2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
120 #include <asm/uaccess.h>
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
134 #include <linux/filter.h>
136 #include <trace/events/sock.h>
142 static DEFINE_MUTEX(proto_list_mutex
);
143 static LIST_HEAD(proto_list
);
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
151 mutex_lock(&proto_list_mutex
);
152 list_for_each_entry(proto
, &proto_list
, node
) {
153 if (proto
->init_cgroup
) {
154 ret
= proto
->init_cgroup(memcg
, ss
);
160 mutex_unlock(&proto_list_mutex
);
163 list_for_each_entry_continue_reverse(proto
, &proto_list
, node
)
164 if (proto
->destroy_cgroup
)
165 proto
->destroy_cgroup(memcg
);
166 mutex_unlock(&proto_list_mutex
);
170 void mem_cgroup_sockets_destroy(struct mem_cgroup
*memcg
)
174 mutex_lock(&proto_list_mutex
);
175 list_for_each_entry_reverse(proto
, &proto_list
, node
)
176 if (proto
->destroy_cgroup
)
177 proto
->destroy_cgroup(memcg
);
178 mutex_unlock(&proto_list_mutex
);
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
186 static struct lock_class_key af_family_keys
[AF_MAX
];
187 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
189 #if defined(CONFIG_MEMCG_KMEM)
190 struct static_key memcg_socket_limit_enabled
;
191 EXPORT_SYMBOL(memcg_socket_limit_enabled
);
195 * Make lock validator output more readable. (we pre-construct these
196 * strings build-time, so that runtime initialization of socket
199 static const char *const af_family_key_strings
[AF_MAX
+1] = {
200 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
201 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
202 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
203 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
204 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
205 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
206 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
207 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
208 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
209 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
210 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
211 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
212 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
213 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
215 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
216 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
217 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
218 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
219 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
220 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
221 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
222 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
223 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
224 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
225 "slock-27" , "slock-28" , "slock-AF_CAN" ,
226 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
227 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
228 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
229 "slock-AF_NFC" , "slock-AF_MAX"
231 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
232 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
233 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
234 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
235 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
236 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
237 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
238 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
239 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
240 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
241 "clock-27" , "clock-28" , "clock-AF_CAN" ,
242 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
243 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
244 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
245 "clock-AF_NFC" , "clock-AF_MAX"
249 * sk_callback_lock locking rules are per-address-family,
250 * so split the lock classes by using a per-AF key:
252 static struct lock_class_key af_callback_keys
[AF_MAX
];
254 /* Take into consideration the size of the struct sk_buff overhead in the
255 * determination of these values, since that is non-constant across
256 * platforms. This makes socket queueing behavior and performance
257 * not depend upon such differences.
259 #define _SK_MEM_PACKETS 256
260 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
261 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
262 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
264 /* Run time adjustable parameters. */
265 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
266 EXPORT_SYMBOL(sysctl_wmem_max
);
267 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
268 EXPORT_SYMBOL(sysctl_rmem_max
);
269 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
270 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
272 /* Maximal space eaten by iovec or ancillary data plus some space */
273 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
274 EXPORT_SYMBOL(sysctl_optmem_max
);
276 struct static_key memalloc_socks
= STATIC_KEY_INIT_FALSE
;
277 EXPORT_SYMBOL_GPL(memalloc_socks
);
280 * sk_set_memalloc - sets %SOCK_MEMALLOC
281 * @sk: socket to set it on
283 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
284 * It's the responsibility of the admin to adjust min_free_kbytes
285 * to meet the requirements
287 void sk_set_memalloc(struct sock
*sk
)
289 sock_set_flag(sk
, SOCK_MEMALLOC
);
290 sk
->sk_allocation
|= __GFP_MEMALLOC
;
291 static_key_slow_inc(&memalloc_socks
);
293 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
295 void sk_clear_memalloc(struct sock
*sk
)
297 sock_reset_flag(sk
, SOCK_MEMALLOC
);
298 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
299 static_key_slow_dec(&memalloc_socks
);
302 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
303 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
304 * it has rmem allocations there is a risk that the user of the
305 * socket cannot make forward progress due to exceeding the rmem
306 * limits. By rights, sk_clear_memalloc() should only be called
307 * on sockets being torn down but warn and reset the accounting if
308 * that assumption breaks.
310 if (WARN_ON(sk
->sk_forward_alloc
))
313 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
315 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
318 unsigned long pflags
= current
->flags
;
320 /* these should have been dropped before queueing */
321 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
323 current
->flags
|= PF_MEMALLOC
;
324 ret
= sk
->sk_backlog_rcv(sk
, skb
);
325 tsk_restore_flags(current
, pflags
, PF_MEMALLOC
);
329 EXPORT_SYMBOL(__sk_backlog_rcv
);
331 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
335 if (optlen
< sizeof(tv
))
337 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
339 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
343 static int warned __read_mostly
;
346 if (warned
< 10 && net_ratelimit()) {
348 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
349 __func__
, current
->comm
, task_pid_nr(current
));
353 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
354 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
356 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
357 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
361 static void sock_warn_obsolete_bsdism(const char *name
)
364 static char warncomm
[TASK_COMM_LEN
];
365 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
366 strcpy(warncomm
, current
->comm
);
367 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
373 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
375 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
377 if (sk
->sk_flags
& flags
) {
378 sk
->sk_flags
&= ~flags
;
379 if (!(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
380 net_disable_timestamp();
385 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
390 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
392 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
393 atomic_inc(&sk
->sk_drops
);
394 trace_sock_rcvqueue_full(sk
, skb
);
398 err
= sk_filter(sk
, skb
);
402 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
403 atomic_inc(&sk
->sk_drops
);
408 skb_set_owner_r(skb
, sk
);
410 /* Cache the SKB length before we tack it onto the receive
411 * queue. Once it is added it no longer belongs to us and
412 * may be freed by other threads of control pulling packets
417 /* we escape from rcu protected region, make sure we dont leak
422 spin_lock_irqsave(&list
->lock
, flags
);
423 skb
->dropcount
= atomic_read(&sk
->sk_drops
);
424 __skb_queue_tail(list
, skb
);
425 spin_unlock_irqrestore(&list
->lock
, flags
);
427 if (!sock_flag(sk
, SOCK_DEAD
))
428 sk
->sk_data_ready(sk
, skb_len
);
431 EXPORT_SYMBOL(sock_queue_rcv_skb
);
433 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
435 int rc
= NET_RX_SUCCESS
;
437 if (sk_filter(sk
, skb
))
438 goto discard_and_relse
;
442 if (sk_rcvqueues_full(sk
, skb
, sk
->sk_rcvbuf
)) {
443 atomic_inc(&sk
->sk_drops
);
444 goto discard_and_relse
;
447 bh_lock_sock_nested(sk
);
450 if (!sock_owned_by_user(sk
)) {
452 * trylock + unlock semantics:
454 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
456 rc
= sk_backlog_rcv(sk
, skb
);
458 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
459 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
461 atomic_inc(&sk
->sk_drops
);
462 goto discard_and_relse
;
473 EXPORT_SYMBOL(sk_receive_skb
);
475 void sk_reset_txq(struct sock
*sk
)
477 sk_tx_queue_clear(sk
);
479 EXPORT_SYMBOL(sk_reset_txq
);
481 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
483 struct dst_entry
*dst
= __sk_dst_get(sk
);
485 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
486 sk_tx_queue_clear(sk
);
487 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
494 EXPORT_SYMBOL(__sk_dst_check
);
496 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
498 struct dst_entry
*dst
= sk_dst_get(sk
);
500 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
508 EXPORT_SYMBOL(sk_dst_check
);
510 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
513 int ret
= -ENOPROTOOPT
;
514 #ifdef CONFIG_NETDEVICES
515 struct net
*net
= sock_net(sk
);
516 char devname
[IFNAMSIZ
];
521 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
528 /* Bind this socket to a particular device like "eth0",
529 * as specified in the passed interface name. If the
530 * name is "" or the option length is zero the socket
533 if (optlen
> IFNAMSIZ
- 1)
534 optlen
= IFNAMSIZ
- 1;
535 memset(devname
, 0, sizeof(devname
));
538 if (copy_from_user(devname
, optval
, optlen
))
542 if (devname
[0] != '\0') {
543 struct net_device
*dev
;
546 dev
= dev_get_by_name_rcu(net
, devname
);
548 index
= dev
->ifindex
;
556 sk
->sk_bound_dev_if
= index
;
568 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
569 int __user
*optlen
, int len
)
571 int ret
= -ENOPROTOOPT
;
572 #ifdef CONFIG_NETDEVICES
573 struct net
*net
= sock_net(sk
);
574 struct net_device
*dev
;
575 char devname
[IFNAMSIZ
];
578 if (sk
->sk_bound_dev_if
== 0) {
588 seq
= read_seqcount_begin(&devnet_rename_seq
);
590 dev
= dev_get_by_index_rcu(net
, sk
->sk_bound_dev_if
);
597 strcpy(devname
, dev
->name
);
599 if (read_seqcount_retry(&devnet_rename_seq
, seq
))
602 len
= strlen(devname
) + 1;
605 if (copy_to_user(optval
, devname
, len
))
610 if (put_user(len
, optlen
))
621 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
624 sock_set_flag(sk
, bit
);
626 sock_reset_flag(sk
, bit
);
630 * This is meant for all protocols to use and covers goings on
631 * at the socket level. Everything here is generic.
634 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
635 char __user
*optval
, unsigned int optlen
)
637 struct sock
*sk
= sock
->sk
;
644 * Options without arguments
647 if (optname
== SO_BINDTODEVICE
)
648 return sock_setbindtodevice(sk
, optval
, optlen
);
650 if (optlen
< sizeof(int))
653 if (get_user(val
, (int __user
*)optval
))
656 valbool
= val
? 1 : 0;
662 if (val
&& !capable(CAP_NET_ADMIN
))
665 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
668 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
671 sk
->sk_reuseport
= valbool
;
680 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
683 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
686 /* Don't error on this BSD doesn't and if you think
687 * about it this is right. Otherwise apps have to
688 * play 'guess the biggest size' games. RCVBUF/SNDBUF
689 * are treated in BSD as hints
691 val
= min_t(u32
, val
, sysctl_wmem_max
);
693 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
694 sk
->sk_sndbuf
= max_t(u32
, val
* 2, SOCK_MIN_SNDBUF
);
695 /* Wake up sending tasks if we upped the value. */
696 sk
->sk_write_space(sk
);
700 if (!capable(CAP_NET_ADMIN
)) {
707 /* Don't error on this BSD doesn't and if you think
708 * about it this is right. Otherwise apps have to
709 * play 'guess the biggest size' games. RCVBUF/SNDBUF
710 * are treated in BSD as hints
712 val
= min_t(u32
, val
, sysctl_rmem_max
);
714 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
716 * We double it on the way in to account for
717 * "struct sk_buff" etc. overhead. Applications
718 * assume that the SO_RCVBUF setting they make will
719 * allow that much actual data to be received on that
722 * Applications are unaware that "struct sk_buff" and
723 * other overheads allocate from the receive buffer
724 * during socket buffer allocation.
726 * And after considering the possible alternatives,
727 * returning the value we actually used in getsockopt
728 * is the most desirable behavior.
730 sk
->sk_rcvbuf
= max_t(u32
, val
* 2, SOCK_MIN_RCVBUF
);
734 if (!capable(CAP_NET_ADMIN
)) {
742 if (sk
->sk_protocol
== IPPROTO_TCP
&&
743 sk
->sk_type
== SOCK_STREAM
)
744 tcp_set_keepalive(sk
, valbool
);
746 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
750 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
754 sk
->sk_no_check
= valbool
;
758 if ((val
>= 0 && val
<= 6) ||
759 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
760 sk
->sk_priority
= val
;
766 if (optlen
< sizeof(ling
)) {
767 ret
= -EINVAL
; /* 1003.1g */
770 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
775 sock_reset_flag(sk
, SOCK_LINGER
);
777 #if (BITS_PER_LONG == 32)
778 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
779 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
782 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
783 sock_set_flag(sk
, SOCK_LINGER
);
788 sock_warn_obsolete_bsdism("setsockopt");
793 set_bit(SOCK_PASSCRED
, &sock
->flags
);
795 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
801 if (optname
== SO_TIMESTAMP
)
802 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
804 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
805 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
806 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
808 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
809 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
813 case SO_TIMESTAMPING
:
814 if (val
& ~SOF_TIMESTAMPING_MASK
) {
818 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
,
819 val
& SOF_TIMESTAMPING_TX_HARDWARE
);
820 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
,
821 val
& SOF_TIMESTAMPING_TX_SOFTWARE
);
822 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
,
823 val
& SOF_TIMESTAMPING_RX_HARDWARE
);
824 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
825 sock_enable_timestamp(sk
,
826 SOCK_TIMESTAMPING_RX_SOFTWARE
);
828 sock_disable_timestamp(sk
,
829 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
830 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
,
831 val
& SOF_TIMESTAMPING_SOFTWARE
);
832 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
,
833 val
& SOF_TIMESTAMPING_SYS_HARDWARE
);
834 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
,
835 val
& SOF_TIMESTAMPING_RAW_HARDWARE
);
841 sk
->sk_rcvlowat
= val
? : 1;
845 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
849 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
852 case SO_ATTACH_FILTER
:
854 if (optlen
== sizeof(struct sock_fprog
)) {
855 struct sock_fprog fprog
;
858 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
861 ret
= sk_attach_filter(&fprog
, sk
);
865 case SO_DETACH_FILTER
:
866 ret
= sk_detach_filter(sk
);
870 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
873 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
878 set_bit(SOCK_PASSSEC
, &sock
->flags
);
880 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
883 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
889 /* We implement the SO_SNDLOWAT etc to
890 not be settable (1003.1g 5.3) */
892 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
896 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
900 if (sock
->ops
->set_peek_off
)
901 sock
->ops
->set_peek_off(sk
, val
);
907 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
910 case SO_SELECT_ERR_QUEUE
:
911 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
921 EXPORT_SYMBOL(sock_setsockopt
);
924 void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
927 ucred
->pid
= pid_vnr(pid
);
928 ucred
->uid
= ucred
->gid
= -1;
930 struct user_namespace
*current_ns
= current_user_ns();
932 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
933 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
936 EXPORT_SYMBOL_GPL(cred_to_ucred
);
938 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
939 char __user
*optval
, int __user
*optlen
)
941 struct sock
*sk
= sock
->sk
;
949 int lv
= sizeof(int);
952 if (get_user(len
, optlen
))
957 memset(&v
, 0, sizeof(v
));
961 v
.val
= sock_flag(sk
, SOCK_DBG
);
965 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
969 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
973 v
.val
= sk
->sk_sndbuf
;
977 v
.val
= sk
->sk_rcvbuf
;
981 v
.val
= sk
->sk_reuse
;
985 v
.val
= sk
->sk_reuseport
;
989 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
997 v
.val
= sk
->sk_protocol
;
1001 v
.val
= sk
->sk_family
;
1005 v
.val
= -sock_error(sk
);
1007 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1011 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1015 v
.val
= sk
->sk_no_check
;
1019 v
.val
= sk
->sk_priority
;
1023 lv
= sizeof(v
.ling
);
1024 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1025 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1029 sock_warn_obsolete_bsdism("getsockopt");
1033 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1034 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1037 case SO_TIMESTAMPNS
:
1038 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1041 case SO_TIMESTAMPING
:
1043 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
1044 v
.val
|= SOF_TIMESTAMPING_TX_HARDWARE
;
1045 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
1046 v
.val
|= SOF_TIMESTAMPING_TX_SOFTWARE
;
1047 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
))
1048 v
.val
|= SOF_TIMESTAMPING_RX_HARDWARE
;
1049 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
))
1050 v
.val
|= SOF_TIMESTAMPING_RX_SOFTWARE
;
1051 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
))
1052 v
.val
|= SOF_TIMESTAMPING_SOFTWARE
;
1053 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
))
1054 v
.val
|= SOF_TIMESTAMPING_SYS_HARDWARE
;
1055 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
))
1056 v
.val
|= SOF_TIMESTAMPING_RAW_HARDWARE
;
1060 lv
= sizeof(struct timeval
);
1061 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1065 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1066 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
1071 lv
= sizeof(struct timeval
);
1072 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1076 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1077 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
1082 v
.val
= sk
->sk_rcvlowat
;
1090 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1095 struct ucred peercred
;
1096 if (len
> sizeof(peercred
))
1097 len
= sizeof(peercred
);
1098 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1099 if (copy_to_user(optval
, &peercred
, len
))
1108 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
1112 if (copy_to_user(optval
, address
, len
))
1117 /* Dubious BSD thing... Probably nobody even uses it, but
1118 * the UNIX standard wants it for whatever reason... -DaveM
1121 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1125 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1129 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1132 v
.val
= sk
->sk_mark
;
1136 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1139 case SO_WIFI_STATUS
:
1140 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1144 if (!sock
->ops
->set_peek_off
)
1147 v
.val
= sk
->sk_peek_off
;
1150 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1153 case SO_BINDTODEVICE
:
1154 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1157 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1163 case SO_LOCK_FILTER
:
1164 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1167 case SO_SELECT_ERR_QUEUE
:
1168 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1172 return -ENOPROTOOPT
;
1177 if (copy_to_user(optval
, &v
, len
))
1180 if (put_user(len
, optlen
))
1186 * Initialize an sk_lock.
1188 * (We also register the sk_lock with the lock validator.)
1190 static inline void sock_lock_init(struct sock
*sk
)
1192 sock_lock_init_class_and_name(sk
,
1193 af_family_slock_key_strings
[sk
->sk_family
],
1194 af_family_slock_keys
+ sk
->sk_family
,
1195 af_family_key_strings
[sk
->sk_family
],
1196 af_family_keys
+ sk
->sk_family
);
1200 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1201 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1202 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1204 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1206 #ifdef CONFIG_SECURITY_NETWORK
1207 void *sptr
= nsk
->sk_security
;
1209 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1211 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1212 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1214 #ifdef CONFIG_SECURITY_NETWORK
1215 nsk
->sk_security
= sptr
;
1216 security_sk_clone(osk
, nsk
);
1221 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1222 * un-modified. Special care is taken when initializing object to zero.
1224 static inline void sk_prot_clear_nulls(struct sock
*sk
, int size
)
1226 if (offsetof(struct sock
, sk_node
.next
) != 0)
1227 memset(sk
, 0, offsetof(struct sock
, sk_node
.next
));
1228 memset(&sk
->sk_node
.pprev
, 0,
1229 size
- offsetof(struct sock
, sk_node
.pprev
));
1232 void sk_prot_clear_portaddr_nulls(struct sock
*sk
, int size
)
1234 unsigned long nulls1
, nulls2
;
1236 nulls1
= offsetof(struct sock
, __sk_common
.skc_node
.next
);
1237 nulls2
= offsetof(struct sock
, __sk_common
.skc_portaddr_node
.next
);
1238 if (nulls1
> nulls2
)
1239 swap(nulls1
, nulls2
);
1242 memset((char *)sk
, 0, nulls1
);
1243 memset((char *)sk
+ nulls1
+ sizeof(void *), 0,
1244 nulls2
- nulls1
- sizeof(void *));
1245 memset((char *)sk
+ nulls2
+ sizeof(void *), 0,
1246 size
- nulls2
- sizeof(void *));
1248 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls
);
1250 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1254 struct kmem_cache
*slab
;
1258 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1261 if (priority
& __GFP_ZERO
) {
1263 prot
->clear_sk(sk
, prot
->obj_size
);
1265 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1268 sk
= kmalloc(prot
->obj_size
, priority
);
1271 kmemcheck_annotate_bitfield(sk
, flags
);
1273 if (security_sk_alloc(sk
, family
, priority
))
1276 if (!try_module_get(prot
->owner
))
1278 sk_tx_queue_clear(sk
);
1284 security_sk_free(sk
);
1287 kmem_cache_free(slab
, sk
);
1293 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1295 struct kmem_cache
*slab
;
1296 struct module
*owner
;
1298 owner
= prot
->owner
;
1301 security_sk_free(sk
);
1303 kmem_cache_free(slab
, sk
);
1309 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1310 void sock_update_classid(struct sock
*sk
)
1314 classid
= task_cls_classid(current
);
1315 if (classid
!= sk
->sk_classid
)
1316 sk
->sk_classid
= classid
;
1318 EXPORT_SYMBOL(sock_update_classid
);
1321 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1322 void sock_update_netprioidx(struct sock
*sk
, struct task_struct
*task
)
1327 sk
->sk_cgrp_prioidx
= task_netprioidx(task
);
1329 EXPORT_SYMBOL_GPL(sock_update_netprioidx
);
1333 * sk_alloc - All socket objects are allocated here
1334 * @net: the applicable net namespace
1335 * @family: protocol family
1336 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1337 * @prot: struct proto associated with this new sock instance
1339 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1344 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1346 sk
->sk_family
= family
;
1348 * See comment in struct sock definition to understand
1349 * why we need sk_prot_creator -acme
1351 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1353 sock_net_set(sk
, get_net(net
));
1354 atomic_set(&sk
->sk_wmem_alloc
, 1);
1356 sock_update_classid(sk
);
1357 sock_update_netprioidx(sk
, current
);
1362 EXPORT_SYMBOL(sk_alloc
);
1364 static void __sk_free(struct sock
*sk
)
1366 struct sk_filter
*filter
;
1368 if (sk
->sk_destruct
)
1369 sk
->sk_destruct(sk
);
1371 filter
= rcu_dereference_check(sk
->sk_filter
,
1372 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1374 sk_filter_uncharge(sk
, filter
);
1375 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1378 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1380 if (atomic_read(&sk
->sk_omem_alloc
))
1381 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1382 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1384 if (sk
->sk_peer_cred
)
1385 put_cred(sk
->sk_peer_cred
);
1386 put_pid(sk
->sk_peer_pid
);
1387 put_net(sock_net(sk
));
1388 sk_prot_free(sk
->sk_prot_creator
, sk
);
1391 void sk_free(struct sock
*sk
)
1394 * We subtract one from sk_wmem_alloc and can know if
1395 * some packets are still in some tx queue.
1396 * If not null, sock_wfree() will call __sk_free(sk) later
1398 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1401 EXPORT_SYMBOL(sk_free
);
1404 * Last sock_put should drop reference to sk->sk_net. It has already
1405 * been dropped in sk_change_net. Taking reference to stopping namespace
1407 * Take reference to a socket to remove it from hash _alive_ and after that
1408 * destroy it in the context of init_net.
1410 void sk_release_kernel(struct sock
*sk
)
1412 if (sk
== NULL
|| sk
->sk_socket
== NULL
)
1416 sock_release(sk
->sk_socket
);
1417 release_net(sock_net(sk
));
1418 sock_net_set(sk
, get_net(&init_net
));
1421 EXPORT_SYMBOL(sk_release_kernel
);
1423 static void sk_update_clone(const struct sock
*sk
, struct sock
*newsk
)
1425 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1426 sock_update_memcg(newsk
);
1430 * sk_clone_lock - clone a socket, and lock its clone
1431 * @sk: the socket to clone
1432 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1434 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1436 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1440 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1441 if (newsk
!= NULL
) {
1442 struct sk_filter
*filter
;
1444 sock_copy(newsk
, sk
);
1447 get_net(sock_net(newsk
));
1448 sk_node_init(&newsk
->sk_node
);
1449 sock_lock_init(newsk
);
1450 bh_lock_sock(newsk
);
1451 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1452 newsk
->sk_backlog
.len
= 0;
1454 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1456 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1458 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1459 atomic_set(&newsk
->sk_omem_alloc
, 0);
1460 skb_queue_head_init(&newsk
->sk_receive_queue
);
1461 skb_queue_head_init(&newsk
->sk_write_queue
);
1462 #ifdef CONFIG_NET_DMA
1463 skb_queue_head_init(&newsk
->sk_async_wait_queue
);
1466 spin_lock_init(&newsk
->sk_dst_lock
);
1467 rwlock_init(&newsk
->sk_callback_lock
);
1468 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1469 af_callback_keys
+ newsk
->sk_family
,
1470 af_family_clock_key_strings
[newsk
->sk_family
]);
1472 newsk
->sk_dst_cache
= NULL
;
1473 newsk
->sk_wmem_queued
= 0;
1474 newsk
->sk_forward_alloc
= 0;
1475 newsk
->sk_send_head
= NULL
;
1476 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1478 sock_reset_flag(newsk
, SOCK_DONE
);
1479 skb_queue_head_init(&newsk
->sk_error_queue
);
1481 filter
= rcu_dereference_protected(newsk
->sk_filter
, 1);
1483 sk_filter_charge(newsk
, filter
);
1485 if (unlikely(xfrm_sk_clone_policy(newsk
))) {
1486 /* It is still raw copy of parent, so invalidate
1487 * destructor and make plain sk_free() */
1488 newsk
->sk_destruct
= NULL
;
1489 bh_unlock_sock(newsk
);
1496 newsk
->sk_priority
= 0;
1498 * Before updating sk_refcnt, we must commit prior changes to memory
1499 * (Documentation/RCU/rculist_nulls.txt for details)
1502 atomic_set(&newsk
->sk_refcnt
, 2);
1505 * Increment the counter in the same struct proto as the master
1506 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1507 * is the same as sk->sk_prot->socks, as this field was copied
1510 * This _changes_ the previous behaviour, where
1511 * tcp_create_openreq_child always was incrementing the
1512 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1513 * to be taken into account in all callers. -acme
1515 sk_refcnt_debug_inc(newsk
);
1516 sk_set_socket(newsk
, NULL
);
1517 newsk
->sk_wq
= NULL
;
1519 sk_update_clone(sk
, newsk
);
1521 if (newsk
->sk_prot
->sockets_allocated
)
1522 sk_sockets_allocated_inc(newsk
);
1524 if (newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1525 net_enable_timestamp();
1530 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1532 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1534 __sk_dst_set(sk
, dst
);
1535 sk
->sk_route_caps
= dst
->dev
->features
;
1536 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1537 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1538 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1539 if (sk_can_gso(sk
)) {
1540 if (dst
->header_len
) {
1541 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1543 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1544 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1545 sk
->sk_gso_max_segs
= dst
->dev
->gso_max_segs
;
1549 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1552 * Simple resource managers for sockets.
1557 * Write buffer destructor automatically called from kfree_skb.
1559 void sock_wfree(struct sk_buff
*skb
)
1561 struct sock
*sk
= skb
->sk
;
1562 unsigned int len
= skb
->truesize
;
1564 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1566 * Keep a reference on sk_wmem_alloc, this will be released
1567 * after sk_write_space() call
1569 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1570 sk
->sk_write_space(sk
);
1574 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1575 * could not do because of in-flight packets
1577 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1580 EXPORT_SYMBOL(sock_wfree
);
1583 * Read buffer destructor automatically called from kfree_skb.
1585 void sock_rfree(struct sk_buff
*skb
)
1587 struct sock
*sk
= skb
->sk
;
1588 unsigned int len
= skb
->truesize
;
1590 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1591 sk_mem_uncharge(sk
, len
);
1593 EXPORT_SYMBOL(sock_rfree
);
1595 void sock_edemux(struct sk_buff
*skb
)
1597 struct sock
*sk
= skb
->sk
;
1600 if (sk
->sk_state
== TCP_TIME_WAIT
)
1601 inet_twsk_put(inet_twsk(sk
));
1606 EXPORT_SYMBOL(sock_edemux
);
1608 kuid_t
sock_i_uid(struct sock
*sk
)
1612 read_lock_bh(&sk
->sk_callback_lock
);
1613 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1614 read_unlock_bh(&sk
->sk_callback_lock
);
1617 EXPORT_SYMBOL(sock_i_uid
);
1619 unsigned long sock_i_ino(struct sock
*sk
)
1623 read_lock_bh(&sk
->sk_callback_lock
);
1624 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1625 read_unlock_bh(&sk
->sk_callback_lock
);
1628 EXPORT_SYMBOL(sock_i_ino
);
1631 * Allocate a skb from the socket's send buffer.
1633 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1636 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1637 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1639 skb_set_owner_w(skb
, sk
);
1645 EXPORT_SYMBOL(sock_wmalloc
);
1648 * Allocate a skb from the socket's receive buffer.
1650 struct sk_buff
*sock_rmalloc(struct sock
*sk
, unsigned long size
, int force
,
1653 if (force
|| atomic_read(&sk
->sk_rmem_alloc
) < sk
->sk_rcvbuf
) {
1654 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1656 skb_set_owner_r(skb
, sk
);
1664 * Allocate a memory block from the socket's option memory buffer.
1666 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1668 if ((unsigned int)size
<= sysctl_optmem_max
&&
1669 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1671 /* First do the add, to avoid the race if kmalloc
1674 atomic_add(size
, &sk
->sk_omem_alloc
);
1675 mem
= kmalloc(size
, priority
);
1678 atomic_sub(size
, &sk
->sk_omem_alloc
);
1682 EXPORT_SYMBOL(sock_kmalloc
);
1685 * Free an option memory block.
1687 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1690 atomic_sub(size
, &sk
->sk_omem_alloc
);
1692 EXPORT_SYMBOL(sock_kfree_s
);
1694 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1695 I think, these locks should be removed for datagram sockets.
1697 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1701 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1705 if (signal_pending(current
))
1707 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1708 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1709 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1711 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1715 timeo
= schedule_timeout(timeo
);
1717 finish_wait(sk_sleep(sk
), &wait
);
1723 * Generic send/receive buffer handlers
1726 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1727 unsigned long data_len
, int noblock
,
1730 struct sk_buff
*skb
;
1734 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
1737 if (npages
> MAX_SKB_FRAGS
)
1740 gfp_mask
= sk
->sk_allocation
;
1741 if (gfp_mask
& __GFP_WAIT
)
1742 gfp_mask
|= __GFP_REPEAT
;
1744 timeo
= sock_sndtimeo(sk
, noblock
);
1746 err
= sock_error(sk
);
1751 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1754 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1755 skb
= alloc_skb(header_len
, gfp_mask
);
1759 /* No pages, we're done... */
1763 skb
->truesize
+= data_len
;
1764 skb_shinfo(skb
)->nr_frags
= npages
;
1765 for (i
= 0; i
< npages
; i
++) {
1768 page
= alloc_pages(sk
->sk_allocation
, 0);
1771 skb_shinfo(skb
)->nr_frags
= i
;
1776 __skb_fill_page_desc(skb
, i
,
1778 (data_len
>= PAGE_SIZE
?
1781 data_len
-= PAGE_SIZE
;
1784 /* Full success... */
1790 set_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1791 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1795 if (signal_pending(current
))
1797 timeo
= sock_wait_for_wmem(sk
, timeo
);
1800 skb_set_owner_w(skb
, sk
);
1804 err
= sock_intr_errno(timeo
);
1809 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1811 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1812 int noblock
, int *errcode
)
1814 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
);
1816 EXPORT_SYMBOL(sock_alloc_send_skb
);
1818 /* On 32bit arches, an skb frag is limited to 2^15 */
1819 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1821 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
1826 if (atomic_read(&pfrag
->page
->_count
) == 1) {
1830 if (pfrag
->offset
< pfrag
->size
)
1832 put_page(pfrag
->page
);
1835 /* We restrict high order allocations to users that can afford to wait */
1836 order
= (sk
->sk_allocation
& __GFP_WAIT
) ? SKB_FRAG_PAGE_ORDER
: 0;
1839 gfp_t gfp
= sk
->sk_allocation
;
1842 gfp
|= __GFP_COMP
| __GFP_NOWARN
;
1843 pfrag
->page
= alloc_pages(gfp
, order
);
1844 if (likely(pfrag
->page
)) {
1846 pfrag
->size
= PAGE_SIZE
<< order
;
1849 } while (--order
>= 0);
1851 sk_enter_memory_pressure(sk
);
1852 sk_stream_moderate_sndbuf(sk
);
1855 EXPORT_SYMBOL(sk_page_frag_refill
);
1857 static void __lock_sock(struct sock
*sk
)
1858 __releases(&sk
->sk_lock
.slock
)
1859 __acquires(&sk
->sk_lock
.slock
)
1864 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1865 TASK_UNINTERRUPTIBLE
);
1866 spin_unlock_bh(&sk
->sk_lock
.slock
);
1868 spin_lock_bh(&sk
->sk_lock
.slock
);
1869 if (!sock_owned_by_user(sk
))
1872 finish_wait(&sk
->sk_lock
.wq
, &wait
);
1875 static void __release_sock(struct sock
*sk
)
1876 __releases(&sk
->sk_lock
.slock
)
1877 __acquires(&sk
->sk_lock
.slock
)
1879 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
1882 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
1886 struct sk_buff
*next
= skb
->next
;
1889 WARN_ON_ONCE(skb_dst_is_noref(skb
));
1891 sk_backlog_rcv(sk
, skb
);
1894 * We are in process context here with softirqs
1895 * disabled, use cond_resched_softirq() to preempt.
1896 * This is safe to do because we've taken the backlog
1899 cond_resched_softirq();
1902 } while (skb
!= NULL
);
1905 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
1908 * Doing the zeroing here guarantee we can not loop forever
1909 * while a wild producer attempts to flood us.
1911 sk
->sk_backlog
.len
= 0;
1915 * sk_wait_data - wait for data to arrive at sk_receive_queue
1916 * @sk: sock to wait on
1917 * @timeo: for how long
1919 * Now socket state including sk->sk_err is changed only under lock,
1920 * hence we may omit checks after joining wait queue.
1921 * We check receive queue before schedule() only as optimization;
1922 * it is very likely that release_sock() added new data.
1924 int sk_wait_data(struct sock
*sk
, long *timeo
)
1929 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1930 set_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1931 rc
= sk_wait_event(sk
, timeo
, !skb_queue_empty(&sk
->sk_receive_queue
));
1932 clear_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1933 finish_wait(sk_sleep(sk
), &wait
);
1936 EXPORT_SYMBOL(sk_wait_data
);
1939 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1941 * @size: memory size to allocate
1942 * @kind: allocation type
1944 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1945 * rmem allocation. This function assumes that protocols which have
1946 * memory_pressure use sk_wmem_queued as write buffer accounting.
1948 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
1950 struct proto
*prot
= sk
->sk_prot
;
1951 int amt
= sk_mem_pages(size
);
1953 int parent_status
= UNDER_LIMIT
;
1955 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
1957 allocated
= sk_memory_allocated_add(sk
, amt
, &parent_status
);
1960 if (parent_status
== UNDER_LIMIT
&&
1961 allocated
<= sk_prot_mem_limits(sk
, 0)) {
1962 sk_leave_memory_pressure(sk
);
1966 /* Under pressure. (we or our parents) */
1967 if ((parent_status
> SOFT_LIMIT
) ||
1968 allocated
> sk_prot_mem_limits(sk
, 1))
1969 sk_enter_memory_pressure(sk
);
1971 /* Over hard limit (we or our parents) */
1972 if ((parent_status
== OVER_LIMIT
) ||
1973 (allocated
> sk_prot_mem_limits(sk
, 2)))
1974 goto suppress_allocation
;
1976 /* guarantee minimum buffer size under pressure */
1977 if (kind
== SK_MEM_RECV
) {
1978 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
1981 } else { /* SK_MEM_SEND */
1982 if (sk
->sk_type
== SOCK_STREAM
) {
1983 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
1985 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
1986 prot
->sysctl_wmem
[0])
1990 if (sk_has_memory_pressure(sk
)) {
1993 if (!sk_under_memory_pressure(sk
))
1995 alloc
= sk_sockets_allocated_read_positive(sk
);
1996 if (sk_prot_mem_limits(sk
, 2) > alloc
*
1997 sk_mem_pages(sk
->sk_wmem_queued
+
1998 atomic_read(&sk
->sk_rmem_alloc
) +
1999 sk
->sk_forward_alloc
))
2003 suppress_allocation
:
2005 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2006 sk_stream_moderate_sndbuf(sk
);
2008 /* Fail only if socket is _under_ its sndbuf.
2009 * In this case we cannot block, so that we have to fail.
2011 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2015 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2017 /* Alas. Undo changes. */
2018 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
2020 sk_memory_allocated_sub(sk
, amt
);
2024 EXPORT_SYMBOL(__sk_mem_schedule
);
2027 * __sk_reclaim - reclaim memory_allocated
2030 void __sk_mem_reclaim(struct sock
*sk
)
2032 sk_memory_allocated_sub(sk
,
2033 sk
->sk_forward_alloc
>> SK_MEM_QUANTUM_SHIFT
);
2034 sk
->sk_forward_alloc
&= SK_MEM_QUANTUM
- 1;
2036 if (sk_under_memory_pressure(sk
) &&
2037 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2038 sk_leave_memory_pressure(sk
);
2040 EXPORT_SYMBOL(__sk_mem_reclaim
);
2044 * Set of default routines for initialising struct proto_ops when
2045 * the protocol does not support a particular function. In certain
2046 * cases where it makes no sense for a protocol to have a "do nothing"
2047 * function, some default processing is provided.
2050 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2054 EXPORT_SYMBOL(sock_no_bind
);
2056 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2061 EXPORT_SYMBOL(sock_no_connect
);
2063 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2067 EXPORT_SYMBOL(sock_no_socketpair
);
2069 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
2073 EXPORT_SYMBOL(sock_no_accept
);
2075 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2080 EXPORT_SYMBOL(sock_no_getname
);
2082 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
2086 EXPORT_SYMBOL(sock_no_poll
);
2088 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2092 EXPORT_SYMBOL(sock_no_ioctl
);
2094 int sock_no_listen(struct socket
*sock
, int backlog
)
2098 EXPORT_SYMBOL(sock_no_listen
);
2100 int sock_no_shutdown(struct socket
*sock
, int how
)
2104 EXPORT_SYMBOL(sock_no_shutdown
);
2106 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2107 char __user
*optval
, unsigned int optlen
)
2111 EXPORT_SYMBOL(sock_no_setsockopt
);
2113 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2114 char __user
*optval
, int __user
*optlen
)
2118 EXPORT_SYMBOL(sock_no_getsockopt
);
2120 int sock_no_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
2125 EXPORT_SYMBOL(sock_no_sendmsg
);
2127 int sock_no_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
2128 size_t len
, int flags
)
2132 EXPORT_SYMBOL(sock_no_recvmsg
);
2134 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2136 /* Mirror missing mmap method error code */
2139 EXPORT_SYMBOL(sock_no_mmap
);
2141 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2144 struct msghdr msg
= {.msg_flags
= flags
};
2146 char *kaddr
= kmap(page
);
2147 iov
.iov_base
= kaddr
+ offset
;
2149 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2153 EXPORT_SYMBOL(sock_no_sendpage
);
2156 * Default Socket Callbacks
2159 static void sock_def_wakeup(struct sock
*sk
)
2161 struct socket_wq
*wq
;
2164 wq
= rcu_dereference(sk
->sk_wq
);
2165 if (wq_has_sleeper(wq
))
2166 wake_up_interruptible_all(&wq
->wait
);
2170 static void sock_def_error_report(struct sock
*sk
)
2172 struct socket_wq
*wq
;
2175 wq
= rcu_dereference(sk
->sk_wq
);
2176 if (wq_has_sleeper(wq
))
2177 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
2178 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2182 static void sock_def_readable(struct sock
*sk
, int len
)
2184 struct socket_wq
*wq
;
2187 wq
= rcu_dereference(sk
->sk_wq
);
2188 if (wq_has_sleeper(wq
))
2189 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
2190 POLLRDNORM
| POLLRDBAND
);
2191 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2195 static void sock_def_write_space(struct sock
*sk
)
2197 struct socket_wq
*wq
;
2201 /* Do not wake up a writer until he can make "significant"
2204 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2205 wq
= rcu_dereference(sk
->sk_wq
);
2206 if (wq_has_sleeper(wq
))
2207 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
2208 POLLWRNORM
| POLLWRBAND
);
2210 /* Should agree with poll, otherwise some programs break */
2211 if (sock_writeable(sk
))
2212 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2218 static void sock_def_destruct(struct sock
*sk
)
2220 kfree(sk
->sk_protinfo
);
2223 void sk_send_sigurg(struct sock
*sk
)
2225 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2226 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2227 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2229 EXPORT_SYMBOL(sk_send_sigurg
);
2231 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2232 unsigned long expires
)
2234 if (!mod_timer(timer
, expires
))
2237 EXPORT_SYMBOL(sk_reset_timer
);
2239 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2241 if (del_timer(timer
))
2244 EXPORT_SYMBOL(sk_stop_timer
);
2246 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2248 skb_queue_head_init(&sk
->sk_receive_queue
);
2249 skb_queue_head_init(&sk
->sk_write_queue
);
2250 skb_queue_head_init(&sk
->sk_error_queue
);
2251 #ifdef CONFIG_NET_DMA
2252 skb_queue_head_init(&sk
->sk_async_wait_queue
);
2255 sk
->sk_send_head
= NULL
;
2257 init_timer(&sk
->sk_timer
);
2259 sk
->sk_allocation
= GFP_KERNEL
;
2260 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2261 sk
->sk_sndbuf
= sysctl_wmem_default
;
2262 sk
->sk_state
= TCP_CLOSE
;
2263 sk_set_socket(sk
, sock
);
2265 sock_set_flag(sk
, SOCK_ZAPPED
);
2268 sk
->sk_type
= sock
->type
;
2269 sk
->sk_wq
= sock
->wq
;
2274 spin_lock_init(&sk
->sk_dst_lock
);
2275 rwlock_init(&sk
->sk_callback_lock
);
2276 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
2277 af_callback_keys
+ sk
->sk_family
,
2278 af_family_clock_key_strings
[sk
->sk_family
]);
2280 sk
->sk_state_change
= sock_def_wakeup
;
2281 sk
->sk_data_ready
= sock_def_readable
;
2282 sk
->sk_write_space
= sock_def_write_space
;
2283 sk
->sk_error_report
= sock_def_error_report
;
2284 sk
->sk_destruct
= sock_def_destruct
;
2286 sk
->sk_frag
.page
= NULL
;
2287 sk
->sk_frag
.offset
= 0;
2288 sk
->sk_peek_off
= -1;
2290 sk
->sk_peer_pid
= NULL
;
2291 sk
->sk_peer_cred
= NULL
;
2292 sk
->sk_write_pending
= 0;
2293 sk
->sk_rcvlowat
= 1;
2294 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2295 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2297 sk
->sk_stamp
= ktime_set(-1L, 0);
2300 * Before updating sk_refcnt, we must commit prior changes to memory
2301 * (Documentation/RCU/rculist_nulls.txt for details)
2304 atomic_set(&sk
->sk_refcnt
, 1);
2305 atomic_set(&sk
->sk_drops
, 0);
2307 EXPORT_SYMBOL(sock_init_data
);
2309 void lock_sock_nested(struct sock
*sk
, int subclass
)
2312 spin_lock_bh(&sk
->sk_lock
.slock
);
2313 if (sk
->sk_lock
.owned
)
2315 sk
->sk_lock
.owned
= 1;
2316 spin_unlock(&sk
->sk_lock
.slock
);
2318 * The sk_lock has mutex_lock() semantics here:
2320 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2323 EXPORT_SYMBOL(lock_sock_nested
);
2325 void release_sock(struct sock
*sk
)
2328 * The sk_lock has mutex_unlock() semantics:
2330 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
2332 spin_lock_bh(&sk
->sk_lock
.slock
);
2333 if (sk
->sk_backlog
.tail
)
2336 if (sk
->sk_prot
->release_cb
)
2337 sk
->sk_prot
->release_cb(sk
);
2339 sk
->sk_lock
.owned
= 0;
2340 if (waitqueue_active(&sk
->sk_lock
.wq
))
2341 wake_up(&sk
->sk_lock
.wq
);
2342 spin_unlock_bh(&sk
->sk_lock
.slock
);
2344 EXPORT_SYMBOL(release_sock
);
2347 * lock_sock_fast - fast version of lock_sock
2350 * This version should be used for very small section, where process wont block
2351 * return false if fast path is taken
2352 * sk_lock.slock locked, owned = 0, BH disabled
2353 * return true if slow path is taken
2354 * sk_lock.slock unlocked, owned = 1, BH enabled
2356 bool lock_sock_fast(struct sock
*sk
)
2359 spin_lock_bh(&sk
->sk_lock
.slock
);
2361 if (!sk
->sk_lock
.owned
)
2363 * Note : We must disable BH
2368 sk
->sk_lock
.owned
= 1;
2369 spin_unlock(&sk
->sk_lock
.slock
);
2371 * The sk_lock has mutex_lock() semantics here:
2373 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2377 EXPORT_SYMBOL(lock_sock_fast
);
2379 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2382 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2383 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2384 tv
= ktime_to_timeval(sk
->sk_stamp
);
2385 if (tv
.tv_sec
== -1)
2387 if (tv
.tv_sec
== 0) {
2388 sk
->sk_stamp
= ktime_get_real();
2389 tv
= ktime_to_timeval(sk
->sk_stamp
);
2391 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2393 EXPORT_SYMBOL(sock_get_timestamp
);
2395 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2398 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2399 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2400 ts
= ktime_to_timespec(sk
->sk_stamp
);
2401 if (ts
.tv_sec
== -1)
2403 if (ts
.tv_sec
== 0) {
2404 sk
->sk_stamp
= ktime_get_real();
2405 ts
= ktime_to_timespec(sk
->sk_stamp
);
2407 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2409 EXPORT_SYMBOL(sock_get_timestampns
);
2411 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2413 if (!sock_flag(sk
, flag
)) {
2414 unsigned long previous_flags
= sk
->sk_flags
;
2416 sock_set_flag(sk
, flag
);
2418 * we just set one of the two flags which require net
2419 * time stamping, but time stamping might have been on
2420 * already because of the other one
2422 if (!(previous_flags
& SK_FLAGS_TIMESTAMP
))
2423 net_enable_timestamp();
2428 * Get a socket option on an socket.
2430 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2431 * asynchronous errors should be reported by getsockopt. We assume
2432 * this means if you specify SO_ERROR (otherwise whats the point of it).
2434 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2435 char __user
*optval
, int __user
*optlen
)
2437 struct sock
*sk
= sock
->sk
;
2439 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2441 EXPORT_SYMBOL(sock_common_getsockopt
);
2443 #ifdef CONFIG_COMPAT
2444 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2445 char __user
*optval
, int __user
*optlen
)
2447 struct sock
*sk
= sock
->sk
;
2449 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2450 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2452 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2454 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2457 int sock_common_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
2458 struct msghdr
*msg
, size_t size
, int flags
)
2460 struct sock
*sk
= sock
->sk
;
2464 err
= sk
->sk_prot
->recvmsg(iocb
, sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2465 flags
& ~MSG_DONTWAIT
, &addr_len
);
2467 msg
->msg_namelen
= addr_len
;
2470 EXPORT_SYMBOL(sock_common_recvmsg
);
2473 * Set socket options on an inet socket.
2475 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2476 char __user
*optval
, unsigned int optlen
)
2478 struct sock
*sk
= sock
->sk
;
2480 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2482 EXPORT_SYMBOL(sock_common_setsockopt
);
2484 #ifdef CONFIG_COMPAT
2485 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2486 char __user
*optval
, unsigned int optlen
)
2488 struct sock
*sk
= sock
->sk
;
2490 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2491 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2493 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2495 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2498 void sk_common_release(struct sock
*sk
)
2500 if (sk
->sk_prot
->destroy
)
2501 sk
->sk_prot
->destroy(sk
);
2504 * Observation: when sock_common_release is called, processes have
2505 * no access to socket. But net still has.
2506 * Step one, detach it from networking:
2508 * A. Remove from hash tables.
2511 sk
->sk_prot
->unhash(sk
);
2514 * In this point socket cannot receive new packets, but it is possible
2515 * that some packets are in flight because some CPU runs receiver and
2516 * did hash table lookup before we unhashed socket. They will achieve
2517 * receive queue and will be purged by socket destructor.
2519 * Also we still have packets pending on receive queue and probably,
2520 * our own packets waiting in device queues. sock_destroy will drain
2521 * receive queue, but transmitted packets will delay socket destruction
2522 * until the last reference will be released.
2527 xfrm_sk_free_policy(sk
);
2529 sk_refcnt_debug_release(sk
);
2531 if (sk
->sk_frag
.page
) {
2532 put_page(sk
->sk_frag
.page
);
2533 sk
->sk_frag
.page
= NULL
;
2538 EXPORT_SYMBOL(sk_common_release
);
2540 #ifdef CONFIG_PROC_FS
2541 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2543 int val
[PROTO_INUSE_NR
];
2546 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2548 #ifdef CONFIG_NET_NS
2549 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2551 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2553 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2555 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2557 int cpu
, idx
= prot
->inuse_idx
;
2560 for_each_possible_cpu(cpu
)
2561 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2563 return res
>= 0 ? res
: 0;
2565 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2567 static int __net_init
sock_inuse_init_net(struct net
*net
)
2569 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2570 return net
->core
.inuse
? 0 : -ENOMEM
;
2573 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2575 free_percpu(net
->core
.inuse
);
2578 static struct pernet_operations net_inuse_ops
= {
2579 .init
= sock_inuse_init_net
,
2580 .exit
= sock_inuse_exit_net
,
2583 static __init
int net_inuse_init(void)
2585 if (register_pernet_subsys(&net_inuse_ops
))
2586 panic("Cannot initialize net inuse counters");
2591 core_initcall(net_inuse_init
);
2593 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2595 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2597 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2599 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2601 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2603 int cpu
, idx
= prot
->inuse_idx
;
2606 for_each_possible_cpu(cpu
)
2607 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2609 return res
>= 0 ? res
: 0;
2611 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2614 static void assign_proto_idx(struct proto
*prot
)
2616 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2618 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2619 pr_err("PROTO_INUSE_NR exhausted\n");
2623 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2626 static void release_proto_idx(struct proto
*prot
)
2628 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2629 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2632 static inline void assign_proto_idx(struct proto
*prot
)
2636 static inline void release_proto_idx(struct proto
*prot
)
2641 int proto_register(struct proto
*prot
, int alloc_slab
)
2644 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2645 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2648 if (prot
->slab
== NULL
) {
2649 pr_crit("%s: Can't create sock SLAB cache!\n",
2654 if (prot
->rsk_prot
!= NULL
) {
2655 prot
->rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s", prot
->name
);
2656 if (prot
->rsk_prot
->slab_name
== NULL
)
2657 goto out_free_sock_slab
;
2659 prot
->rsk_prot
->slab
= kmem_cache_create(prot
->rsk_prot
->slab_name
,
2660 prot
->rsk_prot
->obj_size
, 0,
2661 SLAB_HWCACHE_ALIGN
, NULL
);
2663 if (prot
->rsk_prot
->slab
== NULL
) {
2664 pr_crit("%s: Can't create request sock SLAB cache!\n",
2666 goto out_free_request_sock_slab_name
;
2670 if (prot
->twsk_prot
!= NULL
) {
2671 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2673 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2674 goto out_free_request_sock_slab
;
2676 prot
->twsk_prot
->twsk_slab
=
2677 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2678 prot
->twsk_prot
->twsk_obj_size
,
2680 SLAB_HWCACHE_ALIGN
|
2683 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2684 goto out_free_timewait_sock_slab_name
;
2688 mutex_lock(&proto_list_mutex
);
2689 list_add(&prot
->node
, &proto_list
);
2690 assign_proto_idx(prot
);
2691 mutex_unlock(&proto_list_mutex
);
2694 out_free_timewait_sock_slab_name
:
2695 kfree(prot
->twsk_prot
->twsk_slab_name
);
2696 out_free_request_sock_slab
:
2697 if (prot
->rsk_prot
&& prot
->rsk_prot
->slab
) {
2698 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2699 prot
->rsk_prot
->slab
= NULL
;
2701 out_free_request_sock_slab_name
:
2703 kfree(prot
->rsk_prot
->slab_name
);
2705 kmem_cache_destroy(prot
->slab
);
2710 EXPORT_SYMBOL(proto_register
);
2712 void proto_unregister(struct proto
*prot
)
2714 mutex_lock(&proto_list_mutex
);
2715 release_proto_idx(prot
);
2716 list_del(&prot
->node
);
2717 mutex_unlock(&proto_list_mutex
);
2719 if (prot
->slab
!= NULL
) {
2720 kmem_cache_destroy(prot
->slab
);
2724 if (prot
->rsk_prot
!= NULL
&& prot
->rsk_prot
->slab
!= NULL
) {
2725 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2726 kfree(prot
->rsk_prot
->slab_name
);
2727 prot
->rsk_prot
->slab
= NULL
;
2730 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2731 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2732 kfree(prot
->twsk_prot
->twsk_slab_name
);
2733 prot
->twsk_prot
->twsk_slab
= NULL
;
2736 EXPORT_SYMBOL(proto_unregister
);
2738 #ifdef CONFIG_PROC_FS
2739 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2740 __acquires(proto_list_mutex
)
2742 mutex_lock(&proto_list_mutex
);
2743 return seq_list_start_head(&proto_list
, *pos
);
2746 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2748 return seq_list_next(v
, &proto_list
, pos
);
2751 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2752 __releases(proto_list_mutex
)
2754 mutex_unlock(&proto_list_mutex
);
2757 static char proto_method_implemented(const void *method
)
2759 return method
== NULL
? 'n' : 'y';
2761 static long sock_prot_memory_allocated(struct proto
*proto
)
2763 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
2766 static char *sock_prot_memory_pressure(struct proto
*proto
)
2768 return proto
->memory_pressure
!= NULL
?
2769 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
2772 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2775 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2776 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2779 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2780 sock_prot_memory_allocated(proto
),
2781 sock_prot_memory_pressure(proto
),
2783 proto
->slab
== NULL
? "no" : "yes",
2784 module_name(proto
->owner
),
2785 proto_method_implemented(proto
->close
),
2786 proto_method_implemented(proto
->connect
),
2787 proto_method_implemented(proto
->disconnect
),
2788 proto_method_implemented(proto
->accept
),
2789 proto_method_implemented(proto
->ioctl
),
2790 proto_method_implemented(proto
->init
),
2791 proto_method_implemented(proto
->destroy
),
2792 proto_method_implemented(proto
->shutdown
),
2793 proto_method_implemented(proto
->setsockopt
),
2794 proto_method_implemented(proto
->getsockopt
),
2795 proto_method_implemented(proto
->sendmsg
),
2796 proto_method_implemented(proto
->recvmsg
),
2797 proto_method_implemented(proto
->sendpage
),
2798 proto_method_implemented(proto
->bind
),
2799 proto_method_implemented(proto
->backlog_rcv
),
2800 proto_method_implemented(proto
->hash
),
2801 proto_method_implemented(proto
->unhash
),
2802 proto_method_implemented(proto
->get_port
),
2803 proto_method_implemented(proto
->enter_memory_pressure
));
2806 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2808 if (v
== &proto_list
)
2809 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2818 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2820 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
2824 static const struct seq_operations proto_seq_ops
= {
2825 .start
= proto_seq_start
,
2826 .next
= proto_seq_next
,
2827 .stop
= proto_seq_stop
,
2828 .show
= proto_seq_show
,
2831 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
2833 return seq_open_net(inode
, file
, &proto_seq_ops
,
2834 sizeof(struct seq_net_private
));
2837 static const struct file_operations proto_seq_fops
= {
2838 .owner
= THIS_MODULE
,
2839 .open
= proto_seq_open
,
2841 .llseek
= seq_lseek
,
2842 .release
= seq_release_net
,
2845 static __net_init
int proto_init_net(struct net
*net
)
2847 if (!proc_create("protocols", S_IRUGO
, net
->proc_net
, &proto_seq_fops
))
2853 static __net_exit
void proto_exit_net(struct net
*net
)
2855 remove_proc_entry("protocols", net
->proc_net
);
2859 static __net_initdata
struct pernet_operations proto_net_ops
= {
2860 .init
= proto_init_net
,
2861 .exit
= proto_exit_net
,
2864 static int __init
proto_init(void)
2866 return register_pernet_subsys(&proto_net_ops
);
2869 subsys_initcall(proto_init
);
2871 #endif /* PROC_FS */