2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 struct memblock memblock __initdata_memblock
;
25 int memblock_debug __initdata_memblock
;
26 int memblock_can_resize __initdata_memblock
;
27 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
+ 1] __initdata_memblock
;
28 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
+ 1] __initdata_memblock
;
30 /* inline so we don't get a warning when pr_debug is compiled out */
31 static inline const char *memblock_type_name(struct memblock_type
*type
)
33 if (type
== &memblock
.memory
)
35 else if (type
== &memblock
.reserved
)
42 * Address comparison utilities
45 static phys_addr_t __init_memblock
memblock_align_down(phys_addr_t addr
, phys_addr_t size
)
47 return addr
& ~(size
- 1);
50 static phys_addr_t __init_memblock
memblock_align_up(phys_addr_t addr
, phys_addr_t size
)
52 return (addr
+ (size
- 1)) & ~(size
- 1);
55 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
56 phys_addr_t base2
, phys_addr_t size2
)
58 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
61 long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
)
65 for (i
= 0; i
< type
->cnt
; i
++) {
66 phys_addr_t rgnbase
= type
->regions
[i
].base
;
67 phys_addr_t rgnsize
= type
->regions
[i
].size
;
68 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
72 return (i
< type
->cnt
) ? i
: -1;
76 * Find, allocate, deallocate or reserve unreserved regions. All allocations
80 static phys_addr_t __init_memblock
memblock_find_region(phys_addr_t start
, phys_addr_t end
,
81 phys_addr_t size
, phys_addr_t align
)
83 phys_addr_t base
, res_base
;
86 /* In case, huge size is requested */
88 return MEMBLOCK_ERROR
;
90 base
= memblock_align_down((end
- size
), align
);
92 /* Prevent allocations returning 0 as it's also used to
93 * indicate an allocation failure
98 while (start
<= base
) {
99 j
= memblock_overlaps_region(&memblock
.reserved
, base
, size
);
102 res_base
= memblock
.reserved
.regions
[j
].base
;
105 base
= memblock_align_down(res_base
- size
, align
);
108 return MEMBLOCK_ERROR
;
111 static phys_addr_t __init_memblock
memblock_find_base(phys_addr_t size
,
112 phys_addr_t align
, phys_addr_t start
, phys_addr_t end
)
118 /* Pump up max_addr */
119 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
120 end
= memblock
.current_limit
;
122 /* We do a top-down search, this tends to limit memory
123 * fragmentation by keeping early boot allocs near the
126 for (i
= memblock
.memory
.cnt
- 1; i
>= 0; i
--) {
127 phys_addr_t memblockbase
= memblock
.memory
.regions
[i
].base
;
128 phys_addr_t memblocksize
= memblock
.memory
.regions
[i
].size
;
129 phys_addr_t bottom
, top
, found
;
131 if (memblocksize
< size
)
133 if ((memblockbase
+ memblocksize
) <= start
)
135 bottom
= max(memblockbase
, start
);
136 top
= min(memblockbase
+ memblocksize
, end
);
139 found
= memblock_find_region(bottom
, top
, size
, align
);
140 if (found
!= MEMBLOCK_ERROR
)
143 return MEMBLOCK_ERROR
;
147 * Find a free area with specified alignment in a specific range.
149 u64 __init_memblock
memblock_find_in_range(u64 start
, u64 end
, u64 size
, u64 align
)
151 return memblock_find_base(size
, align
, start
, end
);
155 * Free memblock.reserved.regions
157 int __init_memblock
memblock_free_reserved_regions(void)
159 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
162 return memblock_free(__pa(memblock
.reserved
.regions
),
163 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
167 * Reserve memblock.reserved.regions
169 int __init_memblock
memblock_reserve_reserved_regions(void)
171 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
174 return memblock_reserve(__pa(memblock
.reserved
.regions
),
175 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
178 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
182 for (i
= r
; i
< type
->cnt
- 1; i
++) {
183 type
->regions
[i
].base
= type
->regions
[i
+ 1].base
;
184 type
->regions
[i
].size
= type
->regions
[i
+ 1].size
;
188 /* Special case for empty arrays */
189 if (type
->cnt
== 0) {
191 type
->regions
[0].base
= 0;
192 type
->regions
[0].size
= 0;
196 /* Defined below but needed now */
197 static long memblock_add_region(struct memblock_type
*type
, phys_addr_t base
, phys_addr_t size
);
199 static int __init_memblock
memblock_double_array(struct memblock_type
*type
)
201 struct memblock_region
*new_array
, *old_array
;
202 phys_addr_t old_size
, new_size
, addr
;
203 int use_slab
= slab_is_available();
205 /* We don't allow resizing until we know about the reserved regions
206 * of memory that aren't suitable for allocation
208 if (!memblock_can_resize
)
211 /* Calculate new doubled size */
212 old_size
= type
->max
* sizeof(struct memblock_region
);
213 new_size
= old_size
<< 1;
215 /* Try to find some space for it.
217 * WARNING: We assume that either slab_is_available() and we use it or
218 * we use MEMBLOCK for allocations. That means that this is unsafe to use
219 * when bootmem is currently active (unless bootmem itself is implemented
220 * on top of MEMBLOCK which isn't the case yet)
222 * This should however not be an issue for now, as we currently only
223 * call into MEMBLOCK while it's still active, or much later when slab is
224 * active for memory hotplug operations
227 new_array
= kmalloc(new_size
, GFP_KERNEL
);
228 addr
= new_array
== NULL
? MEMBLOCK_ERROR
: __pa(new_array
);
230 addr
= memblock_find_base(new_size
, sizeof(phys_addr_t
), 0, MEMBLOCK_ALLOC_ACCESSIBLE
);
231 if (addr
== MEMBLOCK_ERROR
) {
232 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
233 memblock_type_name(type
), type
->max
, type
->max
* 2);
236 new_array
= __va(addr
);
238 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
239 memblock_type_name(type
), type
->max
* 2, (u64
)addr
, (u64
)addr
+ new_size
- 1);
241 /* Found space, we now need to move the array over before
242 * we add the reserved region since it may be our reserved
243 * array itself that is full.
245 memcpy(new_array
, type
->regions
, old_size
);
246 memset(new_array
+ type
->max
, 0, old_size
);
247 old_array
= type
->regions
;
248 type
->regions
= new_array
;
251 /* If we use SLAB that's it, we are done */
255 /* Add the new reserved region now. Should not fail ! */
256 BUG_ON(memblock_add_region(&memblock
.reserved
, addr
, new_size
));
258 /* If the array wasn't our static init one, then free it. We only do
259 * that before SLAB is available as later on, we don't know whether
260 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
263 if (old_array
!= memblock_memory_init_regions
&&
264 old_array
!= memblock_reserved_init_regions
)
265 memblock_free(__pa(old_array
), old_size
);
270 extern int __init_memblock __weak
memblock_memory_can_coalesce(phys_addr_t addr1
, phys_addr_t size1
,
271 phys_addr_t addr2
, phys_addr_t size2
)
276 static long __init_memblock
memblock_add_region(struct memblock_type
*type
,
277 phys_addr_t base
, phys_addr_t size
)
279 phys_addr_t end
= base
+ size
;
282 /* First try and coalesce this MEMBLOCK with others */
283 for (i
= 0; i
< type
->cnt
; i
++) {
284 struct memblock_region
*rgn
= &type
->regions
[i
];
285 phys_addr_t rend
= rgn
->base
+ rgn
->size
;
287 /* Exit if there's no possible hits */
288 if (rgn
->base
> end
|| rgn
->size
== 0)
291 /* Check if we are fully enclosed within an existing
294 if (rgn
->base
<= base
&& rend
>= end
)
297 /* Check if we overlap or are adjacent with the bottom
300 if (base
< rgn
->base
&& end
>= rgn
->base
) {
301 /* If we can't coalesce, create a new block */
302 if (!memblock_memory_can_coalesce(base
, size
,
305 /* Overlap & can't coalesce are mutually
306 * exclusive, if you do that, be prepared
309 WARN_ON(end
!= rgn
->base
);
312 /* We extend the bottom of the block down to our
316 rgn
->size
= rend
- base
;
318 /* Return if we have nothing else to allocate
324 /* We continue processing from the end of the
331 /* Now check if we overlap or are adjacent with the
334 if (base
<= rend
&& end
>= rend
) {
335 /* If we can't coalesce, create a new block */
336 if (!memblock_memory_can_coalesce(rgn
->base
,
339 /* Overlap & can't coalesce are mutually
340 * exclusive, if you do that, be prepared
343 WARN_ON(rend
!= base
);
346 /* We adjust our base down to enclose the
347 * original block and destroy it. It will be
348 * part of our new allocation. Since we've
349 * freed an entry, we know we won't fail
350 * to allocate one later, so we won't risk
351 * losing the original block allocation.
353 size
+= (base
- rgn
->base
);
355 memblock_remove_region(type
, i
--);
359 /* If the array is empty, special case, replace the fake
360 * filler region and return
362 if ((type
->cnt
== 1) && (type
->regions
[0].size
== 0)) {
363 type
->regions
[0].base
= base
;
364 type
->regions
[0].size
= size
;
369 /* If we are out of space, we fail. It's too late to resize the array
370 * but then this shouldn't have happened in the first place.
372 if (WARN_ON(type
->cnt
>= type
->max
))
375 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
376 for (i
= type
->cnt
- 1; i
>= 0; i
--) {
377 if (base
< type
->regions
[i
].base
) {
378 type
->regions
[i
+1].base
= type
->regions
[i
].base
;
379 type
->regions
[i
+1].size
= type
->regions
[i
].size
;
381 type
->regions
[i
+1].base
= base
;
382 type
->regions
[i
+1].size
= size
;
387 if (base
< type
->regions
[0].base
) {
388 type
->regions
[0].base
= base
;
389 type
->regions
[0].size
= size
;
394 /* The array is full ? Try to resize it. If that fails, we undo
395 * our allocation and return an error
397 if (type
->cnt
== type
->max
&& memblock_double_array(type
)) {
399 memblock_remove_region(type
, slot
);
406 long __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
408 return memblock_add_region(&memblock
.memory
, base
, size
);
412 static long __init_memblock
__memblock_remove(struct memblock_type
*type
,
413 phys_addr_t base
, phys_addr_t size
)
415 phys_addr_t end
= base
+ size
;
418 /* Walk through the array for collisions */
419 for (i
= 0; i
< type
->cnt
; i
++) {
420 struct memblock_region
*rgn
= &type
->regions
[i
];
421 phys_addr_t rend
= rgn
->base
+ rgn
->size
;
423 /* Nothing more to do, exit */
424 if (rgn
->base
> end
|| rgn
->size
== 0)
427 /* If we fully enclose the block, drop it */
428 if (base
<= rgn
->base
&& end
>= rend
) {
429 memblock_remove_region(type
, i
--);
433 /* If we are fully enclosed within a block
434 * then we need to split it and we are done
436 if (base
> rgn
->base
&& end
< rend
) {
437 rgn
->size
= base
- rgn
->base
;
438 if (!memblock_add_region(type
, end
, rend
- end
))
440 /* Failure to split is bad, we at least
441 * restore the block before erroring
443 rgn
->size
= rend
- rgn
->base
;
448 /* Check if we need to trim the bottom of a block */
449 if (rgn
->base
< end
&& rend
> end
) {
450 rgn
->size
-= end
- rgn
->base
;
455 /* And check if we need to trim the top of a block */
457 rgn
->size
-= rend
- base
;
463 long __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
465 return __memblock_remove(&memblock
.memory
, base
, size
);
468 long __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
470 return __memblock_remove(&memblock
.reserved
, base
, size
);
473 long __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
475 struct memblock_type
*_rgn
= &memblock
.reserved
;
479 return memblock_add_region(_rgn
, base
, size
);
482 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
486 /* We align the size to limit fragmentation. Without this, a lot of
487 * small allocs quickly eat up the whole reserve array on sparc
489 size
= memblock_align_up(size
, align
);
491 found
= memblock_find_base(size
, align
, 0, max_addr
);
492 if (found
!= MEMBLOCK_ERROR
&&
493 !memblock_add_region(&memblock
.reserved
, found
, size
))
499 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
503 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
506 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
507 (unsigned long long) size
, (unsigned long long) max_addr
);
512 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
514 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
519 * Additional node-local allocators. Search for node memory is bottom up
520 * and walks memblock regions within that node bottom-up as well, but allocation
521 * within an memblock region is top-down. XXX I plan to fix that at some stage
523 * WARNING: Only available after early_node_map[] has been populated,
524 * on some architectures, that is after all the calls to add_active_range()
525 * have been done to populate it.
528 phys_addr_t __weak __init
memblock_nid_range(phys_addr_t start
, phys_addr_t end
, int *nid
)
530 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
532 * This code originates from sparc which really wants use to walk by addresses
533 * and returns the nid. This is not very convenient for early_pfn_map[] users
534 * as the map isn't sorted yet, and it really wants to be walked by nid.
536 * For now, I implement the inefficient method below which walks the early
537 * map multiple times. Eventually we may want to use an ARCH config option
538 * to implement a completely different method for both case.
540 unsigned long start_pfn
, end_pfn
;
543 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
544 get_pfn_range_for_nid(i
, &start_pfn
, &end_pfn
);
545 if (start
< PFN_PHYS(start_pfn
) || start
>= PFN_PHYS(end_pfn
))
548 return min(end
, PFN_PHYS(end_pfn
));
556 static phys_addr_t __init
memblock_alloc_nid_region(struct memblock_region
*mp
,
558 phys_addr_t align
, int nid
)
560 phys_addr_t start
, end
;
563 end
= start
+ mp
->size
;
565 start
= memblock_align_up(start
, align
);
566 while (start
< end
) {
567 phys_addr_t this_end
;
570 this_end
= memblock_nid_range(start
, end
, &this_nid
);
571 if (this_nid
== nid
) {
572 phys_addr_t ret
= memblock_find_region(start
, this_end
, size
, align
);
573 if (ret
!= MEMBLOCK_ERROR
&&
574 !memblock_add_region(&memblock
.reserved
, ret
, size
))
580 return MEMBLOCK_ERROR
;
583 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
585 struct memblock_type
*mem
= &memblock
.memory
;
590 /* We align the size to limit fragmentation. Without this, a lot of
591 * small allocs quickly eat up the whole reserve array on sparc
593 size
= memblock_align_up(size
, align
);
595 /* We do a bottom-up search for a region with the right
596 * nid since that's easier considering how memblock_nid_range()
599 for (i
= 0; i
< mem
->cnt
; i
++) {
600 phys_addr_t ret
= memblock_alloc_nid_region(&mem
->regions
[i
],
602 if (ret
!= MEMBLOCK_ERROR
)
609 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
611 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
615 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ANYWHERE
);
620 * Remaining API functions
623 /* You must call memblock_analyze() before this. */
624 phys_addr_t __init
memblock_phys_mem_size(void)
626 return memblock
.memory_size
;
629 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
631 int idx
= memblock
.memory
.cnt
- 1;
633 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
636 /* You must call memblock_analyze() after this. */
637 void __init
memblock_enforce_memory_limit(phys_addr_t memory_limit
)
641 struct memblock_region
*p
;
646 /* Truncate the memblock regions to satisfy the memory limit. */
647 limit
= memory_limit
;
648 for (i
= 0; i
< memblock
.memory
.cnt
; i
++) {
649 if (limit
> memblock
.memory
.regions
[i
].size
) {
650 limit
-= memblock
.memory
.regions
[i
].size
;
654 memblock
.memory
.regions
[i
].size
= limit
;
655 memblock
.memory
.cnt
= i
+ 1;
659 memory_limit
= memblock_end_of_DRAM();
661 /* And truncate any reserves above the limit also. */
662 for (i
= 0; i
< memblock
.reserved
.cnt
; i
++) {
663 p
= &memblock
.reserved
.regions
[i
];
665 if (p
->base
> memory_limit
)
667 else if ((p
->base
+ p
->size
) > memory_limit
)
668 p
->size
= memory_limit
- p
->base
;
671 memblock_remove_region(&memblock
.reserved
, i
);
677 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
679 unsigned int left
= 0, right
= type
->cnt
;
682 unsigned int mid
= (right
+ left
) / 2;
684 if (addr
< type
->regions
[mid
].base
)
686 else if (addr
>= (type
->regions
[mid
].base
+
687 type
->regions
[mid
].size
))
691 } while (left
< right
);
695 int __init
memblock_is_reserved(phys_addr_t addr
)
697 return memblock_search(&memblock
.reserved
, addr
) != -1;
700 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
702 return memblock_search(&memblock
.memory
, addr
) != -1;
705 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
707 int idx
= memblock_search(&memblock
.memory
, base
);
711 return memblock
.memory
.regions
[idx
].base
<= base
&&
712 (memblock
.memory
.regions
[idx
].base
+
713 memblock
.memory
.regions
[idx
].size
) >= (base
+ size
);
716 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
718 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
722 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
724 memblock
.current_limit
= limit
;
727 static void __init_memblock
memblock_dump(struct memblock_type
*region
, char *name
)
729 unsigned long long base
, size
;
732 pr_info(" %s.cnt = 0x%lx\n", name
, region
->cnt
);
734 for (i
= 0; i
< region
->cnt
; i
++) {
735 base
= region
->regions
[i
].base
;
736 size
= region
->regions
[i
].size
;
738 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
739 name
, i
, base
, base
+ size
- 1, size
);
743 void __init_memblock
memblock_dump_all(void)
748 pr_info("MEMBLOCK configuration:\n");
749 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock
.memory_size
);
751 memblock_dump(&memblock
.memory
, "memory");
752 memblock_dump(&memblock
.reserved
, "reserved");
755 void __init
memblock_analyze(void)
759 /* Check marker in the unused last array entry */
760 WARN_ON(memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
].base
761 != MEMBLOCK_INACTIVE
);
762 WARN_ON(memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
].base
763 != MEMBLOCK_INACTIVE
);
765 memblock
.memory_size
= 0;
767 for (i
= 0; i
< memblock
.memory
.cnt
; i
++)
768 memblock
.memory_size
+= memblock
.memory
.regions
[i
].size
;
770 /* We allow resizing from there */
771 memblock_can_resize
= 1;
774 void __init
memblock_init(void)
776 static int init_done __initdata
= 0;
782 /* Hookup the initial arrays */
783 memblock
.memory
.regions
= memblock_memory_init_regions
;
784 memblock
.memory
.max
= INIT_MEMBLOCK_REGIONS
;
785 memblock
.reserved
.regions
= memblock_reserved_init_regions
;
786 memblock
.reserved
.max
= INIT_MEMBLOCK_REGIONS
;
788 /* Write a marker in the unused last array entry */
789 memblock
.memory
.regions
[INIT_MEMBLOCK_REGIONS
].base
= MEMBLOCK_INACTIVE
;
790 memblock
.reserved
.regions
[INIT_MEMBLOCK_REGIONS
].base
= MEMBLOCK_INACTIVE
;
792 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
793 * This simplifies the memblock_add() code below...
795 memblock
.memory
.regions
[0].base
= 0;
796 memblock
.memory
.regions
[0].size
= 0;
797 memblock
.memory
.cnt
= 1;
800 memblock
.reserved
.regions
[0].base
= 0;
801 memblock
.reserved
.regions
[0].size
= 0;
802 memblock
.reserved
.cnt
= 1;
804 memblock
.current_limit
= MEMBLOCK_ALLOC_ANYWHERE
;
807 static int __init
early_memblock(char *p
)
809 if (p
&& strstr(p
, "debug"))
813 early_param("memblock", early_memblock
);
815 #if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
817 static int memblock_debug_show(struct seq_file
*m
, void *private)
819 struct memblock_type
*type
= m
->private;
820 struct memblock_region
*reg
;
823 for (i
= 0; i
< type
->cnt
; i
++) {
824 reg
= &type
->regions
[i
];
825 seq_printf(m
, "%4d: ", i
);
826 if (sizeof(phys_addr_t
) == 4)
827 seq_printf(m
, "0x%08lx..0x%08lx\n",
828 (unsigned long)reg
->base
,
829 (unsigned long)(reg
->base
+ reg
->size
- 1));
831 seq_printf(m
, "0x%016llx..0x%016llx\n",
832 (unsigned long long)reg
->base
,
833 (unsigned long long)(reg
->base
+ reg
->size
- 1));
839 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
841 return single_open(file
, memblock_debug_show
, inode
->i_private
);
844 static const struct file_operations memblock_debug_fops
= {
845 .open
= memblock_debug_open
,
848 .release
= single_release
,
851 static int __init
memblock_init_debugfs(void)
853 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
856 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
857 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
861 __initcall(memblock_init_debugfs
);
863 #endif /* CONFIG_DEBUG_FS */