Staging: agnx: Fixup rf.c checkpatch warnings
[linux-2.6.git] / mm / filemap.c
blobfc11974f2bee5ea0d39941f3dfce8b0b84910579
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
44 #include <asm/mman.h>
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
124 mem_cgroup_uncharge_cache_page(page);
127 * Some filesystems seem to re-dirty the page even after
128 * the VM has canceled the dirty bit (eg ext3 journaling).
130 * Fix it up by doing a final dirty accounting check after
131 * having removed the page entirely.
133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 dec_zone_page_state(page, NR_FILE_DIRTY);
135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
139 void remove_from_page_cache(struct page *page)
141 struct address_space *mapping = page->mapping;
143 BUG_ON(!PageLocked(page));
145 spin_lock_irq(&mapping->tree_lock);
146 __remove_from_page_cache(page);
147 spin_unlock_irq(&mapping->tree_lock);
150 static int sync_page(void *word)
152 struct address_space *mapping;
153 struct page *page;
155 page = container_of((unsigned long *)word, struct page, flags);
158 * page_mapping() is being called without PG_locked held.
159 * Some knowledge of the state and use of the page is used to
160 * reduce the requirements down to a memory barrier.
161 * The danger here is of a stale page_mapping() return value
162 * indicating a struct address_space different from the one it's
163 * associated with when it is associated with one.
164 * After smp_mb(), it's either the correct page_mapping() for
165 * the page, or an old page_mapping() and the page's own
166 * page_mapping() has gone NULL.
167 * The ->sync_page() address_space operation must tolerate
168 * page_mapping() going NULL. By an amazing coincidence,
169 * this comes about because none of the users of the page
170 * in the ->sync_page() methods make essential use of the
171 * page_mapping(), merely passing the page down to the backing
172 * device's unplug functions when it's non-NULL, which in turn
173 * ignore it for all cases but swap, where only page_private(page) is
174 * of interest. When page_mapping() does go NULL, the entire
175 * call stack gracefully ignores the page and returns.
176 * -- wli
178 smp_mb();
179 mapping = page_mapping(page);
180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 mapping->a_ops->sync_page(page);
182 io_schedule();
183 return 0;
186 static int sync_page_killable(void *word)
188 sync_page(word);
189 return fatal_signal_pending(current) ? -EINTR : 0;
193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194 * @mapping: address space structure to write
195 * @start: offset in bytes where the range starts
196 * @end: offset in bytes where the range ends (inclusive)
197 * @sync_mode: enable synchronous operation
199 * Start writeback against all of a mapping's dirty pages that lie
200 * within the byte offsets <start, end> inclusive.
202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203 * opposed to a regular memory cleansing writeback. The difference between
204 * these two operations is that if a dirty page/buffer is encountered, it must
205 * be waited upon, and not just skipped over.
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 loff_t end, int sync_mode)
210 int ret;
211 struct writeback_control wbc = {
212 .sync_mode = sync_mode,
213 .nr_to_write = LONG_MAX,
214 .range_start = start,
215 .range_end = end,
218 if (!mapping_cap_writeback_dirty(mapping))
219 return 0;
221 ret = do_writepages(mapping, &wbc);
222 return ret;
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 int sync_mode)
228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 int filemap_fdatawrite(struct address_space *mapping)
233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235 EXPORT_SYMBOL(filemap_fdatawrite);
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 loff_t end)
240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
251 int filemap_flush(struct address_space *mapping)
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 EXPORT_SYMBOL(filemap_flush);
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
274 if (end < start)
275 return 0;
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
296 pagevec_release(&pvec);
297 cond_resched();
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
306 return ret;
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
342 EXPORT_SYMBOL(sync_page_range);
345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
371 EXPORT_SYMBOL(sync_page_range_nolock);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space *mapping)
382 loff_t i_size = i_size_read(mapping->host);
384 if (i_size == 0)
385 return 0;
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
390 EXPORT_SYMBOL(filemap_fdatawait);
392 int filemap_write_and_wait(struct address_space *mapping)
394 int err = 0;
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
410 return err;
412 EXPORT_SYMBOL(filemap_write_and_wait);
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
420 * Write out and wait upon file offsets lstart->lend, inclusive.
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
428 int err = 0;
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
442 return err;
446 * add_to_page_cache_locked - add a locked page to the pagecache
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
452 * This function is used to add a page to the pagecache. It must be locked.
453 * This function does not add the page to the LRU. The caller must do that.
455 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
456 pgoff_t offset, gfp_t gfp_mask)
458 int error;
460 VM_BUG_ON(!PageLocked(page));
462 error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & GFP_RECLAIM_MASK);
464 if (error)
465 goto out;
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 page_cache_get(page);
470 page->mapping = mapping;
471 page->index = offset;
473 spin_lock_irq(&mapping->tree_lock);
474 error = radix_tree_insert(&mapping->page_tree, offset, page);
475 if (likely(!error)) {
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else {
479 page->mapping = NULL;
480 mem_cgroup_uncharge_cache_page(page);
481 page_cache_release(page);
484 spin_unlock_irq(&mapping->tree_lock);
485 radix_tree_preload_end();
486 } else
487 mem_cgroup_uncharge_cache_page(page);
488 out:
489 return error;
491 EXPORT_SYMBOL(add_to_page_cache_locked);
493 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
494 pgoff_t offset, gfp_t gfp_mask)
496 int ret;
499 * Splice_read and readahead add shmem/tmpfs pages into the page cache
500 * before shmem_readpage has a chance to mark them as SwapBacked: they
501 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
502 * (called in add_to_page_cache) needs to know where they're going too.
504 if (mapping_cap_swap_backed(mapping))
505 SetPageSwapBacked(page);
507 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
508 if (ret == 0) {
509 if (page_is_file_cache(page))
510 lru_cache_add_file(page);
511 else
512 lru_cache_add_active_anon(page);
514 return ret;
517 #ifdef CONFIG_NUMA
518 struct page *__page_cache_alloc(gfp_t gfp)
520 if (cpuset_do_page_mem_spread()) {
521 int n = cpuset_mem_spread_node();
522 return alloc_pages_node(n, gfp, 0);
524 return alloc_pages(gfp, 0);
526 EXPORT_SYMBOL(__page_cache_alloc);
527 #endif
529 static int __sleep_on_page_lock(void *word)
531 io_schedule();
532 return 0;
536 * In order to wait for pages to become available there must be
537 * waitqueues associated with pages. By using a hash table of
538 * waitqueues where the bucket discipline is to maintain all
539 * waiters on the same queue and wake all when any of the pages
540 * become available, and for the woken contexts to check to be
541 * sure the appropriate page became available, this saves space
542 * at a cost of "thundering herd" phenomena during rare hash
543 * collisions.
545 static wait_queue_head_t *page_waitqueue(struct page *page)
547 const struct zone *zone = page_zone(page);
549 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
552 static inline void wake_up_page(struct page *page, int bit)
554 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
557 void wait_on_page_bit(struct page *page, int bit_nr)
559 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
561 if (test_bit(bit_nr, &page->flags))
562 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
563 TASK_UNINTERRUPTIBLE);
565 EXPORT_SYMBOL(wait_on_page_bit);
568 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
569 * @page - Page defining the wait queue of interest
570 * @waiter - Waiter to add to the queue
572 * Add an arbitrary @waiter to the wait queue for the nominated @page.
574 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
576 wait_queue_head_t *q = page_waitqueue(page);
577 unsigned long flags;
579 spin_lock_irqsave(&q->lock, flags);
580 __add_wait_queue(q, waiter);
581 spin_unlock_irqrestore(&q->lock, flags);
583 EXPORT_SYMBOL_GPL(add_page_wait_queue);
586 * unlock_page - unlock a locked page
587 * @page: the page
589 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
590 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
591 * mechananism between PageLocked pages and PageWriteback pages is shared.
592 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
594 * The mb is necessary to enforce ordering between the clear_bit and the read
595 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
597 void unlock_page(struct page *page)
599 VM_BUG_ON(!PageLocked(page));
600 clear_bit_unlock(PG_locked, &page->flags);
601 smp_mb__after_clear_bit();
602 wake_up_page(page, PG_locked);
604 EXPORT_SYMBOL(unlock_page);
607 * end_page_writeback - end writeback against a page
608 * @page: the page
610 void end_page_writeback(struct page *page)
612 if (TestClearPageReclaim(page))
613 rotate_reclaimable_page(page);
615 if (!test_clear_page_writeback(page))
616 BUG();
618 smp_mb__after_clear_bit();
619 wake_up_page(page, PG_writeback);
621 EXPORT_SYMBOL(end_page_writeback);
624 * __lock_page - get a lock on the page, assuming we need to sleep to get it
625 * @page: the page to lock
627 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
628 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
629 * chances are that on the second loop, the block layer's plug list is empty,
630 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
632 void __lock_page(struct page *page)
634 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
636 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
637 TASK_UNINTERRUPTIBLE);
639 EXPORT_SYMBOL(__lock_page);
641 int __lock_page_killable(struct page *page)
643 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
645 return __wait_on_bit_lock(page_waitqueue(page), &wait,
646 sync_page_killable, TASK_KILLABLE);
650 * __lock_page_nosync - get a lock on the page, without calling sync_page()
651 * @page: the page to lock
653 * Variant of lock_page that does not require the caller to hold a reference
654 * on the page's mapping.
656 void __lock_page_nosync(struct page *page)
658 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
659 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
660 TASK_UNINTERRUPTIBLE);
664 * find_get_page - find and get a page reference
665 * @mapping: the address_space to search
666 * @offset: the page index
668 * Is there a pagecache struct page at the given (mapping, offset) tuple?
669 * If yes, increment its refcount and return it; if no, return NULL.
671 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
673 void **pagep;
674 struct page *page;
676 rcu_read_lock();
677 repeat:
678 page = NULL;
679 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
680 if (pagep) {
681 page = radix_tree_deref_slot(pagep);
682 if (unlikely(!page || page == RADIX_TREE_RETRY))
683 goto repeat;
685 if (!page_cache_get_speculative(page))
686 goto repeat;
689 * Has the page moved?
690 * This is part of the lockless pagecache protocol. See
691 * include/linux/pagemap.h for details.
693 if (unlikely(page != *pagep)) {
694 page_cache_release(page);
695 goto repeat;
698 rcu_read_unlock();
700 return page;
702 EXPORT_SYMBOL(find_get_page);
705 * find_lock_page - locate, pin and lock a pagecache page
706 * @mapping: the address_space to search
707 * @offset: the page index
709 * Locates the desired pagecache page, locks it, increments its reference
710 * count and returns its address.
712 * Returns zero if the page was not present. find_lock_page() may sleep.
714 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
716 struct page *page;
718 repeat:
719 page = find_get_page(mapping, offset);
720 if (page) {
721 lock_page(page);
722 /* Has the page been truncated? */
723 if (unlikely(page->mapping != mapping)) {
724 unlock_page(page);
725 page_cache_release(page);
726 goto repeat;
728 VM_BUG_ON(page->index != offset);
730 return page;
732 EXPORT_SYMBOL(find_lock_page);
735 * find_or_create_page - locate or add a pagecache page
736 * @mapping: the page's address_space
737 * @index: the page's index into the mapping
738 * @gfp_mask: page allocation mode
740 * Locates a page in the pagecache. If the page is not present, a new page
741 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
742 * LRU list. The returned page is locked and has its reference count
743 * incremented.
745 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
746 * allocation!
748 * find_or_create_page() returns the desired page's address, or zero on
749 * memory exhaustion.
751 struct page *find_or_create_page(struct address_space *mapping,
752 pgoff_t index, gfp_t gfp_mask)
754 struct page *page;
755 int err;
756 repeat:
757 page = find_lock_page(mapping, index);
758 if (!page) {
759 page = __page_cache_alloc(gfp_mask);
760 if (!page)
761 return NULL;
763 * We want a regular kernel memory (not highmem or DMA etc)
764 * allocation for the radix tree nodes, but we need to honour
765 * the context-specific requirements the caller has asked for.
766 * GFP_RECLAIM_MASK collects those requirements.
768 err = add_to_page_cache_lru(page, mapping, index,
769 (gfp_mask & GFP_RECLAIM_MASK));
770 if (unlikely(err)) {
771 page_cache_release(page);
772 page = NULL;
773 if (err == -EEXIST)
774 goto repeat;
777 return page;
779 EXPORT_SYMBOL(find_or_create_page);
782 * find_get_pages - gang pagecache lookup
783 * @mapping: The address_space to search
784 * @start: The starting page index
785 * @nr_pages: The maximum number of pages
786 * @pages: Where the resulting pages are placed
788 * find_get_pages() will search for and return a group of up to
789 * @nr_pages pages in the mapping. The pages are placed at @pages.
790 * find_get_pages() takes a reference against the returned pages.
792 * The search returns a group of mapping-contiguous pages with ascending
793 * indexes. There may be holes in the indices due to not-present pages.
795 * find_get_pages() returns the number of pages which were found.
797 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
798 unsigned int nr_pages, struct page **pages)
800 unsigned int i;
801 unsigned int ret;
802 unsigned int nr_found;
804 rcu_read_lock();
805 restart:
806 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
807 (void ***)pages, start, nr_pages);
808 ret = 0;
809 for (i = 0; i < nr_found; i++) {
810 struct page *page;
811 repeat:
812 page = radix_tree_deref_slot((void **)pages[i]);
813 if (unlikely(!page))
814 continue;
816 * this can only trigger if nr_found == 1, making livelock
817 * a non issue.
819 if (unlikely(page == RADIX_TREE_RETRY))
820 goto restart;
822 if (!page_cache_get_speculative(page))
823 goto repeat;
825 /* Has the page moved? */
826 if (unlikely(page != *((void **)pages[i]))) {
827 page_cache_release(page);
828 goto repeat;
831 pages[ret] = page;
832 ret++;
834 rcu_read_unlock();
835 return ret;
839 * find_get_pages_contig - gang contiguous pagecache lookup
840 * @mapping: The address_space to search
841 * @index: The starting page index
842 * @nr_pages: The maximum number of pages
843 * @pages: Where the resulting pages are placed
845 * find_get_pages_contig() works exactly like find_get_pages(), except
846 * that the returned number of pages are guaranteed to be contiguous.
848 * find_get_pages_contig() returns the number of pages which were found.
850 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
851 unsigned int nr_pages, struct page **pages)
853 unsigned int i;
854 unsigned int ret;
855 unsigned int nr_found;
857 rcu_read_lock();
858 restart:
859 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
860 (void ***)pages, index, nr_pages);
861 ret = 0;
862 for (i = 0; i < nr_found; i++) {
863 struct page *page;
864 repeat:
865 page = radix_tree_deref_slot((void **)pages[i]);
866 if (unlikely(!page))
867 continue;
869 * this can only trigger if nr_found == 1, making livelock
870 * a non issue.
872 if (unlikely(page == RADIX_TREE_RETRY))
873 goto restart;
875 if (page->mapping == NULL || page->index != index)
876 break;
878 if (!page_cache_get_speculative(page))
879 goto repeat;
881 /* Has the page moved? */
882 if (unlikely(page != *((void **)pages[i]))) {
883 page_cache_release(page);
884 goto repeat;
887 pages[ret] = page;
888 ret++;
889 index++;
891 rcu_read_unlock();
892 return ret;
894 EXPORT_SYMBOL(find_get_pages_contig);
897 * find_get_pages_tag - find and return pages that match @tag
898 * @mapping: the address_space to search
899 * @index: the starting page index
900 * @tag: the tag index
901 * @nr_pages: the maximum number of pages
902 * @pages: where the resulting pages are placed
904 * Like find_get_pages, except we only return pages which are tagged with
905 * @tag. We update @index to index the next page for the traversal.
907 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
908 int tag, unsigned int nr_pages, struct page **pages)
910 unsigned int i;
911 unsigned int ret;
912 unsigned int nr_found;
914 rcu_read_lock();
915 restart:
916 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
917 (void ***)pages, *index, nr_pages, tag);
918 ret = 0;
919 for (i = 0; i < nr_found; i++) {
920 struct page *page;
921 repeat:
922 page = radix_tree_deref_slot((void **)pages[i]);
923 if (unlikely(!page))
924 continue;
926 * this can only trigger if nr_found == 1, making livelock
927 * a non issue.
929 if (unlikely(page == RADIX_TREE_RETRY))
930 goto restart;
932 if (!page_cache_get_speculative(page))
933 goto repeat;
935 /* Has the page moved? */
936 if (unlikely(page != *((void **)pages[i]))) {
937 page_cache_release(page);
938 goto repeat;
941 pages[ret] = page;
942 ret++;
944 rcu_read_unlock();
946 if (ret)
947 *index = pages[ret - 1]->index + 1;
949 return ret;
951 EXPORT_SYMBOL(find_get_pages_tag);
954 * grab_cache_page_nowait - returns locked page at given index in given cache
955 * @mapping: target address_space
956 * @index: the page index
958 * Same as grab_cache_page(), but do not wait if the page is unavailable.
959 * This is intended for speculative data generators, where the data can
960 * be regenerated if the page couldn't be grabbed. This routine should
961 * be safe to call while holding the lock for another page.
963 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
964 * and deadlock against the caller's locked page.
966 struct page *
967 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
969 struct page *page = find_get_page(mapping, index);
971 if (page) {
972 if (trylock_page(page))
973 return page;
974 page_cache_release(page);
975 return NULL;
977 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
978 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
979 page_cache_release(page);
980 page = NULL;
982 return page;
984 EXPORT_SYMBOL(grab_cache_page_nowait);
987 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
988 * a _large_ part of the i/o request. Imagine the worst scenario:
990 * ---R__________________________________________B__________
991 * ^ reading here ^ bad block(assume 4k)
993 * read(R) => miss => readahead(R...B) => media error => frustrating retries
994 * => failing the whole request => read(R) => read(R+1) =>
995 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
996 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
997 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
999 * It is going insane. Fix it by quickly scaling down the readahead size.
1001 static void shrink_readahead_size_eio(struct file *filp,
1002 struct file_ra_state *ra)
1004 if (!ra->ra_pages)
1005 return;
1007 ra->ra_pages /= 4;
1011 * do_generic_file_read - generic file read routine
1012 * @filp: the file to read
1013 * @ppos: current file position
1014 * @desc: read_descriptor
1015 * @actor: read method
1017 * This is a generic file read routine, and uses the
1018 * mapping->a_ops->readpage() function for the actual low-level stuff.
1020 * This is really ugly. But the goto's actually try to clarify some
1021 * of the logic when it comes to error handling etc.
1023 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1024 read_descriptor_t *desc, read_actor_t actor)
1026 struct address_space *mapping = filp->f_mapping;
1027 struct inode *inode = mapping->host;
1028 struct file_ra_state *ra = &filp->f_ra;
1029 pgoff_t index;
1030 pgoff_t last_index;
1031 pgoff_t prev_index;
1032 unsigned long offset; /* offset into pagecache page */
1033 unsigned int prev_offset;
1034 int error;
1036 index = *ppos >> PAGE_CACHE_SHIFT;
1037 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1038 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1039 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1040 offset = *ppos & ~PAGE_CACHE_MASK;
1042 for (;;) {
1043 struct page *page;
1044 pgoff_t end_index;
1045 loff_t isize;
1046 unsigned long nr, ret;
1048 cond_resched();
1049 find_page:
1050 page = find_get_page(mapping, index);
1051 if (!page) {
1052 page_cache_sync_readahead(mapping,
1053 ra, filp,
1054 index, last_index - index);
1055 page = find_get_page(mapping, index);
1056 if (unlikely(page == NULL))
1057 goto no_cached_page;
1059 if (PageReadahead(page)) {
1060 page_cache_async_readahead(mapping,
1061 ra, filp, page,
1062 index, last_index - index);
1064 if (!PageUptodate(page)) {
1065 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1066 !mapping->a_ops->is_partially_uptodate)
1067 goto page_not_up_to_date;
1068 if (!trylock_page(page))
1069 goto page_not_up_to_date;
1070 if (!mapping->a_ops->is_partially_uptodate(page,
1071 desc, offset))
1072 goto page_not_up_to_date_locked;
1073 unlock_page(page);
1075 page_ok:
1077 * i_size must be checked after we know the page is Uptodate.
1079 * Checking i_size after the check allows us to calculate
1080 * the correct value for "nr", which means the zero-filled
1081 * part of the page is not copied back to userspace (unless
1082 * another truncate extends the file - this is desired though).
1085 isize = i_size_read(inode);
1086 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1087 if (unlikely(!isize || index > end_index)) {
1088 page_cache_release(page);
1089 goto out;
1092 /* nr is the maximum number of bytes to copy from this page */
1093 nr = PAGE_CACHE_SIZE;
1094 if (index == end_index) {
1095 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1096 if (nr <= offset) {
1097 page_cache_release(page);
1098 goto out;
1101 nr = nr - offset;
1103 /* If users can be writing to this page using arbitrary
1104 * virtual addresses, take care about potential aliasing
1105 * before reading the page on the kernel side.
1107 if (mapping_writably_mapped(mapping))
1108 flush_dcache_page(page);
1111 * When a sequential read accesses a page several times,
1112 * only mark it as accessed the first time.
1114 if (prev_index != index || offset != prev_offset)
1115 mark_page_accessed(page);
1116 prev_index = index;
1119 * Ok, we have the page, and it's up-to-date, so
1120 * now we can copy it to user space...
1122 * The actor routine returns how many bytes were actually used..
1123 * NOTE! This may not be the same as how much of a user buffer
1124 * we filled up (we may be padding etc), so we can only update
1125 * "pos" here (the actor routine has to update the user buffer
1126 * pointers and the remaining count).
1128 ret = actor(desc, page, offset, nr);
1129 offset += ret;
1130 index += offset >> PAGE_CACHE_SHIFT;
1131 offset &= ~PAGE_CACHE_MASK;
1132 prev_offset = offset;
1134 page_cache_release(page);
1135 if (ret == nr && desc->count)
1136 continue;
1137 goto out;
1139 page_not_up_to_date:
1140 /* Get exclusive access to the page ... */
1141 error = lock_page_killable(page);
1142 if (unlikely(error))
1143 goto readpage_error;
1145 page_not_up_to_date_locked:
1146 /* Did it get truncated before we got the lock? */
1147 if (!page->mapping) {
1148 unlock_page(page);
1149 page_cache_release(page);
1150 continue;
1153 /* Did somebody else fill it already? */
1154 if (PageUptodate(page)) {
1155 unlock_page(page);
1156 goto page_ok;
1159 readpage:
1160 /* Start the actual read. The read will unlock the page. */
1161 error = mapping->a_ops->readpage(filp, page);
1163 if (unlikely(error)) {
1164 if (error == AOP_TRUNCATED_PAGE) {
1165 page_cache_release(page);
1166 goto find_page;
1168 goto readpage_error;
1171 if (!PageUptodate(page)) {
1172 error = lock_page_killable(page);
1173 if (unlikely(error))
1174 goto readpage_error;
1175 if (!PageUptodate(page)) {
1176 if (page->mapping == NULL) {
1178 * invalidate_inode_pages got it
1180 unlock_page(page);
1181 page_cache_release(page);
1182 goto find_page;
1184 unlock_page(page);
1185 shrink_readahead_size_eio(filp, ra);
1186 error = -EIO;
1187 goto readpage_error;
1189 unlock_page(page);
1192 goto page_ok;
1194 readpage_error:
1195 /* UHHUH! A synchronous read error occurred. Report it */
1196 desc->error = error;
1197 page_cache_release(page);
1198 goto out;
1200 no_cached_page:
1202 * Ok, it wasn't cached, so we need to create a new
1203 * page..
1205 page = page_cache_alloc_cold(mapping);
1206 if (!page) {
1207 desc->error = -ENOMEM;
1208 goto out;
1210 error = add_to_page_cache_lru(page, mapping,
1211 index, GFP_KERNEL);
1212 if (error) {
1213 page_cache_release(page);
1214 if (error == -EEXIST)
1215 goto find_page;
1216 desc->error = error;
1217 goto out;
1219 goto readpage;
1222 out:
1223 ra->prev_pos = prev_index;
1224 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1225 ra->prev_pos |= prev_offset;
1227 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1228 file_accessed(filp);
1231 int file_read_actor(read_descriptor_t *desc, struct page *page,
1232 unsigned long offset, unsigned long size)
1234 char *kaddr;
1235 unsigned long left, count = desc->count;
1237 if (size > count)
1238 size = count;
1241 * Faults on the destination of a read are common, so do it before
1242 * taking the kmap.
1244 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1245 kaddr = kmap_atomic(page, KM_USER0);
1246 left = __copy_to_user_inatomic(desc->arg.buf,
1247 kaddr + offset, size);
1248 kunmap_atomic(kaddr, KM_USER0);
1249 if (left == 0)
1250 goto success;
1253 /* Do it the slow way */
1254 kaddr = kmap(page);
1255 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1256 kunmap(page);
1258 if (left) {
1259 size -= left;
1260 desc->error = -EFAULT;
1262 success:
1263 desc->count = count - size;
1264 desc->written += size;
1265 desc->arg.buf += size;
1266 return size;
1270 * Performs necessary checks before doing a write
1271 * @iov: io vector request
1272 * @nr_segs: number of segments in the iovec
1273 * @count: number of bytes to write
1274 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1276 * Adjust number of segments and amount of bytes to write (nr_segs should be
1277 * properly initialized first). Returns appropriate error code that caller
1278 * should return or zero in case that write should be allowed.
1280 int generic_segment_checks(const struct iovec *iov,
1281 unsigned long *nr_segs, size_t *count, int access_flags)
1283 unsigned long seg;
1284 size_t cnt = 0;
1285 for (seg = 0; seg < *nr_segs; seg++) {
1286 const struct iovec *iv = &iov[seg];
1289 * If any segment has a negative length, or the cumulative
1290 * length ever wraps negative then return -EINVAL.
1292 cnt += iv->iov_len;
1293 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1294 return -EINVAL;
1295 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1296 continue;
1297 if (seg == 0)
1298 return -EFAULT;
1299 *nr_segs = seg;
1300 cnt -= iv->iov_len; /* This segment is no good */
1301 break;
1303 *count = cnt;
1304 return 0;
1306 EXPORT_SYMBOL(generic_segment_checks);
1309 * generic_file_aio_read - generic filesystem read routine
1310 * @iocb: kernel I/O control block
1311 * @iov: io vector request
1312 * @nr_segs: number of segments in the iovec
1313 * @pos: current file position
1315 * This is the "read()" routine for all filesystems
1316 * that can use the page cache directly.
1318 ssize_t
1319 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1320 unsigned long nr_segs, loff_t pos)
1322 struct file *filp = iocb->ki_filp;
1323 ssize_t retval;
1324 unsigned long seg;
1325 size_t count;
1326 loff_t *ppos = &iocb->ki_pos;
1328 count = 0;
1329 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1330 if (retval)
1331 return retval;
1333 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1334 if (filp->f_flags & O_DIRECT) {
1335 loff_t size;
1336 struct address_space *mapping;
1337 struct inode *inode;
1339 mapping = filp->f_mapping;
1340 inode = mapping->host;
1341 if (!count)
1342 goto out; /* skip atime */
1343 size = i_size_read(inode);
1344 if (pos < size) {
1345 retval = filemap_write_and_wait_range(mapping, pos,
1346 pos + iov_length(iov, nr_segs) - 1);
1347 if (!retval) {
1348 retval = mapping->a_ops->direct_IO(READ, iocb,
1349 iov, pos, nr_segs);
1351 if (retval > 0)
1352 *ppos = pos + retval;
1353 if (retval) {
1354 file_accessed(filp);
1355 goto out;
1360 for (seg = 0; seg < nr_segs; seg++) {
1361 read_descriptor_t desc;
1363 desc.written = 0;
1364 desc.arg.buf = iov[seg].iov_base;
1365 desc.count = iov[seg].iov_len;
1366 if (desc.count == 0)
1367 continue;
1368 desc.error = 0;
1369 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1370 retval += desc.written;
1371 if (desc.error) {
1372 retval = retval ?: desc.error;
1373 break;
1375 if (desc.count > 0)
1376 break;
1378 out:
1379 return retval;
1381 EXPORT_SYMBOL(generic_file_aio_read);
1383 static ssize_t
1384 do_readahead(struct address_space *mapping, struct file *filp,
1385 pgoff_t index, unsigned long nr)
1387 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1388 return -EINVAL;
1390 force_page_cache_readahead(mapping, filp, index,
1391 max_sane_readahead(nr));
1392 return 0;
1395 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1397 ssize_t ret;
1398 struct file *file;
1400 ret = -EBADF;
1401 file = fget(fd);
1402 if (file) {
1403 if (file->f_mode & FMODE_READ) {
1404 struct address_space *mapping = file->f_mapping;
1405 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1406 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1407 unsigned long len = end - start + 1;
1408 ret = do_readahead(mapping, file, start, len);
1410 fput(file);
1412 return ret;
1414 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1415 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1417 return SYSC_readahead((int) fd, offset, (size_t) count);
1419 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1420 #endif
1422 #ifdef CONFIG_MMU
1424 * page_cache_read - adds requested page to the page cache if not already there
1425 * @file: file to read
1426 * @offset: page index
1428 * This adds the requested page to the page cache if it isn't already there,
1429 * and schedules an I/O to read in its contents from disk.
1431 static int page_cache_read(struct file *file, pgoff_t offset)
1433 struct address_space *mapping = file->f_mapping;
1434 struct page *page;
1435 int ret;
1437 do {
1438 page = page_cache_alloc_cold(mapping);
1439 if (!page)
1440 return -ENOMEM;
1442 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1443 if (ret == 0)
1444 ret = mapping->a_ops->readpage(file, page);
1445 else if (ret == -EEXIST)
1446 ret = 0; /* losing race to add is OK */
1448 page_cache_release(page);
1450 } while (ret == AOP_TRUNCATED_PAGE);
1452 return ret;
1455 #define MMAP_LOTSAMISS (100)
1458 * filemap_fault - read in file data for page fault handling
1459 * @vma: vma in which the fault was taken
1460 * @vmf: struct vm_fault containing details of the fault
1462 * filemap_fault() is invoked via the vma operations vector for a
1463 * mapped memory region to read in file data during a page fault.
1465 * The goto's are kind of ugly, but this streamlines the normal case of having
1466 * it in the page cache, and handles the special cases reasonably without
1467 * having a lot of duplicated code.
1469 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1471 int error;
1472 struct file *file = vma->vm_file;
1473 struct address_space *mapping = file->f_mapping;
1474 struct file_ra_state *ra = &file->f_ra;
1475 struct inode *inode = mapping->host;
1476 struct page *page;
1477 pgoff_t size;
1478 int did_readaround = 0;
1479 int ret = 0;
1481 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1482 if (vmf->pgoff >= size)
1483 return VM_FAULT_SIGBUS;
1485 /* If we don't want any read-ahead, don't bother */
1486 if (VM_RandomReadHint(vma))
1487 goto no_cached_page;
1490 * Do we have something in the page cache already?
1492 retry_find:
1493 page = find_lock_page(mapping, vmf->pgoff);
1495 * For sequential accesses, we use the generic readahead logic.
1497 if (VM_SequentialReadHint(vma)) {
1498 if (!page) {
1499 page_cache_sync_readahead(mapping, ra, file,
1500 vmf->pgoff, 1);
1501 page = find_lock_page(mapping, vmf->pgoff);
1502 if (!page)
1503 goto no_cached_page;
1505 if (PageReadahead(page)) {
1506 page_cache_async_readahead(mapping, ra, file, page,
1507 vmf->pgoff, 1);
1511 if (!page) {
1512 unsigned long ra_pages;
1514 ra->mmap_miss++;
1517 * Do we miss much more than hit in this file? If so,
1518 * stop bothering with read-ahead. It will only hurt.
1520 if (ra->mmap_miss > MMAP_LOTSAMISS)
1521 goto no_cached_page;
1524 * To keep the pgmajfault counter straight, we need to
1525 * check did_readaround, as this is an inner loop.
1527 if (!did_readaround) {
1528 ret = VM_FAULT_MAJOR;
1529 count_vm_event(PGMAJFAULT);
1531 did_readaround = 1;
1532 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1533 if (ra_pages) {
1534 pgoff_t start = 0;
1536 if (vmf->pgoff > ra_pages / 2)
1537 start = vmf->pgoff - ra_pages / 2;
1538 do_page_cache_readahead(mapping, file, start, ra_pages);
1540 page = find_lock_page(mapping, vmf->pgoff);
1541 if (!page)
1542 goto no_cached_page;
1545 if (!did_readaround)
1546 ra->mmap_miss--;
1549 * We have a locked page in the page cache, now we need to check
1550 * that it's up-to-date. If not, it is going to be due to an error.
1552 if (unlikely(!PageUptodate(page)))
1553 goto page_not_uptodate;
1555 /* Must recheck i_size under page lock */
1556 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1557 if (unlikely(vmf->pgoff >= size)) {
1558 unlock_page(page);
1559 page_cache_release(page);
1560 return VM_FAULT_SIGBUS;
1564 * Found the page and have a reference on it.
1566 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1567 vmf->page = page;
1568 return ret | VM_FAULT_LOCKED;
1570 no_cached_page:
1572 * We're only likely to ever get here if MADV_RANDOM is in
1573 * effect.
1575 error = page_cache_read(file, vmf->pgoff);
1578 * The page we want has now been added to the page cache.
1579 * In the unlikely event that someone removed it in the
1580 * meantime, we'll just come back here and read it again.
1582 if (error >= 0)
1583 goto retry_find;
1586 * An error return from page_cache_read can result if the
1587 * system is low on memory, or a problem occurs while trying
1588 * to schedule I/O.
1590 if (error == -ENOMEM)
1591 return VM_FAULT_OOM;
1592 return VM_FAULT_SIGBUS;
1594 page_not_uptodate:
1595 /* IO error path */
1596 if (!did_readaround) {
1597 ret = VM_FAULT_MAJOR;
1598 count_vm_event(PGMAJFAULT);
1602 * Umm, take care of errors if the page isn't up-to-date.
1603 * Try to re-read it _once_. We do this synchronously,
1604 * because there really aren't any performance issues here
1605 * and we need to check for errors.
1607 ClearPageError(page);
1608 error = mapping->a_ops->readpage(file, page);
1609 if (!error) {
1610 wait_on_page_locked(page);
1611 if (!PageUptodate(page))
1612 error = -EIO;
1614 page_cache_release(page);
1616 if (!error || error == AOP_TRUNCATED_PAGE)
1617 goto retry_find;
1619 /* Things didn't work out. Return zero to tell the mm layer so. */
1620 shrink_readahead_size_eio(file, ra);
1621 return VM_FAULT_SIGBUS;
1623 EXPORT_SYMBOL(filemap_fault);
1625 struct vm_operations_struct generic_file_vm_ops = {
1626 .fault = filemap_fault,
1629 /* This is used for a general mmap of a disk file */
1631 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1633 struct address_space *mapping = file->f_mapping;
1635 if (!mapping->a_ops->readpage)
1636 return -ENOEXEC;
1637 file_accessed(file);
1638 vma->vm_ops = &generic_file_vm_ops;
1639 vma->vm_flags |= VM_CAN_NONLINEAR;
1640 return 0;
1644 * This is for filesystems which do not implement ->writepage.
1646 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1648 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1649 return -EINVAL;
1650 return generic_file_mmap(file, vma);
1652 #else
1653 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1655 return -ENOSYS;
1657 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1659 return -ENOSYS;
1661 #endif /* CONFIG_MMU */
1663 EXPORT_SYMBOL(generic_file_mmap);
1664 EXPORT_SYMBOL(generic_file_readonly_mmap);
1666 static struct page *__read_cache_page(struct address_space *mapping,
1667 pgoff_t index,
1668 int (*filler)(void *,struct page*),
1669 void *data)
1671 struct page *page;
1672 int err;
1673 repeat:
1674 page = find_get_page(mapping, index);
1675 if (!page) {
1676 page = page_cache_alloc_cold(mapping);
1677 if (!page)
1678 return ERR_PTR(-ENOMEM);
1679 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1680 if (unlikely(err)) {
1681 page_cache_release(page);
1682 if (err == -EEXIST)
1683 goto repeat;
1684 /* Presumably ENOMEM for radix tree node */
1685 return ERR_PTR(err);
1687 err = filler(data, page);
1688 if (err < 0) {
1689 page_cache_release(page);
1690 page = ERR_PTR(err);
1693 return page;
1697 * read_cache_page_async - read into page cache, fill it if needed
1698 * @mapping: the page's address_space
1699 * @index: the page index
1700 * @filler: function to perform the read
1701 * @data: destination for read data
1703 * Same as read_cache_page, but don't wait for page to become unlocked
1704 * after submitting it to the filler.
1706 * Read into the page cache. If a page already exists, and PageUptodate() is
1707 * not set, try to fill the page but don't wait for it to become unlocked.
1709 * If the page does not get brought uptodate, return -EIO.
1711 struct page *read_cache_page_async(struct address_space *mapping,
1712 pgoff_t index,
1713 int (*filler)(void *,struct page*),
1714 void *data)
1716 struct page *page;
1717 int err;
1719 retry:
1720 page = __read_cache_page(mapping, index, filler, data);
1721 if (IS_ERR(page))
1722 return page;
1723 if (PageUptodate(page))
1724 goto out;
1726 lock_page(page);
1727 if (!page->mapping) {
1728 unlock_page(page);
1729 page_cache_release(page);
1730 goto retry;
1732 if (PageUptodate(page)) {
1733 unlock_page(page);
1734 goto out;
1736 err = filler(data, page);
1737 if (err < 0) {
1738 page_cache_release(page);
1739 return ERR_PTR(err);
1741 out:
1742 mark_page_accessed(page);
1743 return page;
1745 EXPORT_SYMBOL(read_cache_page_async);
1748 * read_cache_page - read into page cache, fill it if needed
1749 * @mapping: the page's address_space
1750 * @index: the page index
1751 * @filler: function to perform the read
1752 * @data: destination for read data
1754 * Read into the page cache. If a page already exists, and PageUptodate() is
1755 * not set, try to fill the page then wait for it to become unlocked.
1757 * If the page does not get brought uptodate, return -EIO.
1759 struct page *read_cache_page(struct address_space *mapping,
1760 pgoff_t index,
1761 int (*filler)(void *,struct page*),
1762 void *data)
1764 struct page *page;
1766 page = read_cache_page_async(mapping, index, filler, data);
1767 if (IS_ERR(page))
1768 goto out;
1769 wait_on_page_locked(page);
1770 if (!PageUptodate(page)) {
1771 page_cache_release(page);
1772 page = ERR_PTR(-EIO);
1774 out:
1775 return page;
1777 EXPORT_SYMBOL(read_cache_page);
1780 * The logic we want is
1782 * if suid or (sgid and xgrp)
1783 * remove privs
1785 int should_remove_suid(struct dentry *dentry)
1787 mode_t mode = dentry->d_inode->i_mode;
1788 int kill = 0;
1790 /* suid always must be killed */
1791 if (unlikely(mode & S_ISUID))
1792 kill = ATTR_KILL_SUID;
1795 * sgid without any exec bits is just a mandatory locking mark; leave
1796 * it alone. If some exec bits are set, it's a real sgid; kill it.
1798 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1799 kill |= ATTR_KILL_SGID;
1801 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1802 return kill;
1804 return 0;
1806 EXPORT_SYMBOL(should_remove_suid);
1808 static int __remove_suid(struct dentry *dentry, int kill)
1810 struct iattr newattrs;
1812 newattrs.ia_valid = ATTR_FORCE | kill;
1813 return notify_change(dentry, &newattrs);
1816 int file_remove_suid(struct file *file)
1818 struct dentry *dentry = file->f_path.dentry;
1819 int killsuid = should_remove_suid(dentry);
1820 int killpriv = security_inode_need_killpriv(dentry);
1821 int error = 0;
1823 if (killpriv < 0)
1824 return killpriv;
1825 if (killpriv)
1826 error = security_inode_killpriv(dentry);
1827 if (!error && killsuid)
1828 error = __remove_suid(dentry, killsuid);
1830 return error;
1832 EXPORT_SYMBOL(file_remove_suid);
1834 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1835 const struct iovec *iov, size_t base, size_t bytes)
1837 size_t copied = 0, left = 0;
1839 while (bytes) {
1840 char __user *buf = iov->iov_base + base;
1841 int copy = min(bytes, iov->iov_len - base);
1843 base = 0;
1844 left = __copy_from_user_inatomic(vaddr, buf, copy);
1845 copied += copy;
1846 bytes -= copy;
1847 vaddr += copy;
1848 iov++;
1850 if (unlikely(left))
1851 break;
1853 return copied - left;
1857 * Copy as much as we can into the page and return the number of bytes which
1858 * were sucessfully copied. If a fault is encountered then return the number of
1859 * bytes which were copied.
1861 size_t iov_iter_copy_from_user_atomic(struct page *page,
1862 struct iov_iter *i, unsigned long offset, size_t bytes)
1864 char *kaddr;
1865 size_t copied;
1867 BUG_ON(!in_atomic());
1868 kaddr = kmap_atomic(page, KM_USER0);
1869 if (likely(i->nr_segs == 1)) {
1870 int left;
1871 char __user *buf = i->iov->iov_base + i->iov_offset;
1872 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1873 copied = bytes - left;
1874 } else {
1875 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1876 i->iov, i->iov_offset, bytes);
1878 kunmap_atomic(kaddr, KM_USER0);
1880 return copied;
1882 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1885 * This has the same sideeffects and return value as
1886 * iov_iter_copy_from_user_atomic().
1887 * The difference is that it attempts to resolve faults.
1888 * Page must not be locked.
1890 size_t iov_iter_copy_from_user(struct page *page,
1891 struct iov_iter *i, unsigned long offset, size_t bytes)
1893 char *kaddr;
1894 size_t copied;
1896 kaddr = kmap(page);
1897 if (likely(i->nr_segs == 1)) {
1898 int left;
1899 char __user *buf = i->iov->iov_base + i->iov_offset;
1900 left = __copy_from_user(kaddr + offset, buf, bytes);
1901 copied = bytes - left;
1902 } else {
1903 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1904 i->iov, i->iov_offset, bytes);
1906 kunmap(page);
1907 return copied;
1909 EXPORT_SYMBOL(iov_iter_copy_from_user);
1911 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1913 BUG_ON(i->count < bytes);
1915 if (likely(i->nr_segs == 1)) {
1916 i->iov_offset += bytes;
1917 i->count -= bytes;
1918 } else {
1919 const struct iovec *iov = i->iov;
1920 size_t base = i->iov_offset;
1923 * The !iov->iov_len check ensures we skip over unlikely
1924 * zero-length segments (without overruning the iovec).
1926 while (bytes || unlikely(i->count && !iov->iov_len)) {
1927 int copy;
1929 copy = min(bytes, iov->iov_len - base);
1930 BUG_ON(!i->count || i->count < copy);
1931 i->count -= copy;
1932 bytes -= copy;
1933 base += copy;
1934 if (iov->iov_len == base) {
1935 iov++;
1936 base = 0;
1939 i->iov = iov;
1940 i->iov_offset = base;
1943 EXPORT_SYMBOL(iov_iter_advance);
1946 * Fault in the first iovec of the given iov_iter, to a maximum length
1947 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1948 * accessed (ie. because it is an invalid address).
1950 * writev-intensive code may want this to prefault several iovecs -- that
1951 * would be possible (callers must not rely on the fact that _only_ the
1952 * first iovec will be faulted with the current implementation).
1954 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1956 char __user *buf = i->iov->iov_base + i->iov_offset;
1957 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1958 return fault_in_pages_readable(buf, bytes);
1960 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1963 * Return the count of just the current iov_iter segment.
1965 size_t iov_iter_single_seg_count(struct iov_iter *i)
1967 const struct iovec *iov = i->iov;
1968 if (i->nr_segs == 1)
1969 return i->count;
1970 else
1971 return min(i->count, iov->iov_len - i->iov_offset);
1973 EXPORT_SYMBOL(iov_iter_single_seg_count);
1976 * Performs necessary checks before doing a write
1978 * Can adjust writing position or amount of bytes to write.
1979 * Returns appropriate error code that caller should return or
1980 * zero in case that write should be allowed.
1982 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1984 struct inode *inode = file->f_mapping->host;
1985 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1987 if (unlikely(*pos < 0))
1988 return -EINVAL;
1990 if (!isblk) {
1991 /* FIXME: this is for backwards compatibility with 2.4 */
1992 if (file->f_flags & O_APPEND)
1993 *pos = i_size_read(inode);
1995 if (limit != RLIM_INFINITY) {
1996 if (*pos >= limit) {
1997 send_sig(SIGXFSZ, current, 0);
1998 return -EFBIG;
2000 if (*count > limit - (typeof(limit))*pos) {
2001 *count = limit - (typeof(limit))*pos;
2007 * LFS rule
2009 if (unlikely(*pos + *count > MAX_NON_LFS &&
2010 !(file->f_flags & O_LARGEFILE))) {
2011 if (*pos >= MAX_NON_LFS) {
2012 return -EFBIG;
2014 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2015 *count = MAX_NON_LFS - (unsigned long)*pos;
2020 * Are we about to exceed the fs block limit ?
2022 * If we have written data it becomes a short write. If we have
2023 * exceeded without writing data we send a signal and return EFBIG.
2024 * Linus frestrict idea will clean these up nicely..
2026 if (likely(!isblk)) {
2027 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2028 if (*count || *pos > inode->i_sb->s_maxbytes) {
2029 return -EFBIG;
2031 /* zero-length writes at ->s_maxbytes are OK */
2034 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2035 *count = inode->i_sb->s_maxbytes - *pos;
2036 } else {
2037 #ifdef CONFIG_BLOCK
2038 loff_t isize;
2039 if (bdev_read_only(I_BDEV(inode)))
2040 return -EPERM;
2041 isize = i_size_read(inode);
2042 if (*pos >= isize) {
2043 if (*count || *pos > isize)
2044 return -ENOSPC;
2047 if (*pos + *count > isize)
2048 *count = isize - *pos;
2049 #else
2050 return -EPERM;
2051 #endif
2053 return 0;
2055 EXPORT_SYMBOL(generic_write_checks);
2057 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2058 loff_t pos, unsigned len, unsigned flags,
2059 struct page **pagep, void **fsdata)
2061 const struct address_space_operations *aops = mapping->a_ops;
2063 return aops->write_begin(file, mapping, pos, len, flags,
2064 pagep, fsdata);
2066 EXPORT_SYMBOL(pagecache_write_begin);
2068 int pagecache_write_end(struct file *file, struct address_space *mapping,
2069 loff_t pos, unsigned len, unsigned copied,
2070 struct page *page, void *fsdata)
2072 const struct address_space_operations *aops = mapping->a_ops;
2074 mark_page_accessed(page);
2075 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2077 EXPORT_SYMBOL(pagecache_write_end);
2079 ssize_t
2080 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2081 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2082 size_t count, size_t ocount)
2084 struct file *file = iocb->ki_filp;
2085 struct address_space *mapping = file->f_mapping;
2086 struct inode *inode = mapping->host;
2087 ssize_t written;
2088 size_t write_len;
2089 pgoff_t end;
2091 if (count != ocount)
2092 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2094 write_len = iov_length(iov, *nr_segs);
2095 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2097 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2098 if (written)
2099 goto out;
2102 * After a write we want buffered reads to be sure to go to disk to get
2103 * the new data. We invalidate clean cached page from the region we're
2104 * about to write. We do this *before* the write so that we can return
2105 * without clobbering -EIOCBQUEUED from ->direct_IO().
2107 if (mapping->nrpages) {
2108 written = invalidate_inode_pages2_range(mapping,
2109 pos >> PAGE_CACHE_SHIFT, end);
2111 * If a page can not be invalidated, return 0 to fall back
2112 * to buffered write.
2114 if (written) {
2115 if (written == -EBUSY)
2116 return 0;
2117 goto out;
2121 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2124 * Finally, try again to invalidate clean pages which might have been
2125 * cached by non-direct readahead, or faulted in by get_user_pages()
2126 * if the source of the write was an mmap'ed region of the file
2127 * we're writing. Either one is a pretty crazy thing to do,
2128 * so we don't support it 100%. If this invalidation
2129 * fails, tough, the write still worked...
2131 if (mapping->nrpages) {
2132 invalidate_inode_pages2_range(mapping,
2133 pos >> PAGE_CACHE_SHIFT, end);
2136 if (written > 0) {
2137 loff_t end = pos + written;
2138 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2139 i_size_write(inode, end);
2140 mark_inode_dirty(inode);
2142 *ppos = end;
2146 * Sync the fs metadata but not the minor inode changes and
2147 * of course not the data as we did direct DMA for the IO.
2148 * i_mutex is held, which protects generic_osync_inode() from
2149 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2151 out:
2152 if ((written >= 0 || written == -EIOCBQUEUED) &&
2153 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2154 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2155 if (err < 0)
2156 written = err;
2158 return written;
2160 EXPORT_SYMBOL(generic_file_direct_write);
2163 * Find or create a page at the given pagecache position. Return the locked
2164 * page. This function is specifically for buffered writes.
2166 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2167 pgoff_t index, unsigned flags)
2169 int status;
2170 struct page *page;
2171 gfp_t gfp_notmask = 0;
2172 if (flags & AOP_FLAG_NOFS)
2173 gfp_notmask = __GFP_FS;
2174 repeat:
2175 page = find_lock_page(mapping, index);
2176 if (likely(page))
2177 return page;
2179 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2180 if (!page)
2181 return NULL;
2182 status = add_to_page_cache_lru(page, mapping, index,
2183 GFP_KERNEL & ~gfp_notmask);
2184 if (unlikely(status)) {
2185 page_cache_release(page);
2186 if (status == -EEXIST)
2187 goto repeat;
2188 return NULL;
2190 return page;
2192 EXPORT_SYMBOL(grab_cache_page_write_begin);
2194 static ssize_t generic_perform_write(struct file *file,
2195 struct iov_iter *i, loff_t pos)
2197 struct address_space *mapping = file->f_mapping;
2198 const struct address_space_operations *a_ops = mapping->a_ops;
2199 long status = 0;
2200 ssize_t written = 0;
2201 unsigned int flags = 0;
2204 * Copies from kernel address space cannot fail (NFSD is a big user).
2206 if (segment_eq(get_fs(), KERNEL_DS))
2207 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2209 do {
2210 struct page *page;
2211 pgoff_t index; /* Pagecache index for current page */
2212 unsigned long offset; /* Offset into pagecache page */
2213 unsigned long bytes; /* Bytes to write to page */
2214 size_t copied; /* Bytes copied from user */
2215 void *fsdata;
2217 offset = (pos & (PAGE_CACHE_SIZE - 1));
2218 index = pos >> PAGE_CACHE_SHIFT;
2219 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2220 iov_iter_count(i));
2222 again:
2225 * Bring in the user page that we will copy from _first_.
2226 * Otherwise there's a nasty deadlock on copying from the
2227 * same page as we're writing to, without it being marked
2228 * up-to-date.
2230 * Not only is this an optimisation, but it is also required
2231 * to check that the address is actually valid, when atomic
2232 * usercopies are used, below.
2234 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2235 status = -EFAULT;
2236 break;
2239 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2240 &page, &fsdata);
2241 if (unlikely(status))
2242 break;
2244 pagefault_disable();
2245 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2246 pagefault_enable();
2247 flush_dcache_page(page);
2249 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2250 page, fsdata);
2251 if (unlikely(status < 0))
2252 break;
2253 copied = status;
2255 cond_resched();
2257 iov_iter_advance(i, copied);
2258 if (unlikely(copied == 0)) {
2260 * If we were unable to copy any data at all, we must
2261 * fall back to a single segment length write.
2263 * If we didn't fallback here, we could livelock
2264 * because not all segments in the iov can be copied at
2265 * once without a pagefault.
2267 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2268 iov_iter_single_seg_count(i));
2269 goto again;
2271 pos += copied;
2272 written += copied;
2274 balance_dirty_pages_ratelimited(mapping);
2276 } while (iov_iter_count(i));
2278 return written ? written : status;
2281 ssize_t
2282 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2283 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2284 size_t count, ssize_t written)
2286 struct file *file = iocb->ki_filp;
2287 struct address_space *mapping = file->f_mapping;
2288 const struct address_space_operations *a_ops = mapping->a_ops;
2289 struct inode *inode = mapping->host;
2290 ssize_t status;
2291 struct iov_iter i;
2293 iov_iter_init(&i, iov, nr_segs, count, written);
2294 status = generic_perform_write(file, &i, pos);
2296 if (likely(status >= 0)) {
2297 written += status;
2298 *ppos = pos + status;
2301 * For now, when the user asks for O_SYNC, we'll actually give
2302 * O_DSYNC
2304 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2305 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2306 status = generic_osync_inode(inode, mapping,
2307 OSYNC_METADATA|OSYNC_DATA);
2312 * If we get here for O_DIRECT writes then we must have fallen through
2313 * to buffered writes (block instantiation inside i_size). So we sync
2314 * the file data here, to try to honour O_DIRECT expectations.
2316 if (unlikely(file->f_flags & O_DIRECT) && written)
2317 status = filemap_write_and_wait_range(mapping,
2318 pos, pos + written - 1);
2320 return written ? written : status;
2322 EXPORT_SYMBOL(generic_file_buffered_write);
2324 static ssize_t
2325 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2326 unsigned long nr_segs, loff_t *ppos)
2328 struct file *file = iocb->ki_filp;
2329 struct address_space * mapping = file->f_mapping;
2330 size_t ocount; /* original count */
2331 size_t count; /* after file limit checks */
2332 struct inode *inode = mapping->host;
2333 loff_t pos;
2334 ssize_t written;
2335 ssize_t err;
2337 ocount = 0;
2338 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2339 if (err)
2340 return err;
2342 count = ocount;
2343 pos = *ppos;
2345 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2347 /* We can write back this queue in page reclaim */
2348 current->backing_dev_info = mapping->backing_dev_info;
2349 written = 0;
2351 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2352 if (err)
2353 goto out;
2355 if (count == 0)
2356 goto out;
2358 err = file_remove_suid(file);
2359 if (err)
2360 goto out;
2362 file_update_time(file);
2364 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2365 if (unlikely(file->f_flags & O_DIRECT)) {
2366 loff_t endbyte;
2367 ssize_t written_buffered;
2369 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2370 ppos, count, ocount);
2371 if (written < 0 || written == count)
2372 goto out;
2374 * direct-io write to a hole: fall through to buffered I/O
2375 * for completing the rest of the request.
2377 pos += written;
2378 count -= written;
2379 written_buffered = generic_file_buffered_write(iocb, iov,
2380 nr_segs, pos, ppos, count,
2381 written);
2383 * If generic_file_buffered_write() retuned a synchronous error
2384 * then we want to return the number of bytes which were
2385 * direct-written, or the error code if that was zero. Note
2386 * that this differs from normal direct-io semantics, which
2387 * will return -EFOO even if some bytes were written.
2389 if (written_buffered < 0) {
2390 err = written_buffered;
2391 goto out;
2395 * We need to ensure that the page cache pages are written to
2396 * disk and invalidated to preserve the expected O_DIRECT
2397 * semantics.
2399 endbyte = pos + written_buffered - written - 1;
2400 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2401 SYNC_FILE_RANGE_WAIT_BEFORE|
2402 SYNC_FILE_RANGE_WRITE|
2403 SYNC_FILE_RANGE_WAIT_AFTER);
2404 if (err == 0) {
2405 written = written_buffered;
2406 invalidate_mapping_pages(mapping,
2407 pos >> PAGE_CACHE_SHIFT,
2408 endbyte >> PAGE_CACHE_SHIFT);
2409 } else {
2411 * We don't know how much we wrote, so just return
2412 * the number of bytes which were direct-written
2415 } else {
2416 written = generic_file_buffered_write(iocb, iov, nr_segs,
2417 pos, ppos, count, written);
2419 out:
2420 current->backing_dev_info = NULL;
2421 return written ? written : err;
2424 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2425 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2427 struct file *file = iocb->ki_filp;
2428 struct address_space *mapping = file->f_mapping;
2429 struct inode *inode = mapping->host;
2430 ssize_t ret;
2432 BUG_ON(iocb->ki_pos != pos);
2434 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2435 &iocb->ki_pos);
2437 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2438 ssize_t err;
2440 err = sync_page_range_nolock(inode, mapping, pos, ret);
2441 if (err < 0)
2442 ret = err;
2444 return ret;
2446 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2448 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2449 unsigned long nr_segs, loff_t pos)
2451 struct file *file = iocb->ki_filp;
2452 struct address_space *mapping = file->f_mapping;
2453 struct inode *inode = mapping->host;
2454 ssize_t ret;
2456 BUG_ON(iocb->ki_pos != pos);
2458 mutex_lock(&inode->i_mutex);
2459 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2460 &iocb->ki_pos);
2461 mutex_unlock(&inode->i_mutex);
2463 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2464 ssize_t err;
2466 err = sync_page_range(inode, mapping, pos, ret);
2467 if (err < 0)
2468 ret = err;
2470 return ret;
2472 EXPORT_SYMBOL(generic_file_aio_write);
2475 * try_to_release_page() - release old fs-specific metadata on a page
2477 * @page: the page which the kernel is trying to free
2478 * @gfp_mask: memory allocation flags (and I/O mode)
2480 * The address_space is to try to release any data against the page
2481 * (presumably at page->private). If the release was successful, return `1'.
2482 * Otherwise return zero.
2484 * This may also be called if PG_fscache is set on a page, indicating that the
2485 * page is known to the local caching routines.
2487 * The @gfp_mask argument specifies whether I/O may be performed to release
2488 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2491 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2493 struct address_space * const mapping = page->mapping;
2495 BUG_ON(!PageLocked(page));
2496 if (PageWriteback(page))
2497 return 0;
2499 if (mapping && mapping->a_ops->releasepage)
2500 return mapping->a_ops->releasepage(page, gfp_mask);
2501 return try_to_free_buffers(page);
2504 EXPORT_SYMBOL(try_to_release_page);