x86: oprofile/op_model_amd.c set return values for op_amd_handle_ibs()
[linux-2.6.git] / fs / splice.c
blob666953d59a35c77670514b916aea7515fe612951
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
43 struct page *page = buf->page;
44 struct address_space *mapping;
46 lock_page(page);
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
60 wait_on_page_writeback(page);
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
80 out_unlock:
81 unlock_page(page);
82 return 1;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
99 struct page *page = buf->page;
100 int err;
102 if (!PageUptodate(page)) {
103 lock_page(page);
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
123 * Page is ok afterall, we are done.
125 unlock_page(page);
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 pipe_lock(pipe);
187 for (;;) {
188 if (!pipe->readers) {
189 send_sig(SIGPIPE, current, 0);
190 if (!ret)
191 ret = -EPIPE;
192 break;
195 if (pipe->nrbufs < PIPE_BUFFERS) {
196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 struct pipe_buffer *buf = pipe->bufs + newbuf;
199 buf->page = spd->pages[page_nr];
200 buf->offset = spd->partial[page_nr].offset;
201 buf->len = spd->partial[page_nr].len;
202 buf->private = spd->partial[page_nr].private;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
211 if (pipe->inode)
212 do_wakeup = 1;
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
219 break;
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
247 pipe_unlock(pipe);
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 while (page_nr < spd_pages)
257 spd->spd_release(spd, page_nr++);
259 return ret;
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 page_cache_release(spd->pages[i]);
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 struct pipe_inode_info *pipe, size_t len,
270 unsigned int flags)
272 struct address_space *mapping = in->f_mapping;
273 unsigned int loff, nr_pages, req_pages;
274 struct page *pages[PIPE_BUFFERS];
275 struct partial_page partial[PIPE_BUFFERS];
276 struct page *page;
277 pgoff_t index, end_index;
278 loff_t isize;
279 int error, page_nr;
280 struct splice_pipe_desc spd = {
281 .pages = pages,
282 .partial = partial,
283 .flags = flags,
284 .ops = &page_cache_pipe_buf_ops,
285 .spd_release = spd_release_page,
288 index = *ppos >> PAGE_CACHE_SHIFT;
289 loff = *ppos & ~PAGE_CACHE_MASK;
290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
294 * Lookup the (hopefully) full range of pages we need.
296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 index += spd.nr_pages;
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * readahead/allocate the rest and fill in the holes.
303 if (spd.nr_pages < nr_pages)
304 page_cache_sync_readahead(mapping, &in->f_ra, in,
305 index, req_pages - spd.nr_pages);
307 error = 0;
308 while (spd.nr_pages < nr_pages) {
310 * Page could be there, find_get_pages_contig() breaks on
311 * the first hole.
313 page = find_get_page(mapping, index);
314 if (!page) {
316 * page didn't exist, allocate one.
318 page = page_cache_alloc_cold(mapping);
319 if (!page)
320 break;
322 error = add_to_page_cache_lru(page, mapping, index,
323 mapping_gfp_mask(mapping));
324 if (unlikely(error)) {
325 page_cache_release(page);
326 if (error == -EEXIST)
327 continue;
328 break;
331 * add_to_page_cache() locks the page, unlock it
332 * to avoid convoluting the logic below even more.
334 unlock_page(page);
337 pages[spd.nr_pages++] = page;
338 index++;
342 * Now loop over the map and see if we need to start IO on any
343 * pages, fill in the partial map, etc.
345 index = *ppos >> PAGE_CACHE_SHIFT;
346 nr_pages = spd.nr_pages;
347 spd.nr_pages = 0;
348 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 unsigned int this_len;
351 if (!len)
352 break;
355 * this_len is the max we'll use from this page
357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 page = pages[page_nr];
360 if (PageReadahead(page))
361 page_cache_async_readahead(mapping, &in->f_ra, in,
362 page, index, req_pages - page_nr);
365 * If the page isn't uptodate, we may need to start io on it
367 if (!PageUptodate(page)) {
369 * If in nonblock mode then dont block on waiting
370 * for an in-flight io page
372 if (flags & SPLICE_F_NONBLOCK) {
373 if (!trylock_page(page)) {
374 error = -EAGAIN;
375 break;
377 } else
378 lock_page(page);
381 * Page was truncated, or invalidated by the
382 * filesystem. Redo the find/create, but this time the
383 * page is kept locked, so there's no chance of another
384 * race with truncate/invalidate.
386 if (!page->mapping) {
387 unlock_page(page);
388 page = find_or_create_page(mapping, index,
389 mapping_gfp_mask(mapping));
391 if (!page) {
392 error = -ENOMEM;
393 break;
395 page_cache_release(pages[page_nr]);
396 pages[page_nr] = page;
399 * page was already under io and is now done, great
401 if (PageUptodate(page)) {
402 unlock_page(page);
403 goto fill_it;
407 * need to read in the page
409 error = mapping->a_ops->readpage(in, page);
410 if (unlikely(error)) {
412 * We really should re-lookup the page here,
413 * but it complicates things a lot. Instead
414 * lets just do what we already stored, and
415 * we'll get it the next time we are called.
417 if (error == AOP_TRUNCATED_PAGE)
418 error = 0;
420 break;
423 fill_it:
425 * i_size must be checked after PageUptodate.
427 isize = i_size_read(mapping->host);
428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 if (unlikely(!isize || index > end_index))
430 break;
433 * if this is the last page, see if we need to shrink
434 * the length and stop
436 if (end_index == index) {
437 unsigned int plen;
440 * max good bytes in this page
442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 if (plen <= loff)
444 break;
447 * force quit after adding this page
449 this_len = min(this_len, plen - loff);
450 len = this_len;
453 partial[page_nr].offset = loff;
454 partial[page_nr].len = this_len;
455 len -= this_len;
456 loff = 0;
457 spd.nr_pages++;
458 index++;
462 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 * we got, 'nr_pages' is how many pages are in the map.
465 while (page_nr < nr_pages)
466 page_cache_release(pages[page_nr++]);
467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
469 if (spd.nr_pages)
470 return splice_to_pipe(pipe, &spd);
472 return error;
476 * generic_file_splice_read - splice data from file to a pipe
477 * @in: file to splice from
478 * @ppos: position in @in
479 * @pipe: pipe to splice to
480 * @len: number of bytes to splice
481 * @flags: splice modifier flags
483 * Description:
484 * Will read pages from given file and fill them into a pipe. Can be
485 * used as long as the address_space operations for the source implements
486 * a readpage() hook.
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 struct pipe_inode_info *pipe, size_t len,
491 unsigned int flags)
493 loff_t isize, left;
494 int ret;
496 isize = i_size_read(in->f_mapping->host);
497 if (unlikely(*ppos >= isize))
498 return 0;
500 left = isize - *ppos;
501 if (unlikely(left < len))
502 len = left;
504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 if (ret > 0)
506 *ppos += ret;
508 return ret;
511 EXPORT_SYMBOL(generic_file_splice_read);
514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515 * using sendpage(). Return the number of bytes sent.
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 struct pipe_buffer *buf, struct splice_desc *sd)
520 struct file *file = sd->u.file;
521 loff_t pos = sd->pos;
522 int ret, more;
524 ret = buf->ops->confirm(pipe, buf);
525 if (!ret) {
526 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
528 ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 sd->len, &pos, more);
532 return ret;
536 * This is a little more tricky than the file -> pipe splicing. There are
537 * basically three cases:
539 * - Destination page already exists in the address space and there
540 * are users of it. For that case we have no other option that
541 * copying the data. Tough luck.
542 * - Destination page already exists in the address space, but there
543 * are no users of it. Make sure it's uptodate, then drop it. Fall
544 * through to last case.
545 * - Destination page does not exist, we can add the pipe page to
546 * the page cache and avoid the copy.
548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549 * sd->flags), we attempt to migrate pages from the pipe to the output
550 * file address space page cache. This is possible if no one else has
551 * the pipe page referenced outside of the pipe and page cache. If
552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553 * a new page in the output file page cache and fill/dirty that.
555 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 struct splice_desc *sd)
558 struct file *file = sd->u.file;
559 struct address_space *mapping = file->f_mapping;
560 unsigned int offset, this_len;
561 struct page *page;
562 void *fsdata;
563 int ret;
566 * make sure the data in this buffer is uptodate
568 ret = buf->ops->confirm(pipe, buf);
569 if (unlikely(ret))
570 return ret;
572 offset = sd->pos & ~PAGE_CACHE_MASK;
574 this_len = sd->len;
575 if (this_len + offset > PAGE_CACHE_SIZE)
576 this_len = PAGE_CACHE_SIZE - offset;
578 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
579 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
580 if (unlikely(ret))
581 goto out;
583 if (buf->page != page) {
585 * Careful, ->map() uses KM_USER0!
587 char *src = buf->ops->map(pipe, buf, 1);
588 char *dst = kmap_atomic(page, KM_USER1);
590 memcpy(dst + offset, src + buf->offset, this_len);
591 flush_dcache_page(page);
592 kunmap_atomic(dst, KM_USER1);
593 buf->ops->unmap(pipe, buf, src);
595 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
596 page, fsdata);
597 out:
598 return ret;
600 EXPORT_SYMBOL(pipe_to_file);
602 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
604 smp_mb();
605 if (waitqueue_active(&pipe->wait))
606 wake_up_interruptible(&pipe->wait);
607 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
611 * splice_from_pipe_feed - feed available data from a pipe to a file
612 * @pipe: pipe to splice from
613 * @sd: information to @actor
614 * @actor: handler that splices the data
616 * Description:
617 * This function loops over the pipe and calls @actor to do the
618 * actual moving of a single struct pipe_buffer to the desired
619 * destination. It returns when there's no more buffers left in
620 * the pipe or if the requested number of bytes (@sd->total_len)
621 * have been copied. It returns a positive number (one) if the
622 * pipe needs to be filled with more data, zero if the required
623 * number of bytes have been copied and -errno on error.
625 * This, together with splice_from_pipe_{begin,end,next}, may be
626 * used to implement the functionality of __splice_from_pipe() when
627 * locking is required around copying the pipe buffers to the
628 * destination.
630 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
631 splice_actor *actor)
633 int ret;
635 while (pipe->nrbufs) {
636 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
637 const struct pipe_buf_operations *ops = buf->ops;
639 sd->len = buf->len;
640 if (sd->len > sd->total_len)
641 sd->len = sd->total_len;
643 ret = actor(pipe, buf, sd);
644 if (ret <= 0) {
645 if (ret == -ENODATA)
646 ret = 0;
647 return ret;
649 buf->offset += ret;
650 buf->len -= ret;
652 sd->num_spliced += ret;
653 sd->len -= ret;
654 sd->pos += ret;
655 sd->total_len -= ret;
657 if (!buf->len) {
658 buf->ops = NULL;
659 ops->release(pipe, buf);
660 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
661 pipe->nrbufs--;
662 if (pipe->inode)
663 sd->need_wakeup = true;
666 if (!sd->total_len)
667 return 0;
670 return 1;
672 EXPORT_SYMBOL(splice_from_pipe_feed);
675 * splice_from_pipe_next - wait for some data to splice from
676 * @pipe: pipe to splice from
677 * @sd: information about the splice operation
679 * Description:
680 * This function will wait for some data and return a positive
681 * value (one) if pipe buffers are available. It will return zero
682 * or -errno if no more data needs to be spliced.
684 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
686 while (!pipe->nrbufs) {
687 if (!pipe->writers)
688 return 0;
690 if (!pipe->waiting_writers && sd->num_spliced)
691 return 0;
693 if (sd->flags & SPLICE_F_NONBLOCK)
694 return -EAGAIN;
696 if (signal_pending(current))
697 return -ERESTARTSYS;
699 if (sd->need_wakeup) {
700 wakeup_pipe_writers(pipe);
701 sd->need_wakeup = false;
704 pipe_wait(pipe);
707 return 1;
709 EXPORT_SYMBOL(splice_from_pipe_next);
712 * splice_from_pipe_begin - start splicing from pipe
713 * @sd: information about the splice operation
715 * Description:
716 * This function should be called before a loop containing
717 * splice_from_pipe_next() and splice_from_pipe_feed() to
718 * initialize the necessary fields of @sd.
720 void splice_from_pipe_begin(struct splice_desc *sd)
722 sd->num_spliced = 0;
723 sd->need_wakeup = false;
725 EXPORT_SYMBOL(splice_from_pipe_begin);
728 * splice_from_pipe_end - finish splicing from pipe
729 * @pipe: pipe to splice from
730 * @sd: information about the splice operation
732 * Description:
733 * This function will wake up pipe writers if necessary. It should
734 * be called after a loop containing splice_from_pipe_next() and
735 * splice_from_pipe_feed().
737 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
739 if (sd->need_wakeup)
740 wakeup_pipe_writers(pipe);
742 EXPORT_SYMBOL(splice_from_pipe_end);
745 * __splice_from_pipe - splice data from a pipe to given actor
746 * @pipe: pipe to splice from
747 * @sd: information to @actor
748 * @actor: handler that splices the data
750 * Description:
751 * This function does little more than loop over the pipe and call
752 * @actor to do the actual moving of a single struct pipe_buffer to
753 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
754 * pipe_to_user.
757 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
758 splice_actor *actor)
760 int ret;
762 splice_from_pipe_begin(sd);
763 do {
764 ret = splice_from_pipe_next(pipe, sd);
765 if (ret > 0)
766 ret = splice_from_pipe_feed(pipe, sd, actor);
767 } while (ret > 0);
768 splice_from_pipe_end(pipe, sd);
770 return sd->num_spliced ? sd->num_spliced : ret;
772 EXPORT_SYMBOL(__splice_from_pipe);
775 * splice_from_pipe - splice data from a pipe to a file
776 * @pipe: pipe to splice from
777 * @out: file to splice to
778 * @ppos: position in @out
779 * @len: how many bytes to splice
780 * @flags: splice modifier flags
781 * @actor: handler that splices the data
783 * Description:
784 * See __splice_from_pipe. This function locks the pipe inode,
785 * otherwise it's identical to __splice_from_pipe().
788 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
789 loff_t *ppos, size_t len, unsigned int flags,
790 splice_actor *actor)
792 ssize_t ret;
793 struct splice_desc sd = {
794 .total_len = len,
795 .flags = flags,
796 .pos = *ppos,
797 .u.file = out,
800 pipe_lock(pipe);
801 ret = __splice_from_pipe(pipe, &sd, actor);
802 pipe_unlock(pipe);
804 return ret;
808 * generic_file_splice_write - splice data from a pipe to a file
809 * @pipe: pipe info
810 * @out: file to write to
811 * @ppos: position in @out
812 * @len: number of bytes to splice
813 * @flags: splice modifier flags
815 * Description:
816 * Will either move or copy pages (determined by @flags options) from
817 * the given pipe inode to the given file.
820 ssize_t
821 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
822 loff_t *ppos, size_t len, unsigned int flags)
824 struct address_space *mapping = out->f_mapping;
825 struct inode *inode = mapping->host;
826 struct splice_desc sd = {
827 .total_len = len,
828 .flags = flags,
829 .pos = *ppos,
830 .u.file = out,
832 ssize_t ret;
834 pipe_lock(pipe);
836 splice_from_pipe_begin(&sd);
837 do {
838 ret = splice_from_pipe_next(pipe, &sd);
839 if (ret <= 0)
840 break;
842 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
843 ret = file_remove_suid(out);
844 if (!ret)
845 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
846 mutex_unlock(&inode->i_mutex);
847 } while (ret > 0);
848 splice_from_pipe_end(pipe, &sd);
850 pipe_unlock(pipe);
852 if (sd.num_spliced)
853 ret = sd.num_spliced;
855 if (ret > 0) {
856 unsigned long nr_pages;
858 *ppos += ret;
859 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
862 * If file or inode is SYNC and we actually wrote some data,
863 * sync it.
865 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
866 int err;
868 mutex_lock(&inode->i_mutex);
869 err = generic_osync_inode(inode, mapping,
870 OSYNC_METADATA|OSYNC_DATA);
871 mutex_unlock(&inode->i_mutex);
873 if (err)
874 ret = err;
876 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
879 return ret;
882 EXPORT_SYMBOL(generic_file_splice_write);
885 * generic_splice_sendpage - splice data from a pipe to a socket
886 * @pipe: pipe to splice from
887 * @out: socket to write to
888 * @ppos: position in @out
889 * @len: number of bytes to splice
890 * @flags: splice modifier flags
892 * Description:
893 * Will send @len bytes from the pipe to a network socket. No data copying
894 * is involved.
897 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
898 loff_t *ppos, size_t len, unsigned int flags)
900 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
903 EXPORT_SYMBOL(generic_splice_sendpage);
906 * Attempt to initiate a splice from pipe to file.
908 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
909 loff_t *ppos, size_t len, unsigned int flags)
911 int ret;
913 if (unlikely(!out->f_op || !out->f_op->splice_write))
914 return -EINVAL;
916 if (unlikely(!(out->f_mode & FMODE_WRITE)))
917 return -EBADF;
919 if (unlikely(out->f_flags & O_APPEND))
920 return -EINVAL;
922 ret = rw_verify_area(WRITE, out, ppos, len);
923 if (unlikely(ret < 0))
924 return ret;
926 return out->f_op->splice_write(pipe, out, ppos, len, flags);
930 * Attempt to initiate a splice from a file to a pipe.
932 static long do_splice_to(struct file *in, loff_t *ppos,
933 struct pipe_inode_info *pipe, size_t len,
934 unsigned int flags)
936 int ret;
938 if (unlikely(!in->f_op || !in->f_op->splice_read))
939 return -EINVAL;
941 if (unlikely(!(in->f_mode & FMODE_READ)))
942 return -EBADF;
944 ret = rw_verify_area(READ, in, ppos, len);
945 if (unlikely(ret < 0))
946 return ret;
948 return in->f_op->splice_read(in, ppos, pipe, len, flags);
952 * splice_direct_to_actor - splices data directly between two non-pipes
953 * @in: file to splice from
954 * @sd: actor information on where to splice to
955 * @actor: handles the data splicing
957 * Description:
958 * This is a special case helper to splice directly between two
959 * points, without requiring an explicit pipe. Internally an allocated
960 * pipe is cached in the process, and reused during the lifetime of
961 * that process.
964 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
965 splice_direct_actor *actor)
967 struct pipe_inode_info *pipe;
968 long ret, bytes;
969 umode_t i_mode;
970 size_t len;
971 int i, flags;
974 * We require the input being a regular file, as we don't want to
975 * randomly drop data for eg socket -> socket splicing. Use the
976 * piped splicing for that!
978 i_mode = in->f_path.dentry->d_inode->i_mode;
979 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
980 return -EINVAL;
983 * neither in nor out is a pipe, setup an internal pipe attached to
984 * 'out' and transfer the wanted data from 'in' to 'out' through that
986 pipe = current->splice_pipe;
987 if (unlikely(!pipe)) {
988 pipe = alloc_pipe_info(NULL);
989 if (!pipe)
990 return -ENOMEM;
993 * We don't have an immediate reader, but we'll read the stuff
994 * out of the pipe right after the splice_to_pipe(). So set
995 * PIPE_READERS appropriately.
997 pipe->readers = 1;
999 current->splice_pipe = pipe;
1003 * Do the splice.
1005 ret = 0;
1006 bytes = 0;
1007 len = sd->total_len;
1008 flags = sd->flags;
1011 * Don't block on output, we have to drain the direct pipe.
1013 sd->flags &= ~SPLICE_F_NONBLOCK;
1015 while (len) {
1016 size_t read_len;
1017 loff_t pos = sd->pos, prev_pos = pos;
1019 ret = do_splice_to(in, &pos, pipe, len, flags);
1020 if (unlikely(ret <= 0))
1021 goto out_release;
1023 read_len = ret;
1024 sd->total_len = read_len;
1027 * NOTE: nonblocking mode only applies to the input. We
1028 * must not do the output in nonblocking mode as then we
1029 * could get stuck data in the internal pipe:
1031 ret = actor(pipe, sd);
1032 if (unlikely(ret <= 0)) {
1033 sd->pos = prev_pos;
1034 goto out_release;
1037 bytes += ret;
1038 len -= ret;
1039 sd->pos = pos;
1041 if (ret < read_len) {
1042 sd->pos = prev_pos + ret;
1043 goto out_release;
1047 done:
1048 pipe->nrbufs = pipe->curbuf = 0;
1049 file_accessed(in);
1050 return bytes;
1052 out_release:
1054 * If we did an incomplete transfer we must release
1055 * the pipe buffers in question:
1057 for (i = 0; i < PIPE_BUFFERS; i++) {
1058 struct pipe_buffer *buf = pipe->bufs + i;
1060 if (buf->ops) {
1061 buf->ops->release(pipe, buf);
1062 buf->ops = NULL;
1066 if (!bytes)
1067 bytes = ret;
1069 goto done;
1071 EXPORT_SYMBOL(splice_direct_to_actor);
1073 static int direct_splice_actor(struct pipe_inode_info *pipe,
1074 struct splice_desc *sd)
1076 struct file *file = sd->u.file;
1078 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1082 * do_splice_direct - splices data directly between two files
1083 * @in: file to splice from
1084 * @ppos: input file offset
1085 * @out: file to splice to
1086 * @len: number of bytes to splice
1087 * @flags: splice modifier flags
1089 * Description:
1090 * For use by do_sendfile(). splice can easily emulate sendfile, but
1091 * doing it in the application would incur an extra system call
1092 * (splice in + splice out, as compared to just sendfile()). So this helper
1093 * can splice directly through a process-private pipe.
1096 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1097 size_t len, unsigned int flags)
1099 struct splice_desc sd = {
1100 .len = len,
1101 .total_len = len,
1102 .flags = flags,
1103 .pos = *ppos,
1104 .u.file = out,
1106 long ret;
1108 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1109 if (ret > 0)
1110 *ppos = sd.pos;
1112 return ret;
1116 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1117 * location, so checking ->i_pipe is not enough to verify that this is a
1118 * pipe.
1120 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1122 if (S_ISFIFO(inode->i_mode))
1123 return inode->i_pipe;
1125 return NULL;
1129 * Determine where to splice to/from.
1131 static long do_splice(struct file *in, loff_t __user *off_in,
1132 struct file *out, loff_t __user *off_out,
1133 size_t len, unsigned int flags)
1135 struct pipe_inode_info *pipe;
1136 loff_t offset, *off;
1137 long ret;
1139 pipe = pipe_info(in->f_path.dentry->d_inode);
1140 if (pipe) {
1141 if (off_in)
1142 return -ESPIPE;
1143 if (off_out) {
1144 if (out->f_op->llseek == no_llseek)
1145 return -EINVAL;
1146 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1147 return -EFAULT;
1148 off = &offset;
1149 } else
1150 off = &out->f_pos;
1152 ret = do_splice_from(pipe, out, off, len, flags);
1154 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1155 ret = -EFAULT;
1157 return ret;
1160 pipe = pipe_info(out->f_path.dentry->d_inode);
1161 if (pipe) {
1162 if (off_out)
1163 return -ESPIPE;
1164 if (off_in) {
1165 if (in->f_op->llseek == no_llseek)
1166 return -EINVAL;
1167 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1168 return -EFAULT;
1169 off = &offset;
1170 } else
1171 off = &in->f_pos;
1173 ret = do_splice_to(in, off, pipe, len, flags);
1175 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1176 ret = -EFAULT;
1178 return ret;
1181 return -EINVAL;
1185 * Map an iov into an array of pages and offset/length tupples. With the
1186 * partial_page structure, we can map several non-contiguous ranges into
1187 * our ones pages[] map instead of splitting that operation into pieces.
1188 * Could easily be exported as a generic helper for other users, in which
1189 * case one would probably want to add a 'max_nr_pages' parameter as well.
1191 static int get_iovec_page_array(const struct iovec __user *iov,
1192 unsigned int nr_vecs, struct page **pages,
1193 struct partial_page *partial, int aligned)
1195 int buffers = 0, error = 0;
1197 while (nr_vecs) {
1198 unsigned long off, npages;
1199 struct iovec entry;
1200 void __user *base;
1201 size_t len;
1202 int i;
1204 error = -EFAULT;
1205 if (copy_from_user(&entry, iov, sizeof(entry)))
1206 break;
1208 base = entry.iov_base;
1209 len = entry.iov_len;
1212 * Sanity check this iovec. 0 read succeeds.
1214 error = 0;
1215 if (unlikely(!len))
1216 break;
1217 error = -EFAULT;
1218 if (!access_ok(VERIFY_READ, base, len))
1219 break;
1222 * Get this base offset and number of pages, then map
1223 * in the user pages.
1225 off = (unsigned long) base & ~PAGE_MASK;
1228 * If asked for alignment, the offset must be zero and the
1229 * length a multiple of the PAGE_SIZE.
1231 error = -EINVAL;
1232 if (aligned && (off || len & ~PAGE_MASK))
1233 break;
1235 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1236 if (npages > PIPE_BUFFERS - buffers)
1237 npages = PIPE_BUFFERS - buffers;
1239 error = get_user_pages_fast((unsigned long)base, npages,
1240 0, &pages[buffers]);
1242 if (unlikely(error <= 0))
1243 break;
1246 * Fill this contiguous range into the partial page map.
1248 for (i = 0; i < error; i++) {
1249 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1251 partial[buffers].offset = off;
1252 partial[buffers].len = plen;
1254 off = 0;
1255 len -= plen;
1256 buffers++;
1260 * We didn't complete this iov, stop here since it probably
1261 * means we have to move some of this into a pipe to
1262 * be able to continue.
1264 if (len)
1265 break;
1268 * Don't continue if we mapped fewer pages than we asked for,
1269 * or if we mapped the max number of pages that we have
1270 * room for.
1272 if (error < npages || buffers == PIPE_BUFFERS)
1273 break;
1275 nr_vecs--;
1276 iov++;
1279 if (buffers)
1280 return buffers;
1282 return error;
1285 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1286 struct splice_desc *sd)
1288 char *src;
1289 int ret;
1291 ret = buf->ops->confirm(pipe, buf);
1292 if (unlikely(ret))
1293 return ret;
1296 * See if we can use the atomic maps, by prefaulting in the
1297 * pages and doing an atomic copy
1299 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1300 src = buf->ops->map(pipe, buf, 1);
1301 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1302 sd->len);
1303 buf->ops->unmap(pipe, buf, src);
1304 if (!ret) {
1305 ret = sd->len;
1306 goto out;
1311 * No dice, use slow non-atomic map and copy
1313 src = buf->ops->map(pipe, buf, 0);
1315 ret = sd->len;
1316 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1317 ret = -EFAULT;
1319 buf->ops->unmap(pipe, buf, src);
1320 out:
1321 if (ret > 0)
1322 sd->u.userptr += ret;
1323 return ret;
1327 * For lack of a better implementation, implement vmsplice() to userspace
1328 * as a simple copy of the pipes pages to the user iov.
1330 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1331 unsigned long nr_segs, unsigned int flags)
1333 struct pipe_inode_info *pipe;
1334 struct splice_desc sd;
1335 ssize_t size;
1336 int error;
1337 long ret;
1339 pipe = pipe_info(file->f_path.dentry->d_inode);
1340 if (!pipe)
1341 return -EBADF;
1343 pipe_lock(pipe);
1345 error = ret = 0;
1346 while (nr_segs) {
1347 void __user *base;
1348 size_t len;
1351 * Get user address base and length for this iovec.
1353 error = get_user(base, &iov->iov_base);
1354 if (unlikely(error))
1355 break;
1356 error = get_user(len, &iov->iov_len);
1357 if (unlikely(error))
1358 break;
1361 * Sanity check this iovec. 0 read succeeds.
1363 if (unlikely(!len))
1364 break;
1365 if (unlikely(!base)) {
1366 error = -EFAULT;
1367 break;
1370 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1371 error = -EFAULT;
1372 break;
1375 sd.len = 0;
1376 sd.total_len = len;
1377 sd.flags = flags;
1378 sd.u.userptr = base;
1379 sd.pos = 0;
1381 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1382 if (size < 0) {
1383 if (!ret)
1384 ret = size;
1386 break;
1389 ret += size;
1391 if (size < len)
1392 break;
1394 nr_segs--;
1395 iov++;
1398 pipe_unlock(pipe);
1400 if (!ret)
1401 ret = error;
1403 return ret;
1407 * vmsplice splices a user address range into a pipe. It can be thought of
1408 * as splice-from-memory, where the regular splice is splice-from-file (or
1409 * to file). In both cases the output is a pipe, naturally.
1411 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1412 unsigned long nr_segs, unsigned int flags)
1414 struct pipe_inode_info *pipe;
1415 struct page *pages[PIPE_BUFFERS];
1416 struct partial_page partial[PIPE_BUFFERS];
1417 struct splice_pipe_desc spd = {
1418 .pages = pages,
1419 .partial = partial,
1420 .flags = flags,
1421 .ops = &user_page_pipe_buf_ops,
1422 .spd_release = spd_release_page,
1425 pipe = pipe_info(file->f_path.dentry->d_inode);
1426 if (!pipe)
1427 return -EBADF;
1429 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1430 flags & SPLICE_F_GIFT);
1431 if (spd.nr_pages <= 0)
1432 return spd.nr_pages;
1434 return splice_to_pipe(pipe, &spd);
1438 * Note that vmsplice only really supports true splicing _from_ user memory
1439 * to a pipe, not the other way around. Splicing from user memory is a simple
1440 * operation that can be supported without any funky alignment restrictions
1441 * or nasty vm tricks. We simply map in the user memory and fill them into
1442 * a pipe. The reverse isn't quite as easy, though. There are two possible
1443 * solutions for that:
1445 * - memcpy() the data internally, at which point we might as well just
1446 * do a regular read() on the buffer anyway.
1447 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1448 * has restriction limitations on both ends of the pipe).
1450 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1453 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1454 unsigned long, nr_segs, unsigned int, flags)
1456 struct file *file;
1457 long error;
1458 int fput;
1460 if (unlikely(nr_segs > UIO_MAXIOV))
1461 return -EINVAL;
1462 else if (unlikely(!nr_segs))
1463 return 0;
1465 error = -EBADF;
1466 file = fget_light(fd, &fput);
1467 if (file) {
1468 if (file->f_mode & FMODE_WRITE)
1469 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1470 else if (file->f_mode & FMODE_READ)
1471 error = vmsplice_to_user(file, iov, nr_segs, flags);
1473 fput_light(file, fput);
1476 return error;
1479 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1480 int, fd_out, loff_t __user *, off_out,
1481 size_t, len, unsigned int, flags)
1483 long error;
1484 struct file *in, *out;
1485 int fput_in, fput_out;
1487 if (unlikely(!len))
1488 return 0;
1490 error = -EBADF;
1491 in = fget_light(fd_in, &fput_in);
1492 if (in) {
1493 if (in->f_mode & FMODE_READ) {
1494 out = fget_light(fd_out, &fput_out);
1495 if (out) {
1496 if (out->f_mode & FMODE_WRITE)
1497 error = do_splice(in, off_in,
1498 out, off_out,
1499 len, flags);
1500 fput_light(out, fput_out);
1504 fput_light(in, fput_in);
1507 return error;
1511 * Make sure there's data to read. Wait for input if we can, otherwise
1512 * return an appropriate error.
1514 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1516 int ret;
1519 * Check ->nrbufs without the inode lock first. This function
1520 * is speculative anyways, so missing one is ok.
1522 if (pipe->nrbufs)
1523 return 0;
1525 ret = 0;
1526 pipe_lock(pipe);
1528 while (!pipe->nrbufs) {
1529 if (signal_pending(current)) {
1530 ret = -ERESTARTSYS;
1531 break;
1533 if (!pipe->writers)
1534 break;
1535 if (!pipe->waiting_writers) {
1536 if (flags & SPLICE_F_NONBLOCK) {
1537 ret = -EAGAIN;
1538 break;
1541 pipe_wait(pipe);
1544 pipe_unlock(pipe);
1545 return ret;
1549 * Make sure there's writeable room. Wait for room if we can, otherwise
1550 * return an appropriate error.
1552 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1554 int ret;
1557 * Check ->nrbufs without the inode lock first. This function
1558 * is speculative anyways, so missing one is ok.
1560 if (pipe->nrbufs < PIPE_BUFFERS)
1561 return 0;
1563 ret = 0;
1564 pipe_lock(pipe);
1566 while (pipe->nrbufs >= PIPE_BUFFERS) {
1567 if (!pipe->readers) {
1568 send_sig(SIGPIPE, current, 0);
1569 ret = -EPIPE;
1570 break;
1572 if (flags & SPLICE_F_NONBLOCK) {
1573 ret = -EAGAIN;
1574 break;
1576 if (signal_pending(current)) {
1577 ret = -ERESTARTSYS;
1578 break;
1580 pipe->waiting_writers++;
1581 pipe_wait(pipe);
1582 pipe->waiting_writers--;
1585 pipe_unlock(pipe);
1586 return ret;
1590 * Link contents of ipipe to opipe.
1592 static int link_pipe(struct pipe_inode_info *ipipe,
1593 struct pipe_inode_info *opipe,
1594 size_t len, unsigned int flags)
1596 struct pipe_buffer *ibuf, *obuf;
1597 int ret = 0, i = 0, nbuf;
1600 * Potential ABBA deadlock, work around it by ordering lock
1601 * grabbing by pipe info address. Otherwise two different processes
1602 * could deadlock (one doing tee from A -> B, the other from B -> A).
1604 pipe_double_lock(ipipe, opipe);
1606 do {
1607 if (!opipe->readers) {
1608 send_sig(SIGPIPE, current, 0);
1609 if (!ret)
1610 ret = -EPIPE;
1611 break;
1615 * If we have iterated all input buffers or ran out of
1616 * output room, break.
1618 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1619 break;
1621 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1622 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1625 * Get a reference to this pipe buffer,
1626 * so we can copy the contents over.
1628 ibuf->ops->get(ipipe, ibuf);
1630 obuf = opipe->bufs + nbuf;
1631 *obuf = *ibuf;
1634 * Don't inherit the gift flag, we need to
1635 * prevent multiple steals of this page.
1637 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1639 if (obuf->len > len)
1640 obuf->len = len;
1642 opipe->nrbufs++;
1643 ret += obuf->len;
1644 len -= obuf->len;
1645 i++;
1646 } while (len);
1649 * return EAGAIN if we have the potential of some data in the
1650 * future, otherwise just return 0
1652 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1653 ret = -EAGAIN;
1655 pipe_unlock(ipipe);
1656 pipe_unlock(opipe);
1659 * If we put data in the output pipe, wakeup any potential readers.
1661 if (ret > 0) {
1662 smp_mb();
1663 if (waitqueue_active(&opipe->wait))
1664 wake_up_interruptible(&opipe->wait);
1665 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1668 return ret;
1672 * This is a tee(1) implementation that works on pipes. It doesn't copy
1673 * any data, it simply references the 'in' pages on the 'out' pipe.
1674 * The 'flags' used are the SPLICE_F_* variants, currently the only
1675 * applicable one is SPLICE_F_NONBLOCK.
1677 static long do_tee(struct file *in, struct file *out, size_t len,
1678 unsigned int flags)
1680 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1681 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1682 int ret = -EINVAL;
1685 * Duplicate the contents of ipipe to opipe without actually
1686 * copying the data.
1688 if (ipipe && opipe && ipipe != opipe) {
1690 * Keep going, unless we encounter an error. The ipipe/opipe
1691 * ordering doesn't really matter.
1693 ret = link_ipipe_prep(ipipe, flags);
1694 if (!ret) {
1695 ret = link_opipe_prep(opipe, flags);
1696 if (!ret)
1697 ret = link_pipe(ipipe, opipe, len, flags);
1701 return ret;
1704 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1706 struct file *in;
1707 int error, fput_in;
1709 if (unlikely(!len))
1710 return 0;
1712 error = -EBADF;
1713 in = fget_light(fdin, &fput_in);
1714 if (in) {
1715 if (in->f_mode & FMODE_READ) {
1716 int fput_out;
1717 struct file *out = fget_light(fdout, &fput_out);
1719 if (out) {
1720 if (out->f_mode & FMODE_WRITE)
1721 error = do_tee(in, out, len, flags);
1722 fput_light(out, fput_out);
1725 fput_light(in, fput_in);
1728 return error;