ring-buffer: Select IRQ_WORK
[linux-2.6.git] / mm / slub.c
bloba0206df88aba9e001d27248616a36aad9218df4f
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
37 #include <trace/events/kmem.h>
39 #include "internal.h"
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
47 * slab_mutex
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
94 * Overloading of page flags that are otherwise used for LRU management.
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache *s)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
127 * Issues still to be resolved:
129 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 * - Variable sizing of the per node arrays
134 /* Enable to test recovery from slab corruption on boot */
135 #undef SLUB_RESILIENCY_TEST
137 /* Enable to log cmpxchg failures */
138 #undef SLUB_DEBUG_CMPXCHG
141 * Mininum number of partial slabs. These will be left on the partial
142 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 #define MIN_PARTIAL 5
147 * Maximum number of desirable partial slabs.
148 * The existence of more partial slabs makes kmem_cache_shrink
149 * sort the partial list by the number of objects in the.
151 #define MAX_PARTIAL 10
153 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_STORE_USER)
157 * Debugging flags that require metadata to be stored in the slab. These get
158 * disabled when slub_debug=O is used and a cache's min order increases with
159 * metadata.
161 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
164 * Set of flags that will prevent slab merging
166 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
167 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
168 SLAB_FAILSLAB)
170 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
171 SLAB_CACHE_DMA | SLAB_NOTRACK)
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
186 * Tracking user of a slab.
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
205 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
212 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
213 #endif
215 static inline void stat(const struct kmem_cache *s, enum stat_item si)
217 #ifdef CONFIG_SLUB_STATS
218 __this_cpu_inc(s->cpu_slab->stat[si]);
219 #endif
222 /********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
226 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
228 return s->node[node];
231 /* Verify that a pointer has an address that is valid within a slab page */
232 static inline int check_valid_pointer(struct kmem_cache *s,
233 struct page *page, const void *object)
235 void *base;
237 if (!object)
238 return 1;
240 base = page_address(page);
241 if (object < base || object >= base + page->objects * s->size ||
242 (object - base) % s->size) {
243 return 0;
246 return 1;
249 static inline void *get_freepointer(struct kmem_cache *s, void *object)
251 return *(void **)(object + s->offset);
254 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
256 prefetch(object + s->offset);
259 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
261 void *p;
263 #ifdef CONFIG_DEBUG_PAGEALLOC
264 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
265 #else
266 p = get_freepointer(s, object);
267 #endif
268 return p;
271 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
273 *(void **)(object + s->offset) = fp;
276 /* Loop over all objects in a slab */
277 #define for_each_object(__p, __s, __addr, __objects) \
278 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
279 __p += (__s)->size)
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284 return (p - addr) / s->size;
287 static inline size_t slab_ksize(const struct kmem_cache *s)
289 #ifdef CONFIG_SLUB_DEBUG
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
297 #endif
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
306 * Else we can use all the padding etc for the allocation
308 return s->size;
311 static inline int order_objects(int order, unsigned long size, int reserved)
313 return ((PAGE_SIZE << order) - reserved) / size;
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
323 return x;
326 static inline int oo_order(struct kmem_cache_order_objects x)
328 return x.x >> OO_SHIFT;
331 static inline int oo_objects(struct kmem_cache_order_objects x)
333 return x.x & OO_MASK;
337 * Per slab locking using the pagelock
339 static __always_inline void slab_lock(struct page *page)
341 bit_spin_lock(PG_locked, &page->flags);
344 static __always_inline void slab_unlock(struct page *page)
346 __bit_spin_unlock(PG_locked, &page->flags);
349 /* Interrupts must be disabled (for the fallback code to work right) */
350 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
351 void *freelist_old, unsigned long counters_old,
352 void *freelist_new, unsigned long counters_new,
353 const char *n)
355 VM_BUG_ON(!irqs_disabled());
356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
358 if (s->flags & __CMPXCHG_DOUBLE) {
359 if (cmpxchg_double(&page->freelist, &page->counters,
360 freelist_old, counters_old,
361 freelist_new, counters_new))
362 return 1;
363 } else
364 #endif
366 slab_lock(page);
367 if (page->freelist == freelist_old && page->counters == counters_old) {
368 page->freelist = freelist_new;
369 page->counters = counters_new;
370 slab_unlock(page);
371 return 1;
373 slab_unlock(page);
376 cpu_relax();
377 stat(s, CMPXCHG_DOUBLE_FAIL);
379 #ifdef SLUB_DEBUG_CMPXCHG
380 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
381 #endif
383 return 0;
386 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
387 void *freelist_old, unsigned long counters_old,
388 void *freelist_new, unsigned long counters_new,
389 const char *n)
391 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
392 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
393 if (s->flags & __CMPXCHG_DOUBLE) {
394 if (cmpxchg_double(&page->freelist, &page->counters,
395 freelist_old, counters_old,
396 freelist_new, counters_new))
397 return 1;
398 } else
399 #endif
401 unsigned long flags;
403 local_irq_save(flags);
404 slab_lock(page);
405 if (page->freelist == freelist_old && page->counters == counters_old) {
406 page->freelist = freelist_new;
407 page->counters = counters_new;
408 slab_unlock(page);
409 local_irq_restore(flags);
410 return 1;
412 slab_unlock(page);
413 local_irq_restore(flags);
416 cpu_relax();
417 stat(s, CMPXCHG_DOUBLE_FAIL);
419 #ifdef SLUB_DEBUG_CMPXCHG
420 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
421 #endif
423 return 0;
426 #ifdef CONFIG_SLUB_DEBUG
428 * Determine a map of object in use on a page.
430 * Node listlock must be held to guarantee that the page does
431 * not vanish from under us.
433 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
435 void *p;
436 void *addr = page_address(page);
438 for (p = page->freelist; p; p = get_freepointer(s, p))
439 set_bit(slab_index(p, s, addr), map);
443 * Debug settings:
445 #ifdef CONFIG_SLUB_DEBUG_ON
446 static int slub_debug = DEBUG_DEFAULT_FLAGS;
447 #else
448 static int slub_debug;
449 #endif
451 static char *slub_debug_slabs;
452 static int disable_higher_order_debug;
455 * Object debugging
457 static void print_section(char *text, u8 *addr, unsigned int length)
459 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
460 length, 1);
463 static struct track *get_track(struct kmem_cache *s, void *object,
464 enum track_item alloc)
466 struct track *p;
468 if (s->offset)
469 p = object + s->offset + sizeof(void *);
470 else
471 p = object + s->inuse;
473 return p + alloc;
476 static void set_track(struct kmem_cache *s, void *object,
477 enum track_item alloc, unsigned long addr)
479 struct track *p = get_track(s, object, alloc);
481 if (addr) {
482 #ifdef CONFIG_STACKTRACE
483 struct stack_trace trace;
484 int i;
486 trace.nr_entries = 0;
487 trace.max_entries = TRACK_ADDRS_COUNT;
488 trace.entries = p->addrs;
489 trace.skip = 3;
490 save_stack_trace(&trace);
492 /* See rant in lockdep.c */
493 if (trace.nr_entries != 0 &&
494 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
495 trace.nr_entries--;
497 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
498 p->addrs[i] = 0;
499 #endif
500 p->addr = addr;
501 p->cpu = smp_processor_id();
502 p->pid = current->pid;
503 p->when = jiffies;
504 } else
505 memset(p, 0, sizeof(struct track));
508 static void init_tracking(struct kmem_cache *s, void *object)
510 if (!(s->flags & SLAB_STORE_USER))
511 return;
513 set_track(s, object, TRACK_FREE, 0UL);
514 set_track(s, object, TRACK_ALLOC, 0UL);
517 static void print_track(const char *s, struct track *t)
519 if (!t->addr)
520 return;
522 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
523 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
524 #ifdef CONFIG_STACKTRACE
526 int i;
527 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
528 if (t->addrs[i])
529 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
530 else
531 break;
533 #endif
536 static void print_tracking(struct kmem_cache *s, void *object)
538 if (!(s->flags & SLAB_STORE_USER))
539 return;
541 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
542 print_track("Freed", get_track(s, object, TRACK_FREE));
545 static void print_page_info(struct page *page)
547 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
548 page, page->objects, page->inuse, page->freelist, page->flags);
552 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
554 va_list args;
555 char buf[100];
557 va_start(args, fmt);
558 vsnprintf(buf, sizeof(buf), fmt, args);
559 va_end(args);
560 printk(KERN_ERR "========================================"
561 "=====================================\n");
562 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
563 printk(KERN_ERR "----------------------------------------"
564 "-------------------------------------\n\n");
566 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
569 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
571 va_list args;
572 char buf[100];
574 va_start(args, fmt);
575 vsnprintf(buf, sizeof(buf), fmt, args);
576 va_end(args);
577 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
580 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
582 unsigned int off; /* Offset of last byte */
583 u8 *addr = page_address(page);
585 print_tracking(s, p);
587 print_page_info(page);
589 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
590 p, p - addr, get_freepointer(s, p));
592 if (p > addr + 16)
593 print_section("Bytes b4 ", p - 16, 16);
595 print_section("Object ", p, min_t(unsigned long, s->object_size,
596 PAGE_SIZE));
597 if (s->flags & SLAB_RED_ZONE)
598 print_section("Redzone ", p + s->object_size,
599 s->inuse - s->object_size);
601 if (s->offset)
602 off = s->offset + sizeof(void *);
603 else
604 off = s->inuse;
606 if (s->flags & SLAB_STORE_USER)
607 off += 2 * sizeof(struct track);
609 if (off != s->size)
610 /* Beginning of the filler is the free pointer */
611 print_section("Padding ", p + off, s->size - off);
613 dump_stack();
616 static void object_err(struct kmem_cache *s, struct page *page,
617 u8 *object, char *reason)
619 slab_bug(s, "%s", reason);
620 print_trailer(s, page, object);
623 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
625 va_list args;
626 char buf[100];
628 va_start(args, fmt);
629 vsnprintf(buf, sizeof(buf), fmt, args);
630 va_end(args);
631 slab_bug(s, "%s", buf);
632 print_page_info(page);
633 dump_stack();
636 static void init_object(struct kmem_cache *s, void *object, u8 val)
638 u8 *p = object;
640 if (s->flags & __OBJECT_POISON) {
641 memset(p, POISON_FREE, s->object_size - 1);
642 p[s->object_size - 1] = POISON_END;
645 if (s->flags & SLAB_RED_ZONE)
646 memset(p + s->object_size, val, s->inuse - s->object_size);
649 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
650 void *from, void *to)
652 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
653 memset(from, data, to - from);
656 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
657 u8 *object, char *what,
658 u8 *start, unsigned int value, unsigned int bytes)
660 u8 *fault;
661 u8 *end;
663 fault = memchr_inv(start, value, bytes);
664 if (!fault)
665 return 1;
667 end = start + bytes;
668 while (end > fault && end[-1] == value)
669 end--;
671 slab_bug(s, "%s overwritten", what);
672 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
673 fault, end - 1, fault[0], value);
674 print_trailer(s, page, object);
676 restore_bytes(s, what, value, fault, end);
677 return 0;
681 * Object layout:
683 * object address
684 * Bytes of the object to be managed.
685 * If the freepointer may overlay the object then the free
686 * pointer is the first word of the object.
688 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
689 * 0xa5 (POISON_END)
691 * object + s->object_size
692 * Padding to reach word boundary. This is also used for Redzoning.
693 * Padding is extended by another word if Redzoning is enabled and
694 * object_size == inuse.
696 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
697 * 0xcc (RED_ACTIVE) for objects in use.
699 * object + s->inuse
700 * Meta data starts here.
702 * A. Free pointer (if we cannot overwrite object on free)
703 * B. Tracking data for SLAB_STORE_USER
704 * C. Padding to reach required alignment boundary or at mininum
705 * one word if debugging is on to be able to detect writes
706 * before the word boundary.
708 * Padding is done using 0x5a (POISON_INUSE)
710 * object + s->size
711 * Nothing is used beyond s->size.
713 * If slabcaches are merged then the object_size and inuse boundaries are mostly
714 * ignored. And therefore no slab options that rely on these boundaries
715 * may be used with merged slabcaches.
718 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
720 unsigned long off = s->inuse; /* The end of info */
722 if (s->offset)
723 /* Freepointer is placed after the object. */
724 off += sizeof(void *);
726 if (s->flags & SLAB_STORE_USER)
727 /* We also have user information there */
728 off += 2 * sizeof(struct track);
730 if (s->size == off)
731 return 1;
733 return check_bytes_and_report(s, page, p, "Object padding",
734 p + off, POISON_INUSE, s->size - off);
737 /* Check the pad bytes at the end of a slab page */
738 static int slab_pad_check(struct kmem_cache *s, struct page *page)
740 u8 *start;
741 u8 *fault;
742 u8 *end;
743 int length;
744 int remainder;
746 if (!(s->flags & SLAB_POISON))
747 return 1;
749 start = page_address(page);
750 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
751 end = start + length;
752 remainder = length % s->size;
753 if (!remainder)
754 return 1;
756 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
757 if (!fault)
758 return 1;
759 while (end > fault && end[-1] == POISON_INUSE)
760 end--;
762 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
763 print_section("Padding ", end - remainder, remainder);
765 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
766 return 0;
769 static int check_object(struct kmem_cache *s, struct page *page,
770 void *object, u8 val)
772 u8 *p = object;
773 u8 *endobject = object + s->object_size;
775 if (s->flags & SLAB_RED_ZONE) {
776 if (!check_bytes_and_report(s, page, object, "Redzone",
777 endobject, val, s->inuse - s->object_size))
778 return 0;
779 } else {
780 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
781 check_bytes_and_report(s, page, p, "Alignment padding",
782 endobject, POISON_INUSE, s->inuse - s->object_size);
786 if (s->flags & SLAB_POISON) {
787 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
788 (!check_bytes_and_report(s, page, p, "Poison", p,
789 POISON_FREE, s->object_size - 1) ||
790 !check_bytes_and_report(s, page, p, "Poison",
791 p + s->object_size - 1, POISON_END, 1)))
792 return 0;
794 * check_pad_bytes cleans up on its own.
796 check_pad_bytes(s, page, p);
799 if (!s->offset && val == SLUB_RED_ACTIVE)
801 * Object and freepointer overlap. Cannot check
802 * freepointer while object is allocated.
804 return 1;
806 /* Check free pointer validity */
807 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
808 object_err(s, page, p, "Freepointer corrupt");
810 * No choice but to zap it and thus lose the remainder
811 * of the free objects in this slab. May cause
812 * another error because the object count is now wrong.
814 set_freepointer(s, p, NULL);
815 return 0;
817 return 1;
820 static int check_slab(struct kmem_cache *s, struct page *page)
822 int maxobj;
824 VM_BUG_ON(!irqs_disabled());
826 if (!PageSlab(page)) {
827 slab_err(s, page, "Not a valid slab page");
828 return 0;
831 maxobj = order_objects(compound_order(page), s->size, s->reserved);
832 if (page->objects > maxobj) {
833 slab_err(s, page, "objects %u > max %u",
834 s->name, page->objects, maxobj);
835 return 0;
837 if (page->inuse > page->objects) {
838 slab_err(s, page, "inuse %u > max %u",
839 s->name, page->inuse, page->objects);
840 return 0;
842 /* Slab_pad_check fixes things up after itself */
843 slab_pad_check(s, page);
844 return 1;
848 * Determine if a certain object on a page is on the freelist. Must hold the
849 * slab lock to guarantee that the chains are in a consistent state.
851 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
853 int nr = 0;
854 void *fp;
855 void *object = NULL;
856 unsigned long max_objects;
858 fp = page->freelist;
859 while (fp && nr <= page->objects) {
860 if (fp == search)
861 return 1;
862 if (!check_valid_pointer(s, page, fp)) {
863 if (object) {
864 object_err(s, page, object,
865 "Freechain corrupt");
866 set_freepointer(s, object, NULL);
867 break;
868 } else {
869 slab_err(s, page, "Freepointer corrupt");
870 page->freelist = NULL;
871 page->inuse = page->objects;
872 slab_fix(s, "Freelist cleared");
873 return 0;
875 break;
877 object = fp;
878 fp = get_freepointer(s, object);
879 nr++;
882 max_objects = order_objects(compound_order(page), s->size, s->reserved);
883 if (max_objects > MAX_OBJS_PER_PAGE)
884 max_objects = MAX_OBJS_PER_PAGE;
886 if (page->objects != max_objects) {
887 slab_err(s, page, "Wrong number of objects. Found %d but "
888 "should be %d", page->objects, max_objects);
889 page->objects = max_objects;
890 slab_fix(s, "Number of objects adjusted.");
892 if (page->inuse != page->objects - nr) {
893 slab_err(s, page, "Wrong object count. Counter is %d but "
894 "counted were %d", page->inuse, page->objects - nr);
895 page->inuse = page->objects - nr;
896 slab_fix(s, "Object count adjusted.");
898 return search == NULL;
901 static void trace(struct kmem_cache *s, struct page *page, void *object,
902 int alloc)
904 if (s->flags & SLAB_TRACE) {
905 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
906 s->name,
907 alloc ? "alloc" : "free",
908 object, page->inuse,
909 page->freelist);
911 if (!alloc)
912 print_section("Object ", (void *)object, s->object_size);
914 dump_stack();
919 * Hooks for other subsystems that check memory allocations. In a typical
920 * production configuration these hooks all should produce no code at all.
922 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
924 flags &= gfp_allowed_mask;
925 lockdep_trace_alloc(flags);
926 might_sleep_if(flags & __GFP_WAIT);
928 return should_failslab(s->object_size, flags, s->flags);
931 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
933 flags &= gfp_allowed_mask;
934 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
935 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
938 static inline void slab_free_hook(struct kmem_cache *s, void *x)
940 kmemleak_free_recursive(x, s->flags);
943 * Trouble is that we may no longer disable interupts in the fast path
944 * So in order to make the debug calls that expect irqs to be
945 * disabled we need to disable interrupts temporarily.
947 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
949 unsigned long flags;
951 local_irq_save(flags);
952 kmemcheck_slab_free(s, x, s->object_size);
953 debug_check_no_locks_freed(x, s->object_size);
954 local_irq_restore(flags);
956 #endif
957 if (!(s->flags & SLAB_DEBUG_OBJECTS))
958 debug_check_no_obj_freed(x, s->object_size);
962 * Tracking of fully allocated slabs for debugging purposes.
964 * list_lock must be held.
966 static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
972 list_add(&page->lru, &n->full);
976 * list_lock must be held.
978 static void remove_full(struct kmem_cache *s, struct page *page)
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
983 list_del(&page->lru);
986 /* Tracking of the number of slabs for debugging purposes */
987 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
989 struct kmem_cache_node *n = get_node(s, node);
991 return atomic_long_read(&n->nr_slabs);
994 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
996 return atomic_long_read(&n->nr_slabs);
999 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1001 struct kmem_cache_node *n = get_node(s, node);
1004 * May be called early in order to allocate a slab for the
1005 * kmem_cache_node structure. Solve the chicken-egg
1006 * dilemma by deferring the increment of the count during
1007 * bootstrap (see early_kmem_cache_node_alloc).
1009 if (n) {
1010 atomic_long_inc(&n->nr_slabs);
1011 atomic_long_add(objects, &n->total_objects);
1014 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1016 struct kmem_cache_node *n = get_node(s, node);
1018 atomic_long_dec(&n->nr_slabs);
1019 atomic_long_sub(objects, &n->total_objects);
1022 /* Object debug checks for alloc/free paths */
1023 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1024 void *object)
1026 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1027 return;
1029 init_object(s, object, SLUB_RED_INACTIVE);
1030 init_tracking(s, object);
1033 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1034 void *object, unsigned long addr)
1036 if (!check_slab(s, page))
1037 goto bad;
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
1041 goto bad;
1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1045 goto bad;
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
1051 init_object(s, object, SLUB_RED_ACTIVE);
1052 return 1;
1054 bad:
1055 if (PageSlab(page)) {
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
1059 * as used avoids touching the remaining objects.
1061 slab_fix(s, "Marking all objects used");
1062 page->inuse = page->objects;
1063 page->freelist = NULL;
1065 return 0;
1068 static noinline struct kmem_cache_node *free_debug_processing(
1069 struct kmem_cache *s, struct page *page, void *object,
1070 unsigned long addr, unsigned long *flags)
1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1074 spin_lock_irqsave(&n->list_lock, *flags);
1075 slab_lock(page);
1077 if (!check_slab(s, page))
1078 goto fail;
1080 if (!check_valid_pointer(s, page, object)) {
1081 slab_err(s, page, "Invalid object pointer 0x%p", object);
1082 goto fail;
1085 if (on_freelist(s, page, object)) {
1086 object_err(s, page, object, "Object already free");
1087 goto fail;
1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1091 goto out;
1093 if (unlikely(s != page->slab_cache)) {
1094 if (!PageSlab(page)) {
1095 slab_err(s, page, "Attempt to free object(0x%p) "
1096 "outside of slab", object);
1097 } else if (!page->slab_cache) {
1098 printk(KERN_ERR
1099 "SLUB <none>: no slab for object 0x%p.\n",
1100 object);
1101 dump_stack();
1102 } else
1103 object_err(s, page, object,
1104 "page slab pointer corrupt.");
1105 goto fail;
1108 if (s->flags & SLAB_STORE_USER)
1109 set_track(s, object, TRACK_FREE, addr);
1110 trace(s, page, object, 0);
1111 init_object(s, object, SLUB_RED_INACTIVE);
1112 out:
1113 slab_unlock(page);
1115 * Keep node_lock to preserve integrity
1116 * until the object is actually freed
1118 return n;
1120 fail:
1121 slab_unlock(page);
1122 spin_unlock_irqrestore(&n->list_lock, *flags);
1123 slab_fix(s, "Object at 0x%p not freed", object);
1124 return NULL;
1127 static int __init setup_slub_debug(char *str)
1129 slub_debug = DEBUG_DEFAULT_FLAGS;
1130 if (*str++ != '=' || !*str)
1132 * No options specified. Switch on full debugging.
1134 goto out;
1136 if (*str == ',')
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1141 goto check_slabs;
1143 if (tolower(*str) == 'o') {
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1148 disable_higher_order_debug = 1;
1149 goto out;
1152 slub_debug = 0;
1153 if (*str == '-')
1155 * Switch off all debugging measures.
1157 goto out;
1160 * Determine which debug features should be switched on
1162 for (; *str && *str != ','; str++) {
1163 switch (tolower(*str)) {
1164 case 'f':
1165 slub_debug |= SLAB_DEBUG_FREE;
1166 break;
1167 case 'z':
1168 slub_debug |= SLAB_RED_ZONE;
1169 break;
1170 case 'p':
1171 slub_debug |= SLAB_POISON;
1172 break;
1173 case 'u':
1174 slub_debug |= SLAB_STORE_USER;
1175 break;
1176 case 't':
1177 slub_debug |= SLAB_TRACE;
1178 break;
1179 case 'a':
1180 slub_debug |= SLAB_FAILSLAB;
1181 break;
1182 default:
1183 printk(KERN_ERR "slub_debug option '%c' "
1184 "unknown. skipped\n", *str);
1188 check_slabs:
1189 if (*str == ',')
1190 slub_debug_slabs = str + 1;
1191 out:
1192 return 1;
1195 __setup("slub_debug", setup_slub_debug);
1197 static unsigned long kmem_cache_flags(unsigned long object_size,
1198 unsigned long flags, const char *name,
1199 void (*ctor)(void *))
1202 * Enable debugging if selected on the kernel commandline.
1204 if (slub_debug && (!slub_debug_slabs ||
1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1206 flags |= slub_debug;
1208 return flags;
1210 #else
1211 static inline void setup_object_debug(struct kmem_cache *s,
1212 struct page *page, void *object) {}
1214 static inline int alloc_debug_processing(struct kmem_cache *s,
1215 struct page *page, void *object, unsigned long addr) { return 0; }
1217 static inline struct kmem_cache_node *free_debug_processing(
1218 struct kmem_cache *s, struct page *page, void *object,
1219 unsigned long addr, unsigned long *flags) { return NULL; }
1221 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1222 { return 1; }
1223 static inline int check_object(struct kmem_cache *s, struct page *page,
1224 void *object, u8 val) { return 1; }
1225 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1226 struct page *page) {}
1227 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1228 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1229 unsigned long flags, const char *name,
1230 void (*ctor)(void *))
1232 return flags;
1234 #define slub_debug 0
1236 #define disable_higher_order_debug 0
1238 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1239 { return 0; }
1240 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1241 { return 0; }
1242 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
1244 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1245 int objects) {}
1247 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1248 { return 0; }
1250 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1251 void *object) {}
1253 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1255 #endif /* CONFIG_SLUB_DEBUG */
1258 * Slab allocation and freeing
1260 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1261 struct kmem_cache_order_objects oo)
1263 int order = oo_order(oo);
1265 flags |= __GFP_NOTRACK;
1267 if (node == NUMA_NO_NODE)
1268 return alloc_pages(flags, order);
1269 else
1270 return alloc_pages_exact_node(node, flags, order);
1273 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1275 struct page *page;
1276 struct kmem_cache_order_objects oo = s->oo;
1277 gfp_t alloc_gfp;
1279 flags &= gfp_allowed_mask;
1281 if (flags & __GFP_WAIT)
1282 local_irq_enable();
1284 flags |= s->allocflags;
1287 * Let the initial higher-order allocation fail under memory pressure
1288 * so we fall-back to the minimum order allocation.
1290 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1292 page = alloc_slab_page(alloc_gfp, node, oo);
1293 if (unlikely(!page)) {
1294 oo = s->min;
1296 * Allocation may have failed due to fragmentation.
1297 * Try a lower order alloc if possible
1299 page = alloc_slab_page(flags, node, oo);
1301 if (page)
1302 stat(s, ORDER_FALLBACK);
1305 if (kmemcheck_enabled && page
1306 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1307 int pages = 1 << oo_order(oo);
1309 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1312 * Objects from caches that have a constructor don't get
1313 * cleared when they're allocated, so we need to do it here.
1315 if (s->ctor)
1316 kmemcheck_mark_uninitialized_pages(page, pages);
1317 else
1318 kmemcheck_mark_unallocated_pages(page, pages);
1321 if (flags & __GFP_WAIT)
1322 local_irq_disable();
1323 if (!page)
1324 return NULL;
1326 page->objects = oo_objects(oo);
1327 mod_zone_page_state(page_zone(page),
1328 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1329 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1330 1 << oo_order(oo));
1332 return page;
1335 static void setup_object(struct kmem_cache *s, struct page *page,
1336 void *object)
1338 setup_object_debug(s, page, object);
1339 if (unlikely(s->ctor))
1340 s->ctor(object);
1343 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1345 struct page *page;
1346 void *start;
1347 void *last;
1348 void *p;
1349 int order;
1351 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1353 page = allocate_slab(s,
1354 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1355 if (!page)
1356 goto out;
1358 order = compound_order(page);
1359 inc_slabs_node(s, page_to_nid(page), page->objects);
1360 memcg_bind_pages(s, order);
1361 page->slab_cache = s;
1362 __SetPageSlab(page);
1363 if (page->pfmemalloc)
1364 SetPageSlabPfmemalloc(page);
1366 start = page_address(page);
1368 if (unlikely(s->flags & SLAB_POISON))
1369 memset(start, POISON_INUSE, PAGE_SIZE << order);
1371 last = start;
1372 for_each_object(p, s, start, page->objects) {
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, p);
1375 last = p;
1377 setup_object(s, page, last);
1378 set_freepointer(s, last, NULL);
1380 page->freelist = start;
1381 page->inuse = page->objects;
1382 page->frozen = 1;
1383 out:
1384 return page;
1387 static void __free_slab(struct kmem_cache *s, struct page *page)
1389 int order = compound_order(page);
1390 int pages = 1 << order;
1392 if (kmem_cache_debug(s)) {
1393 void *p;
1395 slab_pad_check(s, page);
1396 for_each_object(p, s, page_address(page),
1397 page->objects)
1398 check_object(s, page, p, SLUB_RED_INACTIVE);
1401 kmemcheck_free_shadow(page, compound_order(page));
1403 mod_zone_page_state(page_zone(page),
1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1406 -pages);
1408 __ClearPageSlabPfmemalloc(page);
1409 __ClearPageSlab(page);
1411 memcg_release_pages(s, order);
1412 page_mapcount_reset(page);
1413 if (current->reclaim_state)
1414 current->reclaim_state->reclaimed_slab += pages;
1415 __free_memcg_kmem_pages(page, order);
1418 #define need_reserve_slab_rcu \
1419 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1421 static void rcu_free_slab(struct rcu_head *h)
1423 struct page *page;
1425 if (need_reserve_slab_rcu)
1426 page = virt_to_head_page(h);
1427 else
1428 page = container_of((struct list_head *)h, struct page, lru);
1430 __free_slab(page->slab_cache, page);
1433 static void free_slab(struct kmem_cache *s, struct page *page)
1435 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1436 struct rcu_head *head;
1438 if (need_reserve_slab_rcu) {
1439 int order = compound_order(page);
1440 int offset = (PAGE_SIZE << order) - s->reserved;
1442 VM_BUG_ON(s->reserved != sizeof(*head));
1443 head = page_address(page) + offset;
1444 } else {
1446 * RCU free overloads the RCU head over the LRU
1448 head = (void *)&page->lru;
1451 call_rcu(head, rcu_free_slab);
1452 } else
1453 __free_slab(s, page);
1456 static void discard_slab(struct kmem_cache *s, struct page *page)
1458 dec_slabs_node(s, page_to_nid(page), page->objects);
1459 free_slab(s, page);
1463 * Management of partially allocated slabs.
1465 * list_lock must be held.
1467 static inline void add_partial(struct kmem_cache_node *n,
1468 struct page *page, int tail)
1470 n->nr_partial++;
1471 if (tail == DEACTIVATE_TO_TAIL)
1472 list_add_tail(&page->lru, &n->partial);
1473 else
1474 list_add(&page->lru, &n->partial);
1478 * list_lock must be held.
1480 static inline void remove_partial(struct kmem_cache_node *n,
1481 struct page *page)
1483 list_del(&page->lru);
1484 n->nr_partial--;
1488 * Remove slab from the partial list, freeze it and
1489 * return the pointer to the freelist.
1491 * Returns a list of objects or NULL if it fails.
1493 * Must hold list_lock since we modify the partial list.
1495 static inline void *acquire_slab(struct kmem_cache *s,
1496 struct kmem_cache_node *n, struct page *page,
1497 int mode)
1499 void *freelist;
1500 unsigned long counters;
1501 struct page new;
1504 * Zap the freelist and set the frozen bit.
1505 * The old freelist is the list of objects for the
1506 * per cpu allocation list.
1508 freelist = page->freelist;
1509 counters = page->counters;
1510 new.counters = counters;
1511 if (mode) {
1512 new.inuse = page->objects;
1513 new.freelist = NULL;
1514 } else {
1515 new.freelist = freelist;
1518 VM_BUG_ON(new.frozen);
1519 new.frozen = 1;
1521 if (!__cmpxchg_double_slab(s, page,
1522 freelist, counters,
1523 new.freelist, new.counters,
1524 "acquire_slab"))
1525 return NULL;
1527 remove_partial(n, page);
1528 WARN_ON(!freelist);
1529 return freelist;
1532 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1533 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1536 * Try to allocate a partial slab from a specific node.
1538 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1539 struct kmem_cache_cpu *c, gfp_t flags)
1541 struct page *page, *page2;
1542 void *object = NULL;
1545 * Racy check. If we mistakenly see no partial slabs then we
1546 * just allocate an empty slab. If we mistakenly try to get a
1547 * partial slab and there is none available then get_partials()
1548 * will return NULL.
1550 if (!n || !n->nr_partial)
1551 return NULL;
1553 spin_lock(&n->list_lock);
1554 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1555 void *t;
1556 int available;
1558 if (!pfmemalloc_match(page, flags))
1559 continue;
1561 t = acquire_slab(s, n, page, object == NULL);
1562 if (!t)
1563 break;
1565 if (!object) {
1566 c->page = page;
1567 stat(s, ALLOC_FROM_PARTIAL);
1568 object = t;
1569 available = page->objects - page->inuse;
1570 } else {
1571 available = put_cpu_partial(s, page, 0);
1572 stat(s, CPU_PARTIAL_NODE);
1574 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1575 break;
1578 spin_unlock(&n->list_lock);
1579 return object;
1583 * Get a page from somewhere. Search in increasing NUMA distances.
1585 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1586 struct kmem_cache_cpu *c)
1588 #ifdef CONFIG_NUMA
1589 struct zonelist *zonelist;
1590 struct zoneref *z;
1591 struct zone *zone;
1592 enum zone_type high_zoneidx = gfp_zone(flags);
1593 void *object;
1594 unsigned int cpuset_mems_cookie;
1597 * The defrag ratio allows a configuration of the tradeoffs between
1598 * inter node defragmentation and node local allocations. A lower
1599 * defrag_ratio increases the tendency to do local allocations
1600 * instead of attempting to obtain partial slabs from other nodes.
1602 * If the defrag_ratio is set to 0 then kmalloc() always
1603 * returns node local objects. If the ratio is higher then kmalloc()
1604 * may return off node objects because partial slabs are obtained
1605 * from other nodes and filled up.
1607 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1608 * defrag_ratio = 1000) then every (well almost) allocation will
1609 * first attempt to defrag slab caches on other nodes. This means
1610 * scanning over all nodes to look for partial slabs which may be
1611 * expensive if we do it every time we are trying to find a slab
1612 * with available objects.
1614 if (!s->remote_node_defrag_ratio ||
1615 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1616 return NULL;
1618 do {
1619 cpuset_mems_cookie = get_mems_allowed();
1620 zonelist = node_zonelist(slab_node(), flags);
1621 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1622 struct kmem_cache_node *n;
1624 n = get_node(s, zone_to_nid(zone));
1626 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1627 n->nr_partial > s->min_partial) {
1628 object = get_partial_node(s, n, c, flags);
1629 if (object) {
1631 * Return the object even if
1632 * put_mems_allowed indicated that
1633 * the cpuset mems_allowed was
1634 * updated in parallel. It's a
1635 * harmless race between the alloc
1636 * and the cpuset update.
1638 put_mems_allowed(cpuset_mems_cookie);
1639 return object;
1643 } while (!put_mems_allowed(cpuset_mems_cookie));
1644 #endif
1645 return NULL;
1649 * Get a partial page, lock it and return it.
1651 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1652 struct kmem_cache_cpu *c)
1654 void *object;
1655 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1657 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1658 if (object || node != NUMA_NO_NODE)
1659 return object;
1661 return get_any_partial(s, flags, c);
1664 #ifdef CONFIG_PREEMPT
1666 * Calculate the next globally unique transaction for disambiguiation
1667 * during cmpxchg. The transactions start with the cpu number and are then
1668 * incremented by CONFIG_NR_CPUS.
1670 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1671 #else
1673 * No preemption supported therefore also no need to check for
1674 * different cpus.
1676 #define TID_STEP 1
1677 #endif
1679 static inline unsigned long next_tid(unsigned long tid)
1681 return tid + TID_STEP;
1684 static inline unsigned int tid_to_cpu(unsigned long tid)
1686 return tid % TID_STEP;
1689 static inline unsigned long tid_to_event(unsigned long tid)
1691 return tid / TID_STEP;
1694 static inline unsigned int init_tid(int cpu)
1696 return cpu;
1699 static inline void note_cmpxchg_failure(const char *n,
1700 const struct kmem_cache *s, unsigned long tid)
1702 #ifdef SLUB_DEBUG_CMPXCHG
1703 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1705 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1707 #ifdef CONFIG_PREEMPT
1708 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1709 printk("due to cpu change %d -> %d\n",
1710 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1711 else
1712 #endif
1713 if (tid_to_event(tid) != tid_to_event(actual_tid))
1714 printk("due to cpu running other code. Event %ld->%ld\n",
1715 tid_to_event(tid), tid_to_event(actual_tid));
1716 else
1717 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1718 actual_tid, tid, next_tid(tid));
1719 #endif
1720 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1723 static void init_kmem_cache_cpus(struct kmem_cache *s)
1725 int cpu;
1727 for_each_possible_cpu(cpu)
1728 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1732 * Remove the cpu slab
1734 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1736 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1737 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1738 int lock = 0;
1739 enum slab_modes l = M_NONE, m = M_NONE;
1740 void *nextfree;
1741 int tail = DEACTIVATE_TO_HEAD;
1742 struct page new;
1743 struct page old;
1745 if (page->freelist) {
1746 stat(s, DEACTIVATE_REMOTE_FREES);
1747 tail = DEACTIVATE_TO_TAIL;
1751 * Stage one: Free all available per cpu objects back
1752 * to the page freelist while it is still frozen. Leave the
1753 * last one.
1755 * There is no need to take the list->lock because the page
1756 * is still frozen.
1758 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1759 void *prior;
1760 unsigned long counters;
1762 do {
1763 prior = page->freelist;
1764 counters = page->counters;
1765 set_freepointer(s, freelist, prior);
1766 new.counters = counters;
1767 new.inuse--;
1768 VM_BUG_ON(!new.frozen);
1770 } while (!__cmpxchg_double_slab(s, page,
1771 prior, counters,
1772 freelist, new.counters,
1773 "drain percpu freelist"));
1775 freelist = nextfree;
1779 * Stage two: Ensure that the page is unfrozen while the
1780 * list presence reflects the actual number of objects
1781 * during unfreeze.
1783 * We setup the list membership and then perform a cmpxchg
1784 * with the count. If there is a mismatch then the page
1785 * is not unfrozen but the page is on the wrong list.
1787 * Then we restart the process which may have to remove
1788 * the page from the list that we just put it on again
1789 * because the number of objects in the slab may have
1790 * changed.
1792 redo:
1794 old.freelist = page->freelist;
1795 old.counters = page->counters;
1796 VM_BUG_ON(!old.frozen);
1798 /* Determine target state of the slab */
1799 new.counters = old.counters;
1800 if (freelist) {
1801 new.inuse--;
1802 set_freepointer(s, freelist, old.freelist);
1803 new.freelist = freelist;
1804 } else
1805 new.freelist = old.freelist;
1807 new.frozen = 0;
1809 if (!new.inuse && n->nr_partial > s->min_partial)
1810 m = M_FREE;
1811 else if (new.freelist) {
1812 m = M_PARTIAL;
1813 if (!lock) {
1814 lock = 1;
1816 * Taking the spinlock removes the possiblity
1817 * that acquire_slab() will see a slab page that
1818 * is frozen
1820 spin_lock(&n->list_lock);
1822 } else {
1823 m = M_FULL;
1824 if (kmem_cache_debug(s) && !lock) {
1825 lock = 1;
1827 * This also ensures that the scanning of full
1828 * slabs from diagnostic functions will not see
1829 * any frozen slabs.
1831 spin_lock(&n->list_lock);
1835 if (l != m) {
1837 if (l == M_PARTIAL)
1839 remove_partial(n, page);
1841 else if (l == M_FULL)
1843 remove_full(s, page);
1845 if (m == M_PARTIAL) {
1847 add_partial(n, page, tail);
1848 stat(s, tail);
1850 } else if (m == M_FULL) {
1852 stat(s, DEACTIVATE_FULL);
1853 add_full(s, n, page);
1858 l = m;
1859 if (!__cmpxchg_double_slab(s, page,
1860 old.freelist, old.counters,
1861 new.freelist, new.counters,
1862 "unfreezing slab"))
1863 goto redo;
1865 if (lock)
1866 spin_unlock(&n->list_lock);
1868 if (m == M_FREE) {
1869 stat(s, DEACTIVATE_EMPTY);
1870 discard_slab(s, page);
1871 stat(s, FREE_SLAB);
1876 * Unfreeze all the cpu partial slabs.
1878 * This function must be called with interrupts disabled
1879 * for the cpu using c (or some other guarantee must be there
1880 * to guarantee no concurrent accesses).
1882 static void unfreeze_partials(struct kmem_cache *s,
1883 struct kmem_cache_cpu *c)
1885 struct kmem_cache_node *n = NULL, *n2 = NULL;
1886 struct page *page, *discard_page = NULL;
1888 while ((page = c->partial)) {
1889 struct page new;
1890 struct page old;
1892 c->partial = page->next;
1894 n2 = get_node(s, page_to_nid(page));
1895 if (n != n2) {
1896 if (n)
1897 spin_unlock(&n->list_lock);
1899 n = n2;
1900 spin_lock(&n->list_lock);
1903 do {
1905 old.freelist = page->freelist;
1906 old.counters = page->counters;
1907 VM_BUG_ON(!old.frozen);
1909 new.counters = old.counters;
1910 new.freelist = old.freelist;
1912 new.frozen = 0;
1914 } while (!__cmpxchg_double_slab(s, page,
1915 old.freelist, old.counters,
1916 new.freelist, new.counters,
1917 "unfreezing slab"));
1919 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1920 page->next = discard_page;
1921 discard_page = page;
1922 } else {
1923 add_partial(n, page, DEACTIVATE_TO_TAIL);
1924 stat(s, FREE_ADD_PARTIAL);
1928 if (n)
1929 spin_unlock(&n->list_lock);
1931 while (discard_page) {
1932 page = discard_page;
1933 discard_page = discard_page->next;
1935 stat(s, DEACTIVATE_EMPTY);
1936 discard_slab(s, page);
1937 stat(s, FREE_SLAB);
1942 * Put a page that was just frozen (in __slab_free) into a partial page
1943 * slot if available. This is done without interrupts disabled and without
1944 * preemption disabled. The cmpxchg is racy and may put the partial page
1945 * onto a random cpus partial slot.
1947 * If we did not find a slot then simply move all the partials to the
1948 * per node partial list.
1950 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1952 struct page *oldpage;
1953 int pages;
1954 int pobjects;
1956 do {
1957 pages = 0;
1958 pobjects = 0;
1959 oldpage = this_cpu_read(s->cpu_slab->partial);
1961 if (oldpage) {
1962 pobjects = oldpage->pobjects;
1963 pages = oldpage->pages;
1964 if (drain && pobjects > s->cpu_partial) {
1965 unsigned long flags;
1967 * partial array is full. Move the existing
1968 * set to the per node partial list.
1970 local_irq_save(flags);
1971 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1972 local_irq_restore(flags);
1973 oldpage = NULL;
1974 pobjects = 0;
1975 pages = 0;
1976 stat(s, CPU_PARTIAL_DRAIN);
1980 pages++;
1981 pobjects += page->objects - page->inuse;
1983 page->pages = pages;
1984 page->pobjects = pobjects;
1985 page->next = oldpage;
1987 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1988 return pobjects;
1991 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1993 stat(s, CPUSLAB_FLUSH);
1994 deactivate_slab(s, c->page, c->freelist);
1996 c->tid = next_tid(c->tid);
1997 c->page = NULL;
1998 c->freelist = NULL;
2002 * Flush cpu slab.
2004 * Called from IPI handler with interrupts disabled.
2006 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2008 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2010 if (likely(c)) {
2011 if (c->page)
2012 flush_slab(s, c);
2014 unfreeze_partials(s, c);
2018 static void flush_cpu_slab(void *d)
2020 struct kmem_cache *s = d;
2022 __flush_cpu_slab(s, smp_processor_id());
2025 static bool has_cpu_slab(int cpu, void *info)
2027 struct kmem_cache *s = info;
2028 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2030 return c->page || c->partial;
2033 static void flush_all(struct kmem_cache *s)
2035 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2039 * Check if the objects in a per cpu structure fit numa
2040 * locality expectations.
2042 static inline int node_match(struct page *page, int node)
2044 #ifdef CONFIG_NUMA
2045 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2046 return 0;
2047 #endif
2048 return 1;
2051 static int count_free(struct page *page)
2053 return page->objects - page->inuse;
2056 static unsigned long count_partial(struct kmem_cache_node *n,
2057 int (*get_count)(struct page *))
2059 unsigned long flags;
2060 unsigned long x = 0;
2061 struct page *page;
2063 spin_lock_irqsave(&n->list_lock, flags);
2064 list_for_each_entry(page, &n->partial, lru)
2065 x += get_count(page);
2066 spin_unlock_irqrestore(&n->list_lock, flags);
2067 return x;
2070 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2072 #ifdef CONFIG_SLUB_DEBUG
2073 return atomic_long_read(&n->total_objects);
2074 #else
2075 return 0;
2076 #endif
2079 static noinline void
2080 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2082 int node;
2084 printk(KERN_WARNING
2085 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2086 nid, gfpflags);
2087 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2088 "default order: %d, min order: %d\n", s->name, s->object_size,
2089 s->size, oo_order(s->oo), oo_order(s->min));
2091 if (oo_order(s->min) > get_order(s->object_size))
2092 printk(KERN_WARNING " %s debugging increased min order, use "
2093 "slub_debug=O to disable.\n", s->name);
2095 for_each_online_node(node) {
2096 struct kmem_cache_node *n = get_node(s, node);
2097 unsigned long nr_slabs;
2098 unsigned long nr_objs;
2099 unsigned long nr_free;
2101 if (!n)
2102 continue;
2104 nr_free = count_partial(n, count_free);
2105 nr_slabs = node_nr_slabs(n);
2106 nr_objs = node_nr_objs(n);
2108 printk(KERN_WARNING
2109 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2110 node, nr_slabs, nr_objs, nr_free);
2114 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2115 int node, struct kmem_cache_cpu **pc)
2117 void *freelist;
2118 struct kmem_cache_cpu *c = *pc;
2119 struct page *page;
2121 freelist = get_partial(s, flags, node, c);
2123 if (freelist)
2124 return freelist;
2126 page = new_slab(s, flags, node);
2127 if (page) {
2128 c = __this_cpu_ptr(s->cpu_slab);
2129 if (c->page)
2130 flush_slab(s, c);
2133 * No other reference to the page yet so we can
2134 * muck around with it freely without cmpxchg
2136 freelist = page->freelist;
2137 page->freelist = NULL;
2139 stat(s, ALLOC_SLAB);
2140 c->page = page;
2141 *pc = c;
2142 } else
2143 freelist = NULL;
2145 return freelist;
2148 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2150 if (unlikely(PageSlabPfmemalloc(page)))
2151 return gfp_pfmemalloc_allowed(gfpflags);
2153 return true;
2157 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2158 * or deactivate the page.
2160 * The page is still frozen if the return value is not NULL.
2162 * If this function returns NULL then the page has been unfrozen.
2164 * This function must be called with interrupt disabled.
2166 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2168 struct page new;
2169 unsigned long counters;
2170 void *freelist;
2172 do {
2173 freelist = page->freelist;
2174 counters = page->counters;
2176 new.counters = counters;
2177 VM_BUG_ON(!new.frozen);
2179 new.inuse = page->objects;
2180 new.frozen = freelist != NULL;
2182 } while (!__cmpxchg_double_slab(s, page,
2183 freelist, counters,
2184 NULL, new.counters,
2185 "get_freelist"));
2187 return freelist;
2191 * Slow path. The lockless freelist is empty or we need to perform
2192 * debugging duties.
2194 * Processing is still very fast if new objects have been freed to the
2195 * regular freelist. In that case we simply take over the regular freelist
2196 * as the lockless freelist and zap the regular freelist.
2198 * If that is not working then we fall back to the partial lists. We take the
2199 * first element of the freelist as the object to allocate now and move the
2200 * rest of the freelist to the lockless freelist.
2202 * And if we were unable to get a new slab from the partial slab lists then
2203 * we need to allocate a new slab. This is the slowest path since it involves
2204 * a call to the page allocator and the setup of a new slab.
2206 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2207 unsigned long addr, struct kmem_cache_cpu *c)
2209 void *freelist;
2210 struct page *page;
2211 unsigned long flags;
2213 local_irq_save(flags);
2214 #ifdef CONFIG_PREEMPT
2216 * We may have been preempted and rescheduled on a different
2217 * cpu before disabling interrupts. Need to reload cpu area
2218 * pointer.
2220 c = this_cpu_ptr(s->cpu_slab);
2221 #endif
2223 page = c->page;
2224 if (!page)
2225 goto new_slab;
2226 redo:
2228 if (unlikely(!node_match(page, node))) {
2229 stat(s, ALLOC_NODE_MISMATCH);
2230 deactivate_slab(s, page, c->freelist);
2231 c->page = NULL;
2232 c->freelist = NULL;
2233 goto new_slab;
2237 * By rights, we should be searching for a slab page that was
2238 * PFMEMALLOC but right now, we are losing the pfmemalloc
2239 * information when the page leaves the per-cpu allocator
2241 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2242 deactivate_slab(s, page, c->freelist);
2243 c->page = NULL;
2244 c->freelist = NULL;
2245 goto new_slab;
2248 /* must check again c->freelist in case of cpu migration or IRQ */
2249 freelist = c->freelist;
2250 if (freelist)
2251 goto load_freelist;
2253 stat(s, ALLOC_SLOWPATH);
2255 freelist = get_freelist(s, page);
2257 if (!freelist) {
2258 c->page = NULL;
2259 stat(s, DEACTIVATE_BYPASS);
2260 goto new_slab;
2263 stat(s, ALLOC_REFILL);
2265 load_freelist:
2267 * freelist is pointing to the list of objects to be used.
2268 * page is pointing to the page from which the objects are obtained.
2269 * That page must be frozen for per cpu allocations to work.
2271 VM_BUG_ON(!c->page->frozen);
2272 c->freelist = get_freepointer(s, freelist);
2273 c->tid = next_tid(c->tid);
2274 local_irq_restore(flags);
2275 return freelist;
2277 new_slab:
2279 if (c->partial) {
2280 page = c->page = c->partial;
2281 c->partial = page->next;
2282 stat(s, CPU_PARTIAL_ALLOC);
2283 c->freelist = NULL;
2284 goto redo;
2287 freelist = new_slab_objects(s, gfpflags, node, &c);
2289 if (unlikely(!freelist)) {
2290 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2291 slab_out_of_memory(s, gfpflags, node);
2293 local_irq_restore(flags);
2294 return NULL;
2297 page = c->page;
2298 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2299 goto load_freelist;
2301 /* Only entered in the debug case */
2302 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2303 goto new_slab; /* Slab failed checks. Next slab needed */
2305 deactivate_slab(s, page, get_freepointer(s, freelist));
2306 c->page = NULL;
2307 c->freelist = NULL;
2308 local_irq_restore(flags);
2309 return freelist;
2313 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2314 * have the fastpath folded into their functions. So no function call
2315 * overhead for requests that can be satisfied on the fastpath.
2317 * The fastpath works by first checking if the lockless freelist can be used.
2318 * If not then __slab_alloc is called for slow processing.
2320 * Otherwise we can simply pick the next object from the lockless free list.
2322 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2323 gfp_t gfpflags, int node, unsigned long addr)
2325 void **object;
2326 struct kmem_cache_cpu *c;
2327 struct page *page;
2328 unsigned long tid;
2330 if (slab_pre_alloc_hook(s, gfpflags))
2331 return NULL;
2333 s = memcg_kmem_get_cache(s, gfpflags);
2334 redo:
2337 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2338 * enabled. We may switch back and forth between cpus while
2339 * reading from one cpu area. That does not matter as long
2340 * as we end up on the original cpu again when doing the cmpxchg.
2342 c = __this_cpu_ptr(s->cpu_slab);
2345 * The transaction ids are globally unique per cpu and per operation on
2346 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2347 * occurs on the right processor and that there was no operation on the
2348 * linked list in between.
2350 tid = c->tid;
2351 barrier();
2353 object = c->freelist;
2354 page = c->page;
2355 if (unlikely(!object || !node_match(page, node)))
2356 object = __slab_alloc(s, gfpflags, node, addr, c);
2358 else {
2359 void *next_object = get_freepointer_safe(s, object);
2362 * The cmpxchg will only match if there was no additional
2363 * operation and if we are on the right processor.
2365 * The cmpxchg does the following atomically (without lock semantics!)
2366 * 1. Relocate first pointer to the current per cpu area.
2367 * 2. Verify that tid and freelist have not been changed
2368 * 3. If they were not changed replace tid and freelist
2370 * Since this is without lock semantics the protection is only against
2371 * code executing on this cpu *not* from access by other cpus.
2373 if (unlikely(!this_cpu_cmpxchg_double(
2374 s->cpu_slab->freelist, s->cpu_slab->tid,
2375 object, tid,
2376 next_object, next_tid(tid)))) {
2378 note_cmpxchg_failure("slab_alloc", s, tid);
2379 goto redo;
2381 prefetch_freepointer(s, next_object);
2382 stat(s, ALLOC_FASTPATH);
2385 if (unlikely(gfpflags & __GFP_ZERO) && object)
2386 memset(object, 0, s->object_size);
2388 slab_post_alloc_hook(s, gfpflags, object);
2390 return object;
2393 static __always_inline void *slab_alloc(struct kmem_cache *s,
2394 gfp_t gfpflags, unsigned long addr)
2396 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2399 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2401 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2403 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2405 return ret;
2407 EXPORT_SYMBOL(kmem_cache_alloc);
2409 #ifdef CONFIG_TRACING
2410 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2412 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2413 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2414 return ret;
2416 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2418 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2420 void *ret = kmalloc_order(size, flags, order);
2421 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2422 return ret;
2424 EXPORT_SYMBOL(kmalloc_order_trace);
2425 #endif
2427 #ifdef CONFIG_NUMA
2428 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2430 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2432 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2433 s->object_size, s->size, gfpflags, node);
2435 return ret;
2437 EXPORT_SYMBOL(kmem_cache_alloc_node);
2439 #ifdef CONFIG_TRACING
2440 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2441 gfp_t gfpflags,
2442 int node, size_t size)
2444 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2446 trace_kmalloc_node(_RET_IP_, ret,
2447 size, s->size, gfpflags, node);
2448 return ret;
2450 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2451 #endif
2452 #endif
2455 * Slow patch handling. This may still be called frequently since objects
2456 * have a longer lifetime than the cpu slabs in most processing loads.
2458 * So we still attempt to reduce cache line usage. Just take the slab
2459 * lock and free the item. If there is no additional partial page
2460 * handling required then we can return immediately.
2462 static void __slab_free(struct kmem_cache *s, struct page *page,
2463 void *x, unsigned long addr)
2465 void *prior;
2466 void **object = (void *)x;
2467 int was_frozen;
2468 struct page new;
2469 unsigned long counters;
2470 struct kmem_cache_node *n = NULL;
2471 unsigned long uninitialized_var(flags);
2473 stat(s, FREE_SLOWPATH);
2475 if (kmem_cache_debug(s) &&
2476 !(n = free_debug_processing(s, page, x, addr, &flags)))
2477 return;
2479 do {
2480 if (unlikely(n)) {
2481 spin_unlock_irqrestore(&n->list_lock, flags);
2482 n = NULL;
2484 prior = page->freelist;
2485 counters = page->counters;
2486 set_freepointer(s, object, prior);
2487 new.counters = counters;
2488 was_frozen = new.frozen;
2489 new.inuse--;
2490 if ((!new.inuse || !prior) && !was_frozen) {
2492 if (!kmem_cache_debug(s) && !prior)
2495 * Slab was on no list before and will be partially empty
2496 * We can defer the list move and instead freeze it.
2498 new.frozen = 1;
2500 else { /* Needs to be taken off a list */
2502 n = get_node(s, page_to_nid(page));
2504 * Speculatively acquire the list_lock.
2505 * If the cmpxchg does not succeed then we may
2506 * drop the list_lock without any processing.
2508 * Otherwise the list_lock will synchronize with
2509 * other processors updating the list of slabs.
2511 spin_lock_irqsave(&n->list_lock, flags);
2516 } while (!cmpxchg_double_slab(s, page,
2517 prior, counters,
2518 object, new.counters,
2519 "__slab_free"));
2521 if (likely(!n)) {
2524 * If we just froze the page then put it onto the
2525 * per cpu partial list.
2527 if (new.frozen && !was_frozen) {
2528 put_cpu_partial(s, page, 1);
2529 stat(s, CPU_PARTIAL_FREE);
2532 * The list lock was not taken therefore no list
2533 * activity can be necessary.
2535 if (was_frozen)
2536 stat(s, FREE_FROZEN);
2537 return;
2540 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2541 goto slab_empty;
2544 * Objects left in the slab. If it was not on the partial list before
2545 * then add it.
2547 if (kmem_cache_debug(s) && unlikely(!prior)) {
2548 remove_full(s, page);
2549 add_partial(n, page, DEACTIVATE_TO_TAIL);
2550 stat(s, FREE_ADD_PARTIAL);
2552 spin_unlock_irqrestore(&n->list_lock, flags);
2553 return;
2555 slab_empty:
2556 if (prior) {
2558 * Slab on the partial list.
2560 remove_partial(n, page);
2561 stat(s, FREE_REMOVE_PARTIAL);
2562 } else
2563 /* Slab must be on the full list */
2564 remove_full(s, page);
2566 spin_unlock_irqrestore(&n->list_lock, flags);
2567 stat(s, FREE_SLAB);
2568 discard_slab(s, page);
2572 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2573 * can perform fastpath freeing without additional function calls.
2575 * The fastpath is only possible if we are freeing to the current cpu slab
2576 * of this processor. This typically the case if we have just allocated
2577 * the item before.
2579 * If fastpath is not possible then fall back to __slab_free where we deal
2580 * with all sorts of special processing.
2582 static __always_inline void slab_free(struct kmem_cache *s,
2583 struct page *page, void *x, unsigned long addr)
2585 void **object = (void *)x;
2586 struct kmem_cache_cpu *c;
2587 unsigned long tid;
2589 slab_free_hook(s, x);
2591 redo:
2593 * Determine the currently cpus per cpu slab.
2594 * The cpu may change afterward. However that does not matter since
2595 * data is retrieved via this pointer. If we are on the same cpu
2596 * during the cmpxchg then the free will succedd.
2598 c = __this_cpu_ptr(s->cpu_slab);
2600 tid = c->tid;
2601 barrier();
2603 if (likely(page == c->page)) {
2604 set_freepointer(s, object, c->freelist);
2606 if (unlikely(!this_cpu_cmpxchg_double(
2607 s->cpu_slab->freelist, s->cpu_slab->tid,
2608 c->freelist, tid,
2609 object, next_tid(tid)))) {
2611 note_cmpxchg_failure("slab_free", s, tid);
2612 goto redo;
2614 stat(s, FREE_FASTPATH);
2615 } else
2616 __slab_free(s, page, x, addr);
2620 void kmem_cache_free(struct kmem_cache *s, void *x)
2622 s = cache_from_obj(s, x);
2623 if (!s)
2624 return;
2625 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2626 trace_kmem_cache_free(_RET_IP_, x);
2628 EXPORT_SYMBOL(kmem_cache_free);
2631 * Object placement in a slab is made very easy because we always start at
2632 * offset 0. If we tune the size of the object to the alignment then we can
2633 * get the required alignment by putting one properly sized object after
2634 * another.
2636 * Notice that the allocation order determines the sizes of the per cpu
2637 * caches. Each processor has always one slab available for allocations.
2638 * Increasing the allocation order reduces the number of times that slabs
2639 * must be moved on and off the partial lists and is therefore a factor in
2640 * locking overhead.
2644 * Mininum / Maximum order of slab pages. This influences locking overhead
2645 * and slab fragmentation. A higher order reduces the number of partial slabs
2646 * and increases the number of allocations possible without having to
2647 * take the list_lock.
2649 static int slub_min_order;
2650 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2651 static int slub_min_objects;
2654 * Merge control. If this is set then no merging of slab caches will occur.
2655 * (Could be removed. This was introduced to pacify the merge skeptics.)
2657 static int slub_nomerge;
2660 * Calculate the order of allocation given an slab object size.
2662 * The order of allocation has significant impact on performance and other
2663 * system components. Generally order 0 allocations should be preferred since
2664 * order 0 does not cause fragmentation in the page allocator. Larger objects
2665 * be problematic to put into order 0 slabs because there may be too much
2666 * unused space left. We go to a higher order if more than 1/16th of the slab
2667 * would be wasted.
2669 * In order to reach satisfactory performance we must ensure that a minimum
2670 * number of objects is in one slab. Otherwise we may generate too much
2671 * activity on the partial lists which requires taking the list_lock. This is
2672 * less a concern for large slabs though which are rarely used.
2674 * slub_max_order specifies the order where we begin to stop considering the
2675 * number of objects in a slab as critical. If we reach slub_max_order then
2676 * we try to keep the page order as low as possible. So we accept more waste
2677 * of space in favor of a small page order.
2679 * Higher order allocations also allow the placement of more objects in a
2680 * slab and thereby reduce object handling overhead. If the user has
2681 * requested a higher mininum order then we start with that one instead of
2682 * the smallest order which will fit the object.
2684 static inline int slab_order(int size, int min_objects,
2685 int max_order, int fract_leftover, int reserved)
2687 int order;
2688 int rem;
2689 int min_order = slub_min_order;
2691 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2692 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2694 for (order = max(min_order,
2695 fls(min_objects * size - 1) - PAGE_SHIFT);
2696 order <= max_order; order++) {
2698 unsigned long slab_size = PAGE_SIZE << order;
2700 if (slab_size < min_objects * size + reserved)
2701 continue;
2703 rem = (slab_size - reserved) % size;
2705 if (rem <= slab_size / fract_leftover)
2706 break;
2710 return order;
2713 static inline int calculate_order(int size, int reserved)
2715 int order;
2716 int min_objects;
2717 int fraction;
2718 int max_objects;
2721 * Attempt to find best configuration for a slab. This
2722 * works by first attempting to generate a layout with
2723 * the best configuration and backing off gradually.
2725 * First we reduce the acceptable waste in a slab. Then
2726 * we reduce the minimum objects required in a slab.
2728 min_objects = slub_min_objects;
2729 if (!min_objects)
2730 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2731 max_objects = order_objects(slub_max_order, size, reserved);
2732 min_objects = min(min_objects, max_objects);
2734 while (min_objects > 1) {
2735 fraction = 16;
2736 while (fraction >= 4) {
2737 order = slab_order(size, min_objects,
2738 slub_max_order, fraction, reserved);
2739 if (order <= slub_max_order)
2740 return order;
2741 fraction /= 2;
2743 min_objects--;
2747 * We were unable to place multiple objects in a slab. Now
2748 * lets see if we can place a single object there.
2750 order = slab_order(size, 1, slub_max_order, 1, reserved);
2751 if (order <= slub_max_order)
2752 return order;
2755 * Doh this slab cannot be placed using slub_max_order.
2757 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2758 if (order < MAX_ORDER)
2759 return order;
2760 return -ENOSYS;
2763 static void
2764 init_kmem_cache_node(struct kmem_cache_node *n)
2766 n->nr_partial = 0;
2767 spin_lock_init(&n->list_lock);
2768 INIT_LIST_HEAD(&n->partial);
2769 #ifdef CONFIG_SLUB_DEBUG
2770 atomic_long_set(&n->nr_slabs, 0);
2771 atomic_long_set(&n->total_objects, 0);
2772 INIT_LIST_HEAD(&n->full);
2773 #endif
2776 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2778 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2779 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2782 * Must align to double word boundary for the double cmpxchg
2783 * instructions to work; see __pcpu_double_call_return_bool().
2785 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2786 2 * sizeof(void *));
2788 if (!s->cpu_slab)
2789 return 0;
2791 init_kmem_cache_cpus(s);
2793 return 1;
2796 static struct kmem_cache *kmem_cache_node;
2799 * No kmalloc_node yet so do it by hand. We know that this is the first
2800 * slab on the node for this slabcache. There are no concurrent accesses
2801 * possible.
2803 * Note that this function only works on the kmalloc_node_cache
2804 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2805 * memory on a fresh node that has no slab structures yet.
2807 static void early_kmem_cache_node_alloc(int node)
2809 struct page *page;
2810 struct kmem_cache_node *n;
2812 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2814 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2816 BUG_ON(!page);
2817 if (page_to_nid(page) != node) {
2818 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2819 "node %d\n", node);
2820 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2821 "in order to be able to continue\n");
2824 n = page->freelist;
2825 BUG_ON(!n);
2826 page->freelist = get_freepointer(kmem_cache_node, n);
2827 page->inuse = 1;
2828 page->frozen = 0;
2829 kmem_cache_node->node[node] = n;
2830 #ifdef CONFIG_SLUB_DEBUG
2831 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2832 init_tracking(kmem_cache_node, n);
2833 #endif
2834 init_kmem_cache_node(n);
2835 inc_slabs_node(kmem_cache_node, node, page->objects);
2837 add_partial(n, page, DEACTIVATE_TO_HEAD);
2840 static void free_kmem_cache_nodes(struct kmem_cache *s)
2842 int node;
2844 for_each_node_state(node, N_NORMAL_MEMORY) {
2845 struct kmem_cache_node *n = s->node[node];
2847 if (n)
2848 kmem_cache_free(kmem_cache_node, n);
2850 s->node[node] = NULL;
2854 static int init_kmem_cache_nodes(struct kmem_cache *s)
2856 int node;
2858 for_each_node_state(node, N_NORMAL_MEMORY) {
2859 struct kmem_cache_node *n;
2861 if (slab_state == DOWN) {
2862 early_kmem_cache_node_alloc(node);
2863 continue;
2865 n = kmem_cache_alloc_node(kmem_cache_node,
2866 GFP_KERNEL, node);
2868 if (!n) {
2869 free_kmem_cache_nodes(s);
2870 return 0;
2873 s->node[node] = n;
2874 init_kmem_cache_node(n);
2876 return 1;
2879 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2881 if (min < MIN_PARTIAL)
2882 min = MIN_PARTIAL;
2883 else if (min > MAX_PARTIAL)
2884 min = MAX_PARTIAL;
2885 s->min_partial = min;
2889 * calculate_sizes() determines the order and the distribution of data within
2890 * a slab object.
2892 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2894 unsigned long flags = s->flags;
2895 unsigned long size = s->object_size;
2896 int order;
2899 * Round up object size to the next word boundary. We can only
2900 * place the free pointer at word boundaries and this determines
2901 * the possible location of the free pointer.
2903 size = ALIGN(size, sizeof(void *));
2905 #ifdef CONFIG_SLUB_DEBUG
2907 * Determine if we can poison the object itself. If the user of
2908 * the slab may touch the object after free or before allocation
2909 * then we should never poison the object itself.
2911 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2912 !s->ctor)
2913 s->flags |= __OBJECT_POISON;
2914 else
2915 s->flags &= ~__OBJECT_POISON;
2919 * If we are Redzoning then check if there is some space between the
2920 * end of the object and the free pointer. If not then add an
2921 * additional word to have some bytes to store Redzone information.
2923 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2924 size += sizeof(void *);
2925 #endif
2928 * With that we have determined the number of bytes in actual use
2929 * by the object. This is the potential offset to the free pointer.
2931 s->inuse = size;
2933 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2934 s->ctor)) {
2936 * Relocate free pointer after the object if it is not
2937 * permitted to overwrite the first word of the object on
2938 * kmem_cache_free.
2940 * This is the case if we do RCU, have a constructor or
2941 * destructor or are poisoning the objects.
2943 s->offset = size;
2944 size += sizeof(void *);
2947 #ifdef CONFIG_SLUB_DEBUG
2948 if (flags & SLAB_STORE_USER)
2950 * Need to store information about allocs and frees after
2951 * the object.
2953 size += 2 * sizeof(struct track);
2955 if (flags & SLAB_RED_ZONE)
2957 * Add some empty padding so that we can catch
2958 * overwrites from earlier objects rather than let
2959 * tracking information or the free pointer be
2960 * corrupted if a user writes before the start
2961 * of the object.
2963 size += sizeof(void *);
2964 #endif
2967 * SLUB stores one object immediately after another beginning from
2968 * offset 0. In order to align the objects we have to simply size
2969 * each object to conform to the alignment.
2971 size = ALIGN(size, s->align);
2972 s->size = size;
2973 if (forced_order >= 0)
2974 order = forced_order;
2975 else
2976 order = calculate_order(size, s->reserved);
2978 if (order < 0)
2979 return 0;
2981 s->allocflags = 0;
2982 if (order)
2983 s->allocflags |= __GFP_COMP;
2985 if (s->flags & SLAB_CACHE_DMA)
2986 s->allocflags |= SLUB_DMA;
2988 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2989 s->allocflags |= __GFP_RECLAIMABLE;
2992 * Determine the number of objects per slab
2994 s->oo = oo_make(order, size, s->reserved);
2995 s->min = oo_make(get_order(size), size, s->reserved);
2996 if (oo_objects(s->oo) > oo_objects(s->max))
2997 s->max = s->oo;
2999 return !!oo_objects(s->oo);
3002 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3004 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3005 s->reserved = 0;
3007 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3008 s->reserved = sizeof(struct rcu_head);
3010 if (!calculate_sizes(s, -1))
3011 goto error;
3012 if (disable_higher_order_debug) {
3014 * Disable debugging flags that store metadata if the min slab
3015 * order increased.
3017 if (get_order(s->size) > get_order(s->object_size)) {
3018 s->flags &= ~DEBUG_METADATA_FLAGS;
3019 s->offset = 0;
3020 if (!calculate_sizes(s, -1))
3021 goto error;
3025 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3026 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3027 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3028 /* Enable fast mode */
3029 s->flags |= __CMPXCHG_DOUBLE;
3030 #endif
3033 * The larger the object size is, the more pages we want on the partial
3034 * list to avoid pounding the page allocator excessively.
3036 set_min_partial(s, ilog2(s->size) / 2);
3039 * cpu_partial determined the maximum number of objects kept in the
3040 * per cpu partial lists of a processor.
3042 * Per cpu partial lists mainly contain slabs that just have one
3043 * object freed. If they are used for allocation then they can be
3044 * filled up again with minimal effort. The slab will never hit the
3045 * per node partial lists and therefore no locking will be required.
3047 * This setting also determines
3049 * A) The number of objects from per cpu partial slabs dumped to the
3050 * per node list when we reach the limit.
3051 * B) The number of objects in cpu partial slabs to extract from the
3052 * per node list when we run out of per cpu objects. We only fetch 50%
3053 * to keep some capacity around for frees.
3055 if (kmem_cache_debug(s))
3056 s->cpu_partial = 0;
3057 else if (s->size >= PAGE_SIZE)
3058 s->cpu_partial = 2;
3059 else if (s->size >= 1024)
3060 s->cpu_partial = 6;
3061 else if (s->size >= 256)
3062 s->cpu_partial = 13;
3063 else
3064 s->cpu_partial = 30;
3066 #ifdef CONFIG_NUMA
3067 s->remote_node_defrag_ratio = 1000;
3068 #endif
3069 if (!init_kmem_cache_nodes(s))
3070 goto error;
3072 if (alloc_kmem_cache_cpus(s))
3073 return 0;
3075 free_kmem_cache_nodes(s);
3076 error:
3077 if (flags & SLAB_PANIC)
3078 panic("Cannot create slab %s size=%lu realsize=%u "
3079 "order=%u offset=%u flags=%lx\n",
3080 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3081 s->offset, flags);
3082 return -EINVAL;
3085 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3086 const char *text)
3088 #ifdef CONFIG_SLUB_DEBUG
3089 void *addr = page_address(page);
3090 void *p;
3091 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3092 sizeof(long), GFP_ATOMIC);
3093 if (!map)
3094 return;
3095 slab_err(s, page, text, s->name);
3096 slab_lock(page);
3098 get_map(s, page, map);
3099 for_each_object(p, s, addr, page->objects) {
3101 if (!test_bit(slab_index(p, s, addr), map)) {
3102 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3103 p, p - addr);
3104 print_tracking(s, p);
3107 slab_unlock(page);
3108 kfree(map);
3109 #endif
3113 * Attempt to free all partial slabs on a node.
3114 * This is called from kmem_cache_close(). We must be the last thread
3115 * using the cache and therefore we do not need to lock anymore.
3117 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3119 struct page *page, *h;
3121 list_for_each_entry_safe(page, h, &n->partial, lru) {
3122 if (!page->inuse) {
3123 remove_partial(n, page);
3124 discard_slab(s, page);
3125 } else {
3126 list_slab_objects(s, page,
3127 "Objects remaining in %s on kmem_cache_close()");
3133 * Release all resources used by a slab cache.
3135 static inline int kmem_cache_close(struct kmem_cache *s)
3137 int node;
3139 flush_all(s);
3140 /* Attempt to free all objects */
3141 for_each_node_state(node, N_NORMAL_MEMORY) {
3142 struct kmem_cache_node *n = get_node(s, node);
3144 free_partial(s, n);
3145 if (n->nr_partial || slabs_node(s, node))
3146 return 1;
3148 free_percpu(s->cpu_slab);
3149 free_kmem_cache_nodes(s);
3150 return 0;
3153 int __kmem_cache_shutdown(struct kmem_cache *s)
3155 int rc = kmem_cache_close(s);
3157 if (!rc) {
3159 * We do the same lock strategy around sysfs_slab_add, see
3160 * __kmem_cache_create. Because this is pretty much the last
3161 * operation we do and the lock will be released shortly after
3162 * that in slab_common.c, we could just move sysfs_slab_remove
3163 * to a later point in common code. We should do that when we
3164 * have a common sysfs framework for all allocators.
3166 mutex_unlock(&slab_mutex);
3167 sysfs_slab_remove(s);
3168 mutex_lock(&slab_mutex);
3171 return rc;
3174 /********************************************************************
3175 * Kmalloc subsystem
3176 *******************************************************************/
3178 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
3179 EXPORT_SYMBOL(kmalloc_caches);
3181 #ifdef CONFIG_ZONE_DMA
3182 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3183 #endif
3185 static int __init setup_slub_min_order(char *str)
3187 get_option(&str, &slub_min_order);
3189 return 1;
3192 __setup("slub_min_order=", setup_slub_min_order);
3194 static int __init setup_slub_max_order(char *str)
3196 get_option(&str, &slub_max_order);
3197 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3199 return 1;
3202 __setup("slub_max_order=", setup_slub_max_order);
3204 static int __init setup_slub_min_objects(char *str)
3206 get_option(&str, &slub_min_objects);
3208 return 1;
3211 __setup("slub_min_objects=", setup_slub_min_objects);
3213 static int __init setup_slub_nomerge(char *str)
3215 slub_nomerge = 1;
3216 return 1;
3219 __setup("slub_nomerge", setup_slub_nomerge);
3222 * Conversion table for small slabs sizes / 8 to the index in the
3223 * kmalloc array. This is necessary for slabs < 192 since we have non power
3224 * of two cache sizes there. The size of larger slabs can be determined using
3225 * fls.
3227 static s8 size_index[24] = {
3228 3, /* 8 */
3229 4, /* 16 */
3230 5, /* 24 */
3231 5, /* 32 */
3232 6, /* 40 */
3233 6, /* 48 */
3234 6, /* 56 */
3235 6, /* 64 */
3236 1, /* 72 */
3237 1, /* 80 */
3238 1, /* 88 */
3239 1, /* 96 */
3240 7, /* 104 */
3241 7, /* 112 */
3242 7, /* 120 */
3243 7, /* 128 */
3244 2, /* 136 */
3245 2, /* 144 */
3246 2, /* 152 */
3247 2, /* 160 */
3248 2, /* 168 */
3249 2, /* 176 */
3250 2, /* 184 */
3251 2 /* 192 */
3254 static inline int size_index_elem(size_t bytes)
3256 return (bytes - 1) / 8;
3259 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3261 int index;
3263 if (size <= 192) {
3264 if (!size)
3265 return ZERO_SIZE_PTR;
3267 index = size_index[size_index_elem(size)];
3268 } else
3269 index = fls(size - 1);
3271 #ifdef CONFIG_ZONE_DMA
3272 if (unlikely((flags & SLUB_DMA)))
3273 return kmalloc_dma_caches[index];
3275 #endif
3276 return kmalloc_caches[index];
3279 void *__kmalloc(size_t size, gfp_t flags)
3281 struct kmem_cache *s;
3282 void *ret;
3284 if (unlikely(size > SLUB_MAX_SIZE))
3285 return kmalloc_large(size, flags);
3287 s = get_slab(size, flags);
3289 if (unlikely(ZERO_OR_NULL_PTR(s)))
3290 return s;
3292 ret = slab_alloc(s, flags, _RET_IP_);
3294 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3296 return ret;
3298 EXPORT_SYMBOL(__kmalloc);
3300 #ifdef CONFIG_NUMA
3301 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3303 struct page *page;
3304 void *ptr = NULL;
3306 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3307 page = alloc_pages_node(node, flags, get_order(size));
3308 if (page)
3309 ptr = page_address(page);
3311 kmemleak_alloc(ptr, size, 1, flags);
3312 return ptr;
3315 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3317 struct kmem_cache *s;
3318 void *ret;
3320 if (unlikely(size > SLUB_MAX_SIZE)) {
3321 ret = kmalloc_large_node(size, flags, node);
3323 trace_kmalloc_node(_RET_IP_, ret,
3324 size, PAGE_SIZE << get_order(size),
3325 flags, node);
3327 return ret;
3330 s = get_slab(size, flags);
3332 if (unlikely(ZERO_OR_NULL_PTR(s)))
3333 return s;
3335 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3337 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3339 return ret;
3341 EXPORT_SYMBOL(__kmalloc_node);
3342 #endif
3344 size_t ksize(const void *object)
3346 struct page *page;
3348 if (unlikely(object == ZERO_SIZE_PTR))
3349 return 0;
3351 page = virt_to_head_page(object);
3353 if (unlikely(!PageSlab(page))) {
3354 WARN_ON(!PageCompound(page));
3355 return PAGE_SIZE << compound_order(page);
3358 return slab_ksize(page->slab_cache);
3360 EXPORT_SYMBOL(ksize);
3362 #ifdef CONFIG_SLUB_DEBUG
3363 bool verify_mem_not_deleted(const void *x)
3365 struct page *page;
3366 void *object = (void *)x;
3367 unsigned long flags;
3368 bool rv;
3370 if (unlikely(ZERO_OR_NULL_PTR(x)))
3371 return false;
3373 local_irq_save(flags);
3375 page = virt_to_head_page(x);
3376 if (unlikely(!PageSlab(page))) {
3377 /* maybe it was from stack? */
3378 rv = true;
3379 goto out_unlock;
3382 slab_lock(page);
3383 if (on_freelist(page->slab_cache, page, object)) {
3384 object_err(page->slab_cache, page, object, "Object is on free-list");
3385 rv = false;
3386 } else {
3387 rv = true;
3389 slab_unlock(page);
3391 out_unlock:
3392 local_irq_restore(flags);
3393 return rv;
3395 EXPORT_SYMBOL(verify_mem_not_deleted);
3396 #endif
3398 void kfree(const void *x)
3400 struct page *page;
3401 void *object = (void *)x;
3403 trace_kfree(_RET_IP_, x);
3405 if (unlikely(ZERO_OR_NULL_PTR(x)))
3406 return;
3408 page = virt_to_head_page(x);
3409 if (unlikely(!PageSlab(page))) {
3410 BUG_ON(!PageCompound(page));
3411 kmemleak_free(x);
3412 __free_memcg_kmem_pages(page, compound_order(page));
3413 return;
3415 slab_free(page->slab_cache, page, object, _RET_IP_);
3417 EXPORT_SYMBOL(kfree);
3420 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3421 * the remaining slabs by the number of items in use. The slabs with the
3422 * most items in use come first. New allocations will then fill those up
3423 * and thus they can be removed from the partial lists.
3425 * The slabs with the least items are placed last. This results in them
3426 * being allocated from last increasing the chance that the last objects
3427 * are freed in them.
3429 int kmem_cache_shrink(struct kmem_cache *s)
3431 int node;
3432 int i;
3433 struct kmem_cache_node *n;
3434 struct page *page;
3435 struct page *t;
3436 int objects = oo_objects(s->max);
3437 struct list_head *slabs_by_inuse =
3438 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3439 unsigned long flags;
3441 if (!slabs_by_inuse)
3442 return -ENOMEM;
3444 flush_all(s);
3445 for_each_node_state(node, N_NORMAL_MEMORY) {
3446 n = get_node(s, node);
3448 if (!n->nr_partial)
3449 continue;
3451 for (i = 0; i < objects; i++)
3452 INIT_LIST_HEAD(slabs_by_inuse + i);
3454 spin_lock_irqsave(&n->list_lock, flags);
3457 * Build lists indexed by the items in use in each slab.
3459 * Note that concurrent frees may occur while we hold the
3460 * list_lock. page->inuse here is the upper limit.
3462 list_for_each_entry_safe(page, t, &n->partial, lru) {
3463 list_move(&page->lru, slabs_by_inuse + page->inuse);
3464 if (!page->inuse)
3465 n->nr_partial--;
3469 * Rebuild the partial list with the slabs filled up most
3470 * first and the least used slabs at the end.
3472 for (i = objects - 1; i > 0; i--)
3473 list_splice(slabs_by_inuse + i, n->partial.prev);
3475 spin_unlock_irqrestore(&n->list_lock, flags);
3477 /* Release empty slabs */
3478 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3479 discard_slab(s, page);
3482 kfree(slabs_by_inuse);
3483 return 0;
3485 EXPORT_SYMBOL(kmem_cache_shrink);
3487 static int slab_mem_going_offline_callback(void *arg)
3489 struct kmem_cache *s;
3491 mutex_lock(&slab_mutex);
3492 list_for_each_entry(s, &slab_caches, list)
3493 kmem_cache_shrink(s);
3494 mutex_unlock(&slab_mutex);
3496 return 0;
3499 static void slab_mem_offline_callback(void *arg)
3501 struct kmem_cache_node *n;
3502 struct kmem_cache *s;
3503 struct memory_notify *marg = arg;
3504 int offline_node;
3506 offline_node = marg->status_change_nid_normal;
3509 * If the node still has available memory. we need kmem_cache_node
3510 * for it yet.
3512 if (offline_node < 0)
3513 return;
3515 mutex_lock(&slab_mutex);
3516 list_for_each_entry(s, &slab_caches, list) {
3517 n = get_node(s, offline_node);
3518 if (n) {
3520 * if n->nr_slabs > 0, slabs still exist on the node
3521 * that is going down. We were unable to free them,
3522 * and offline_pages() function shouldn't call this
3523 * callback. So, we must fail.
3525 BUG_ON(slabs_node(s, offline_node));
3527 s->node[offline_node] = NULL;
3528 kmem_cache_free(kmem_cache_node, n);
3531 mutex_unlock(&slab_mutex);
3534 static int slab_mem_going_online_callback(void *arg)
3536 struct kmem_cache_node *n;
3537 struct kmem_cache *s;
3538 struct memory_notify *marg = arg;
3539 int nid = marg->status_change_nid_normal;
3540 int ret = 0;
3543 * If the node's memory is already available, then kmem_cache_node is
3544 * already created. Nothing to do.
3546 if (nid < 0)
3547 return 0;
3550 * We are bringing a node online. No memory is available yet. We must
3551 * allocate a kmem_cache_node structure in order to bring the node
3552 * online.
3554 mutex_lock(&slab_mutex);
3555 list_for_each_entry(s, &slab_caches, list) {
3557 * XXX: kmem_cache_alloc_node will fallback to other nodes
3558 * since memory is not yet available from the node that
3559 * is brought up.
3561 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3562 if (!n) {
3563 ret = -ENOMEM;
3564 goto out;
3566 init_kmem_cache_node(n);
3567 s->node[nid] = n;
3569 out:
3570 mutex_unlock(&slab_mutex);
3571 return ret;
3574 static int slab_memory_callback(struct notifier_block *self,
3575 unsigned long action, void *arg)
3577 int ret = 0;
3579 switch (action) {
3580 case MEM_GOING_ONLINE:
3581 ret = slab_mem_going_online_callback(arg);
3582 break;
3583 case MEM_GOING_OFFLINE:
3584 ret = slab_mem_going_offline_callback(arg);
3585 break;
3586 case MEM_OFFLINE:
3587 case MEM_CANCEL_ONLINE:
3588 slab_mem_offline_callback(arg);
3589 break;
3590 case MEM_ONLINE:
3591 case MEM_CANCEL_OFFLINE:
3592 break;
3594 if (ret)
3595 ret = notifier_from_errno(ret);
3596 else
3597 ret = NOTIFY_OK;
3598 return ret;
3601 static struct notifier_block slab_memory_callback_nb = {
3602 .notifier_call = slab_memory_callback,
3603 .priority = SLAB_CALLBACK_PRI,
3606 /********************************************************************
3607 * Basic setup of slabs
3608 *******************************************************************/
3611 * Used for early kmem_cache structures that were allocated using
3612 * the page allocator. Allocate them properly then fix up the pointers
3613 * that may be pointing to the wrong kmem_cache structure.
3616 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3618 int node;
3619 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3621 memcpy(s, static_cache, kmem_cache->object_size);
3623 for_each_node_state(node, N_NORMAL_MEMORY) {
3624 struct kmem_cache_node *n = get_node(s, node);
3625 struct page *p;
3627 if (n) {
3628 list_for_each_entry(p, &n->partial, lru)
3629 p->slab_cache = s;
3631 #ifdef CONFIG_SLUB_DEBUG
3632 list_for_each_entry(p, &n->full, lru)
3633 p->slab_cache = s;
3634 #endif
3637 list_add(&s->list, &slab_caches);
3638 return s;
3641 void __init kmem_cache_init(void)
3643 static __initdata struct kmem_cache boot_kmem_cache,
3644 boot_kmem_cache_node;
3645 int i;
3646 int caches = 2;
3648 if (debug_guardpage_minorder())
3649 slub_max_order = 0;
3651 kmem_cache_node = &boot_kmem_cache_node;
3652 kmem_cache = &boot_kmem_cache;
3654 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3655 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3657 register_hotmemory_notifier(&slab_memory_callback_nb);
3659 /* Able to allocate the per node structures */
3660 slab_state = PARTIAL;
3662 create_boot_cache(kmem_cache, "kmem_cache",
3663 offsetof(struct kmem_cache, node) +
3664 nr_node_ids * sizeof(struct kmem_cache_node *),
3665 SLAB_HWCACHE_ALIGN);
3667 kmem_cache = bootstrap(&boot_kmem_cache);
3670 * Allocate kmem_cache_node properly from the kmem_cache slab.
3671 * kmem_cache_node is separately allocated so no need to
3672 * update any list pointers.
3674 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3676 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3679 * Patch up the size_index table if we have strange large alignment
3680 * requirements for the kmalloc array. This is only the case for
3681 * MIPS it seems. The standard arches will not generate any code here.
3683 * Largest permitted alignment is 256 bytes due to the way we
3684 * handle the index determination for the smaller caches.
3686 * Make sure that nothing crazy happens if someone starts tinkering
3687 * around with ARCH_KMALLOC_MINALIGN
3689 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3690 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3692 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3693 int elem = size_index_elem(i);
3694 if (elem >= ARRAY_SIZE(size_index))
3695 break;
3696 size_index[elem] = KMALLOC_SHIFT_LOW;
3699 if (KMALLOC_MIN_SIZE == 64) {
3701 * The 96 byte size cache is not used if the alignment
3702 * is 64 byte.
3704 for (i = 64 + 8; i <= 96; i += 8)
3705 size_index[size_index_elem(i)] = 7;
3706 } else if (KMALLOC_MIN_SIZE == 128) {
3708 * The 192 byte sized cache is not used if the alignment
3709 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3710 * instead.
3712 for (i = 128 + 8; i <= 192; i += 8)
3713 size_index[size_index_elem(i)] = 8;
3716 /* Caches that are not of the two-to-the-power-of size */
3717 if (KMALLOC_MIN_SIZE <= 32) {
3718 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3719 caches++;
3722 if (KMALLOC_MIN_SIZE <= 64) {
3723 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3724 caches++;
3727 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3728 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3729 caches++;
3732 slab_state = UP;
3734 /* Provide the correct kmalloc names now that the caches are up */
3735 if (KMALLOC_MIN_SIZE <= 32) {
3736 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3737 BUG_ON(!kmalloc_caches[1]->name);
3740 if (KMALLOC_MIN_SIZE <= 64) {
3741 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3742 BUG_ON(!kmalloc_caches[2]->name);
3745 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3746 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3748 BUG_ON(!s);
3749 kmalloc_caches[i]->name = s;
3752 #ifdef CONFIG_SMP
3753 register_cpu_notifier(&slab_notifier);
3754 #endif
3756 #ifdef CONFIG_ZONE_DMA
3757 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3758 struct kmem_cache *s = kmalloc_caches[i];
3760 if (s && s->size) {
3761 char *name = kasprintf(GFP_NOWAIT,
3762 "dma-kmalloc-%d", s->object_size);
3764 BUG_ON(!name);
3765 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3766 s->object_size, SLAB_CACHE_DMA);
3769 #endif
3770 printk(KERN_INFO
3771 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3772 " CPUs=%d, Nodes=%d\n",
3773 caches, cache_line_size(),
3774 slub_min_order, slub_max_order, slub_min_objects,
3775 nr_cpu_ids, nr_node_ids);
3778 void __init kmem_cache_init_late(void)
3783 * Find a mergeable slab cache
3785 static int slab_unmergeable(struct kmem_cache *s)
3787 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3788 return 1;
3790 if (s->ctor)
3791 return 1;
3794 * We may have set a slab to be unmergeable during bootstrap.
3796 if (s->refcount < 0)
3797 return 1;
3799 return 0;
3802 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3803 size_t align, unsigned long flags, const char *name,
3804 void (*ctor)(void *))
3806 struct kmem_cache *s;
3808 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3809 return NULL;
3811 if (ctor)
3812 return NULL;
3814 size = ALIGN(size, sizeof(void *));
3815 align = calculate_alignment(flags, align, size);
3816 size = ALIGN(size, align);
3817 flags = kmem_cache_flags(size, flags, name, NULL);
3819 list_for_each_entry(s, &slab_caches, list) {
3820 if (slab_unmergeable(s))
3821 continue;
3823 if (size > s->size)
3824 continue;
3826 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3827 continue;
3829 * Check if alignment is compatible.
3830 * Courtesy of Adrian Drzewiecki
3832 if ((s->size & ~(align - 1)) != s->size)
3833 continue;
3835 if (s->size - size >= sizeof(void *))
3836 continue;
3838 if (!cache_match_memcg(s, memcg))
3839 continue;
3841 return s;
3843 return NULL;
3846 struct kmem_cache *
3847 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3848 size_t align, unsigned long flags, void (*ctor)(void *))
3850 struct kmem_cache *s;
3852 s = find_mergeable(memcg, size, align, flags, name, ctor);
3853 if (s) {
3854 s->refcount++;
3856 * Adjust the object sizes so that we clear
3857 * the complete object on kzalloc.
3859 s->object_size = max(s->object_size, (int)size);
3860 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3862 if (sysfs_slab_alias(s, name)) {
3863 s->refcount--;
3864 s = NULL;
3868 return s;
3871 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3873 int err;
3875 err = kmem_cache_open(s, flags);
3876 if (err)
3877 return err;
3879 /* Mutex is not taken during early boot */
3880 if (slab_state <= UP)
3881 return 0;
3883 memcg_propagate_slab_attrs(s);
3884 mutex_unlock(&slab_mutex);
3885 err = sysfs_slab_add(s);
3886 mutex_lock(&slab_mutex);
3888 if (err)
3889 kmem_cache_close(s);
3891 return err;
3894 #ifdef CONFIG_SMP
3896 * Use the cpu notifier to insure that the cpu slabs are flushed when
3897 * necessary.
3899 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3900 unsigned long action, void *hcpu)
3902 long cpu = (long)hcpu;
3903 struct kmem_cache *s;
3904 unsigned long flags;
3906 switch (action) {
3907 case CPU_UP_CANCELED:
3908 case CPU_UP_CANCELED_FROZEN:
3909 case CPU_DEAD:
3910 case CPU_DEAD_FROZEN:
3911 mutex_lock(&slab_mutex);
3912 list_for_each_entry(s, &slab_caches, list) {
3913 local_irq_save(flags);
3914 __flush_cpu_slab(s, cpu);
3915 local_irq_restore(flags);
3917 mutex_unlock(&slab_mutex);
3918 break;
3919 default:
3920 break;
3922 return NOTIFY_OK;
3925 static struct notifier_block __cpuinitdata slab_notifier = {
3926 .notifier_call = slab_cpuup_callback
3929 #endif
3931 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3933 struct kmem_cache *s;
3934 void *ret;
3936 if (unlikely(size > SLUB_MAX_SIZE))
3937 return kmalloc_large(size, gfpflags);
3939 s = get_slab(size, gfpflags);
3941 if (unlikely(ZERO_OR_NULL_PTR(s)))
3942 return s;
3944 ret = slab_alloc(s, gfpflags, caller);
3946 /* Honor the call site pointer we received. */
3947 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3949 return ret;
3952 #ifdef CONFIG_NUMA
3953 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3954 int node, unsigned long caller)
3956 struct kmem_cache *s;
3957 void *ret;
3959 if (unlikely(size > SLUB_MAX_SIZE)) {
3960 ret = kmalloc_large_node(size, gfpflags, node);
3962 trace_kmalloc_node(caller, ret,
3963 size, PAGE_SIZE << get_order(size),
3964 gfpflags, node);
3966 return ret;
3969 s = get_slab(size, gfpflags);
3971 if (unlikely(ZERO_OR_NULL_PTR(s)))
3972 return s;
3974 ret = slab_alloc_node(s, gfpflags, node, caller);
3976 /* Honor the call site pointer we received. */
3977 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3979 return ret;
3981 #endif
3983 #ifdef CONFIG_SYSFS
3984 static int count_inuse(struct page *page)
3986 return page->inuse;
3989 static int count_total(struct page *page)
3991 return page->objects;
3993 #endif
3995 #ifdef CONFIG_SLUB_DEBUG
3996 static int validate_slab(struct kmem_cache *s, struct page *page,
3997 unsigned long *map)
3999 void *p;
4000 void *addr = page_address(page);
4002 if (!check_slab(s, page) ||
4003 !on_freelist(s, page, NULL))
4004 return 0;
4006 /* Now we know that a valid freelist exists */
4007 bitmap_zero(map, page->objects);
4009 get_map(s, page, map);
4010 for_each_object(p, s, addr, page->objects) {
4011 if (test_bit(slab_index(p, s, addr), map))
4012 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4013 return 0;
4016 for_each_object(p, s, addr, page->objects)
4017 if (!test_bit(slab_index(p, s, addr), map))
4018 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4019 return 0;
4020 return 1;
4023 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4024 unsigned long *map)
4026 slab_lock(page);
4027 validate_slab(s, page, map);
4028 slab_unlock(page);
4031 static int validate_slab_node(struct kmem_cache *s,
4032 struct kmem_cache_node *n, unsigned long *map)
4034 unsigned long count = 0;
4035 struct page *page;
4036 unsigned long flags;
4038 spin_lock_irqsave(&n->list_lock, flags);
4040 list_for_each_entry(page, &n->partial, lru) {
4041 validate_slab_slab(s, page, map);
4042 count++;
4044 if (count != n->nr_partial)
4045 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4046 "counter=%ld\n", s->name, count, n->nr_partial);
4048 if (!(s->flags & SLAB_STORE_USER))
4049 goto out;
4051 list_for_each_entry(page, &n->full, lru) {
4052 validate_slab_slab(s, page, map);
4053 count++;
4055 if (count != atomic_long_read(&n->nr_slabs))
4056 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4057 "counter=%ld\n", s->name, count,
4058 atomic_long_read(&n->nr_slabs));
4060 out:
4061 spin_unlock_irqrestore(&n->list_lock, flags);
4062 return count;
4065 static long validate_slab_cache(struct kmem_cache *s)
4067 int node;
4068 unsigned long count = 0;
4069 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4070 sizeof(unsigned long), GFP_KERNEL);
4072 if (!map)
4073 return -ENOMEM;
4075 flush_all(s);
4076 for_each_node_state(node, N_NORMAL_MEMORY) {
4077 struct kmem_cache_node *n = get_node(s, node);
4079 count += validate_slab_node(s, n, map);
4081 kfree(map);
4082 return count;
4085 * Generate lists of code addresses where slabcache objects are allocated
4086 * and freed.
4089 struct location {
4090 unsigned long count;
4091 unsigned long addr;
4092 long long sum_time;
4093 long min_time;
4094 long max_time;
4095 long min_pid;
4096 long max_pid;
4097 DECLARE_BITMAP(cpus, NR_CPUS);
4098 nodemask_t nodes;
4101 struct loc_track {
4102 unsigned long max;
4103 unsigned long count;
4104 struct location *loc;
4107 static void free_loc_track(struct loc_track *t)
4109 if (t->max)
4110 free_pages((unsigned long)t->loc,
4111 get_order(sizeof(struct location) * t->max));
4114 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4116 struct location *l;
4117 int order;
4119 order = get_order(sizeof(struct location) * max);
4121 l = (void *)__get_free_pages(flags, order);
4122 if (!l)
4123 return 0;
4125 if (t->count) {
4126 memcpy(l, t->loc, sizeof(struct location) * t->count);
4127 free_loc_track(t);
4129 t->max = max;
4130 t->loc = l;
4131 return 1;
4134 static int add_location(struct loc_track *t, struct kmem_cache *s,
4135 const struct track *track)
4137 long start, end, pos;
4138 struct location *l;
4139 unsigned long caddr;
4140 unsigned long age = jiffies - track->when;
4142 start = -1;
4143 end = t->count;
4145 for ( ; ; ) {
4146 pos = start + (end - start + 1) / 2;
4149 * There is nothing at "end". If we end up there
4150 * we need to add something to before end.
4152 if (pos == end)
4153 break;
4155 caddr = t->loc[pos].addr;
4156 if (track->addr == caddr) {
4158 l = &t->loc[pos];
4159 l->count++;
4160 if (track->when) {
4161 l->sum_time += age;
4162 if (age < l->min_time)
4163 l->min_time = age;
4164 if (age > l->max_time)
4165 l->max_time = age;
4167 if (track->pid < l->min_pid)
4168 l->min_pid = track->pid;
4169 if (track->pid > l->max_pid)
4170 l->max_pid = track->pid;
4172 cpumask_set_cpu(track->cpu,
4173 to_cpumask(l->cpus));
4175 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4176 return 1;
4179 if (track->addr < caddr)
4180 end = pos;
4181 else
4182 start = pos;
4186 * Not found. Insert new tracking element.
4188 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4189 return 0;
4191 l = t->loc + pos;
4192 if (pos < t->count)
4193 memmove(l + 1, l,
4194 (t->count - pos) * sizeof(struct location));
4195 t->count++;
4196 l->count = 1;
4197 l->addr = track->addr;
4198 l->sum_time = age;
4199 l->min_time = age;
4200 l->max_time = age;
4201 l->min_pid = track->pid;
4202 l->max_pid = track->pid;
4203 cpumask_clear(to_cpumask(l->cpus));
4204 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4205 nodes_clear(l->nodes);
4206 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4207 return 1;
4210 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4211 struct page *page, enum track_item alloc,
4212 unsigned long *map)
4214 void *addr = page_address(page);
4215 void *p;
4217 bitmap_zero(map, page->objects);
4218 get_map(s, page, map);
4220 for_each_object(p, s, addr, page->objects)
4221 if (!test_bit(slab_index(p, s, addr), map))
4222 add_location(t, s, get_track(s, p, alloc));
4225 static int list_locations(struct kmem_cache *s, char *buf,
4226 enum track_item alloc)
4228 int len = 0;
4229 unsigned long i;
4230 struct loc_track t = { 0, 0, NULL };
4231 int node;
4232 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4233 sizeof(unsigned long), GFP_KERNEL);
4235 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4236 GFP_TEMPORARY)) {
4237 kfree(map);
4238 return sprintf(buf, "Out of memory\n");
4240 /* Push back cpu slabs */
4241 flush_all(s);
4243 for_each_node_state(node, N_NORMAL_MEMORY) {
4244 struct kmem_cache_node *n = get_node(s, node);
4245 unsigned long flags;
4246 struct page *page;
4248 if (!atomic_long_read(&n->nr_slabs))
4249 continue;
4251 spin_lock_irqsave(&n->list_lock, flags);
4252 list_for_each_entry(page, &n->partial, lru)
4253 process_slab(&t, s, page, alloc, map);
4254 list_for_each_entry(page, &n->full, lru)
4255 process_slab(&t, s, page, alloc, map);
4256 spin_unlock_irqrestore(&n->list_lock, flags);
4259 for (i = 0; i < t.count; i++) {
4260 struct location *l = &t.loc[i];
4262 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4263 break;
4264 len += sprintf(buf + len, "%7ld ", l->count);
4266 if (l->addr)
4267 len += sprintf(buf + len, "%pS", (void *)l->addr);
4268 else
4269 len += sprintf(buf + len, "<not-available>");
4271 if (l->sum_time != l->min_time) {
4272 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4273 l->min_time,
4274 (long)div_u64(l->sum_time, l->count),
4275 l->max_time);
4276 } else
4277 len += sprintf(buf + len, " age=%ld",
4278 l->min_time);
4280 if (l->min_pid != l->max_pid)
4281 len += sprintf(buf + len, " pid=%ld-%ld",
4282 l->min_pid, l->max_pid);
4283 else
4284 len += sprintf(buf + len, " pid=%ld",
4285 l->min_pid);
4287 if (num_online_cpus() > 1 &&
4288 !cpumask_empty(to_cpumask(l->cpus)) &&
4289 len < PAGE_SIZE - 60) {
4290 len += sprintf(buf + len, " cpus=");
4291 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4292 to_cpumask(l->cpus));
4295 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4296 len < PAGE_SIZE - 60) {
4297 len += sprintf(buf + len, " nodes=");
4298 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4299 l->nodes);
4302 len += sprintf(buf + len, "\n");
4305 free_loc_track(&t);
4306 kfree(map);
4307 if (!t.count)
4308 len += sprintf(buf, "No data\n");
4309 return len;
4311 #endif
4313 #ifdef SLUB_RESILIENCY_TEST
4314 static void resiliency_test(void)
4316 u8 *p;
4318 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4320 printk(KERN_ERR "SLUB resiliency testing\n");
4321 printk(KERN_ERR "-----------------------\n");
4322 printk(KERN_ERR "A. Corruption after allocation\n");
4324 p = kzalloc(16, GFP_KERNEL);
4325 p[16] = 0x12;
4326 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4327 " 0x12->0x%p\n\n", p + 16);
4329 validate_slab_cache(kmalloc_caches[4]);
4331 /* Hmmm... The next two are dangerous */
4332 p = kzalloc(32, GFP_KERNEL);
4333 p[32 + sizeof(void *)] = 0x34;
4334 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4335 " 0x34 -> -0x%p\n", p);
4336 printk(KERN_ERR
4337 "If allocated object is overwritten then not detectable\n\n");
4339 validate_slab_cache(kmalloc_caches[5]);
4340 p = kzalloc(64, GFP_KERNEL);
4341 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4342 *p = 0x56;
4343 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4345 printk(KERN_ERR
4346 "If allocated object is overwritten then not detectable\n\n");
4347 validate_slab_cache(kmalloc_caches[6]);
4349 printk(KERN_ERR "\nB. Corruption after free\n");
4350 p = kzalloc(128, GFP_KERNEL);
4351 kfree(p);
4352 *p = 0x78;
4353 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4354 validate_slab_cache(kmalloc_caches[7]);
4356 p = kzalloc(256, GFP_KERNEL);
4357 kfree(p);
4358 p[50] = 0x9a;
4359 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4361 validate_slab_cache(kmalloc_caches[8]);
4363 p = kzalloc(512, GFP_KERNEL);
4364 kfree(p);
4365 p[512] = 0xab;
4366 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4367 validate_slab_cache(kmalloc_caches[9]);
4369 #else
4370 #ifdef CONFIG_SYSFS
4371 static void resiliency_test(void) {};
4372 #endif
4373 #endif
4375 #ifdef CONFIG_SYSFS
4376 enum slab_stat_type {
4377 SL_ALL, /* All slabs */
4378 SL_PARTIAL, /* Only partially allocated slabs */
4379 SL_CPU, /* Only slabs used for cpu caches */
4380 SL_OBJECTS, /* Determine allocated objects not slabs */
4381 SL_TOTAL /* Determine object capacity not slabs */
4384 #define SO_ALL (1 << SL_ALL)
4385 #define SO_PARTIAL (1 << SL_PARTIAL)
4386 #define SO_CPU (1 << SL_CPU)
4387 #define SO_OBJECTS (1 << SL_OBJECTS)
4388 #define SO_TOTAL (1 << SL_TOTAL)
4390 static ssize_t show_slab_objects(struct kmem_cache *s,
4391 char *buf, unsigned long flags)
4393 unsigned long total = 0;
4394 int node;
4395 int x;
4396 unsigned long *nodes;
4397 unsigned long *per_cpu;
4399 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4400 if (!nodes)
4401 return -ENOMEM;
4402 per_cpu = nodes + nr_node_ids;
4404 if (flags & SO_CPU) {
4405 int cpu;
4407 for_each_possible_cpu(cpu) {
4408 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4409 int node;
4410 struct page *page;
4412 page = ACCESS_ONCE(c->page);
4413 if (!page)
4414 continue;
4416 node = page_to_nid(page);
4417 if (flags & SO_TOTAL)
4418 x = page->objects;
4419 else if (flags & SO_OBJECTS)
4420 x = page->inuse;
4421 else
4422 x = 1;
4424 total += x;
4425 nodes[node] += x;
4427 page = ACCESS_ONCE(c->partial);
4428 if (page) {
4429 x = page->pobjects;
4430 total += x;
4431 nodes[node] += x;
4434 per_cpu[node]++;
4438 lock_memory_hotplug();
4439 #ifdef CONFIG_SLUB_DEBUG
4440 if (flags & SO_ALL) {
4441 for_each_node_state(node, N_NORMAL_MEMORY) {
4442 struct kmem_cache_node *n = get_node(s, node);
4444 if (flags & SO_TOTAL)
4445 x = atomic_long_read(&n->total_objects);
4446 else if (flags & SO_OBJECTS)
4447 x = atomic_long_read(&n->total_objects) -
4448 count_partial(n, count_free);
4450 else
4451 x = atomic_long_read(&n->nr_slabs);
4452 total += x;
4453 nodes[node] += x;
4456 } else
4457 #endif
4458 if (flags & SO_PARTIAL) {
4459 for_each_node_state(node, N_NORMAL_MEMORY) {
4460 struct kmem_cache_node *n = get_node(s, node);
4462 if (flags & SO_TOTAL)
4463 x = count_partial(n, count_total);
4464 else if (flags & SO_OBJECTS)
4465 x = count_partial(n, count_inuse);
4466 else
4467 x = n->nr_partial;
4468 total += x;
4469 nodes[node] += x;
4472 x = sprintf(buf, "%lu", total);
4473 #ifdef CONFIG_NUMA
4474 for_each_node_state(node, N_NORMAL_MEMORY)
4475 if (nodes[node])
4476 x += sprintf(buf + x, " N%d=%lu",
4477 node, nodes[node]);
4478 #endif
4479 unlock_memory_hotplug();
4480 kfree(nodes);
4481 return x + sprintf(buf + x, "\n");
4484 #ifdef CONFIG_SLUB_DEBUG
4485 static int any_slab_objects(struct kmem_cache *s)
4487 int node;
4489 for_each_online_node(node) {
4490 struct kmem_cache_node *n = get_node(s, node);
4492 if (!n)
4493 continue;
4495 if (atomic_long_read(&n->total_objects))
4496 return 1;
4498 return 0;
4500 #endif
4502 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4503 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4505 struct slab_attribute {
4506 struct attribute attr;
4507 ssize_t (*show)(struct kmem_cache *s, char *buf);
4508 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4511 #define SLAB_ATTR_RO(_name) \
4512 static struct slab_attribute _name##_attr = \
4513 __ATTR(_name, 0400, _name##_show, NULL)
4515 #define SLAB_ATTR(_name) \
4516 static struct slab_attribute _name##_attr = \
4517 __ATTR(_name, 0600, _name##_show, _name##_store)
4519 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4521 return sprintf(buf, "%d\n", s->size);
4523 SLAB_ATTR_RO(slab_size);
4525 static ssize_t align_show(struct kmem_cache *s, char *buf)
4527 return sprintf(buf, "%d\n", s->align);
4529 SLAB_ATTR_RO(align);
4531 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4533 return sprintf(buf, "%d\n", s->object_size);
4535 SLAB_ATTR_RO(object_size);
4537 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4539 return sprintf(buf, "%d\n", oo_objects(s->oo));
4541 SLAB_ATTR_RO(objs_per_slab);
4543 static ssize_t order_store(struct kmem_cache *s,
4544 const char *buf, size_t length)
4546 unsigned long order;
4547 int err;
4549 err = strict_strtoul(buf, 10, &order);
4550 if (err)
4551 return err;
4553 if (order > slub_max_order || order < slub_min_order)
4554 return -EINVAL;
4556 calculate_sizes(s, order);
4557 return length;
4560 static ssize_t order_show(struct kmem_cache *s, char *buf)
4562 return sprintf(buf, "%d\n", oo_order(s->oo));
4564 SLAB_ATTR(order);
4566 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4568 return sprintf(buf, "%lu\n", s->min_partial);
4571 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4572 size_t length)
4574 unsigned long min;
4575 int err;
4577 err = strict_strtoul(buf, 10, &min);
4578 if (err)
4579 return err;
4581 set_min_partial(s, min);
4582 return length;
4584 SLAB_ATTR(min_partial);
4586 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4588 return sprintf(buf, "%u\n", s->cpu_partial);
4591 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4592 size_t length)
4594 unsigned long objects;
4595 int err;
4597 err = strict_strtoul(buf, 10, &objects);
4598 if (err)
4599 return err;
4600 if (objects && kmem_cache_debug(s))
4601 return -EINVAL;
4603 s->cpu_partial = objects;
4604 flush_all(s);
4605 return length;
4607 SLAB_ATTR(cpu_partial);
4609 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4611 if (!s->ctor)
4612 return 0;
4613 return sprintf(buf, "%pS\n", s->ctor);
4615 SLAB_ATTR_RO(ctor);
4617 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4619 return sprintf(buf, "%d\n", s->refcount - 1);
4621 SLAB_ATTR_RO(aliases);
4623 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4625 return show_slab_objects(s, buf, SO_PARTIAL);
4627 SLAB_ATTR_RO(partial);
4629 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4631 return show_slab_objects(s, buf, SO_CPU);
4633 SLAB_ATTR_RO(cpu_slabs);
4635 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4637 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4639 SLAB_ATTR_RO(objects);
4641 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4643 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4645 SLAB_ATTR_RO(objects_partial);
4647 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4649 int objects = 0;
4650 int pages = 0;
4651 int cpu;
4652 int len;
4654 for_each_online_cpu(cpu) {
4655 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4657 if (page) {
4658 pages += page->pages;
4659 objects += page->pobjects;
4663 len = sprintf(buf, "%d(%d)", objects, pages);
4665 #ifdef CONFIG_SMP
4666 for_each_online_cpu(cpu) {
4667 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4669 if (page && len < PAGE_SIZE - 20)
4670 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4671 page->pobjects, page->pages);
4673 #endif
4674 return len + sprintf(buf + len, "\n");
4676 SLAB_ATTR_RO(slabs_cpu_partial);
4678 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4680 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4683 static ssize_t reclaim_account_store(struct kmem_cache *s,
4684 const char *buf, size_t length)
4686 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4687 if (buf[0] == '1')
4688 s->flags |= SLAB_RECLAIM_ACCOUNT;
4689 return length;
4691 SLAB_ATTR(reclaim_account);
4693 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4695 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4697 SLAB_ATTR_RO(hwcache_align);
4699 #ifdef CONFIG_ZONE_DMA
4700 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4702 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4704 SLAB_ATTR_RO(cache_dma);
4705 #endif
4707 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4709 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4711 SLAB_ATTR_RO(destroy_by_rcu);
4713 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4715 return sprintf(buf, "%d\n", s->reserved);
4717 SLAB_ATTR_RO(reserved);
4719 #ifdef CONFIG_SLUB_DEBUG
4720 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4722 return show_slab_objects(s, buf, SO_ALL);
4724 SLAB_ATTR_RO(slabs);
4726 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4728 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4730 SLAB_ATTR_RO(total_objects);
4732 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4734 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4737 static ssize_t sanity_checks_store(struct kmem_cache *s,
4738 const char *buf, size_t length)
4740 s->flags &= ~SLAB_DEBUG_FREE;
4741 if (buf[0] == '1') {
4742 s->flags &= ~__CMPXCHG_DOUBLE;
4743 s->flags |= SLAB_DEBUG_FREE;
4745 return length;
4747 SLAB_ATTR(sanity_checks);
4749 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4751 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4754 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4755 size_t length)
4757 s->flags &= ~SLAB_TRACE;
4758 if (buf[0] == '1') {
4759 s->flags &= ~__CMPXCHG_DOUBLE;
4760 s->flags |= SLAB_TRACE;
4762 return length;
4764 SLAB_ATTR(trace);
4766 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4768 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4771 static ssize_t red_zone_store(struct kmem_cache *s,
4772 const char *buf, size_t length)
4774 if (any_slab_objects(s))
4775 return -EBUSY;
4777 s->flags &= ~SLAB_RED_ZONE;
4778 if (buf[0] == '1') {
4779 s->flags &= ~__CMPXCHG_DOUBLE;
4780 s->flags |= SLAB_RED_ZONE;
4782 calculate_sizes(s, -1);
4783 return length;
4785 SLAB_ATTR(red_zone);
4787 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4789 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4792 static ssize_t poison_store(struct kmem_cache *s,
4793 const char *buf, size_t length)
4795 if (any_slab_objects(s))
4796 return -EBUSY;
4798 s->flags &= ~SLAB_POISON;
4799 if (buf[0] == '1') {
4800 s->flags &= ~__CMPXCHG_DOUBLE;
4801 s->flags |= SLAB_POISON;
4803 calculate_sizes(s, -1);
4804 return length;
4806 SLAB_ATTR(poison);
4808 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4810 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4813 static ssize_t store_user_store(struct kmem_cache *s,
4814 const char *buf, size_t length)
4816 if (any_slab_objects(s))
4817 return -EBUSY;
4819 s->flags &= ~SLAB_STORE_USER;
4820 if (buf[0] == '1') {
4821 s->flags &= ~__CMPXCHG_DOUBLE;
4822 s->flags |= SLAB_STORE_USER;
4824 calculate_sizes(s, -1);
4825 return length;
4827 SLAB_ATTR(store_user);
4829 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4831 return 0;
4834 static ssize_t validate_store(struct kmem_cache *s,
4835 const char *buf, size_t length)
4837 int ret = -EINVAL;
4839 if (buf[0] == '1') {
4840 ret = validate_slab_cache(s);
4841 if (ret >= 0)
4842 ret = length;
4844 return ret;
4846 SLAB_ATTR(validate);
4848 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4850 if (!(s->flags & SLAB_STORE_USER))
4851 return -ENOSYS;
4852 return list_locations(s, buf, TRACK_ALLOC);
4854 SLAB_ATTR_RO(alloc_calls);
4856 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4858 if (!(s->flags & SLAB_STORE_USER))
4859 return -ENOSYS;
4860 return list_locations(s, buf, TRACK_FREE);
4862 SLAB_ATTR_RO(free_calls);
4863 #endif /* CONFIG_SLUB_DEBUG */
4865 #ifdef CONFIG_FAILSLAB
4866 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4868 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4871 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4872 size_t length)
4874 s->flags &= ~SLAB_FAILSLAB;
4875 if (buf[0] == '1')
4876 s->flags |= SLAB_FAILSLAB;
4877 return length;
4879 SLAB_ATTR(failslab);
4880 #endif
4882 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4884 return 0;
4887 static ssize_t shrink_store(struct kmem_cache *s,
4888 const char *buf, size_t length)
4890 if (buf[0] == '1') {
4891 int rc = kmem_cache_shrink(s);
4893 if (rc)
4894 return rc;
4895 } else
4896 return -EINVAL;
4897 return length;
4899 SLAB_ATTR(shrink);
4901 #ifdef CONFIG_NUMA
4902 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4904 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4907 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4908 const char *buf, size_t length)
4910 unsigned long ratio;
4911 int err;
4913 err = strict_strtoul(buf, 10, &ratio);
4914 if (err)
4915 return err;
4917 if (ratio <= 100)
4918 s->remote_node_defrag_ratio = ratio * 10;
4920 return length;
4922 SLAB_ATTR(remote_node_defrag_ratio);
4923 #endif
4925 #ifdef CONFIG_SLUB_STATS
4926 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4928 unsigned long sum = 0;
4929 int cpu;
4930 int len;
4931 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4933 if (!data)
4934 return -ENOMEM;
4936 for_each_online_cpu(cpu) {
4937 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4939 data[cpu] = x;
4940 sum += x;
4943 len = sprintf(buf, "%lu", sum);
4945 #ifdef CONFIG_SMP
4946 for_each_online_cpu(cpu) {
4947 if (data[cpu] && len < PAGE_SIZE - 20)
4948 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4950 #endif
4951 kfree(data);
4952 return len + sprintf(buf + len, "\n");
4955 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4957 int cpu;
4959 for_each_online_cpu(cpu)
4960 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4963 #define STAT_ATTR(si, text) \
4964 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4966 return show_stat(s, buf, si); \
4968 static ssize_t text##_store(struct kmem_cache *s, \
4969 const char *buf, size_t length) \
4971 if (buf[0] != '0') \
4972 return -EINVAL; \
4973 clear_stat(s, si); \
4974 return length; \
4976 SLAB_ATTR(text); \
4978 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4979 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4980 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4981 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4982 STAT_ATTR(FREE_FROZEN, free_frozen);
4983 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4984 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4985 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4986 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4987 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4988 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4989 STAT_ATTR(FREE_SLAB, free_slab);
4990 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4991 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4992 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4993 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4994 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4995 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4996 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4997 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4998 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4999 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5000 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5001 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5002 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5003 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5004 #endif
5006 static struct attribute *slab_attrs[] = {
5007 &slab_size_attr.attr,
5008 &object_size_attr.attr,
5009 &objs_per_slab_attr.attr,
5010 &order_attr.attr,
5011 &min_partial_attr.attr,
5012 &cpu_partial_attr.attr,
5013 &objects_attr.attr,
5014 &objects_partial_attr.attr,
5015 &partial_attr.attr,
5016 &cpu_slabs_attr.attr,
5017 &ctor_attr.attr,
5018 &aliases_attr.attr,
5019 &align_attr.attr,
5020 &hwcache_align_attr.attr,
5021 &reclaim_account_attr.attr,
5022 &destroy_by_rcu_attr.attr,
5023 &shrink_attr.attr,
5024 &reserved_attr.attr,
5025 &slabs_cpu_partial_attr.attr,
5026 #ifdef CONFIG_SLUB_DEBUG
5027 &total_objects_attr.attr,
5028 &slabs_attr.attr,
5029 &sanity_checks_attr.attr,
5030 &trace_attr.attr,
5031 &red_zone_attr.attr,
5032 &poison_attr.attr,
5033 &store_user_attr.attr,
5034 &validate_attr.attr,
5035 &alloc_calls_attr.attr,
5036 &free_calls_attr.attr,
5037 #endif
5038 #ifdef CONFIG_ZONE_DMA
5039 &cache_dma_attr.attr,
5040 #endif
5041 #ifdef CONFIG_NUMA
5042 &remote_node_defrag_ratio_attr.attr,
5043 #endif
5044 #ifdef CONFIG_SLUB_STATS
5045 &alloc_fastpath_attr.attr,
5046 &alloc_slowpath_attr.attr,
5047 &free_fastpath_attr.attr,
5048 &free_slowpath_attr.attr,
5049 &free_frozen_attr.attr,
5050 &free_add_partial_attr.attr,
5051 &free_remove_partial_attr.attr,
5052 &alloc_from_partial_attr.attr,
5053 &alloc_slab_attr.attr,
5054 &alloc_refill_attr.attr,
5055 &alloc_node_mismatch_attr.attr,
5056 &free_slab_attr.attr,
5057 &cpuslab_flush_attr.attr,
5058 &deactivate_full_attr.attr,
5059 &deactivate_empty_attr.attr,
5060 &deactivate_to_head_attr.attr,
5061 &deactivate_to_tail_attr.attr,
5062 &deactivate_remote_frees_attr.attr,
5063 &deactivate_bypass_attr.attr,
5064 &order_fallback_attr.attr,
5065 &cmpxchg_double_fail_attr.attr,
5066 &cmpxchg_double_cpu_fail_attr.attr,
5067 &cpu_partial_alloc_attr.attr,
5068 &cpu_partial_free_attr.attr,
5069 &cpu_partial_node_attr.attr,
5070 &cpu_partial_drain_attr.attr,
5071 #endif
5072 #ifdef CONFIG_FAILSLAB
5073 &failslab_attr.attr,
5074 #endif
5076 NULL
5079 static struct attribute_group slab_attr_group = {
5080 .attrs = slab_attrs,
5083 static ssize_t slab_attr_show(struct kobject *kobj,
5084 struct attribute *attr,
5085 char *buf)
5087 struct slab_attribute *attribute;
5088 struct kmem_cache *s;
5089 int err;
5091 attribute = to_slab_attr(attr);
5092 s = to_slab(kobj);
5094 if (!attribute->show)
5095 return -EIO;
5097 err = attribute->show(s, buf);
5099 return err;
5102 static ssize_t slab_attr_store(struct kobject *kobj,
5103 struct attribute *attr,
5104 const char *buf, size_t len)
5106 struct slab_attribute *attribute;
5107 struct kmem_cache *s;
5108 int err;
5110 attribute = to_slab_attr(attr);
5111 s = to_slab(kobj);
5113 if (!attribute->store)
5114 return -EIO;
5116 err = attribute->store(s, buf, len);
5117 #ifdef CONFIG_MEMCG_KMEM
5118 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5119 int i;
5121 mutex_lock(&slab_mutex);
5122 if (s->max_attr_size < len)
5123 s->max_attr_size = len;
5126 * This is a best effort propagation, so this function's return
5127 * value will be determined by the parent cache only. This is
5128 * basically because not all attributes will have a well
5129 * defined semantics for rollbacks - most of the actions will
5130 * have permanent effects.
5132 * Returning the error value of any of the children that fail
5133 * is not 100 % defined, in the sense that users seeing the
5134 * error code won't be able to know anything about the state of
5135 * the cache.
5137 * Only returning the error code for the parent cache at least
5138 * has well defined semantics. The cache being written to
5139 * directly either failed or succeeded, in which case we loop
5140 * through the descendants with best-effort propagation.
5142 for_each_memcg_cache_index(i) {
5143 struct kmem_cache *c = cache_from_memcg(s, i);
5144 if (c)
5145 attribute->store(c, buf, len);
5147 mutex_unlock(&slab_mutex);
5149 #endif
5150 return err;
5153 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5155 #ifdef CONFIG_MEMCG_KMEM
5156 int i;
5157 char *buffer = NULL;
5159 if (!is_root_cache(s))
5160 return;
5163 * This mean this cache had no attribute written. Therefore, no point
5164 * in copying default values around
5166 if (!s->max_attr_size)
5167 return;
5169 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5170 char mbuf[64];
5171 char *buf;
5172 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5174 if (!attr || !attr->store || !attr->show)
5175 continue;
5178 * It is really bad that we have to allocate here, so we will
5179 * do it only as a fallback. If we actually allocate, though,
5180 * we can just use the allocated buffer until the end.
5182 * Most of the slub attributes will tend to be very small in
5183 * size, but sysfs allows buffers up to a page, so they can
5184 * theoretically happen.
5186 if (buffer)
5187 buf = buffer;
5188 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5189 buf = mbuf;
5190 else {
5191 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5192 if (WARN_ON(!buffer))
5193 continue;
5194 buf = buffer;
5197 attr->show(s->memcg_params->root_cache, buf);
5198 attr->store(s, buf, strlen(buf));
5201 if (buffer)
5202 free_page((unsigned long)buffer);
5203 #endif
5206 static const struct sysfs_ops slab_sysfs_ops = {
5207 .show = slab_attr_show,
5208 .store = slab_attr_store,
5211 static struct kobj_type slab_ktype = {
5212 .sysfs_ops = &slab_sysfs_ops,
5215 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5217 struct kobj_type *ktype = get_ktype(kobj);
5219 if (ktype == &slab_ktype)
5220 return 1;
5221 return 0;
5224 static const struct kset_uevent_ops slab_uevent_ops = {
5225 .filter = uevent_filter,
5228 static struct kset *slab_kset;
5230 #define ID_STR_LENGTH 64
5232 /* Create a unique string id for a slab cache:
5234 * Format :[flags-]size
5236 static char *create_unique_id(struct kmem_cache *s)
5238 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5239 char *p = name;
5241 BUG_ON(!name);
5243 *p++ = ':';
5245 * First flags affecting slabcache operations. We will only
5246 * get here for aliasable slabs so we do not need to support
5247 * too many flags. The flags here must cover all flags that
5248 * are matched during merging to guarantee that the id is
5249 * unique.
5251 if (s->flags & SLAB_CACHE_DMA)
5252 *p++ = 'd';
5253 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5254 *p++ = 'a';
5255 if (s->flags & SLAB_DEBUG_FREE)
5256 *p++ = 'F';
5257 if (!(s->flags & SLAB_NOTRACK))
5258 *p++ = 't';
5259 if (p != name + 1)
5260 *p++ = '-';
5261 p += sprintf(p, "%07d", s->size);
5263 #ifdef CONFIG_MEMCG_KMEM
5264 if (!is_root_cache(s))
5265 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5266 #endif
5268 BUG_ON(p > name + ID_STR_LENGTH - 1);
5269 return name;
5272 static int sysfs_slab_add(struct kmem_cache *s)
5274 int err;
5275 const char *name;
5276 int unmergeable = slab_unmergeable(s);
5278 if (unmergeable) {
5280 * Slabcache can never be merged so we can use the name proper.
5281 * This is typically the case for debug situations. In that
5282 * case we can catch duplicate names easily.
5284 sysfs_remove_link(&slab_kset->kobj, s->name);
5285 name = s->name;
5286 } else {
5288 * Create a unique name for the slab as a target
5289 * for the symlinks.
5291 name = create_unique_id(s);
5294 s->kobj.kset = slab_kset;
5295 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5296 if (err) {
5297 kobject_put(&s->kobj);
5298 return err;
5301 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5302 if (err) {
5303 kobject_del(&s->kobj);
5304 kobject_put(&s->kobj);
5305 return err;
5307 kobject_uevent(&s->kobj, KOBJ_ADD);
5308 if (!unmergeable) {
5309 /* Setup first alias */
5310 sysfs_slab_alias(s, s->name);
5311 kfree(name);
5313 return 0;
5316 static void sysfs_slab_remove(struct kmem_cache *s)
5318 if (slab_state < FULL)
5320 * Sysfs has not been setup yet so no need to remove the
5321 * cache from sysfs.
5323 return;
5325 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5326 kobject_del(&s->kobj);
5327 kobject_put(&s->kobj);
5331 * Need to buffer aliases during bootup until sysfs becomes
5332 * available lest we lose that information.
5334 struct saved_alias {
5335 struct kmem_cache *s;
5336 const char *name;
5337 struct saved_alias *next;
5340 static struct saved_alias *alias_list;
5342 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5344 struct saved_alias *al;
5346 if (slab_state == FULL) {
5348 * If we have a leftover link then remove it.
5350 sysfs_remove_link(&slab_kset->kobj, name);
5351 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5354 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5355 if (!al)
5356 return -ENOMEM;
5358 al->s = s;
5359 al->name = name;
5360 al->next = alias_list;
5361 alias_list = al;
5362 return 0;
5365 static int __init slab_sysfs_init(void)
5367 struct kmem_cache *s;
5368 int err;
5370 mutex_lock(&slab_mutex);
5372 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5373 if (!slab_kset) {
5374 mutex_unlock(&slab_mutex);
5375 printk(KERN_ERR "Cannot register slab subsystem.\n");
5376 return -ENOSYS;
5379 slab_state = FULL;
5381 list_for_each_entry(s, &slab_caches, list) {
5382 err = sysfs_slab_add(s);
5383 if (err)
5384 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5385 " to sysfs\n", s->name);
5388 while (alias_list) {
5389 struct saved_alias *al = alias_list;
5391 alias_list = alias_list->next;
5392 err = sysfs_slab_alias(al->s, al->name);
5393 if (err)
5394 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5395 " %s to sysfs\n", al->name);
5396 kfree(al);
5399 mutex_unlock(&slab_mutex);
5400 resiliency_test();
5401 return 0;
5404 __initcall(slab_sysfs_init);
5405 #endif /* CONFIG_SYSFS */
5408 * The /proc/slabinfo ABI
5410 #ifdef CONFIG_SLABINFO
5411 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5413 unsigned long nr_partials = 0;
5414 unsigned long nr_slabs = 0;
5415 unsigned long nr_objs = 0;
5416 unsigned long nr_free = 0;
5417 int node;
5419 for_each_online_node(node) {
5420 struct kmem_cache_node *n = get_node(s, node);
5422 if (!n)
5423 continue;
5425 nr_partials += n->nr_partial;
5426 nr_slabs += atomic_long_read(&n->nr_slabs);
5427 nr_objs += atomic_long_read(&n->total_objects);
5428 nr_free += count_partial(n, count_free);
5431 sinfo->active_objs = nr_objs - nr_free;
5432 sinfo->num_objs = nr_objs;
5433 sinfo->active_slabs = nr_slabs;
5434 sinfo->num_slabs = nr_slabs;
5435 sinfo->objects_per_slab = oo_objects(s->oo);
5436 sinfo->cache_order = oo_order(s->oo);
5439 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5443 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5444 size_t count, loff_t *ppos)
5446 return -EIO;
5448 #endif /* CONFIG_SLABINFO */