2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/page-debug-flags.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node
);
68 EXPORT_PER_CPU_SYMBOL(numa_node
);
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
78 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
83 * Array of node states.
85 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
86 [N_POSSIBLE
] = NODE_MASK_ALL
,
87 [N_ONLINE
] = { { [0] = 1UL } },
89 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
91 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
93 [N_CPU
] = { { [0] = 1UL } },
96 EXPORT_SYMBOL(node_states
);
98 unsigned long totalram_pages __read_mostly
;
99 unsigned long totalreserve_pages __read_mostly
;
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
106 unsigned long dirty_balance_reserve __read_mostly
;
108 int percpu_pagelist_fraction
;
109 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
111 #ifdef CONFIG_PM_SLEEP
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
121 static gfp_t saved_gfp_mask
;
123 void pm_restore_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex
));
126 if (saved_gfp_mask
) {
127 gfp_allowed_mask
= saved_gfp_mask
;
132 void pm_restrict_gfp_mask(void)
134 WARN_ON(!mutex_is_locked(&pm_mutex
));
135 WARN_ON(saved_gfp_mask
);
136 saved_gfp_mask
= gfp_allowed_mask
;
137 gfp_allowed_mask
&= ~GFP_IOFS
;
140 bool pm_suspended_storage(void)
142 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
146 #endif /* CONFIG_PM_SLEEP */
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly
;
152 static void __free_pages_ok(struct page
*page
, unsigned int order
);
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
165 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
166 #ifdef CONFIG_ZONE_DMA
169 #ifdef CONFIG_ZONE_DMA32
172 #ifdef CONFIG_HIGHMEM
178 EXPORT_SYMBOL(totalram_pages
);
180 static char * const zone_names
[MAX_NR_ZONES
] = {
181 #ifdef CONFIG_ZONE_DMA
184 #ifdef CONFIG_ZONE_DMA32
188 #ifdef CONFIG_HIGHMEM
194 int min_free_kbytes
= 1024;
196 static unsigned long __meminitdata nr_kernel_pages
;
197 static unsigned long __meminitdata nr_all_pages
;
198 static unsigned long __meminitdata dma_reserve
;
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
203 static unsigned long __initdata required_kernelcore
;
204 static unsigned long __initdata required_movablecore
;
205 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209 EXPORT_SYMBOL(movable_zone
);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
213 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
214 int nr_online_nodes __read_mostly
= 1;
215 EXPORT_SYMBOL(nr_node_ids
);
216 EXPORT_SYMBOL(nr_online_nodes
);
219 int page_group_by_mobility_disabled __read_mostly
;
221 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
224 if (unlikely(page_group_by_mobility_disabled
))
225 migratetype
= MIGRATE_UNMOVABLE
;
227 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
228 PB_migrate
, PB_migrate_end
);
231 bool oom_killer_disabled __read_mostly
;
233 #ifdef CONFIG_DEBUG_VM
234 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
238 unsigned long pfn
= page_to_pfn(page
);
241 seq
= zone_span_seqbegin(zone
);
242 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
244 else if (pfn
< zone
->zone_start_pfn
)
246 } while (zone_span_seqretry(zone
, seq
));
251 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
253 if (!pfn_valid_within(page_to_pfn(page
)))
255 if (zone
!= page_zone(page
))
261 * Temporary debugging check for pages not lying within a given zone.
263 static int bad_range(struct zone
*zone
, struct page
*page
)
265 if (page_outside_zone_boundaries(zone
, page
))
267 if (!page_is_consistent(zone
, page
))
273 static inline int bad_range(struct zone
*zone
, struct page
*page
)
279 static void bad_page(struct page
*page
)
281 static unsigned long resume
;
282 static unsigned long nr_shown
;
283 static unsigned long nr_unshown
;
285 /* Don't complain about poisoned pages */
286 if (PageHWPoison(page
)) {
287 reset_page_mapcount(page
); /* remove PageBuddy */
292 * Allow a burst of 60 reports, then keep quiet for that minute;
293 * or allow a steady drip of one report per second.
295 if (nr_shown
== 60) {
296 if (time_before(jiffies
, resume
)) {
302 "BUG: Bad page state: %lu messages suppressed\n",
309 resume
= jiffies
+ 60 * HZ
;
311 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
312 current
->comm
, page_to_pfn(page
));
318 /* Leave bad fields for debug, except PageBuddy could make trouble */
319 reset_page_mapcount(page
); /* remove PageBuddy */
320 add_taint(TAINT_BAD_PAGE
);
324 * Higher-order pages are called "compound pages". They are structured thusly:
326 * The first PAGE_SIZE page is called the "head page".
328 * The remaining PAGE_SIZE pages are called "tail pages".
330 * All pages have PG_compound set. All tail pages have their ->first_page
331 * pointing at the head page.
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
338 static void free_compound_page(struct page
*page
)
340 __free_pages_ok(page
, compound_order(page
));
343 void prep_compound_page(struct page
*page
, unsigned long order
)
346 int nr_pages
= 1 << order
;
348 set_compound_page_dtor(page
, free_compound_page
);
349 set_compound_order(page
, order
);
351 for (i
= 1; i
< nr_pages
; i
++) {
352 struct page
*p
= page
+ i
;
354 set_page_count(p
, 0);
355 p
->first_page
= page
;
359 /* update __split_huge_page_refcount if you change this function */
360 static int destroy_compound_page(struct page
*page
, unsigned long order
)
363 int nr_pages
= 1 << order
;
366 if (unlikely(compound_order(page
) != order
) ||
367 unlikely(!PageHead(page
))) {
372 __ClearPageHead(page
);
374 for (i
= 1; i
< nr_pages
; i
++) {
375 struct page
*p
= page
+ i
;
377 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
387 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
396 for (i
= 0; i
< (1 << order
); i
++)
397 clear_highpage(page
+ i
);
400 #ifdef CONFIG_DEBUG_PAGEALLOC
401 unsigned int _debug_guardpage_minorder
;
403 static int __init
debug_guardpage_minorder_setup(char *buf
)
407 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
408 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
411 _debug_guardpage_minorder
= res
;
412 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
415 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
417 static inline void set_page_guard_flag(struct page
*page
)
419 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
422 static inline void clear_page_guard_flag(struct page
*page
)
424 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
427 static inline void set_page_guard_flag(struct page
*page
) { }
428 static inline void clear_page_guard_flag(struct page
*page
) { }
431 static inline void set_page_order(struct page
*page
, int order
)
433 set_page_private(page
, order
);
434 __SetPageBuddy(page
);
437 static inline void rmv_page_order(struct page
*page
)
439 __ClearPageBuddy(page
);
440 set_page_private(page
, 0);
444 * Locate the struct page for both the matching buddy in our
445 * pair (buddy1) and the combined O(n+1) page they form (page).
447 * 1) Any buddy B1 will have an order O twin B2 which satisfies
448 * the following equation:
450 * For example, if the starting buddy (buddy2) is #8 its order
452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
454 * 2) Any buddy B will have an order O+1 parent P which
455 * satisfies the following equation:
458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
460 static inline unsigned long
461 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
463 return page_idx
^ (1 << order
);
467 * This function checks whether a page is free && is the buddy
468 * we can do coalesce a page and its buddy if
469 * (a) the buddy is not in a hole &&
470 * (b) the buddy is in the buddy system &&
471 * (c) a page and its buddy have the same order &&
472 * (d) a page and its buddy are in the same zone.
474 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
477 * For recording page's order, we use page_private(page).
479 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
482 if (!pfn_valid_within(page_to_pfn(buddy
)))
485 if (page_zone_id(page
) != page_zone_id(buddy
))
488 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
489 VM_BUG_ON(page_count(buddy
) != 0);
493 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
494 VM_BUG_ON(page_count(buddy
) != 0);
501 * Freeing function for a buddy system allocator.
503 * The concept of a buddy system is to maintain direct-mapped table
504 * (containing bit values) for memory blocks of various "orders".
505 * The bottom level table contains the map for the smallest allocatable
506 * units of memory (here, pages), and each level above it describes
507 * pairs of units from the levels below, hence, "buddies".
508 * At a high level, all that happens here is marking the table entry
509 * at the bottom level available, and propagating the changes upward
510 * as necessary, plus some accounting needed to play nicely with other
511 * parts of the VM system.
512 * At each level, we keep a list of pages, which are heads of continuous
513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
514 * order is recorded in page_private(page) field.
515 * So when we are allocating or freeing one, we can derive the state of the
516 * other. That is, if we allocate a small block, and both were
517 * free, the remainder of the region must be split into blocks.
518 * If a block is freed, and its buddy is also free, then this
519 * triggers coalescing into a block of larger size.
524 static inline void __free_one_page(struct page
*page
,
525 struct zone
*zone
, unsigned int order
,
528 unsigned long page_idx
;
529 unsigned long combined_idx
;
530 unsigned long uninitialized_var(buddy_idx
);
533 if (unlikely(PageCompound(page
)))
534 if (unlikely(destroy_compound_page(page
, order
)))
537 VM_BUG_ON(migratetype
== -1);
539 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
541 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
542 VM_BUG_ON(bad_range(zone
, page
));
544 while (order
< MAX_ORDER
-1) {
545 buddy_idx
= __find_buddy_index(page_idx
, order
);
546 buddy
= page
+ (buddy_idx
- page_idx
);
547 if (!page_is_buddy(page
, buddy
, order
))
550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 * merge with it and move up one order.
553 if (page_is_guard(buddy
)) {
554 clear_page_guard_flag(buddy
);
555 set_page_private(page
, 0);
556 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
558 list_del(&buddy
->lru
);
559 zone
->free_area
[order
].nr_free
--;
560 rmv_page_order(buddy
);
562 combined_idx
= buddy_idx
& page_idx
;
563 page
= page
+ (combined_idx
- page_idx
);
564 page_idx
= combined_idx
;
567 set_page_order(page
, order
);
570 * If this is not the largest possible page, check if the buddy
571 * of the next-highest order is free. If it is, it's possible
572 * that pages are being freed that will coalesce soon. In case,
573 * that is happening, add the free page to the tail of the list
574 * so it's less likely to be used soon and more likely to be merged
575 * as a higher order page
577 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
578 struct page
*higher_page
, *higher_buddy
;
579 combined_idx
= buddy_idx
& page_idx
;
580 higher_page
= page
+ (combined_idx
- page_idx
);
581 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
582 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
583 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
584 list_add_tail(&page
->lru
,
585 &zone
->free_area
[order
].free_list
[migratetype
]);
590 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
592 zone
->free_area
[order
].nr_free
++;
596 * free_page_mlock() -- clean up attempts to free and mlocked() page.
597 * Page should not be on lru, so no need to fix that up.
598 * free_pages_check() will verify...
600 static inline void free_page_mlock(struct page
*page
)
602 __dec_zone_page_state(page
, NR_MLOCK
);
603 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
606 static inline int free_pages_check(struct page
*page
)
608 if (unlikely(page_mapcount(page
) |
609 (page
->mapping
!= NULL
) |
610 (atomic_read(&page
->_count
) != 0) |
611 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
612 (mem_cgroup_bad_page_check(page
)))) {
616 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
617 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
622 * Frees a number of pages from the PCP lists
623 * Assumes all pages on list are in same zone, and of same order.
624 * count is the number of pages to free.
626 * If the zone was previously in an "all pages pinned" state then look to
627 * see if this freeing clears that state.
629 * And clear the zone's pages_scanned counter, to hold off the "all pages are
630 * pinned" detection logic.
632 static void free_pcppages_bulk(struct zone
*zone
, int count
,
633 struct per_cpu_pages
*pcp
)
639 spin_lock(&zone
->lock
);
640 zone
->all_unreclaimable
= 0;
641 zone
->pages_scanned
= 0;
645 struct list_head
*list
;
648 * Remove pages from lists in a round-robin fashion. A
649 * batch_free count is maintained that is incremented when an
650 * empty list is encountered. This is so more pages are freed
651 * off fuller lists instead of spinning excessively around empty
656 if (++migratetype
== MIGRATE_PCPTYPES
)
658 list
= &pcp
->lists
[migratetype
];
659 } while (list_empty(list
));
661 /* This is the only non-empty list. Free them all. */
662 if (batch_free
== MIGRATE_PCPTYPES
)
663 batch_free
= to_free
;
666 page
= list_entry(list
->prev
, struct page
, lru
);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page
->lru
);
669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 __free_one_page(page
, zone
, 0, page_private(page
));
671 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
672 } while (--to_free
&& --batch_free
&& !list_empty(list
));
674 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
675 spin_unlock(&zone
->lock
);
678 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
681 spin_lock(&zone
->lock
);
682 zone
->all_unreclaimable
= 0;
683 zone
->pages_scanned
= 0;
685 __free_one_page(page
, zone
, order
, migratetype
);
686 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
687 spin_unlock(&zone
->lock
);
690 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
695 trace_mm_page_free(page
, order
);
696 kmemcheck_free_shadow(page
, order
);
699 page
->mapping
= NULL
;
700 for (i
= 0; i
< (1 << order
); i
++)
701 bad
+= free_pages_check(page
+ i
);
705 if (!PageHighMem(page
)) {
706 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
707 debug_check_no_obj_freed(page_address(page
),
710 arch_free_page(page
, order
);
711 kernel_map_pages(page
, 1 << order
, 0);
716 static void __free_pages_ok(struct page
*page
, unsigned int order
)
719 int wasMlocked
= __TestClearPageMlocked(page
);
721 if (!free_pages_prepare(page
, order
))
724 local_irq_save(flags
);
725 if (unlikely(wasMlocked
))
726 free_page_mlock(page
);
727 __count_vm_events(PGFREE
, 1 << order
);
728 free_one_page(page_zone(page
), page
, order
,
729 get_pageblock_migratetype(page
));
730 local_irq_restore(flags
);
733 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
735 unsigned int nr_pages
= 1 << order
;
739 for (loop
= 0; loop
< nr_pages
; loop
++) {
740 struct page
*p
= &page
[loop
];
742 if (loop
+ 1 < nr_pages
)
744 __ClearPageReserved(p
);
745 set_page_count(p
, 0);
748 set_page_refcounted(page
);
749 __free_pages(page
, order
);
754 * The order of subdivision here is critical for the IO subsystem.
755 * Please do not alter this order without good reasons and regression
756 * testing. Specifically, as large blocks of memory are subdivided,
757 * the order in which smaller blocks are delivered depends on the order
758 * they're subdivided in this function. This is the primary factor
759 * influencing the order in which pages are delivered to the IO
760 * subsystem according to empirical testing, and this is also justified
761 * by considering the behavior of a buddy system containing a single
762 * large block of memory acted on by a series of small allocations.
763 * This behavior is a critical factor in sglist merging's success.
767 static inline void expand(struct zone
*zone
, struct page
*page
,
768 int low
, int high
, struct free_area
*area
,
771 unsigned long size
= 1 << high
;
777 VM_BUG_ON(bad_range(zone
, &page
[size
]));
779 #ifdef CONFIG_DEBUG_PAGEALLOC
780 if (high
< debug_guardpage_minorder()) {
782 * Mark as guard pages (or page), that will allow to
783 * merge back to allocator when buddy will be freed.
784 * Corresponding page table entries will not be touched,
785 * pages will stay not present in virtual address space
787 INIT_LIST_HEAD(&page
[size
].lru
);
788 set_page_guard_flag(&page
[size
]);
789 set_page_private(&page
[size
], high
);
790 /* Guard pages are not available for any usage */
791 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << high
));
795 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
797 set_page_order(&page
[size
], high
);
802 * This page is about to be returned from the page allocator
804 static inline int check_new_page(struct page
*page
)
806 if (unlikely(page_mapcount(page
) |
807 (page
->mapping
!= NULL
) |
808 (atomic_read(&page
->_count
) != 0) |
809 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
810 (mem_cgroup_bad_page_check(page
)))) {
817 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
821 for (i
= 0; i
< (1 << order
); i
++) {
822 struct page
*p
= page
+ i
;
823 if (unlikely(check_new_page(p
)))
827 set_page_private(page
, 0);
828 set_page_refcounted(page
);
830 arch_alloc_page(page
, order
);
831 kernel_map_pages(page
, 1 << order
, 1);
833 if (gfp_flags
& __GFP_ZERO
)
834 prep_zero_page(page
, order
, gfp_flags
);
836 if (order
&& (gfp_flags
& __GFP_COMP
))
837 prep_compound_page(page
, order
);
843 * Go through the free lists for the given migratetype and remove
844 * the smallest available page from the freelists
847 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
850 unsigned int current_order
;
851 struct free_area
* area
;
854 /* Find a page of the appropriate size in the preferred list */
855 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
856 area
= &(zone
->free_area
[current_order
]);
857 if (list_empty(&area
->free_list
[migratetype
]))
860 page
= list_entry(area
->free_list
[migratetype
].next
,
862 list_del(&page
->lru
);
863 rmv_page_order(page
);
865 expand(zone
, page
, order
, current_order
, area
, migratetype
);
874 * This array describes the order lists are fallen back to when
875 * the free lists for the desirable migrate type are depleted
877 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
878 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
879 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
880 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
881 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
885 * Move the free pages in a range to the free lists of the requested type.
886 * Note that start_page and end_pages are not aligned on a pageblock
887 * boundary. If alignment is required, use move_freepages_block()
889 static int move_freepages(struct zone
*zone
,
890 struct page
*start_page
, struct page
*end_page
,
897 #ifndef CONFIG_HOLES_IN_ZONE
899 * page_zone is not safe to call in this context when
900 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
901 * anyway as we check zone boundaries in move_freepages_block().
902 * Remove at a later date when no bug reports exist related to
903 * grouping pages by mobility
905 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
908 for (page
= start_page
; page
<= end_page
;) {
909 /* Make sure we are not inadvertently changing nodes */
910 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
912 if (!pfn_valid_within(page_to_pfn(page
))) {
917 if (!PageBuddy(page
)) {
922 order
= page_order(page
);
923 list_move(&page
->lru
,
924 &zone
->free_area
[order
].free_list
[migratetype
]);
926 pages_moved
+= 1 << order
;
932 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
935 unsigned long start_pfn
, end_pfn
;
936 struct page
*start_page
, *end_page
;
938 start_pfn
= page_to_pfn(page
);
939 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
940 start_page
= pfn_to_page(start_pfn
);
941 end_page
= start_page
+ pageblock_nr_pages
- 1;
942 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
944 /* Do not cross zone boundaries */
945 if (start_pfn
< zone
->zone_start_pfn
)
947 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
950 return move_freepages(zone
, start_page
, end_page
, migratetype
);
953 static void change_pageblock_range(struct page
*pageblock_page
,
954 int start_order
, int migratetype
)
956 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
958 while (nr_pageblocks
--) {
959 set_pageblock_migratetype(pageblock_page
, migratetype
);
960 pageblock_page
+= pageblock_nr_pages
;
964 /* Remove an element from the buddy allocator from the fallback list */
965 static inline struct page
*
966 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
968 struct free_area
* area
;
973 /* Find the largest possible block of pages in the other list */
974 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
976 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
977 migratetype
= fallbacks
[start_migratetype
][i
];
979 /* MIGRATE_RESERVE handled later if necessary */
980 if (migratetype
== MIGRATE_RESERVE
)
983 area
= &(zone
->free_area
[current_order
]);
984 if (list_empty(&area
->free_list
[migratetype
]))
987 page
= list_entry(area
->free_list
[migratetype
].next
,
992 * If breaking a large block of pages, move all free
993 * pages to the preferred allocation list. If falling
994 * back for a reclaimable kernel allocation, be more
995 * aggressive about taking ownership of free pages
997 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
998 start_migratetype
== MIGRATE_RECLAIMABLE
||
999 page_group_by_mobility_disabled
) {
1000 unsigned long pages
;
1001 pages
= move_freepages_block(zone
, page
,
1004 /* Claim the whole block if over half of it is free */
1005 if (pages
>= (1 << (pageblock_order
-1)) ||
1006 page_group_by_mobility_disabled
)
1007 set_pageblock_migratetype(page
,
1010 migratetype
= start_migratetype
;
1013 /* Remove the page from the freelists */
1014 list_del(&page
->lru
);
1015 rmv_page_order(page
);
1017 /* Take ownership for orders >= pageblock_order */
1018 if (current_order
>= pageblock_order
)
1019 change_pageblock_range(page
, current_order
,
1022 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1024 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1025 start_migratetype
, migratetype
);
1035 * Do the hard work of removing an element from the buddy allocator.
1036 * Call me with the zone->lock already held.
1038 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1044 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1046 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1047 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1050 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1051 * is used because __rmqueue_smallest is an inline function
1052 * and we want just one call site
1055 migratetype
= MIGRATE_RESERVE
;
1060 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1065 * Obtain a specified number of elements from the buddy allocator, all under
1066 * a single hold of the lock, for efficiency. Add them to the supplied list.
1067 * Returns the number of new pages which were placed at *list.
1069 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1070 unsigned long count
, struct list_head
*list
,
1071 int migratetype
, int cold
)
1075 spin_lock(&zone
->lock
);
1076 for (i
= 0; i
< count
; ++i
) {
1077 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1078 if (unlikely(page
== NULL
))
1082 * Split buddy pages returned by expand() are received here
1083 * in physical page order. The page is added to the callers and
1084 * list and the list head then moves forward. From the callers
1085 * perspective, the linked list is ordered by page number in
1086 * some conditions. This is useful for IO devices that can
1087 * merge IO requests if the physical pages are ordered
1090 if (likely(cold
== 0))
1091 list_add(&page
->lru
, list
);
1093 list_add_tail(&page
->lru
, list
);
1094 set_page_private(page
, migratetype
);
1097 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1098 spin_unlock(&zone
->lock
);
1104 * Called from the vmstat counter updater to drain pagesets of this
1105 * currently executing processor on remote nodes after they have
1108 * Note that this function must be called with the thread pinned to
1109 * a single processor.
1111 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1113 unsigned long flags
;
1116 local_irq_save(flags
);
1117 if (pcp
->count
>= pcp
->batch
)
1118 to_drain
= pcp
->batch
;
1120 to_drain
= pcp
->count
;
1121 free_pcppages_bulk(zone
, to_drain
, pcp
);
1122 pcp
->count
-= to_drain
;
1123 local_irq_restore(flags
);
1128 * Drain pages of the indicated processor.
1130 * The processor must either be the current processor and the
1131 * thread pinned to the current processor or a processor that
1134 static void drain_pages(unsigned int cpu
)
1136 unsigned long flags
;
1139 for_each_populated_zone(zone
) {
1140 struct per_cpu_pageset
*pset
;
1141 struct per_cpu_pages
*pcp
;
1143 local_irq_save(flags
);
1144 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1148 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1151 local_irq_restore(flags
);
1156 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1158 void drain_local_pages(void *arg
)
1160 drain_pages(smp_processor_id());
1164 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1166 void drain_all_pages(void)
1168 on_each_cpu(drain_local_pages
, NULL
, 1);
1171 #ifdef CONFIG_HIBERNATION
1173 void mark_free_pages(struct zone
*zone
)
1175 unsigned long pfn
, max_zone_pfn
;
1176 unsigned long flags
;
1178 struct list_head
*curr
;
1180 if (!zone
->spanned_pages
)
1183 spin_lock_irqsave(&zone
->lock
, flags
);
1185 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1186 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1187 if (pfn_valid(pfn
)) {
1188 struct page
*page
= pfn_to_page(pfn
);
1190 if (!swsusp_page_is_forbidden(page
))
1191 swsusp_unset_page_free(page
);
1194 for_each_migratetype_order(order
, t
) {
1195 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1198 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1199 for (i
= 0; i
< (1UL << order
); i
++)
1200 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1203 spin_unlock_irqrestore(&zone
->lock
, flags
);
1205 #endif /* CONFIG_PM */
1208 * Free a 0-order page
1209 * cold == 1 ? free a cold page : free a hot page
1211 void free_hot_cold_page(struct page
*page
, int cold
)
1213 struct zone
*zone
= page_zone(page
);
1214 struct per_cpu_pages
*pcp
;
1215 unsigned long flags
;
1217 int wasMlocked
= __TestClearPageMlocked(page
);
1219 if (!free_pages_prepare(page
, 0))
1222 migratetype
= get_pageblock_migratetype(page
);
1223 set_page_private(page
, migratetype
);
1224 local_irq_save(flags
);
1225 if (unlikely(wasMlocked
))
1226 free_page_mlock(page
);
1227 __count_vm_event(PGFREE
);
1230 * We only track unmovable, reclaimable and movable on pcp lists.
1231 * Free ISOLATE pages back to the allocator because they are being
1232 * offlined but treat RESERVE as movable pages so we can get those
1233 * areas back if necessary. Otherwise, we may have to free
1234 * excessively into the page allocator
1236 if (migratetype
>= MIGRATE_PCPTYPES
) {
1237 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1238 free_one_page(zone
, page
, 0, migratetype
);
1241 migratetype
= MIGRATE_MOVABLE
;
1244 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1246 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1248 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1250 if (pcp
->count
>= pcp
->high
) {
1251 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1252 pcp
->count
-= pcp
->batch
;
1256 local_irq_restore(flags
);
1260 * Free a list of 0-order pages
1262 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1264 struct page
*page
, *next
;
1266 list_for_each_entry_safe(page
, next
, list
, lru
) {
1267 trace_mm_page_free_batched(page
, cold
);
1268 free_hot_cold_page(page
, cold
);
1273 * split_page takes a non-compound higher-order page, and splits it into
1274 * n (1<<order) sub-pages: page[0..n]
1275 * Each sub-page must be freed individually.
1277 * Note: this is probably too low level an operation for use in drivers.
1278 * Please consult with lkml before using this in your driver.
1280 void split_page(struct page
*page
, unsigned int order
)
1284 VM_BUG_ON(PageCompound(page
));
1285 VM_BUG_ON(!page_count(page
));
1287 #ifdef CONFIG_KMEMCHECK
1289 * Split shadow pages too, because free(page[0]) would
1290 * otherwise free the whole shadow.
1292 if (kmemcheck_page_is_tracked(page
))
1293 split_page(virt_to_page(page
[0].shadow
), order
);
1296 for (i
= 1; i
< (1 << order
); i
++)
1297 set_page_refcounted(page
+ i
);
1301 * Similar to split_page except the page is already free. As this is only
1302 * being used for migration, the migratetype of the block also changes.
1303 * As this is called with interrupts disabled, the caller is responsible
1304 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1307 * Note: this is probably too low level an operation for use in drivers.
1308 * Please consult with lkml before using this in your driver.
1310 int split_free_page(struct page
*page
)
1313 unsigned long watermark
;
1316 BUG_ON(!PageBuddy(page
));
1318 zone
= page_zone(page
);
1319 order
= page_order(page
);
1321 /* Obey watermarks as if the page was being allocated */
1322 watermark
= low_wmark_pages(zone
) + (1 << order
);
1323 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1326 /* Remove page from free list */
1327 list_del(&page
->lru
);
1328 zone
->free_area
[order
].nr_free
--;
1329 rmv_page_order(page
);
1330 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1332 /* Split into individual pages */
1333 set_page_refcounted(page
);
1334 split_page(page
, order
);
1336 if (order
>= pageblock_order
- 1) {
1337 struct page
*endpage
= page
+ (1 << order
) - 1;
1338 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1339 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1346 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1347 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1351 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1352 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1355 unsigned long flags
;
1357 int cold
= !!(gfp_flags
& __GFP_COLD
);
1360 if (likely(order
== 0)) {
1361 struct per_cpu_pages
*pcp
;
1362 struct list_head
*list
;
1364 local_irq_save(flags
);
1365 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1366 list
= &pcp
->lists
[migratetype
];
1367 if (list_empty(list
)) {
1368 pcp
->count
+= rmqueue_bulk(zone
, 0,
1371 if (unlikely(list_empty(list
)))
1376 page
= list_entry(list
->prev
, struct page
, lru
);
1378 page
= list_entry(list
->next
, struct page
, lru
);
1380 list_del(&page
->lru
);
1383 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1385 * __GFP_NOFAIL is not to be used in new code.
1387 * All __GFP_NOFAIL callers should be fixed so that they
1388 * properly detect and handle allocation failures.
1390 * We most definitely don't want callers attempting to
1391 * allocate greater than order-1 page units with
1394 WARN_ON_ONCE(order
> 1);
1396 spin_lock_irqsave(&zone
->lock
, flags
);
1397 page
= __rmqueue(zone
, order
, migratetype
);
1398 spin_unlock(&zone
->lock
);
1401 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1404 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1405 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1406 local_irq_restore(flags
);
1408 VM_BUG_ON(bad_range(zone
, page
));
1409 if (prep_new_page(page
, order
, gfp_flags
))
1414 local_irq_restore(flags
);
1418 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1419 #define ALLOC_WMARK_MIN WMARK_MIN
1420 #define ALLOC_WMARK_LOW WMARK_LOW
1421 #define ALLOC_WMARK_HIGH WMARK_HIGH
1422 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1424 /* Mask to get the watermark bits */
1425 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1427 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1428 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1429 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1431 #ifdef CONFIG_FAIL_PAGE_ALLOC
1434 struct fault_attr attr
;
1436 u32 ignore_gfp_highmem
;
1437 u32 ignore_gfp_wait
;
1439 } fail_page_alloc
= {
1440 .attr
= FAULT_ATTR_INITIALIZER
,
1441 .ignore_gfp_wait
= 1,
1442 .ignore_gfp_highmem
= 1,
1446 static int __init
setup_fail_page_alloc(char *str
)
1448 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1450 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1452 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1454 if (order
< fail_page_alloc
.min_order
)
1456 if (gfp_mask
& __GFP_NOFAIL
)
1458 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1460 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1463 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1466 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1468 static int __init
fail_page_alloc_debugfs(void)
1470 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1473 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1474 &fail_page_alloc
.attr
);
1476 return PTR_ERR(dir
);
1478 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1479 &fail_page_alloc
.ignore_gfp_wait
))
1481 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1482 &fail_page_alloc
.ignore_gfp_highmem
))
1484 if (!debugfs_create_u32("min-order", mode
, dir
,
1485 &fail_page_alloc
.min_order
))
1490 debugfs_remove_recursive(dir
);
1495 late_initcall(fail_page_alloc_debugfs
);
1497 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1499 #else /* CONFIG_FAIL_PAGE_ALLOC */
1501 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1506 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1509 * Return true if free pages are above 'mark'. This takes into account the order
1510 * of the allocation.
1512 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1513 int classzone_idx
, int alloc_flags
, long free_pages
)
1515 /* free_pages my go negative - that's OK */
1519 free_pages
-= (1 << order
) - 1;
1520 if (alloc_flags
& ALLOC_HIGH
)
1522 if (alloc_flags
& ALLOC_HARDER
)
1525 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1527 for (o
= 0; o
< order
; o
++) {
1528 /* At the next order, this order's pages become unavailable */
1529 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1531 /* Require fewer higher order pages to be free */
1534 if (free_pages
<= min
)
1540 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1541 int classzone_idx
, int alloc_flags
)
1543 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1544 zone_page_state(z
, NR_FREE_PAGES
));
1547 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1548 int classzone_idx
, int alloc_flags
)
1550 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1552 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1553 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1555 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1561 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1562 * skip over zones that are not allowed by the cpuset, or that have
1563 * been recently (in last second) found to be nearly full. See further
1564 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1565 * that have to skip over a lot of full or unallowed zones.
1567 * If the zonelist cache is present in the passed in zonelist, then
1568 * returns a pointer to the allowed node mask (either the current
1569 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1571 * If the zonelist cache is not available for this zonelist, does
1572 * nothing and returns NULL.
1574 * If the fullzones BITMAP in the zonelist cache is stale (more than
1575 * a second since last zap'd) then we zap it out (clear its bits.)
1577 * We hold off even calling zlc_setup, until after we've checked the
1578 * first zone in the zonelist, on the theory that most allocations will
1579 * be satisfied from that first zone, so best to examine that zone as
1580 * quickly as we can.
1582 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1584 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1585 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1587 zlc
= zonelist
->zlcache_ptr
;
1591 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1592 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1593 zlc
->last_full_zap
= jiffies
;
1596 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1597 &cpuset_current_mems_allowed
:
1598 &node_states
[N_HIGH_MEMORY
];
1599 return allowednodes
;
1603 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1604 * if it is worth looking at further for free memory:
1605 * 1) Check that the zone isn't thought to be full (doesn't have its
1606 * bit set in the zonelist_cache fullzones BITMAP).
1607 * 2) Check that the zones node (obtained from the zonelist_cache
1608 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1609 * Return true (non-zero) if zone is worth looking at further, or
1610 * else return false (zero) if it is not.
1612 * This check -ignores- the distinction between various watermarks,
1613 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1614 * found to be full for any variation of these watermarks, it will
1615 * be considered full for up to one second by all requests, unless
1616 * we are so low on memory on all allowed nodes that we are forced
1617 * into the second scan of the zonelist.
1619 * In the second scan we ignore this zonelist cache and exactly
1620 * apply the watermarks to all zones, even it is slower to do so.
1621 * We are low on memory in the second scan, and should leave no stone
1622 * unturned looking for a free page.
1624 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1625 nodemask_t
*allowednodes
)
1627 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1628 int i
; /* index of *z in zonelist zones */
1629 int n
; /* node that zone *z is on */
1631 zlc
= zonelist
->zlcache_ptr
;
1635 i
= z
- zonelist
->_zonerefs
;
1638 /* This zone is worth trying if it is allowed but not full */
1639 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1643 * Given 'z' scanning a zonelist, set the corresponding bit in
1644 * zlc->fullzones, so that subsequent attempts to allocate a page
1645 * from that zone don't waste time re-examining it.
1647 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1649 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1650 int i
; /* index of *z in zonelist zones */
1652 zlc
= zonelist
->zlcache_ptr
;
1656 i
= z
- zonelist
->_zonerefs
;
1658 set_bit(i
, zlc
->fullzones
);
1662 * clear all zones full, called after direct reclaim makes progress so that
1663 * a zone that was recently full is not skipped over for up to a second
1665 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1667 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1669 zlc
= zonelist
->zlcache_ptr
;
1673 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1676 #else /* CONFIG_NUMA */
1678 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1683 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1684 nodemask_t
*allowednodes
)
1689 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1693 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1696 #endif /* CONFIG_NUMA */
1699 * get_page_from_freelist goes through the zonelist trying to allocate
1702 static struct page
*
1703 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1704 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1705 struct zone
*preferred_zone
, int migratetype
)
1708 struct page
*page
= NULL
;
1711 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1712 int zlc_active
= 0; /* set if using zonelist_cache */
1713 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1715 classzone_idx
= zone_idx(preferred_zone
);
1718 * Scan zonelist, looking for a zone with enough free.
1719 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1721 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1722 high_zoneidx
, nodemask
) {
1723 if (NUMA_BUILD
&& zlc_active
&&
1724 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1726 if ((alloc_flags
& ALLOC_CPUSET
) &&
1727 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1730 * When allocating a page cache page for writing, we
1731 * want to get it from a zone that is within its dirty
1732 * limit, such that no single zone holds more than its
1733 * proportional share of globally allowed dirty pages.
1734 * The dirty limits take into account the zone's
1735 * lowmem reserves and high watermark so that kswapd
1736 * should be able to balance it without having to
1737 * write pages from its LRU list.
1739 * This may look like it could increase pressure on
1740 * lower zones by failing allocations in higher zones
1741 * before they are full. But the pages that do spill
1742 * over are limited as the lower zones are protected
1743 * by this very same mechanism. It should not become
1744 * a practical burden to them.
1746 * XXX: For now, allow allocations to potentially
1747 * exceed the per-zone dirty limit in the slowpath
1748 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1749 * which is important when on a NUMA setup the allowed
1750 * zones are together not big enough to reach the
1751 * global limit. The proper fix for these situations
1752 * will require awareness of zones in the
1753 * dirty-throttling and the flusher threads.
1755 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1756 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1757 goto this_zone_full
;
1759 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1760 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1764 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1765 if (zone_watermark_ok(zone
, order
, mark
,
1766 classzone_idx
, alloc_flags
))
1769 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1771 * we do zlc_setup if there are multiple nodes
1772 * and before considering the first zone allowed
1775 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1780 if (zone_reclaim_mode
== 0)
1781 goto this_zone_full
;
1784 * As we may have just activated ZLC, check if the first
1785 * eligible zone has failed zone_reclaim recently.
1787 if (NUMA_BUILD
&& zlc_active
&&
1788 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1791 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1793 case ZONE_RECLAIM_NOSCAN
:
1796 case ZONE_RECLAIM_FULL
:
1797 /* scanned but unreclaimable */
1800 /* did we reclaim enough */
1801 if (!zone_watermark_ok(zone
, order
, mark
,
1802 classzone_idx
, alloc_flags
))
1803 goto this_zone_full
;
1808 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1809 gfp_mask
, migratetype
);
1814 zlc_mark_zone_full(zonelist
, z
);
1817 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1818 /* Disable zlc cache for second zonelist scan */
1826 * Large machines with many possible nodes should not always dump per-node
1827 * meminfo in irq context.
1829 static inline bool should_suppress_show_mem(void)
1834 ret
= in_interrupt();
1839 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1840 DEFAULT_RATELIMIT_INTERVAL
,
1841 DEFAULT_RATELIMIT_BURST
);
1843 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1845 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
1847 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
1848 debug_guardpage_minorder() > 0)
1852 * This documents exceptions given to allocations in certain
1853 * contexts that are allowed to allocate outside current's set
1856 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1857 if (test_thread_flag(TIF_MEMDIE
) ||
1858 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
1859 filter
&= ~SHOW_MEM_FILTER_NODES
;
1860 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
1861 filter
&= ~SHOW_MEM_FILTER_NODES
;
1864 struct va_format vaf
;
1867 va_start(args
, fmt
);
1872 pr_warn("%pV", &vaf
);
1877 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1878 current
->comm
, order
, gfp_mask
);
1881 if (!should_suppress_show_mem())
1886 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1887 unsigned long did_some_progress
,
1888 unsigned long pages_reclaimed
)
1890 /* Do not loop if specifically requested */
1891 if (gfp_mask
& __GFP_NORETRY
)
1894 /* Always retry if specifically requested */
1895 if (gfp_mask
& __GFP_NOFAIL
)
1899 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1900 * making forward progress without invoking OOM. Suspend also disables
1901 * storage devices so kswapd will not help. Bail if we are suspending.
1903 if (!did_some_progress
&& pm_suspended_storage())
1907 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1908 * means __GFP_NOFAIL, but that may not be true in other
1911 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1915 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1916 * specified, then we retry until we no longer reclaim any pages
1917 * (above), or we've reclaimed an order of pages at least as
1918 * large as the allocation's order. In both cases, if the
1919 * allocation still fails, we stop retrying.
1921 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1927 static inline struct page
*
1928 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1929 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1930 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1935 /* Acquire the OOM killer lock for the zones in zonelist */
1936 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1937 schedule_timeout_uninterruptible(1);
1942 * Go through the zonelist yet one more time, keep very high watermark
1943 * here, this is only to catch a parallel oom killing, we must fail if
1944 * we're still under heavy pressure.
1946 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1947 order
, zonelist
, high_zoneidx
,
1948 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1949 preferred_zone
, migratetype
);
1953 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1954 /* The OOM killer will not help higher order allocs */
1955 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1957 /* The OOM killer does not needlessly kill tasks for lowmem */
1958 if (high_zoneidx
< ZONE_NORMAL
)
1961 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1962 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1963 * The caller should handle page allocation failure by itself if
1964 * it specifies __GFP_THISNODE.
1965 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1967 if (gfp_mask
& __GFP_THISNODE
)
1970 /* Exhausted what can be done so it's blamo time */
1971 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1974 clear_zonelist_oom(zonelist
, gfp_mask
);
1978 #ifdef CONFIG_COMPACTION
1979 /* Try memory compaction for high-order allocations before reclaim */
1980 static struct page
*
1981 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1982 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1983 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1984 int migratetype
, bool sync_migration
,
1985 bool *deferred_compaction
,
1986 unsigned long *did_some_progress
)
1993 if (compaction_deferred(preferred_zone
)) {
1994 *deferred_compaction
= true;
1998 current
->flags
|= PF_MEMALLOC
;
1999 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2000 nodemask
, sync_migration
);
2001 current
->flags
&= ~PF_MEMALLOC
;
2002 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2004 /* Page migration frees to the PCP lists but we want merging */
2005 drain_pages(get_cpu());
2008 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2009 order
, zonelist
, high_zoneidx
,
2010 alloc_flags
, preferred_zone
,
2013 preferred_zone
->compact_considered
= 0;
2014 preferred_zone
->compact_defer_shift
= 0;
2015 count_vm_event(COMPACTSUCCESS
);
2020 * It's bad if compaction run occurs and fails.
2021 * The most likely reason is that pages exist,
2022 * but not enough to satisfy watermarks.
2024 count_vm_event(COMPACTFAIL
);
2027 * As async compaction considers a subset of pageblocks, only
2028 * defer if the failure was a sync compaction failure.
2031 defer_compaction(preferred_zone
);
2039 static inline struct page
*
2040 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2041 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2042 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2043 int migratetype
, bool sync_migration
,
2044 bool *deferred_compaction
,
2045 unsigned long *did_some_progress
)
2049 #endif /* CONFIG_COMPACTION */
2051 /* The really slow allocator path where we enter direct reclaim */
2052 static inline struct page
*
2053 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2054 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2055 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2056 int migratetype
, unsigned long *did_some_progress
)
2058 struct page
*page
= NULL
;
2059 struct reclaim_state reclaim_state
;
2060 bool drained
= false;
2064 /* We now go into synchronous reclaim */
2065 cpuset_memory_pressure_bump();
2066 current
->flags
|= PF_MEMALLOC
;
2067 lockdep_set_current_reclaim_state(gfp_mask
);
2068 reclaim_state
.reclaimed_slab
= 0;
2069 current
->reclaim_state
= &reclaim_state
;
2071 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2073 current
->reclaim_state
= NULL
;
2074 lockdep_clear_current_reclaim_state();
2075 current
->flags
&= ~PF_MEMALLOC
;
2079 if (unlikely(!(*did_some_progress
)))
2082 /* After successful reclaim, reconsider all zones for allocation */
2084 zlc_clear_zones_full(zonelist
);
2087 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2088 zonelist
, high_zoneidx
,
2089 alloc_flags
, preferred_zone
,
2093 * If an allocation failed after direct reclaim, it could be because
2094 * pages are pinned on the per-cpu lists. Drain them and try again
2096 if (!page
&& !drained
) {
2106 * This is called in the allocator slow-path if the allocation request is of
2107 * sufficient urgency to ignore watermarks and take other desperate measures
2109 static inline struct page
*
2110 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2111 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2112 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2118 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2119 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2120 preferred_zone
, migratetype
);
2122 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2123 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2124 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2130 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2131 enum zone_type high_zoneidx
,
2132 enum zone_type classzone_idx
)
2137 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2138 wakeup_kswapd(zone
, order
, classzone_idx
);
2142 gfp_to_alloc_flags(gfp_t gfp_mask
)
2144 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2145 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2147 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2148 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2151 * The caller may dip into page reserves a bit more if the caller
2152 * cannot run direct reclaim, or if the caller has realtime scheduling
2153 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2154 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2156 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2160 * Not worth trying to allocate harder for
2161 * __GFP_NOMEMALLOC even if it can't schedule.
2163 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2164 alloc_flags
|= ALLOC_HARDER
;
2166 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2167 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2169 alloc_flags
&= ~ALLOC_CPUSET
;
2170 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2171 alloc_flags
|= ALLOC_HARDER
;
2173 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2174 if (!in_interrupt() &&
2175 ((current
->flags
& PF_MEMALLOC
) ||
2176 unlikely(test_thread_flag(TIF_MEMDIE
))))
2177 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2183 static inline struct page
*
2184 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2185 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2186 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2189 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2190 struct page
*page
= NULL
;
2192 unsigned long pages_reclaimed
= 0;
2193 unsigned long did_some_progress
;
2194 bool sync_migration
= false;
2195 bool deferred_compaction
= false;
2198 * In the slowpath, we sanity check order to avoid ever trying to
2199 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2200 * be using allocators in order of preference for an area that is
2203 if (order
>= MAX_ORDER
) {
2204 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2209 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2210 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2211 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2212 * using a larger set of nodes after it has established that the
2213 * allowed per node queues are empty and that nodes are
2216 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2220 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2221 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2222 zone_idx(preferred_zone
));
2225 * OK, we're below the kswapd watermark and have kicked background
2226 * reclaim. Now things get more complex, so set up alloc_flags according
2227 * to how we want to proceed.
2229 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2232 * Find the true preferred zone if the allocation is unconstrained by
2235 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2236 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2240 /* This is the last chance, in general, before the goto nopage. */
2241 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2242 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2243 preferred_zone
, migratetype
);
2247 /* Allocate without watermarks if the context allows */
2248 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2249 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2250 zonelist
, high_zoneidx
, nodemask
,
2251 preferred_zone
, migratetype
);
2256 /* Atomic allocations - we can't balance anything */
2260 /* Avoid recursion of direct reclaim */
2261 if (current
->flags
& PF_MEMALLOC
)
2264 /* Avoid allocations with no watermarks from looping endlessly */
2265 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2269 * Try direct compaction. The first pass is asynchronous. Subsequent
2270 * attempts after direct reclaim are synchronous
2272 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2273 zonelist
, high_zoneidx
,
2275 alloc_flags
, preferred_zone
,
2276 migratetype
, sync_migration
,
2277 &deferred_compaction
,
2278 &did_some_progress
);
2281 sync_migration
= true;
2284 * If compaction is deferred for high-order allocations, it is because
2285 * sync compaction recently failed. In this is the case and the caller
2286 * has requested the system not be heavily disrupted, fail the
2287 * allocation now instead of entering direct reclaim
2289 if (deferred_compaction
&& (gfp_mask
& __GFP_NO_KSWAPD
))
2292 /* Try direct reclaim and then allocating */
2293 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2294 zonelist
, high_zoneidx
,
2296 alloc_flags
, preferred_zone
,
2297 migratetype
, &did_some_progress
);
2302 * If we failed to make any progress reclaiming, then we are
2303 * running out of options and have to consider going OOM
2305 if (!did_some_progress
) {
2306 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2307 if (oom_killer_disabled
)
2309 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2310 zonelist
, high_zoneidx
,
2311 nodemask
, preferred_zone
,
2316 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2318 * The oom killer is not called for high-order
2319 * allocations that may fail, so if no progress
2320 * is being made, there are no other options and
2321 * retrying is unlikely to help.
2323 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2326 * The oom killer is not called for lowmem
2327 * allocations to prevent needlessly killing
2330 if (high_zoneidx
< ZONE_NORMAL
)
2338 /* Check if we should retry the allocation */
2339 pages_reclaimed
+= did_some_progress
;
2340 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2342 /* Wait for some write requests to complete then retry */
2343 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2347 * High-order allocations do not necessarily loop after
2348 * direct reclaim and reclaim/compaction depends on compaction
2349 * being called after reclaim so call directly if necessary
2351 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2352 zonelist
, high_zoneidx
,
2354 alloc_flags
, preferred_zone
,
2355 migratetype
, sync_migration
,
2356 &deferred_compaction
,
2357 &did_some_progress
);
2363 warn_alloc_failed(gfp_mask
, order
, NULL
);
2366 if (kmemcheck_enabled
)
2367 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2373 * This is the 'heart' of the zoned buddy allocator.
2376 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2377 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2379 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2380 struct zone
*preferred_zone
;
2382 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2384 gfp_mask
&= gfp_allowed_mask
;
2386 lockdep_trace_alloc(gfp_mask
);
2388 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2390 if (should_fail_alloc_page(gfp_mask
, order
))
2394 * Check the zones suitable for the gfp_mask contain at least one
2395 * valid zone. It's possible to have an empty zonelist as a result
2396 * of GFP_THISNODE and a memoryless node
2398 if (unlikely(!zonelist
->_zonerefs
->zone
))
2402 /* The preferred zone is used for statistics later */
2403 first_zones_zonelist(zonelist
, high_zoneidx
,
2404 nodemask
? : &cpuset_current_mems_allowed
,
2406 if (!preferred_zone
) {
2411 /* First allocation attempt */
2412 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2413 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2414 preferred_zone
, migratetype
);
2415 if (unlikely(!page
))
2416 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2417 zonelist
, high_zoneidx
, nodemask
,
2418 preferred_zone
, migratetype
);
2421 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2424 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2427 * Common helper functions.
2429 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2434 * __get_free_pages() returns a 32-bit address, which cannot represent
2437 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2439 page
= alloc_pages(gfp_mask
, order
);
2442 return (unsigned long) page_address(page
);
2444 EXPORT_SYMBOL(__get_free_pages
);
2446 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2448 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2450 EXPORT_SYMBOL(get_zeroed_page
);
2452 void __free_pages(struct page
*page
, unsigned int order
)
2454 if (put_page_testzero(page
)) {
2456 free_hot_cold_page(page
, 0);
2458 __free_pages_ok(page
, order
);
2462 EXPORT_SYMBOL(__free_pages
);
2464 void free_pages(unsigned long addr
, unsigned int order
)
2467 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2468 __free_pages(virt_to_page((void *)addr
), order
);
2472 EXPORT_SYMBOL(free_pages
);
2474 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2477 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2478 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2480 split_page(virt_to_page((void *)addr
), order
);
2481 while (used
< alloc_end
) {
2486 return (void *)addr
;
2490 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2491 * @size: the number of bytes to allocate
2492 * @gfp_mask: GFP flags for the allocation
2494 * This function is similar to alloc_pages(), except that it allocates the
2495 * minimum number of pages to satisfy the request. alloc_pages() can only
2496 * allocate memory in power-of-two pages.
2498 * This function is also limited by MAX_ORDER.
2500 * Memory allocated by this function must be released by free_pages_exact().
2502 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2504 unsigned int order
= get_order(size
);
2507 addr
= __get_free_pages(gfp_mask
, order
);
2508 return make_alloc_exact(addr
, order
, size
);
2510 EXPORT_SYMBOL(alloc_pages_exact
);
2513 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2515 * @nid: the preferred node ID where memory should be allocated
2516 * @size: the number of bytes to allocate
2517 * @gfp_mask: GFP flags for the allocation
2519 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2521 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2524 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2526 unsigned order
= get_order(size
);
2527 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2530 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2532 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2535 * free_pages_exact - release memory allocated via alloc_pages_exact()
2536 * @virt: the value returned by alloc_pages_exact.
2537 * @size: size of allocation, same value as passed to alloc_pages_exact().
2539 * Release the memory allocated by a previous call to alloc_pages_exact.
2541 void free_pages_exact(void *virt
, size_t size
)
2543 unsigned long addr
= (unsigned long)virt
;
2544 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2546 while (addr
< end
) {
2551 EXPORT_SYMBOL(free_pages_exact
);
2553 static unsigned int nr_free_zone_pages(int offset
)
2558 /* Just pick one node, since fallback list is circular */
2559 unsigned int sum
= 0;
2561 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2563 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2564 unsigned long size
= zone
->present_pages
;
2565 unsigned long high
= high_wmark_pages(zone
);
2574 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2576 unsigned int nr_free_buffer_pages(void)
2578 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2580 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2583 * Amount of free RAM allocatable within all zones
2585 unsigned int nr_free_pagecache_pages(void)
2587 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2590 static inline void show_node(struct zone
*zone
)
2593 printk("Node %d ", zone_to_nid(zone
));
2596 void si_meminfo(struct sysinfo
*val
)
2598 val
->totalram
= totalram_pages
;
2600 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2601 val
->bufferram
= nr_blockdev_pages();
2602 val
->totalhigh
= totalhigh_pages
;
2603 val
->freehigh
= nr_free_highpages();
2604 val
->mem_unit
= PAGE_SIZE
;
2607 EXPORT_SYMBOL(si_meminfo
);
2610 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2612 pg_data_t
*pgdat
= NODE_DATA(nid
);
2614 val
->totalram
= pgdat
->node_present_pages
;
2615 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2616 #ifdef CONFIG_HIGHMEM
2617 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2618 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2624 val
->mem_unit
= PAGE_SIZE
;
2629 * Determine whether the node should be displayed or not, depending on whether
2630 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2632 bool skip_free_areas_node(unsigned int flags
, int nid
)
2636 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2640 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2646 #define K(x) ((x) << (PAGE_SHIFT-10))
2649 * Show free area list (used inside shift_scroll-lock stuff)
2650 * We also calculate the percentage fragmentation. We do this by counting the
2651 * memory on each free list with the exception of the first item on the list.
2652 * Suppresses nodes that are not allowed by current's cpuset if
2653 * SHOW_MEM_FILTER_NODES is passed.
2655 void show_free_areas(unsigned int filter
)
2660 for_each_populated_zone(zone
) {
2661 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2664 printk("%s per-cpu:\n", zone
->name
);
2666 for_each_online_cpu(cpu
) {
2667 struct per_cpu_pageset
*pageset
;
2669 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2671 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2672 cpu
, pageset
->pcp
.high
,
2673 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2677 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2678 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2680 " dirty:%lu writeback:%lu unstable:%lu\n"
2681 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2682 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2683 global_page_state(NR_ACTIVE_ANON
),
2684 global_page_state(NR_INACTIVE_ANON
),
2685 global_page_state(NR_ISOLATED_ANON
),
2686 global_page_state(NR_ACTIVE_FILE
),
2687 global_page_state(NR_INACTIVE_FILE
),
2688 global_page_state(NR_ISOLATED_FILE
),
2689 global_page_state(NR_UNEVICTABLE
),
2690 global_page_state(NR_FILE_DIRTY
),
2691 global_page_state(NR_WRITEBACK
),
2692 global_page_state(NR_UNSTABLE_NFS
),
2693 global_page_state(NR_FREE_PAGES
),
2694 global_page_state(NR_SLAB_RECLAIMABLE
),
2695 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2696 global_page_state(NR_FILE_MAPPED
),
2697 global_page_state(NR_SHMEM
),
2698 global_page_state(NR_PAGETABLE
),
2699 global_page_state(NR_BOUNCE
));
2701 for_each_populated_zone(zone
) {
2704 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2712 " active_anon:%lukB"
2713 " inactive_anon:%lukB"
2714 " active_file:%lukB"
2715 " inactive_file:%lukB"
2716 " unevictable:%lukB"
2717 " isolated(anon):%lukB"
2718 " isolated(file):%lukB"
2725 " slab_reclaimable:%lukB"
2726 " slab_unreclaimable:%lukB"
2727 " kernel_stack:%lukB"
2731 " writeback_tmp:%lukB"
2732 " pages_scanned:%lu"
2733 " all_unreclaimable? %s"
2736 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2737 K(min_wmark_pages(zone
)),
2738 K(low_wmark_pages(zone
)),
2739 K(high_wmark_pages(zone
)),
2740 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2741 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2742 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2743 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2744 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2745 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2746 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2747 K(zone
->present_pages
),
2748 K(zone_page_state(zone
, NR_MLOCK
)),
2749 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2750 K(zone_page_state(zone
, NR_WRITEBACK
)),
2751 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2752 K(zone_page_state(zone
, NR_SHMEM
)),
2753 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2754 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2755 zone_page_state(zone
, NR_KERNEL_STACK
) *
2757 K(zone_page_state(zone
, NR_PAGETABLE
)),
2758 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2759 K(zone_page_state(zone
, NR_BOUNCE
)),
2760 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2761 zone
->pages_scanned
,
2762 (zone
->all_unreclaimable
? "yes" : "no")
2764 printk("lowmem_reserve[]:");
2765 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2766 printk(" %lu", zone
->lowmem_reserve
[i
]);
2770 for_each_populated_zone(zone
) {
2771 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2773 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2776 printk("%s: ", zone
->name
);
2778 spin_lock_irqsave(&zone
->lock
, flags
);
2779 for (order
= 0; order
< MAX_ORDER
; order
++) {
2780 nr
[order
] = zone
->free_area
[order
].nr_free
;
2781 total
+= nr
[order
] << order
;
2783 spin_unlock_irqrestore(&zone
->lock
, flags
);
2784 for (order
= 0; order
< MAX_ORDER
; order
++)
2785 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2786 printk("= %lukB\n", K(total
));
2789 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2791 show_swap_cache_info();
2794 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2796 zoneref
->zone
= zone
;
2797 zoneref
->zone_idx
= zone_idx(zone
);
2801 * Builds allocation fallback zone lists.
2803 * Add all populated zones of a node to the zonelist.
2805 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2806 int nr_zones
, enum zone_type zone_type
)
2810 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2815 zone
= pgdat
->node_zones
+ zone_type
;
2816 if (populated_zone(zone
)) {
2817 zoneref_set_zone(zone
,
2818 &zonelist
->_zonerefs
[nr_zones
++]);
2819 check_highest_zone(zone_type
);
2822 } while (zone_type
);
2829 * 0 = automatic detection of better ordering.
2830 * 1 = order by ([node] distance, -zonetype)
2831 * 2 = order by (-zonetype, [node] distance)
2833 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2834 * the same zonelist. So only NUMA can configure this param.
2836 #define ZONELIST_ORDER_DEFAULT 0
2837 #define ZONELIST_ORDER_NODE 1
2838 #define ZONELIST_ORDER_ZONE 2
2840 /* zonelist order in the kernel.
2841 * set_zonelist_order() will set this to NODE or ZONE.
2843 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2844 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2848 /* The value user specified ....changed by config */
2849 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2850 /* string for sysctl */
2851 #define NUMA_ZONELIST_ORDER_LEN 16
2852 char numa_zonelist_order
[16] = "default";
2855 * interface for configure zonelist ordering.
2856 * command line option "numa_zonelist_order"
2857 * = "[dD]efault - default, automatic configuration.
2858 * = "[nN]ode - order by node locality, then by zone within node
2859 * = "[zZ]one - order by zone, then by locality within zone
2862 static int __parse_numa_zonelist_order(char *s
)
2864 if (*s
== 'd' || *s
== 'D') {
2865 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2866 } else if (*s
== 'n' || *s
== 'N') {
2867 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2868 } else if (*s
== 'z' || *s
== 'Z') {
2869 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2872 "Ignoring invalid numa_zonelist_order value: "
2879 static __init
int setup_numa_zonelist_order(char *s
)
2886 ret
= __parse_numa_zonelist_order(s
);
2888 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2892 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2895 * sysctl handler for numa_zonelist_order
2897 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2898 void __user
*buffer
, size_t *length
,
2901 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2903 static DEFINE_MUTEX(zl_order_mutex
);
2905 mutex_lock(&zl_order_mutex
);
2907 strcpy(saved_string
, (char*)table
->data
);
2908 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2912 int oldval
= user_zonelist_order
;
2913 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2915 * bogus value. restore saved string
2917 strncpy((char*)table
->data
, saved_string
,
2918 NUMA_ZONELIST_ORDER_LEN
);
2919 user_zonelist_order
= oldval
;
2920 } else if (oldval
!= user_zonelist_order
) {
2921 mutex_lock(&zonelists_mutex
);
2922 build_all_zonelists(NULL
);
2923 mutex_unlock(&zonelists_mutex
);
2927 mutex_unlock(&zl_order_mutex
);
2932 #define MAX_NODE_LOAD (nr_online_nodes)
2933 static int node_load
[MAX_NUMNODES
];
2936 * find_next_best_node - find the next node that should appear in a given node's fallback list
2937 * @node: node whose fallback list we're appending
2938 * @used_node_mask: nodemask_t of already used nodes
2940 * We use a number of factors to determine which is the next node that should
2941 * appear on a given node's fallback list. The node should not have appeared
2942 * already in @node's fallback list, and it should be the next closest node
2943 * according to the distance array (which contains arbitrary distance values
2944 * from each node to each node in the system), and should also prefer nodes
2945 * with no CPUs, since presumably they'll have very little allocation pressure
2946 * on them otherwise.
2947 * It returns -1 if no node is found.
2949 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2952 int min_val
= INT_MAX
;
2954 const struct cpumask
*tmp
= cpumask_of_node(0);
2956 /* Use the local node if we haven't already */
2957 if (!node_isset(node
, *used_node_mask
)) {
2958 node_set(node
, *used_node_mask
);
2962 for_each_node_state(n
, N_HIGH_MEMORY
) {
2964 /* Don't want a node to appear more than once */
2965 if (node_isset(n
, *used_node_mask
))
2968 /* Use the distance array to find the distance */
2969 val
= node_distance(node
, n
);
2971 /* Penalize nodes under us ("prefer the next node") */
2974 /* Give preference to headless and unused nodes */
2975 tmp
= cpumask_of_node(n
);
2976 if (!cpumask_empty(tmp
))
2977 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2979 /* Slight preference for less loaded node */
2980 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2981 val
+= node_load
[n
];
2983 if (val
< min_val
) {
2990 node_set(best_node
, *used_node_mask
);
2997 * Build zonelists ordered by node and zones within node.
2998 * This results in maximum locality--normal zone overflows into local
2999 * DMA zone, if any--but risks exhausting DMA zone.
3001 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3004 struct zonelist
*zonelist
;
3006 zonelist
= &pgdat
->node_zonelists
[0];
3007 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3009 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3011 zonelist
->_zonerefs
[j
].zone
= NULL
;
3012 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3016 * Build gfp_thisnode zonelists
3018 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3021 struct zonelist
*zonelist
;
3023 zonelist
= &pgdat
->node_zonelists
[1];
3024 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3025 zonelist
->_zonerefs
[j
].zone
= NULL
;
3026 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3030 * Build zonelists ordered by zone and nodes within zones.
3031 * This results in conserving DMA zone[s] until all Normal memory is
3032 * exhausted, but results in overflowing to remote node while memory
3033 * may still exist in local DMA zone.
3035 static int node_order
[MAX_NUMNODES
];
3037 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3040 int zone_type
; /* needs to be signed */
3042 struct zonelist
*zonelist
;
3044 zonelist
= &pgdat
->node_zonelists
[0];
3046 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3047 for (j
= 0; j
< nr_nodes
; j
++) {
3048 node
= node_order
[j
];
3049 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3050 if (populated_zone(z
)) {
3052 &zonelist
->_zonerefs
[pos
++]);
3053 check_highest_zone(zone_type
);
3057 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3058 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3061 static int default_zonelist_order(void)
3064 unsigned long low_kmem_size
,total_size
;
3068 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3069 * If they are really small and used heavily, the system can fall
3070 * into OOM very easily.
3071 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3073 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3076 for_each_online_node(nid
) {
3077 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3078 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3079 if (populated_zone(z
)) {
3080 if (zone_type
< ZONE_NORMAL
)
3081 low_kmem_size
+= z
->present_pages
;
3082 total_size
+= z
->present_pages
;
3083 } else if (zone_type
== ZONE_NORMAL
) {
3085 * If any node has only lowmem, then node order
3086 * is preferred to allow kernel allocations
3087 * locally; otherwise, they can easily infringe
3088 * on other nodes when there is an abundance of
3089 * lowmem available to allocate from.
3091 return ZONELIST_ORDER_NODE
;
3095 if (!low_kmem_size
|| /* there are no DMA area. */
3096 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3097 return ZONELIST_ORDER_NODE
;
3099 * look into each node's config.
3100 * If there is a node whose DMA/DMA32 memory is very big area on
3101 * local memory, NODE_ORDER may be suitable.
3103 average_size
= total_size
/
3104 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
3105 for_each_online_node(nid
) {
3108 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3109 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3110 if (populated_zone(z
)) {
3111 if (zone_type
< ZONE_NORMAL
)
3112 low_kmem_size
+= z
->present_pages
;
3113 total_size
+= z
->present_pages
;
3116 if (low_kmem_size
&&
3117 total_size
> average_size
&& /* ignore small node */
3118 low_kmem_size
> total_size
* 70/100)
3119 return ZONELIST_ORDER_NODE
;
3121 return ZONELIST_ORDER_ZONE
;
3124 static void set_zonelist_order(void)
3126 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3127 current_zonelist_order
= default_zonelist_order();
3129 current_zonelist_order
= user_zonelist_order
;
3132 static void build_zonelists(pg_data_t
*pgdat
)
3136 nodemask_t used_mask
;
3137 int local_node
, prev_node
;
3138 struct zonelist
*zonelist
;
3139 int order
= current_zonelist_order
;
3141 /* initialize zonelists */
3142 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3143 zonelist
= pgdat
->node_zonelists
+ i
;
3144 zonelist
->_zonerefs
[0].zone
= NULL
;
3145 zonelist
->_zonerefs
[0].zone_idx
= 0;
3148 /* NUMA-aware ordering of nodes */
3149 local_node
= pgdat
->node_id
;
3150 load
= nr_online_nodes
;
3151 prev_node
= local_node
;
3152 nodes_clear(used_mask
);
3154 memset(node_order
, 0, sizeof(node_order
));
3157 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3158 int distance
= node_distance(local_node
, node
);
3161 * If another node is sufficiently far away then it is better
3162 * to reclaim pages in a zone before going off node.
3164 if (distance
> RECLAIM_DISTANCE
)
3165 zone_reclaim_mode
= 1;
3168 * We don't want to pressure a particular node.
3169 * So adding penalty to the first node in same
3170 * distance group to make it round-robin.
3172 if (distance
!= node_distance(local_node
, prev_node
))
3173 node_load
[node
] = load
;
3177 if (order
== ZONELIST_ORDER_NODE
)
3178 build_zonelists_in_node_order(pgdat
, node
);
3180 node_order
[j
++] = node
; /* remember order */
3183 if (order
== ZONELIST_ORDER_ZONE
) {
3184 /* calculate node order -- i.e., DMA last! */
3185 build_zonelists_in_zone_order(pgdat
, j
);
3188 build_thisnode_zonelists(pgdat
);
3191 /* Construct the zonelist performance cache - see further mmzone.h */
3192 static void build_zonelist_cache(pg_data_t
*pgdat
)
3194 struct zonelist
*zonelist
;
3195 struct zonelist_cache
*zlc
;
3198 zonelist
= &pgdat
->node_zonelists
[0];
3199 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3200 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3201 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3202 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3205 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3207 * Return node id of node used for "local" allocations.
3208 * I.e., first node id of first zone in arg node's generic zonelist.
3209 * Used for initializing percpu 'numa_mem', which is used primarily
3210 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3212 int local_memory_node(int node
)
3216 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3217 gfp_zone(GFP_KERNEL
),
3224 #else /* CONFIG_NUMA */
3226 static void set_zonelist_order(void)
3228 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3231 static void build_zonelists(pg_data_t
*pgdat
)
3233 int node
, local_node
;
3235 struct zonelist
*zonelist
;
3237 local_node
= pgdat
->node_id
;
3239 zonelist
= &pgdat
->node_zonelists
[0];
3240 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3243 * Now we build the zonelist so that it contains the zones
3244 * of all the other nodes.
3245 * We don't want to pressure a particular node, so when
3246 * building the zones for node N, we make sure that the
3247 * zones coming right after the local ones are those from
3248 * node N+1 (modulo N)
3250 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3251 if (!node_online(node
))
3253 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3256 for (node
= 0; node
< local_node
; node
++) {
3257 if (!node_online(node
))
3259 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3263 zonelist
->_zonerefs
[j
].zone
= NULL
;
3264 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3267 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3268 static void build_zonelist_cache(pg_data_t
*pgdat
)
3270 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3273 #endif /* CONFIG_NUMA */
3276 * Boot pageset table. One per cpu which is going to be used for all
3277 * zones and all nodes. The parameters will be set in such a way
3278 * that an item put on a list will immediately be handed over to
3279 * the buddy list. This is safe since pageset manipulation is done
3280 * with interrupts disabled.
3282 * The boot_pagesets must be kept even after bootup is complete for
3283 * unused processors and/or zones. They do play a role for bootstrapping
3284 * hotplugged processors.
3286 * zoneinfo_show() and maybe other functions do
3287 * not check if the processor is online before following the pageset pointer.
3288 * Other parts of the kernel may not check if the zone is available.
3290 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3291 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3292 static void setup_zone_pageset(struct zone
*zone
);
3295 * Global mutex to protect against size modification of zonelists
3296 * as well as to serialize pageset setup for the new populated zone.
3298 DEFINE_MUTEX(zonelists_mutex
);
3300 /* return values int ....just for stop_machine() */
3301 static __init_refok
int __build_all_zonelists(void *data
)
3307 memset(node_load
, 0, sizeof(node_load
));
3309 for_each_online_node(nid
) {
3310 pg_data_t
*pgdat
= NODE_DATA(nid
);
3312 build_zonelists(pgdat
);
3313 build_zonelist_cache(pgdat
);
3317 * Initialize the boot_pagesets that are going to be used
3318 * for bootstrapping processors. The real pagesets for
3319 * each zone will be allocated later when the per cpu
3320 * allocator is available.
3322 * boot_pagesets are used also for bootstrapping offline
3323 * cpus if the system is already booted because the pagesets
3324 * are needed to initialize allocators on a specific cpu too.
3325 * F.e. the percpu allocator needs the page allocator which
3326 * needs the percpu allocator in order to allocate its pagesets
3327 * (a chicken-egg dilemma).
3329 for_each_possible_cpu(cpu
) {
3330 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3332 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3334 * We now know the "local memory node" for each node--
3335 * i.e., the node of the first zone in the generic zonelist.
3336 * Set up numa_mem percpu variable for on-line cpus. During
3337 * boot, only the boot cpu should be on-line; we'll init the
3338 * secondary cpus' numa_mem as they come on-line. During
3339 * node/memory hotplug, we'll fixup all on-line cpus.
3341 if (cpu_online(cpu
))
3342 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3350 * Called with zonelists_mutex held always
3351 * unless system_state == SYSTEM_BOOTING.
3353 void __ref
build_all_zonelists(void *data
)
3355 set_zonelist_order();
3357 if (system_state
== SYSTEM_BOOTING
) {
3358 __build_all_zonelists(NULL
);
3359 mminit_verify_zonelist();
3360 cpuset_init_current_mems_allowed();
3362 /* we have to stop all cpus to guarantee there is no user
3364 #ifdef CONFIG_MEMORY_HOTPLUG
3366 setup_zone_pageset((struct zone
*)data
);
3368 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3369 /* cpuset refresh routine should be here */
3371 vm_total_pages
= nr_free_pagecache_pages();
3373 * Disable grouping by mobility if the number of pages in the
3374 * system is too low to allow the mechanism to work. It would be
3375 * more accurate, but expensive to check per-zone. This check is
3376 * made on memory-hotadd so a system can start with mobility
3377 * disabled and enable it later
3379 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3380 page_group_by_mobility_disabled
= 1;
3382 page_group_by_mobility_disabled
= 0;
3384 printk("Built %i zonelists in %s order, mobility grouping %s. "
3385 "Total pages: %ld\n",
3387 zonelist_order_name
[current_zonelist_order
],
3388 page_group_by_mobility_disabled
? "off" : "on",
3391 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3396 * Helper functions to size the waitqueue hash table.
3397 * Essentially these want to choose hash table sizes sufficiently
3398 * large so that collisions trying to wait on pages are rare.
3399 * But in fact, the number of active page waitqueues on typical
3400 * systems is ridiculously low, less than 200. So this is even
3401 * conservative, even though it seems large.
3403 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3404 * waitqueues, i.e. the size of the waitq table given the number of pages.
3406 #define PAGES_PER_WAITQUEUE 256
3408 #ifndef CONFIG_MEMORY_HOTPLUG
3409 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3411 unsigned long size
= 1;
3413 pages
/= PAGES_PER_WAITQUEUE
;
3415 while (size
< pages
)
3419 * Once we have dozens or even hundreds of threads sleeping
3420 * on IO we've got bigger problems than wait queue collision.
3421 * Limit the size of the wait table to a reasonable size.
3423 size
= min(size
, 4096UL);
3425 return max(size
, 4UL);
3429 * A zone's size might be changed by hot-add, so it is not possible to determine
3430 * a suitable size for its wait_table. So we use the maximum size now.
3432 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3434 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3435 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3436 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3438 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3439 * or more by the traditional way. (See above). It equals:
3441 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3442 * ia64(16K page size) : = ( 8G + 4M)byte.
3443 * powerpc (64K page size) : = (32G +16M)byte.
3445 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3452 * This is an integer logarithm so that shifts can be used later
3453 * to extract the more random high bits from the multiplicative
3454 * hash function before the remainder is taken.
3456 static inline unsigned long wait_table_bits(unsigned long size
)
3461 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3464 * Check if a pageblock contains reserved pages
3466 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3470 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3471 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3478 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3479 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3480 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3481 * higher will lead to a bigger reserve which will get freed as contiguous
3482 * blocks as reclaim kicks in
3484 static void setup_zone_migrate_reserve(struct zone
*zone
)
3486 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3488 unsigned long block_migratetype
;
3492 * Get the start pfn, end pfn and the number of blocks to reserve
3493 * We have to be careful to be aligned to pageblock_nr_pages to
3494 * make sure that we always check pfn_valid for the first page in
3497 start_pfn
= zone
->zone_start_pfn
;
3498 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3499 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3500 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3504 * Reserve blocks are generally in place to help high-order atomic
3505 * allocations that are short-lived. A min_free_kbytes value that
3506 * would result in more than 2 reserve blocks for atomic allocations
3507 * is assumed to be in place to help anti-fragmentation for the
3508 * future allocation of hugepages at runtime.
3510 reserve
= min(2, reserve
);
3512 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3513 if (!pfn_valid(pfn
))
3515 page
= pfn_to_page(pfn
);
3517 /* Watch out for overlapping nodes */
3518 if (page_to_nid(page
) != zone_to_nid(zone
))
3521 block_migratetype
= get_pageblock_migratetype(page
);
3523 /* Only test what is necessary when the reserves are not met */
3526 * Blocks with reserved pages will never free, skip
3529 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3530 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3533 /* If this block is reserved, account for it */
3534 if (block_migratetype
== MIGRATE_RESERVE
) {
3539 /* Suitable for reserving if this block is movable */
3540 if (block_migratetype
== MIGRATE_MOVABLE
) {
3541 set_pageblock_migratetype(page
,
3543 move_freepages_block(zone
, page
,
3551 * If the reserve is met and this is a previous reserved block,
3554 if (block_migratetype
== MIGRATE_RESERVE
) {
3555 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3556 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3562 * Initially all pages are reserved - free ones are freed
3563 * up by free_all_bootmem() once the early boot process is
3564 * done. Non-atomic initialization, single-pass.
3566 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3567 unsigned long start_pfn
, enum memmap_context context
)
3570 unsigned long end_pfn
= start_pfn
+ size
;
3574 if (highest_memmap_pfn
< end_pfn
- 1)
3575 highest_memmap_pfn
= end_pfn
- 1;
3577 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3578 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3580 * There can be holes in boot-time mem_map[]s
3581 * handed to this function. They do not
3582 * exist on hotplugged memory.
3584 if (context
== MEMMAP_EARLY
) {
3585 if (!early_pfn_valid(pfn
))
3587 if (!early_pfn_in_nid(pfn
, nid
))
3590 page
= pfn_to_page(pfn
);
3591 set_page_links(page
, zone
, nid
, pfn
);
3592 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3593 init_page_count(page
);
3594 reset_page_mapcount(page
);
3595 SetPageReserved(page
);
3597 * Mark the block movable so that blocks are reserved for
3598 * movable at startup. This will force kernel allocations
3599 * to reserve their blocks rather than leaking throughout
3600 * the address space during boot when many long-lived
3601 * kernel allocations are made. Later some blocks near
3602 * the start are marked MIGRATE_RESERVE by
3603 * setup_zone_migrate_reserve()
3605 * bitmap is created for zone's valid pfn range. but memmap
3606 * can be created for invalid pages (for alignment)
3607 * check here not to call set_pageblock_migratetype() against
3610 if ((z
->zone_start_pfn
<= pfn
)
3611 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3612 && !(pfn
& (pageblock_nr_pages
- 1)))
3613 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3615 INIT_LIST_HEAD(&page
->lru
);
3616 #ifdef WANT_PAGE_VIRTUAL
3617 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3618 if (!is_highmem_idx(zone
))
3619 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3624 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3627 for_each_migratetype_order(order
, t
) {
3628 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3629 zone
->free_area
[order
].nr_free
= 0;
3633 #ifndef __HAVE_ARCH_MEMMAP_INIT
3634 #define memmap_init(size, nid, zone, start_pfn) \
3635 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3638 static int zone_batchsize(struct zone
*zone
)
3644 * The per-cpu-pages pools are set to around 1000th of the
3645 * size of the zone. But no more than 1/2 of a meg.
3647 * OK, so we don't know how big the cache is. So guess.
3649 batch
= zone
->present_pages
/ 1024;
3650 if (batch
* PAGE_SIZE
> 512 * 1024)
3651 batch
= (512 * 1024) / PAGE_SIZE
;
3652 batch
/= 4; /* We effectively *= 4 below */
3657 * Clamp the batch to a 2^n - 1 value. Having a power
3658 * of 2 value was found to be more likely to have
3659 * suboptimal cache aliasing properties in some cases.
3661 * For example if 2 tasks are alternately allocating
3662 * batches of pages, one task can end up with a lot
3663 * of pages of one half of the possible page colors
3664 * and the other with pages of the other colors.
3666 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3671 /* The deferral and batching of frees should be suppressed under NOMMU
3674 * The problem is that NOMMU needs to be able to allocate large chunks
3675 * of contiguous memory as there's no hardware page translation to
3676 * assemble apparent contiguous memory from discontiguous pages.
3678 * Queueing large contiguous runs of pages for batching, however,
3679 * causes the pages to actually be freed in smaller chunks. As there
3680 * can be a significant delay between the individual batches being
3681 * recycled, this leads to the once large chunks of space being
3682 * fragmented and becoming unavailable for high-order allocations.
3688 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3690 struct per_cpu_pages
*pcp
;
3693 memset(p
, 0, sizeof(*p
));
3697 pcp
->high
= 6 * batch
;
3698 pcp
->batch
= max(1UL, 1 * batch
);
3699 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3700 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3704 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3705 * to the value high for the pageset p.
3708 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3711 struct per_cpu_pages
*pcp
;
3715 pcp
->batch
= max(1UL, high
/4);
3716 if ((high
/4) > (PAGE_SHIFT
* 8))
3717 pcp
->batch
= PAGE_SHIFT
* 8;
3720 static void setup_zone_pageset(struct zone
*zone
)
3724 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3726 for_each_possible_cpu(cpu
) {
3727 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3729 setup_pageset(pcp
, zone_batchsize(zone
));
3731 if (percpu_pagelist_fraction
)
3732 setup_pagelist_highmark(pcp
,
3733 (zone
->present_pages
/
3734 percpu_pagelist_fraction
));
3739 * Allocate per cpu pagesets and initialize them.
3740 * Before this call only boot pagesets were available.
3742 void __init
setup_per_cpu_pageset(void)
3746 for_each_populated_zone(zone
)
3747 setup_zone_pageset(zone
);
3750 static noinline __init_refok
3751 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3754 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3758 * The per-page waitqueue mechanism uses hashed waitqueues
3761 zone
->wait_table_hash_nr_entries
=
3762 wait_table_hash_nr_entries(zone_size_pages
);
3763 zone
->wait_table_bits
=
3764 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3765 alloc_size
= zone
->wait_table_hash_nr_entries
3766 * sizeof(wait_queue_head_t
);
3768 if (!slab_is_available()) {
3769 zone
->wait_table
= (wait_queue_head_t
*)
3770 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3773 * This case means that a zone whose size was 0 gets new memory
3774 * via memory hot-add.
3775 * But it may be the case that a new node was hot-added. In
3776 * this case vmalloc() will not be able to use this new node's
3777 * memory - this wait_table must be initialized to use this new
3778 * node itself as well.
3779 * To use this new node's memory, further consideration will be
3782 zone
->wait_table
= vmalloc(alloc_size
);
3784 if (!zone
->wait_table
)
3787 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3788 init_waitqueue_head(zone
->wait_table
+ i
);
3793 static int __zone_pcp_update(void *data
)
3795 struct zone
*zone
= data
;
3797 unsigned long batch
= zone_batchsize(zone
), flags
;
3799 for_each_possible_cpu(cpu
) {
3800 struct per_cpu_pageset
*pset
;
3801 struct per_cpu_pages
*pcp
;
3803 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3806 local_irq_save(flags
);
3807 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3808 setup_pageset(pset
, batch
);
3809 local_irq_restore(flags
);
3814 void zone_pcp_update(struct zone
*zone
)
3816 stop_machine(__zone_pcp_update
, zone
, NULL
);
3819 static __meminit
void zone_pcp_init(struct zone
*zone
)
3822 * per cpu subsystem is not up at this point. The following code
3823 * relies on the ability of the linker to provide the
3824 * offset of a (static) per cpu variable into the per cpu area.
3826 zone
->pageset
= &boot_pageset
;
3828 if (zone
->present_pages
)
3829 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3830 zone
->name
, zone
->present_pages
,
3831 zone_batchsize(zone
));
3834 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3835 unsigned long zone_start_pfn
,
3837 enum memmap_context context
)
3839 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3841 ret
= zone_wait_table_init(zone
, size
);
3844 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3846 zone
->zone_start_pfn
= zone_start_pfn
;
3848 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3849 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3851 (unsigned long)zone_idx(zone
),
3852 zone_start_pfn
, (zone_start_pfn
+ size
));
3854 zone_init_free_lists(zone
);
3859 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3860 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3862 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3863 * Architectures may implement their own version but if add_active_range()
3864 * was used and there are no special requirements, this is a convenient
3867 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3869 unsigned long start_pfn
, end_pfn
;
3872 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
3873 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3875 /* This is a memory hole */
3878 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3880 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3884 nid
= __early_pfn_to_nid(pfn
);
3887 /* just returns 0 */
3891 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3892 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3896 nid
= __early_pfn_to_nid(pfn
);
3897 if (nid
>= 0 && nid
!= node
)
3904 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3905 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3906 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3908 * If an architecture guarantees that all ranges registered with
3909 * add_active_ranges() contain no holes and may be freed, this
3910 * this function may be used instead of calling free_bootmem() manually.
3912 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
3914 unsigned long start_pfn
, end_pfn
;
3917 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
3918 start_pfn
= min(start_pfn
, max_low_pfn
);
3919 end_pfn
= min(end_pfn
, max_low_pfn
);
3921 if (start_pfn
< end_pfn
)
3922 free_bootmem_node(NODE_DATA(this_nid
),
3923 PFN_PHYS(start_pfn
),
3924 (end_pfn
- start_pfn
) << PAGE_SHIFT
);
3928 int __init
add_from_early_node_map(struct range
*range
, int az
,
3929 int nr_range
, int nid
)
3931 unsigned long start_pfn
, end_pfn
;
3934 /* need to go over early_node_map to find out good range for node */
3935 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
)
3936 nr_range
= add_range(range
, az
, nr_range
, start_pfn
, end_pfn
);
3941 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3942 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3944 * If an architecture guarantees that all ranges registered with
3945 * add_active_ranges() contain no holes and may be freed, this
3946 * function may be used instead of calling memory_present() manually.
3948 void __init
sparse_memory_present_with_active_regions(int nid
)
3950 unsigned long start_pfn
, end_pfn
;
3953 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
3954 memory_present(this_nid
, start_pfn
, end_pfn
);
3958 * get_pfn_range_for_nid - Return the start and end page frames for a node
3959 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3960 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3961 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3963 * It returns the start and end page frame of a node based on information
3964 * provided by an arch calling add_active_range(). If called for a node
3965 * with no available memory, a warning is printed and the start and end
3968 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3969 unsigned long *start_pfn
, unsigned long *end_pfn
)
3971 unsigned long this_start_pfn
, this_end_pfn
;
3977 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
3978 *start_pfn
= min(*start_pfn
, this_start_pfn
);
3979 *end_pfn
= max(*end_pfn
, this_end_pfn
);
3982 if (*start_pfn
== -1UL)
3987 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3988 * assumption is made that zones within a node are ordered in monotonic
3989 * increasing memory addresses so that the "highest" populated zone is used
3991 static void __init
find_usable_zone_for_movable(void)
3994 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3995 if (zone_index
== ZONE_MOVABLE
)
3998 if (arch_zone_highest_possible_pfn
[zone_index
] >
3999 arch_zone_lowest_possible_pfn
[zone_index
])
4003 VM_BUG_ON(zone_index
== -1);
4004 movable_zone
= zone_index
;
4008 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4009 * because it is sized independent of architecture. Unlike the other zones,
4010 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4011 * in each node depending on the size of each node and how evenly kernelcore
4012 * is distributed. This helper function adjusts the zone ranges
4013 * provided by the architecture for a given node by using the end of the
4014 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4015 * zones within a node are in order of monotonic increases memory addresses
4017 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4018 unsigned long zone_type
,
4019 unsigned long node_start_pfn
,
4020 unsigned long node_end_pfn
,
4021 unsigned long *zone_start_pfn
,
4022 unsigned long *zone_end_pfn
)
4024 /* Only adjust if ZONE_MOVABLE is on this node */
4025 if (zone_movable_pfn
[nid
]) {
4026 /* Size ZONE_MOVABLE */
4027 if (zone_type
== ZONE_MOVABLE
) {
4028 *zone_start_pfn
= zone_movable_pfn
[nid
];
4029 *zone_end_pfn
= min(node_end_pfn
,
4030 arch_zone_highest_possible_pfn
[movable_zone
]);
4032 /* Adjust for ZONE_MOVABLE starting within this range */
4033 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4034 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4035 *zone_end_pfn
= zone_movable_pfn
[nid
];
4037 /* Check if this whole range is within ZONE_MOVABLE */
4038 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4039 *zone_start_pfn
= *zone_end_pfn
;
4044 * Return the number of pages a zone spans in a node, including holes
4045 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4047 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4048 unsigned long zone_type
,
4049 unsigned long *ignored
)
4051 unsigned long node_start_pfn
, node_end_pfn
;
4052 unsigned long zone_start_pfn
, zone_end_pfn
;
4054 /* Get the start and end of the node and zone */
4055 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4056 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4057 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4058 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4059 node_start_pfn
, node_end_pfn
,
4060 &zone_start_pfn
, &zone_end_pfn
);
4062 /* Check that this node has pages within the zone's required range */
4063 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4066 /* Move the zone boundaries inside the node if necessary */
4067 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4068 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4070 /* Return the spanned pages */
4071 return zone_end_pfn
- zone_start_pfn
;
4075 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4076 * then all holes in the requested range will be accounted for.
4078 unsigned long __meminit
__absent_pages_in_range(int nid
,
4079 unsigned long range_start_pfn
,
4080 unsigned long range_end_pfn
)
4082 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4083 unsigned long start_pfn
, end_pfn
;
4086 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4087 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4088 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4089 nr_absent
-= end_pfn
- start_pfn
;
4095 * absent_pages_in_range - Return number of page frames in holes within a range
4096 * @start_pfn: The start PFN to start searching for holes
4097 * @end_pfn: The end PFN to stop searching for holes
4099 * It returns the number of pages frames in memory holes within a range.
4101 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4102 unsigned long end_pfn
)
4104 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4107 /* Return the number of page frames in holes in a zone on a node */
4108 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4109 unsigned long zone_type
,
4110 unsigned long *ignored
)
4112 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4113 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4114 unsigned long node_start_pfn
, node_end_pfn
;
4115 unsigned long zone_start_pfn
, zone_end_pfn
;
4117 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4118 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4119 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4121 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4122 node_start_pfn
, node_end_pfn
,
4123 &zone_start_pfn
, &zone_end_pfn
);
4124 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4127 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4128 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4129 unsigned long zone_type
,
4130 unsigned long *zones_size
)
4132 return zones_size
[zone_type
];
4135 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4136 unsigned long zone_type
,
4137 unsigned long *zholes_size
)
4142 return zholes_size
[zone_type
];
4145 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4147 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4148 unsigned long *zones_size
, unsigned long *zholes_size
)
4150 unsigned long realtotalpages
, totalpages
= 0;
4153 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4154 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4156 pgdat
->node_spanned_pages
= totalpages
;
4158 realtotalpages
= totalpages
;
4159 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4161 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4163 pgdat
->node_present_pages
= realtotalpages
;
4164 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4168 #ifndef CONFIG_SPARSEMEM
4170 * Calculate the size of the zone->blockflags rounded to an unsigned long
4171 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4172 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4173 * round what is now in bits to nearest long in bits, then return it in
4176 static unsigned long __init
usemap_size(unsigned long zonesize
)
4178 unsigned long usemapsize
;
4180 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4181 usemapsize
= usemapsize
>> pageblock_order
;
4182 usemapsize
*= NR_PAGEBLOCK_BITS
;
4183 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4185 return usemapsize
/ 8;
4188 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4189 struct zone
*zone
, unsigned long zonesize
)
4191 unsigned long usemapsize
= usemap_size(zonesize
);
4192 zone
->pageblock_flags
= NULL
;
4194 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4198 static inline void setup_usemap(struct pglist_data
*pgdat
,
4199 struct zone
*zone
, unsigned long zonesize
) {}
4200 #endif /* CONFIG_SPARSEMEM */
4202 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4204 /* Return a sensible default order for the pageblock size. */
4205 static inline int pageblock_default_order(void)
4207 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4208 return HUGETLB_PAGE_ORDER
;
4213 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4214 static inline void __init
set_pageblock_order(unsigned int order
)
4216 /* Check that pageblock_nr_pages has not already been setup */
4217 if (pageblock_order
)
4221 * Assume the largest contiguous order of interest is a huge page.
4222 * This value may be variable depending on boot parameters on IA64
4224 pageblock_order
= order
;
4226 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4229 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4230 * and pageblock_default_order() are unused as pageblock_order is set
4231 * at compile-time. See include/linux/pageblock-flags.h for the values of
4232 * pageblock_order based on the kernel config
4234 static inline int pageblock_default_order(unsigned int order
)
4238 #define set_pageblock_order(x) do {} while (0)
4240 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4243 * Set up the zone data structures:
4244 * - mark all pages reserved
4245 * - mark all memory queues empty
4246 * - clear the memory bitmaps
4248 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4249 unsigned long *zones_size
, unsigned long *zholes_size
)
4252 int nid
= pgdat
->node_id
;
4253 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4256 pgdat_resize_init(pgdat
);
4257 pgdat
->nr_zones
= 0;
4258 init_waitqueue_head(&pgdat
->kswapd_wait
);
4259 pgdat
->kswapd_max_order
= 0;
4260 pgdat_page_cgroup_init(pgdat
);
4262 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4263 struct zone
*zone
= pgdat
->node_zones
+ j
;
4264 unsigned long size
, realsize
, memmap_pages
;
4267 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4268 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4272 * Adjust realsize so that it accounts for how much memory
4273 * is used by this zone for memmap. This affects the watermark
4274 * and per-cpu initialisations
4277 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4278 if (realsize
>= memmap_pages
) {
4279 realsize
-= memmap_pages
;
4282 " %s zone: %lu pages used for memmap\n",
4283 zone_names
[j
], memmap_pages
);
4286 " %s zone: %lu pages exceeds realsize %lu\n",
4287 zone_names
[j
], memmap_pages
, realsize
);
4289 /* Account for reserved pages */
4290 if (j
== 0 && realsize
> dma_reserve
) {
4291 realsize
-= dma_reserve
;
4292 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4293 zone_names
[0], dma_reserve
);
4296 if (!is_highmem_idx(j
))
4297 nr_kernel_pages
+= realsize
;
4298 nr_all_pages
+= realsize
;
4300 zone
->spanned_pages
= size
;
4301 zone
->present_pages
= realsize
;
4304 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4306 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4308 zone
->name
= zone_names
[j
];
4309 spin_lock_init(&zone
->lock
);
4310 spin_lock_init(&zone
->lru_lock
);
4311 zone_seqlock_init(zone
);
4312 zone
->zone_pgdat
= pgdat
;
4314 zone_pcp_init(zone
);
4316 INIT_LIST_HEAD(&zone
->lruvec
.lists
[lru
]);
4317 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4318 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4319 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4320 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4321 zap_zone_vm_stats(zone
);
4326 set_pageblock_order(pageblock_default_order());
4327 setup_usemap(pgdat
, zone
, size
);
4328 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4329 size
, MEMMAP_EARLY
);
4331 memmap_init(size
, nid
, j
, zone_start_pfn
);
4332 zone_start_pfn
+= size
;
4336 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4338 /* Skip empty nodes */
4339 if (!pgdat
->node_spanned_pages
)
4342 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4343 /* ia64 gets its own node_mem_map, before this, without bootmem */
4344 if (!pgdat
->node_mem_map
) {
4345 unsigned long size
, start
, end
;
4349 * The zone's endpoints aren't required to be MAX_ORDER
4350 * aligned but the node_mem_map endpoints must be in order
4351 * for the buddy allocator to function correctly.
4353 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4354 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4355 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4356 size
= (end
- start
) * sizeof(struct page
);
4357 map
= alloc_remap(pgdat
->node_id
, size
);
4359 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4360 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4362 #ifndef CONFIG_NEED_MULTIPLE_NODES
4364 * With no DISCONTIG, the global mem_map is just set as node 0's
4366 if (pgdat
== NODE_DATA(0)) {
4367 mem_map
= NODE_DATA(0)->node_mem_map
;
4368 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4369 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4370 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4371 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4374 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4377 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4378 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4380 pg_data_t
*pgdat
= NODE_DATA(nid
);
4382 pgdat
->node_id
= nid
;
4383 pgdat
->node_start_pfn
= node_start_pfn
;
4384 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4386 alloc_node_mem_map(pgdat
);
4387 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4388 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4389 nid
, (unsigned long)pgdat
,
4390 (unsigned long)pgdat
->node_mem_map
);
4393 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4396 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4398 #if MAX_NUMNODES > 1
4400 * Figure out the number of possible node ids.
4402 static void __init
setup_nr_node_ids(void)
4405 unsigned int highest
= 0;
4407 for_each_node_mask(node
, node_possible_map
)
4409 nr_node_ids
= highest
+ 1;
4412 static inline void setup_nr_node_ids(void)
4418 * node_map_pfn_alignment - determine the maximum internode alignment
4420 * This function should be called after node map is populated and sorted.
4421 * It calculates the maximum power of two alignment which can distinguish
4424 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4425 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4426 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4427 * shifted, 1GiB is enough and this function will indicate so.
4429 * This is used to test whether pfn -> nid mapping of the chosen memory
4430 * model has fine enough granularity to avoid incorrect mapping for the
4431 * populated node map.
4433 * Returns the determined alignment in pfn's. 0 if there is no alignment
4434 * requirement (single node).
4436 unsigned long __init
node_map_pfn_alignment(void)
4438 unsigned long accl_mask
= 0, last_end
= 0;
4439 unsigned long start
, end
, mask
;
4443 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4444 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4451 * Start with a mask granular enough to pin-point to the
4452 * start pfn and tick off bits one-by-one until it becomes
4453 * too coarse to separate the current node from the last.
4455 mask
= ~((1 << __ffs(start
)) - 1);
4456 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4459 /* accumulate all internode masks */
4463 /* convert mask to number of pages */
4464 return ~accl_mask
+ 1;
4467 /* Find the lowest pfn for a node */
4468 static unsigned long __init
find_min_pfn_for_node(int nid
)
4470 unsigned long min_pfn
= ULONG_MAX
;
4471 unsigned long start_pfn
;
4474 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
4475 min_pfn
= min(min_pfn
, start_pfn
);
4477 if (min_pfn
== ULONG_MAX
) {
4479 "Could not find start_pfn for node %d\n", nid
);
4487 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4489 * It returns the minimum PFN based on information provided via
4490 * add_active_range().
4492 unsigned long __init
find_min_pfn_with_active_regions(void)
4494 return find_min_pfn_for_node(MAX_NUMNODES
);
4498 * early_calculate_totalpages()
4499 * Sum pages in active regions for movable zone.
4500 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4502 static unsigned long __init
early_calculate_totalpages(void)
4504 unsigned long totalpages
= 0;
4505 unsigned long start_pfn
, end_pfn
;
4508 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
4509 unsigned long pages
= end_pfn
- start_pfn
;
4511 totalpages
+= pages
;
4513 node_set_state(nid
, N_HIGH_MEMORY
);
4519 * Find the PFN the Movable zone begins in each node. Kernel memory
4520 * is spread evenly between nodes as long as the nodes have enough
4521 * memory. When they don't, some nodes will have more kernelcore than
4524 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4527 unsigned long usable_startpfn
;
4528 unsigned long kernelcore_node
, kernelcore_remaining
;
4529 /* save the state before borrow the nodemask */
4530 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4531 unsigned long totalpages
= early_calculate_totalpages();
4532 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4535 * If movablecore was specified, calculate what size of
4536 * kernelcore that corresponds so that memory usable for
4537 * any allocation type is evenly spread. If both kernelcore
4538 * and movablecore are specified, then the value of kernelcore
4539 * will be used for required_kernelcore if it's greater than
4540 * what movablecore would have allowed.
4542 if (required_movablecore
) {
4543 unsigned long corepages
;
4546 * Round-up so that ZONE_MOVABLE is at least as large as what
4547 * was requested by the user
4549 required_movablecore
=
4550 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4551 corepages
= totalpages
- required_movablecore
;
4553 required_kernelcore
= max(required_kernelcore
, corepages
);
4556 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4557 if (!required_kernelcore
)
4560 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4561 find_usable_zone_for_movable();
4562 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4565 /* Spread kernelcore memory as evenly as possible throughout nodes */
4566 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4567 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4568 unsigned long start_pfn
, end_pfn
;
4571 * Recalculate kernelcore_node if the division per node
4572 * now exceeds what is necessary to satisfy the requested
4573 * amount of memory for the kernel
4575 if (required_kernelcore
< kernelcore_node
)
4576 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4579 * As the map is walked, we track how much memory is usable
4580 * by the kernel using kernelcore_remaining. When it is
4581 * 0, the rest of the node is usable by ZONE_MOVABLE
4583 kernelcore_remaining
= kernelcore_node
;
4585 /* Go through each range of PFNs within this node */
4586 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4587 unsigned long size_pages
;
4589 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
4590 if (start_pfn
>= end_pfn
)
4593 /* Account for what is only usable for kernelcore */
4594 if (start_pfn
< usable_startpfn
) {
4595 unsigned long kernel_pages
;
4596 kernel_pages
= min(end_pfn
, usable_startpfn
)
4599 kernelcore_remaining
-= min(kernel_pages
,
4600 kernelcore_remaining
);
4601 required_kernelcore
-= min(kernel_pages
,
4602 required_kernelcore
);
4604 /* Continue if range is now fully accounted */
4605 if (end_pfn
<= usable_startpfn
) {
4608 * Push zone_movable_pfn to the end so
4609 * that if we have to rebalance
4610 * kernelcore across nodes, we will
4611 * not double account here
4613 zone_movable_pfn
[nid
] = end_pfn
;
4616 start_pfn
= usable_startpfn
;
4620 * The usable PFN range for ZONE_MOVABLE is from
4621 * start_pfn->end_pfn. Calculate size_pages as the
4622 * number of pages used as kernelcore
4624 size_pages
= end_pfn
- start_pfn
;
4625 if (size_pages
> kernelcore_remaining
)
4626 size_pages
= kernelcore_remaining
;
4627 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4630 * Some kernelcore has been met, update counts and
4631 * break if the kernelcore for this node has been
4634 required_kernelcore
-= min(required_kernelcore
,
4636 kernelcore_remaining
-= size_pages
;
4637 if (!kernelcore_remaining
)
4643 * If there is still required_kernelcore, we do another pass with one
4644 * less node in the count. This will push zone_movable_pfn[nid] further
4645 * along on the nodes that still have memory until kernelcore is
4649 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4652 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4653 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4654 zone_movable_pfn
[nid
] =
4655 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4658 /* restore the node_state */
4659 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4662 /* Any regular memory on that node ? */
4663 static void check_for_regular_memory(pg_data_t
*pgdat
)
4665 #ifdef CONFIG_HIGHMEM
4666 enum zone_type zone_type
;
4668 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4669 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4670 if (zone
->present_pages
) {
4671 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4679 * free_area_init_nodes - Initialise all pg_data_t and zone data
4680 * @max_zone_pfn: an array of max PFNs for each zone
4682 * This will call free_area_init_node() for each active node in the system.
4683 * Using the page ranges provided by add_active_range(), the size of each
4684 * zone in each node and their holes is calculated. If the maximum PFN
4685 * between two adjacent zones match, it is assumed that the zone is empty.
4686 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4687 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4688 * starts where the previous one ended. For example, ZONE_DMA32 starts
4689 * at arch_max_dma_pfn.
4691 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4693 unsigned long start_pfn
, end_pfn
;
4696 /* Record where the zone boundaries are */
4697 memset(arch_zone_lowest_possible_pfn
, 0,
4698 sizeof(arch_zone_lowest_possible_pfn
));
4699 memset(arch_zone_highest_possible_pfn
, 0,
4700 sizeof(arch_zone_highest_possible_pfn
));
4701 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4702 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4703 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4704 if (i
== ZONE_MOVABLE
)
4706 arch_zone_lowest_possible_pfn
[i
] =
4707 arch_zone_highest_possible_pfn
[i
-1];
4708 arch_zone_highest_possible_pfn
[i
] =
4709 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4711 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4712 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4714 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4715 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4716 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4718 /* Print out the zone ranges */
4719 printk("Zone PFN ranges:\n");
4720 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4721 if (i
== ZONE_MOVABLE
)
4723 printk(" %-8s ", zone_names
[i
]);
4724 if (arch_zone_lowest_possible_pfn
[i
] ==
4725 arch_zone_highest_possible_pfn
[i
])
4728 printk("%0#10lx -> %0#10lx\n",
4729 arch_zone_lowest_possible_pfn
[i
],
4730 arch_zone_highest_possible_pfn
[i
]);
4733 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4734 printk("Movable zone start PFN for each node\n");
4735 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4736 if (zone_movable_pfn
[i
])
4737 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4740 /* Print out the early_node_map[] */
4741 printk("Early memory PFN ranges\n");
4742 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
4743 printk(" %3d: %0#10lx -> %0#10lx\n", nid
, start_pfn
, end_pfn
);
4745 /* Initialise every node */
4746 mminit_verify_pageflags_layout();
4747 setup_nr_node_ids();
4748 for_each_online_node(nid
) {
4749 pg_data_t
*pgdat
= NODE_DATA(nid
);
4750 free_area_init_node(nid
, NULL
,
4751 find_min_pfn_for_node(nid
), NULL
);
4753 /* Any memory on that node */
4754 if (pgdat
->node_present_pages
)
4755 node_set_state(nid
, N_HIGH_MEMORY
);
4756 check_for_regular_memory(pgdat
);
4760 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4762 unsigned long long coremem
;
4766 coremem
= memparse(p
, &p
);
4767 *core
= coremem
>> PAGE_SHIFT
;
4769 /* Paranoid check that UL is enough for the coremem value */
4770 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4776 * kernelcore=size sets the amount of memory for use for allocations that
4777 * cannot be reclaimed or migrated.
4779 static int __init
cmdline_parse_kernelcore(char *p
)
4781 return cmdline_parse_core(p
, &required_kernelcore
);
4785 * movablecore=size sets the amount of memory for use for allocations that
4786 * can be reclaimed or migrated.
4788 static int __init
cmdline_parse_movablecore(char *p
)
4790 return cmdline_parse_core(p
, &required_movablecore
);
4793 early_param("kernelcore", cmdline_parse_kernelcore
);
4794 early_param("movablecore", cmdline_parse_movablecore
);
4796 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4799 * set_dma_reserve - set the specified number of pages reserved in the first zone
4800 * @new_dma_reserve: The number of pages to mark reserved
4802 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4803 * In the DMA zone, a significant percentage may be consumed by kernel image
4804 * and other unfreeable allocations which can skew the watermarks badly. This
4805 * function may optionally be used to account for unfreeable pages in the
4806 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4807 * smaller per-cpu batchsize.
4809 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4811 dma_reserve
= new_dma_reserve
;
4814 void __init
free_area_init(unsigned long *zones_size
)
4816 free_area_init_node(0, zones_size
,
4817 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4820 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4821 unsigned long action
, void *hcpu
)
4823 int cpu
= (unsigned long)hcpu
;
4825 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4829 * Spill the event counters of the dead processor
4830 * into the current processors event counters.
4831 * This artificially elevates the count of the current
4834 vm_events_fold_cpu(cpu
);
4837 * Zero the differential counters of the dead processor
4838 * so that the vm statistics are consistent.
4840 * This is only okay since the processor is dead and cannot
4841 * race with what we are doing.
4843 refresh_cpu_vm_stats(cpu
);
4848 void __init
page_alloc_init(void)
4850 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4854 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4855 * or min_free_kbytes changes.
4857 static void calculate_totalreserve_pages(void)
4859 struct pglist_data
*pgdat
;
4860 unsigned long reserve_pages
= 0;
4861 enum zone_type i
, j
;
4863 for_each_online_pgdat(pgdat
) {
4864 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4865 struct zone
*zone
= pgdat
->node_zones
+ i
;
4866 unsigned long max
= 0;
4868 /* Find valid and maximum lowmem_reserve in the zone */
4869 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4870 if (zone
->lowmem_reserve
[j
] > max
)
4871 max
= zone
->lowmem_reserve
[j
];
4874 /* we treat the high watermark as reserved pages. */
4875 max
+= high_wmark_pages(zone
);
4877 if (max
> zone
->present_pages
)
4878 max
= zone
->present_pages
;
4879 reserve_pages
+= max
;
4881 * Lowmem reserves are not available to
4882 * GFP_HIGHUSER page cache allocations and
4883 * kswapd tries to balance zones to their high
4884 * watermark. As a result, neither should be
4885 * regarded as dirtyable memory, to prevent a
4886 * situation where reclaim has to clean pages
4887 * in order to balance the zones.
4889 zone
->dirty_balance_reserve
= max
;
4892 dirty_balance_reserve
= reserve_pages
;
4893 totalreserve_pages
= reserve_pages
;
4897 * setup_per_zone_lowmem_reserve - called whenever
4898 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4899 * has a correct pages reserved value, so an adequate number of
4900 * pages are left in the zone after a successful __alloc_pages().
4902 static void setup_per_zone_lowmem_reserve(void)
4904 struct pglist_data
*pgdat
;
4905 enum zone_type j
, idx
;
4907 for_each_online_pgdat(pgdat
) {
4908 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4909 struct zone
*zone
= pgdat
->node_zones
+ j
;
4910 unsigned long present_pages
= zone
->present_pages
;
4912 zone
->lowmem_reserve
[j
] = 0;
4916 struct zone
*lower_zone
;
4920 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4921 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4923 lower_zone
= pgdat
->node_zones
+ idx
;
4924 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4925 sysctl_lowmem_reserve_ratio
[idx
];
4926 present_pages
+= lower_zone
->present_pages
;
4931 /* update totalreserve_pages */
4932 calculate_totalreserve_pages();
4936 * setup_per_zone_wmarks - called when min_free_kbytes changes
4937 * or when memory is hot-{added|removed}
4939 * Ensures that the watermark[min,low,high] values for each zone are set
4940 * correctly with respect to min_free_kbytes.
4942 void setup_per_zone_wmarks(void)
4944 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4945 unsigned long lowmem_pages
= 0;
4947 unsigned long flags
;
4949 /* Calculate total number of !ZONE_HIGHMEM pages */
4950 for_each_zone(zone
) {
4951 if (!is_highmem(zone
))
4952 lowmem_pages
+= zone
->present_pages
;
4955 for_each_zone(zone
) {
4958 spin_lock_irqsave(&zone
->lock
, flags
);
4959 tmp
= (u64
)pages_min
* zone
->present_pages
;
4960 do_div(tmp
, lowmem_pages
);
4961 if (is_highmem(zone
)) {
4963 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4964 * need highmem pages, so cap pages_min to a small
4967 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4968 * deltas controls asynch page reclaim, and so should
4969 * not be capped for highmem.
4973 min_pages
= zone
->present_pages
/ 1024;
4974 if (min_pages
< SWAP_CLUSTER_MAX
)
4975 min_pages
= SWAP_CLUSTER_MAX
;
4976 if (min_pages
> 128)
4978 zone
->watermark
[WMARK_MIN
] = min_pages
;
4981 * If it's a lowmem zone, reserve a number of pages
4982 * proportionate to the zone's size.
4984 zone
->watermark
[WMARK_MIN
] = tmp
;
4987 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4988 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4989 setup_zone_migrate_reserve(zone
);
4990 spin_unlock_irqrestore(&zone
->lock
, flags
);
4993 /* update totalreserve_pages */
4994 calculate_totalreserve_pages();
4998 * The inactive anon list should be small enough that the VM never has to
4999 * do too much work, but large enough that each inactive page has a chance
5000 * to be referenced again before it is swapped out.
5002 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5003 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5004 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5005 * the anonymous pages are kept on the inactive list.
5008 * memory ratio inactive anon
5009 * -------------------------------------
5018 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5020 unsigned int gb
, ratio
;
5022 /* Zone size in gigabytes */
5023 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5025 ratio
= int_sqrt(10 * gb
);
5029 zone
->inactive_ratio
= ratio
;
5032 static void __meminit
setup_per_zone_inactive_ratio(void)
5037 calculate_zone_inactive_ratio(zone
);
5041 * Initialise min_free_kbytes.
5043 * For small machines we want it small (128k min). For large machines
5044 * we want it large (64MB max). But it is not linear, because network
5045 * bandwidth does not increase linearly with machine size. We use
5047 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5048 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5064 int __meminit
init_per_zone_wmark_min(void)
5066 unsigned long lowmem_kbytes
;
5068 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5070 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5071 if (min_free_kbytes
< 128)
5072 min_free_kbytes
= 128;
5073 if (min_free_kbytes
> 65536)
5074 min_free_kbytes
= 65536;
5075 setup_per_zone_wmarks();
5076 refresh_zone_stat_thresholds();
5077 setup_per_zone_lowmem_reserve();
5078 setup_per_zone_inactive_ratio();
5081 module_init(init_per_zone_wmark_min
)
5084 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5085 * that we can call two helper functions whenever min_free_kbytes
5088 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5089 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5091 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5093 setup_per_zone_wmarks();
5098 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5099 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5104 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5109 zone
->min_unmapped_pages
= (zone
->present_pages
*
5110 sysctl_min_unmapped_ratio
) / 100;
5114 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5115 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5120 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5125 zone
->min_slab_pages
= (zone
->present_pages
*
5126 sysctl_min_slab_ratio
) / 100;
5132 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5133 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5134 * whenever sysctl_lowmem_reserve_ratio changes.
5136 * The reserve ratio obviously has absolutely no relation with the
5137 * minimum watermarks. The lowmem reserve ratio can only make sense
5138 * if in function of the boot time zone sizes.
5140 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5141 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5143 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5144 setup_per_zone_lowmem_reserve();
5149 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5150 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5151 * can have before it gets flushed back to buddy allocator.
5154 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5155 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5161 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5162 if (!write
|| (ret
== -EINVAL
))
5164 for_each_populated_zone(zone
) {
5165 for_each_possible_cpu(cpu
) {
5167 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5168 setup_pagelist_highmark(
5169 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5175 int hashdist
= HASHDIST_DEFAULT
;
5178 static int __init
set_hashdist(char *str
)
5182 hashdist
= simple_strtoul(str
, &str
, 0);
5185 __setup("hashdist=", set_hashdist
);
5189 * allocate a large system hash table from bootmem
5190 * - it is assumed that the hash table must contain an exact power-of-2
5191 * quantity of entries
5192 * - limit is the number of hash buckets, not the total allocation size
5194 void *__init
alloc_large_system_hash(const char *tablename
,
5195 unsigned long bucketsize
,
5196 unsigned long numentries
,
5199 unsigned int *_hash_shift
,
5200 unsigned int *_hash_mask
,
5201 unsigned long limit
)
5203 unsigned long long max
= limit
;
5204 unsigned long log2qty
, size
;
5207 /* allow the kernel cmdline to have a say */
5209 /* round applicable memory size up to nearest megabyte */
5210 numentries
= nr_kernel_pages
;
5211 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5212 numentries
>>= 20 - PAGE_SHIFT
;
5213 numentries
<<= 20 - PAGE_SHIFT
;
5215 /* limit to 1 bucket per 2^scale bytes of low memory */
5216 if (scale
> PAGE_SHIFT
)
5217 numentries
>>= (scale
- PAGE_SHIFT
);
5219 numentries
<<= (PAGE_SHIFT
- scale
);
5221 /* Make sure we've got at least a 0-order allocation.. */
5222 if (unlikely(flags
& HASH_SMALL
)) {
5223 /* Makes no sense without HASH_EARLY */
5224 WARN_ON(!(flags
& HASH_EARLY
));
5225 if (!(numentries
>> *_hash_shift
)) {
5226 numentries
= 1UL << *_hash_shift
;
5227 BUG_ON(!numentries
);
5229 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5230 numentries
= PAGE_SIZE
/ bucketsize
;
5232 numentries
= roundup_pow_of_two(numentries
);
5234 /* limit allocation size to 1/16 total memory by default */
5236 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5237 do_div(max
, bucketsize
);
5240 if (numentries
> max
)
5243 log2qty
= ilog2(numentries
);
5246 size
= bucketsize
<< log2qty
;
5247 if (flags
& HASH_EARLY
)
5248 table
= alloc_bootmem_nopanic(size
);
5250 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5253 * If bucketsize is not a power-of-two, we may free
5254 * some pages at the end of hash table which
5255 * alloc_pages_exact() automatically does
5257 if (get_order(size
) < MAX_ORDER
) {
5258 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5259 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5262 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5265 panic("Failed to allocate %s hash table\n", tablename
);
5267 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5270 ilog2(size
) - PAGE_SHIFT
,
5274 *_hash_shift
= log2qty
;
5276 *_hash_mask
= (1 << log2qty
) - 1;
5281 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5282 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5285 #ifdef CONFIG_SPARSEMEM
5286 return __pfn_to_section(pfn
)->pageblock_flags
;
5288 return zone
->pageblock_flags
;
5289 #endif /* CONFIG_SPARSEMEM */
5292 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5294 #ifdef CONFIG_SPARSEMEM
5295 pfn
&= (PAGES_PER_SECTION
-1);
5296 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5298 pfn
= pfn
- zone
->zone_start_pfn
;
5299 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5300 #endif /* CONFIG_SPARSEMEM */
5304 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5305 * @page: The page within the block of interest
5306 * @start_bitidx: The first bit of interest to retrieve
5307 * @end_bitidx: The last bit of interest
5308 * returns pageblock_bits flags
5310 unsigned long get_pageblock_flags_group(struct page
*page
,
5311 int start_bitidx
, int end_bitidx
)
5314 unsigned long *bitmap
;
5315 unsigned long pfn
, bitidx
;
5316 unsigned long flags
= 0;
5317 unsigned long value
= 1;
5319 zone
= page_zone(page
);
5320 pfn
= page_to_pfn(page
);
5321 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5322 bitidx
= pfn_to_bitidx(zone
, pfn
);
5324 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5325 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5332 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5333 * @page: The page within the block of interest
5334 * @start_bitidx: The first bit of interest
5335 * @end_bitidx: The last bit of interest
5336 * @flags: The flags to set
5338 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5339 int start_bitidx
, int end_bitidx
)
5342 unsigned long *bitmap
;
5343 unsigned long pfn
, bitidx
;
5344 unsigned long value
= 1;
5346 zone
= page_zone(page
);
5347 pfn
= page_to_pfn(page
);
5348 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5349 bitidx
= pfn_to_bitidx(zone
, pfn
);
5350 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5351 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5353 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5355 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5357 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5361 * This is designed as sub function...plz see page_isolation.c also.
5362 * set/clear page block's type to be ISOLATE.
5363 * page allocater never alloc memory from ISOLATE block.
5367 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5369 unsigned long pfn
, iter
, found
;
5371 * For avoiding noise data, lru_add_drain_all() should be called
5372 * If ZONE_MOVABLE, the zone never contains immobile pages
5374 if (zone_idx(zone
) == ZONE_MOVABLE
)
5377 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5380 pfn
= page_to_pfn(page
);
5381 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5382 unsigned long check
= pfn
+ iter
;
5384 if (!pfn_valid_within(check
))
5387 page
= pfn_to_page(check
);
5388 if (!page_count(page
)) {
5389 if (PageBuddy(page
))
5390 iter
+= (1 << page_order(page
)) - 1;
5396 * If there are RECLAIMABLE pages, we need to check it.
5397 * But now, memory offline itself doesn't call shrink_slab()
5398 * and it still to be fixed.
5401 * If the page is not RAM, page_count()should be 0.
5402 * we don't need more check. This is an _used_ not-movable page.
5404 * The problematic thing here is PG_reserved pages. PG_reserved
5405 * is set to both of a memory hole page and a _used_ kernel
5414 bool is_pageblock_removable_nolock(struct page
*page
)
5420 * We have to be careful here because we are iterating over memory
5421 * sections which are not zone aware so we might end up outside of
5422 * the zone but still within the section.
5423 * We have to take care about the node as well. If the node is offline
5424 * its NODE_DATA will be NULL - see page_zone.
5426 if (!node_online(page_to_nid(page
)))
5429 zone
= page_zone(page
);
5430 pfn
= page_to_pfn(page
);
5431 if (zone
->zone_start_pfn
> pfn
||
5432 zone
->zone_start_pfn
+ zone
->spanned_pages
<= pfn
)
5435 return __count_immobile_pages(zone
, page
, 0);
5438 int set_migratetype_isolate(struct page
*page
)
5441 unsigned long flags
, pfn
;
5442 struct memory_isolate_notify arg
;
5446 zone
= page_zone(page
);
5448 spin_lock_irqsave(&zone
->lock
, flags
);
5450 pfn
= page_to_pfn(page
);
5451 arg
.start_pfn
= pfn
;
5452 arg
.nr_pages
= pageblock_nr_pages
;
5453 arg
.pages_found
= 0;
5456 * It may be possible to isolate a pageblock even if the
5457 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5458 * notifier chain is used by balloon drivers to return the
5459 * number of pages in a range that are held by the balloon
5460 * driver to shrink memory. If all the pages are accounted for
5461 * by balloons, are free, or on the LRU, isolation can continue.
5462 * Later, for example, when memory hotplug notifier runs, these
5463 * pages reported as "can be isolated" should be isolated(freed)
5464 * by the balloon driver through the memory notifier chain.
5466 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5467 notifier_ret
= notifier_to_errno(notifier_ret
);
5471 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5472 * We just check MOVABLE pages.
5474 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5478 * immobile means "not-on-lru" paes. If immobile is larger than
5479 * removable-by-driver pages reported by notifier, we'll fail.
5484 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5485 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5488 spin_unlock_irqrestore(&zone
->lock
, flags
);
5494 void unset_migratetype_isolate(struct page
*page
)
5497 unsigned long flags
;
5498 zone
= page_zone(page
);
5499 spin_lock_irqsave(&zone
->lock
, flags
);
5500 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5502 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5503 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5505 spin_unlock_irqrestore(&zone
->lock
, flags
);
5508 #ifdef CONFIG_MEMORY_HOTREMOVE
5510 * All pages in the range must be isolated before calling this.
5513 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5519 unsigned long flags
;
5520 /* find the first valid pfn */
5521 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5526 zone
= page_zone(pfn_to_page(pfn
));
5527 spin_lock_irqsave(&zone
->lock
, flags
);
5529 while (pfn
< end_pfn
) {
5530 if (!pfn_valid(pfn
)) {
5534 page
= pfn_to_page(pfn
);
5535 BUG_ON(page_count(page
));
5536 BUG_ON(!PageBuddy(page
));
5537 order
= page_order(page
);
5538 #ifdef CONFIG_DEBUG_VM
5539 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5540 pfn
, 1 << order
, end_pfn
);
5542 list_del(&page
->lru
);
5543 rmv_page_order(page
);
5544 zone
->free_area
[order
].nr_free
--;
5545 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5547 for (i
= 0; i
< (1 << order
); i
++)
5548 SetPageReserved((page
+i
));
5549 pfn
+= (1 << order
);
5551 spin_unlock_irqrestore(&zone
->lock
, flags
);
5555 #ifdef CONFIG_MEMORY_FAILURE
5556 bool is_free_buddy_page(struct page
*page
)
5558 struct zone
*zone
= page_zone(page
);
5559 unsigned long pfn
= page_to_pfn(page
);
5560 unsigned long flags
;
5563 spin_lock_irqsave(&zone
->lock
, flags
);
5564 for (order
= 0; order
< MAX_ORDER
; order
++) {
5565 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5567 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5570 spin_unlock_irqrestore(&zone
->lock
, flags
);
5572 return order
< MAX_ORDER
;
5576 static struct trace_print_flags pageflag_names
[] = {
5577 {1UL << PG_locked
, "locked" },
5578 {1UL << PG_error
, "error" },
5579 {1UL << PG_referenced
, "referenced" },
5580 {1UL << PG_uptodate
, "uptodate" },
5581 {1UL << PG_dirty
, "dirty" },
5582 {1UL << PG_lru
, "lru" },
5583 {1UL << PG_active
, "active" },
5584 {1UL << PG_slab
, "slab" },
5585 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5586 {1UL << PG_arch_1
, "arch_1" },
5587 {1UL << PG_reserved
, "reserved" },
5588 {1UL << PG_private
, "private" },
5589 {1UL << PG_private_2
, "private_2" },
5590 {1UL << PG_writeback
, "writeback" },
5591 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5592 {1UL << PG_head
, "head" },
5593 {1UL << PG_tail
, "tail" },
5595 {1UL << PG_compound
, "compound" },
5597 {1UL << PG_swapcache
, "swapcache" },
5598 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5599 {1UL << PG_reclaim
, "reclaim" },
5600 {1UL << PG_swapbacked
, "swapbacked" },
5601 {1UL << PG_unevictable
, "unevictable" },
5603 {1UL << PG_mlocked
, "mlocked" },
5605 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5606 {1UL << PG_uncached
, "uncached" },
5608 #ifdef CONFIG_MEMORY_FAILURE
5609 {1UL << PG_hwpoison
, "hwpoison" },
5614 static void dump_page_flags(unsigned long flags
)
5616 const char *delim
= "";
5620 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5622 /* remove zone id */
5623 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5625 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5627 mask
= pageflag_names
[i
].mask
;
5628 if ((flags
& mask
) != mask
)
5632 printk("%s%s", delim
, pageflag_names
[i
].name
);
5636 /* check for left over flags */
5638 printk("%s%#lx", delim
, flags
);
5643 void dump_page(struct page
*page
)
5646 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5647 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5648 page
->mapping
, page
->index
);
5649 dump_page_flags(page
->flags
);
5650 mem_cgroup_print_bad_page(page
);