303 struct file_system_type
*fs
= s
->s_type
;
304 if (atomic_dec_and_test(&s
->s_active
)) {
305 cleancache_invalidate_fs(s
);
308 /* caches are now gone, we can safely kill the shrinker now */
309 unregister_shrinker(&s
->s_shrink
);
312 * We need to call rcu_barrier so all the delayed rcu free
313 * inodes are flushed before we release the fs module.
319 up_write(&s
->s_umount
);
323 EXPORT_SYMBOL(deactivate_locked_super
);
326 * deactivate_super - drop an active reference to superblock
327 * @s: superblock to deactivate
329 * Variant of deactivate_locked_super(), except that superblock is *not*
330 * locked by caller. If we are going to drop the final active reference,
331 * lock will be acquired prior to that.
333 void deactivate_super(struct super_block
*s
)
335 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
336 down_write(&s
->s_umount
);
337 deactivate_locked_super(s
);
341 EXPORT_SYMBOL(deactivate_super
);
344 * grab_super - acquire an active reference
345 * @s: reference we are trying to make active
347 * Tries to acquire an active reference. grab_super() is used when we
348 * had just found a superblock in super_blocks or fs_type->fs_supers
349 * and want to turn it into a full-blown active reference. grab_super()
350 * is called with sb_lock held and drops it. Returns 1 in case of
351 * success, 0 if we had failed (superblock contents was already dead or
352 * dying when grab_super() had been called).
354 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
356 if (atomic_inc_not_zero(&s
->s_active
)) {
357 spin_unlock(&sb_lock
);
360 /* it's going away */
362 spin_unlock(&sb_lock
);
363 /* wait for it to die */
364 down_write(&s
->s_umount
);
365 up_write(&s
->s_umount
);
371 * grab_super_passive - acquire a passive reference
372 * @sb: reference we are trying to grab
374 * Tries to acquire a passive reference. This is used in places where we
375 * cannot take an active reference but we need to ensure that the
376 * superblock does not go away while we are working on it. It returns
377 * false if a reference was not gained, and returns true with the s_umount
378 * lock held in read mode if a reference is gained. On successful return,
379 * the caller must drop the s_umount lock and the passive reference when
382 bool grab_super_passive(struct super_block
*sb
)
385 if (hlist_unhashed(&sb
->s_instances
)) {
386 spin_unlock(&sb_lock
);
391 spin_unlock(&sb_lock
);
393 if (down_read_trylock(&sb
->s_umount
)) {
394 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
396 up_read(&sb
->s_umount
);
404 * Superblock locking. We really ought to get rid of these two.
406 void lock_super(struct super_block
* sb
)
408 mutex_lock(&sb
->s_lock
);
411 void unlock_super(struct super_block
* sb
)
413 mutex_unlock(&sb
->s_lock
);
416 EXPORT_SYMBOL(lock_super
);
417 EXPORT_SYMBOL(unlock_super
);
420 * generic_shutdown_super - common helper for ->kill_sb()
421 * @sb: superblock to kill
423 * generic_shutdown_super() does all fs-independent work on superblock
424 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
425 * that need destruction out of superblock, call generic_shutdown_super()
426 * and release aforementioned objects. Note: dentries and inodes _are_
427 * taken care of and do not need specific handling.
429 * Upon calling this function, the filesystem may no longer alter or
430 * rearrange the set of dentries belonging to this super_block, nor may it
431 * change the attachments of dentries to inodes.
433 void generic_shutdown_super(struct super_block
*sb
)
435 const struct super_operations
*sop
= sb
->s_op
;
438 shrink_dcache_for_umount(sb
);
440 sb
->s_flags
&= ~MS_ACTIVE
;
442 fsnotify_unmount_inodes(&sb
->s_inodes
);
449 if (!list_empty(&sb
->s_inodes
)) {
450 printk("VFS: Busy inodes after unmount of %s. "
451 "Self-destruct in 5 seconds. Have a nice day...\n",
456 /* should be initialized for __put_super_and_need_restart() */
457 hlist_del_init(&sb
->s_instances
);
458 spin_unlock(&sb_lock
);
459 up_write(&sb
->s_umount
);
462 EXPORT_SYMBOL(generic_shutdown_super
);
465 * sget - find or create a superblock
466 * @type: filesystem type superblock should belong to
467 * @test: comparison callback
468 * @set: setup callback
469 * @flags: mount flags
470 * @data: argument to each of them
472 struct super_block
*sget(struct file_system_type
*type
,
473 int (*test
)(struct super_block
*,void *),
474 int (*set
)(struct super_block
*,void *),
478 struct super_block
*s
= NULL
;
479 struct hlist_node
*node
;
480 struct super_block
*old
;
486 hlist_for_each_entry(old
, node
, &type
->fs_supers
, s_instances
) {
487 if (!test(old
, data
))
489 if (!grab_super(old
))
492 up_write(&s
->s_umount
);
496 down_write(&old
->s_umount
);
497 if (unlikely(!(old
->s_flags
& MS_BORN
))) {
498 deactivate_locked_super(old
);
505 spin_unlock(&sb_lock
);
506 s
= alloc_super(type
, flags
);
508 return ERR_PTR(-ENOMEM
);
514 spin_unlock(&sb_lock
);
515 up_write(&s
->s_umount
);
520 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
521 list_add_tail(&s
->s_list
, &super_blocks
);
522 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
523 spin_unlock(&sb_lock
);
524 get_filesystem(type
);
525 register_shrinker(&s
->s_shrink
);
531 void drop_super(struct super_block
*sb
)
533 up_read(&sb
->s_umount
);
537 EXPORT_SYMBOL(drop_super
);
540 * sync_supers - helper for periodic superblock writeback
542 * Call the write_super method if present on all dirty superblocks in
543 * the system. This is for the periodic writeback used by most older
544 * filesystems. For data integrity superblock writeback use
545 * sync_filesystems() instead.
547 * Note: check the dirty flag before waiting, so we don't
548 * hold up the sync while mounting a device. (The newly
549 * mounted device won't need syncing.)
551 void sync_supers(void)
553 struct super_block
*sb
, *p
= NULL
;
556 list_for_each_entry(sb
, &super_blocks
, s_list
) {
557 if (hlist_unhashed(&sb
->s_instances
))
559 if (sb
->s_op
->write_super
&& sb
->s_dirt
) {
561 spin_unlock(&sb_lock
);
563 down_read(&sb
->s_umount
);
564 if (sb
->s_root
&& sb
->s_dirt
&& (sb
->s_flags
& MS_BORN
))
565 sb
->s_op
->write_super(sb
);
566 up_read(&sb
->s_umount
);
576 spin_unlock(&sb_lock
);
580 * iterate_supers - call function for all active superblocks
581 * @f: function to call
582 * @arg: argument to pass to it
584 * Scans the superblock list and calls given function, passing it
585 * locked superblock and given argument.
587 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
589 struct super_block
*sb
, *p
= NULL
;
592 list_for_each_entry(sb
, &super_blocks
, s_list
) {
593 if (hlist_unhashed(&sb
->s_instances
))
596 spin_unlock(&sb_lock
);
598 down_read(&sb
->s_umount
);
599 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
601 up_read(&sb
->s_umount
);
610 spin_unlock(&sb_lock
);
614 * iterate_supers_type - call function for superblocks of given type
616 * @f: function to call
617 * @arg: argument to pass to it
619 * Scans the superblock list and calls given function, passing it
620 * locked superblock and given argument.
622 void iterate_supers_type(struct file_system_type
*type
,
623 void (*f
)(struct super_block
*, void *), void *arg
)
625 struct super_block
*sb
, *p
= NULL
;
626 struct hlist_node
*node
;
629 hlist_for_each_entry(sb
, node
, &type
->fs_supers
, s_instances
) {
631 spin_unlock(&sb_lock
);
633 down_read(&sb
->s_umount
);
634 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
636 up_read(&sb
->s_umount
);
645 spin_unlock(&sb_lock
);
648 EXPORT_SYMBOL(iterate_supers_type
);
651 * get_super - get the superblock of a device
652 * @bdev: device to get the superblock for
654 * Scans the superblock list and finds the superblock of the file system
655 * mounted on the device given. %NULL is returned if no match is found.
658 struct super_block
*get_super(struct block_device
*bdev
)
660 struct super_block
*sb
;
667 list_for_each_entry(sb
, &super_blocks
, s_list
) {
668 if (hlist_unhashed(&sb
->s_instances
))
670 if (sb
->s_bdev
== bdev
) {
672 spin_unlock(&sb_lock
);
673 down_read(&sb
->s_umount
);
675 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
677 up_read(&sb
->s_umount
);
678 /* nope, got unmounted */
684 spin_unlock(&sb_lock
);
688 EXPORT_SYMBOL(get_super
);
691 * get_super_thawed - get thawed superblock of a device
692 * @bdev: device to get the superblock for
694 * Scans the superblock list and finds the superblock of the file system
695 * mounted on the device. The superblock is returned once it is thawed
696 * (or immediately if it was not frozen). %NULL is returned if no match
699 struct super_block
*get_super_thawed(struct block_device
*bdev
)
702 struct super_block
*s
= get_super(bdev
);
703 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
705 up_read(&s
->s_umount
);
706 wait_event(s
->s_writers
.wait_unfrozen
,
707 s
->s_writers
.frozen
== SB_UNFROZEN
);
711 EXPORT_SYMBOL(get_super_thawed
);
714 * get_active_super - get an active reference to the superblock of a device
715 * @bdev: device to get the superblock for
717 * Scans the superblock list and finds the superblock of the file system
718 * mounted on the device given. Returns the superblock with an active
719 * reference or %NULL if none was found.
721 struct super_block
*get_active_super(struct block_device
*bdev
)
723 struct super_block
*sb
;
730 list_for_each_entry(sb
, &super_blocks
, s_list
) {
731 if (hlist_unhashed(&sb
->s_instances
))
733 if (sb
->s_bdev
== bdev
) {
734 if (grab_super(sb
)) /* drops sb_lock */
740 spin_unlock(&sb_lock
);
744 struct super_block
*user_get_super(dev_t dev
)
746 struct super_block
*sb
;
750 list_for_each_entry(sb
, &super_blocks
, s_list
) {
751 if (hlist_unhashed(&sb
->s_instances
))
753 if (sb
->s_dev
== dev
) {
755 spin_unlock(&sb_lock
);
756 down_read(&sb
->s_umount
);
758 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
760 up_read(&sb
->s_umount
);
761 /* nope, got unmounted */
767 spin_unlock(&sb_lock
);
772 * do_remount_sb - asks filesystem to change mount options.
773 * @sb: superblock in question
774 * @flags: numeric part of options
775 * @data: the rest of options
776 * @force: whether or not to force the change
778 * Alters the mount options of a mounted file system.
780 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
785 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
789 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
793 if (flags
& MS_RDONLY
)
795 shrink_dcache_sb(sb
);
798 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
800 /* If we are remounting RDONLY and current sb is read/write,
801 make sure there are no rw files opened */
806 retval
= sb_prepare_remount_readonly(sb
);
812 if (sb
->s_op
->remount_fs
) {
813 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
816 goto cancel_readonly
;
817 /* If forced remount, go ahead despite any errors */
818 WARN(1, "forced remount of a %s fs returned %i\n",
819 sb
->s_type
->name
, retval
);
822 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
823 /* Needs to be ordered wrt mnt_is_readonly() */
825 sb
->s_readonly_remount
= 0;
828 * Some filesystems modify their metadata via some other path than the
829 * bdev buffer cache (eg. use a private mapping, or directories in
830 * pagecache, etc). Also file data modifications go via their own
831 * mappings. So If we try to mount readonly then copy the filesystem
832 * from bdev, we could get stale data, so invalidate it to give a best
833 * effort at coherency.
835 if (remount_ro
&& sb
->s_bdev
)
836 invalidate_bdev(sb
->s_bdev
);
840 sb
->s_readonly_remount
= 0;
844 static void do_emergency_remount(struct work_struct
*work
)
846 struct super_block
*sb
, *p
= NULL
;
849 list_for_each_entry(sb
, &super_blocks
, s_list
) {
850 if (hlist_unhashed(&sb
->s_instances
))
853 spin_unlock(&sb_lock
);
854 down_write(&sb
->s_umount
);
855 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& MS_BORN
) &&
856 !(sb
->s_flags
& MS_RDONLY
)) {
858 * What lock protects sb->s_flags??
860 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
862 up_write(&sb
->s_umount
);
870 spin_unlock(&sb_lock
);
872 printk("Emergency Remount complete\n");
875 void emergency_remount(void)
877 struct work_struct
*work
;
879 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
881 INIT_WORK(work
, do_emergency_remount
);
887 * Unnamed block devices are dummy devices used by virtual
888 * filesystems which don't use real block-devices. -- jrs
891 static DEFINE_IDA(unnamed_dev_ida
);
892 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
893 static int unnamed_dev_start
= 0; /* don't bother trying below it */
895 int get_anon_bdev(dev_t
*p
)
901 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
903 spin_lock(&unnamed_dev_lock
);
904 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
906 unnamed_dev_start
= dev
+ 1;
907 spin_unlock(&unnamed_dev_lock
);
908 if (error
== -EAGAIN
)
909 /* We raced and lost with another CPU. */
914 if ((dev
& MAX_ID_MASK
) == (1 << MINORBITS
)) {
915 spin_lock(&unnamed_dev_lock
);
916 ida_remove(&unnamed_dev_ida
, dev
);
917 if (unnamed_dev_start
> dev
)
918 unnamed_dev_start
= dev
;
919 spin_unlock(&unnamed_dev_lock
);
922 *p
= MKDEV(0, dev
& MINORMASK
);
925 EXPORT_SYMBOL(get_anon_bdev
);
927 void free_anon_bdev(dev_t dev
)
929 int slot
= MINOR(dev
);
930 spin_lock(&unnamed_dev_lock
);
931 ida_remove(&unnamed_dev_ida
, slot
);
932 if (slot
< unnamed_dev_start
)
933 unnamed_dev_start
= slot
;
934 spin_unlock(&unnamed_dev_lock
);
936 EXPORT_SYMBOL(free_anon_bdev
);
938 int set_anon_super(struct super_block
*s
, void *data
)
940 int error
= get_anon_bdev(&s
->s_dev
);
942 s
->s_bdi
= &noop_backing_dev_info
;
946 EXPORT_SYMBOL(set_anon_super
);
948 void kill_anon_super(struct super_block
*sb
)
950 dev_t dev
= sb
->s_dev
;
951 generic_shutdown_super(sb
);
955 EXPORT_SYMBOL(kill_anon_super
);
957 void kill_litter_super(struct super_block
*sb
)
960 d_genocide(sb
->s_root
);
964 EXPORT_SYMBOL(kill_litter_super
);
966 static int ns_test_super(struct super_block
*sb
, void *data
)
968 return sb
->s_fs_info
== data
;
971 static int ns_set_super(struct super_block
*sb
, void *data
)
973 sb
->s_fs_info
= data
;
974 return set_anon_super(sb
, NULL
);
977 struct dentry
*mount_ns(struct file_system_type
*fs_type
, int flags
,
978 void *data
, int (*fill_super
)(struct super_block
*, void *, int))
980 struct super_block
*sb
;
982 sb
= sget(fs_type
, ns_test_super
, ns_set_super
, flags
, data
);
988 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
990 deactivate_locked_super(sb
);
994 sb
->s_flags
|= MS_ACTIVE
;
997 return dget(sb
->s_root
);
1000 EXPORT_SYMBOL(mount_ns
);
1003 static int set_bdev_super(struct super_block
*s
, void *data
)
1006 s
->s_dev
= s
->s_bdev
->bd_dev
;
1009 * We set the bdi here to the queue backing, file systems can
1010 * overwrite this in ->fill_super()
1012 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
1016 static int test_bdev_super(struct super_block
*s
, void *data
)
1018 return (void *)s
->s_bdev
== data
;
1021 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
1022 int flags
, const char *dev_name
, void *data
,
1023 int (*fill_super
)(struct super_block
*, void *, int))
1025 struct block_device
*bdev
;
1026 struct super_block
*s
;
1027 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
1030 if (!(flags
& MS_RDONLY
))
1031 mode
|= FMODE_WRITE
;
1033 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
1035 return ERR_CAST(bdev
);
1038 * once the super is inserted into the list by sget, s_umount
1039 * will protect the lockfs code from trying to start a snapshot
1040 * while we are mounting
1042 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
1043 if (bdev
->bd_fsfreeze_count
> 0) {
1044 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1048 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| MS_NOSEC
,
1050 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1055 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
1056 deactivate_locked_super(s
);
1062 * s_umount nests inside bd_mutex during
1063 * __invalidate_device(). blkdev_put() acquires
1064 * bd_mutex and can't be called under s_umount. Drop
1065 * s_umount temporarily. This is safe as we're
1066 * holding an active reference.
1068 up_write(&s
->s_umount
);
1069 blkdev_put(bdev
, mode
);
1070 down_write(&s
->s_umount
);
1072 char b
[BDEVNAME_SIZE
];
1075 strlcpy(s
->s_id
, bdevname(bdev
, b
), sizeof(s
->s_id
));
1076 sb_set_blocksize(s
, block_size(bdev
));
1077 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1079 deactivate_locked_super(s
);
1083 s
->s_flags
|= MS_ACTIVE
;
1087 return dget(s
->s_root
);
1092 blkdev_put(bdev
, mode
);
1094 return ERR_PTR(error
);
1096 EXPORT_SYMBOL(mount_bdev
);
1098 void kill_block_super(struct super_block
*sb
)
1100 struct block_device
*bdev
= sb
->s_bdev
;
1101 fmode_t mode
= sb
->s_mode
;
1103 bdev
->bd_super
= NULL
;
1104 generic_shutdown_super(sb
);
1105 sync_blockdev(bdev
);
1106 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1107 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1110 EXPORT_SYMBOL(kill_block_super
);
1113 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1114 int flags
, void *data
,
1115 int (*fill_super
)(struct super_block
*, void *, int))
1118 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1123 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1125 deactivate_locked_super(s
);
1126 return ERR_PTR(error
);
1128 s
->s_flags
|= MS_ACTIVE
;
1129 return dget(s
->s_root
);
1131 EXPORT_SYMBOL(mount_nodev
);
1133 static int compare_single(struct super_block
*s
, void *p
)
1138 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1139 int flags
, void *data
,
1140 int (*fill_super
)(struct super_block
*, void *, int))
1142 struct super_block
*s
;
1145 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1149 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1151 deactivate_locked_super(s
);
1152 return ERR_PTR(error
);
1154 s
->s_flags
|= MS_ACTIVE
;
1156 do_remount_sb(s
, flags
, data
, 0);
1158 return dget(s
->s_root
);
1160 EXPORT_SYMBOL(mount_single
);
1163 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1165 struct dentry
*root
;
1166 struct super_block
*sb
;
1167 char *secdata
= NULL
;
1168 int error
= -ENOMEM
;
1170 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1171 secdata
= alloc_secdata();
1175 error
= security_sb_copy_data(data
, secdata
);
1177 goto out_free_secdata
;
1180 root
= type
->mount(type
, flags
, name
, data
);
1182 error
= PTR_ERR(root
);
1183 goto out_free_secdata
;
1187 WARN_ON(!sb
->s_bdi
);
1188 WARN_ON(sb
->s_bdi
== &default_backing_dev_info
);
1189 sb
->s_flags
|= MS_BORN
;
1191 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1196 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1197 * but s_maxbytes was an unsigned long long for many releases. Throw
1198 * this warning for a little while to try and catch filesystems that
1199 * violate this rule.
1201 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1202 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1204 up_write(&sb
->s_umount
);
1205 free_secdata(secdata
);
1209 deactivate_locked_super(sb
);
1211 free_secdata(secdata
);
1213 return ERR_PTR(error
);
1217 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1220 void __sb_end_write(struct super_block
*sb
, int level
)
1222 percpu_counter_dec(&sb
->s_writers
.counter
[level
-1]);
1224 * Make sure s_writers are updated before we wake up waiters in
1228 if (waitqueue_active(&sb
->s_writers
.wait
))
1229 wake_up(&sb
->s_writers
.wait
);
1230 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _RET_IP_
);
1232 EXPORT_SYMBOL(__sb_end_write
);
1234 #ifdef CONFIG_LOCKDEP
1236 * We want lockdep to tell us about possible deadlocks with freezing but
1237 * it's it bit tricky to properly instrument it. Getting a freeze protection
1238 * works as getting a read lock but there are subtle problems. XFS for example
1239 * gets freeze protection on internal level twice in some cases, which is OK
1240 * only because we already hold a freeze protection also on higher level. Due
1241 * to these cases we have to tell lockdep we are doing trylock when we
1242 * already hold a freeze protection for a higher freeze level.
1244 static void acquire_freeze_lock(struct super_block
*sb
, int level
, bool trylock
,
1250 for (i
= 0; i
< level
- 1; i
++)
1251 if (lock_is_held(&sb
->s_writers
.lock_map
[i
])) {
1256 rwsem_acquire_read(&sb
->s_writers
.lock_map
[level
-1], 0, trylock
, ip
);
1261 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1264 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1267 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1270 wait_event(sb
->s_writers
.wait_unfrozen
,
1271 sb
->s_writers
.frozen
< level
);
1274 #ifdef CONFIG_LOCKDEP
1275 acquire_freeze_lock(sb
, level
, !wait
, _RET_IP_
);
1277 percpu_counter_inc(&sb
->s_writers
.counter
[level
-1]);
1279 * Make sure counter is updated before we check for frozen.
1280 * freeze_super() first sets frozen and then checks the counter.
1283 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1284 __sb_end_write(sb
, level
);
1289 EXPORT_SYMBOL(__sb_start_write
);
1292 * sb_wait_write - wait until all writers to given file system finish
1293 * @sb: the super for which we wait
1294 * @level: type of writers we wait for (normal vs page fault)
1296 * This function waits until there are no writers of given type to given file
1297 * system. Caller of this function should make sure there can be no new writers
1298 * of type @level before calling this function. Otherwise this function can
1301 static void sb_wait_write(struct super_block
*sb
, int level
)
1306 * We just cycle-through lockdep here so that it does not complain
1307 * about returning with lock to userspace
1309 rwsem_acquire(&sb
->s_writers
.lock_map
[level
-1], 0, 0, _THIS_IP_
);
1310 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _THIS_IP_
);
1316 * We use a barrier in prepare_to_wait() to separate setting
1317 * of frozen and checking of the counter
1319 prepare_to_wait(&sb
->s_writers
.wait
, &wait
,
1320 TASK_UNINTERRUPTIBLE
);
1322 writers
= percpu_counter_sum(&sb
->s_writers
.counter
[level
-1]);
1326 finish_wait(&sb
->s_writers
.wait
, &wait
);
1331 * freeze_super - lock the filesystem and force it into a consistent state
1332 * @sb: the super to lock
1334 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1335 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1338 * During this function, sb->s_writers.frozen goes through these values:
1340 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1342 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1343 * writes should be blocked, though page faults are still allowed. We wait for
1344 * all writes to complete and then proceed to the next stage.
1346 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1347 * but internal fs threads can still modify the filesystem (although they
1348 * should not dirty new pages or inodes), writeback can run etc. After waiting
1349 * for all running page faults we sync the filesystem which will clean all
1350 * dirty pages and inodes (no new dirty pages or inodes can be created when
1353 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1354 * modification are blocked (e.g. XFS preallocation truncation on inode
1355 * reclaim). This is usually implemented by blocking new transactions for
1356 * filesystems that have them and need this additional guard. After all
1357 * internal writers are finished we call ->freeze_fs() to finish filesystem
1358 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1359 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1361 * sb->s_writers.frozen is protected by sb->s_umount.
1363 int freeze_super(struct super_block
*sb
)
1367 atomic_inc(&sb
->s_active
);
1368 down_write(&sb
->s_umount
);
1369 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1370 deactivate_locked_super(sb
);
1374 if (!(sb
->s_flags
& MS_BORN
)) {
1375 up_write(&sb
->s_umount
);
1376 return 0; /* sic - it's "nothing to do" */
1379 if (sb
->s_flags
& MS_RDONLY
) {
1380 /* Nothing to do really... */
1381 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1382 up_write(&sb
->s_umount
);
1386 /* From now on, no new normal writers can start */
1387 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1390 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1391 up_write(&sb
->s_umount
);
1393 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1395 /* Now we go and block page faults... */
1396 down_write(&sb
->s_umount
);
1397 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1400 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1402 /* All writers are done so after syncing there won't be dirty data */
1403 sync_filesystem(sb
);
1405 /* Now wait for internal filesystem counter */
1406 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1408 sb_wait_write(sb
, SB_FREEZE_FS
);
1410 if (sb
->s_op
->freeze_fs
) {
1411 ret
= sb
->s_op
->freeze_fs(sb
);
1414 "VFS:Filesystem freeze failed\n");
1415 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1417 wake_up(&sb
->s_writers
.wait_unfrozen
);
1418 deactivate_locked_super(sb
);
1423 * This is just for debugging purposes so that fs can warn if it
1424 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1426 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1427 up_write(&sb
->s_umount
);
1430 EXPORT_SYMBOL(freeze_super
);
1433 * thaw_super -- unlock filesystem
1434 * @sb: the super to thaw
1436 * Unlocks the filesystem and marks it writeable again after freeze_super().
1438 int thaw_super(struct super_block
*sb
)
1442 down_write(&sb
->s_umount
);
1443 if (sb
->s_writers
.frozen
== SB_UNFROZEN
) {
1444 up_write(&sb
->s_umount
);
1448 if (sb
->s_flags
& MS_RDONLY
)
1451 if (sb
->s_op
->unfreeze_fs
) {
1452 error
= sb
->s_op
->unfreeze_fs(sb
);
1455 "VFS:Filesystem thaw failed\n");
1456 up_write(&sb
->s_umount
);
1462 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1464 wake_up(&sb
->s_writers
.wait_unfrozen
);
1465 deactivate_locked_super(sb
);
1469 EXPORT_SYMBOL(thaw_super
);