2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node
);
68 EXPORT_PER_CPU_SYMBOL(numa_node
);
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
78 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
83 * Array of node states.
85 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
86 [N_POSSIBLE
] = NODE_MASK_ALL
,
87 [N_ONLINE
] = { { [0] = 1UL } },
89 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
91 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
93 [N_CPU
] = { { [0] = 1UL } },
96 EXPORT_SYMBOL(node_states
);
98 unsigned long totalram_pages __read_mostly
;
99 unsigned long totalreserve_pages __read_mostly
;
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
106 unsigned long dirty_balance_reserve __read_mostly
;
108 int percpu_pagelist_fraction
;
109 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
111 #ifdef CONFIG_PM_SLEEP
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
121 static gfp_t saved_gfp_mask
;
123 void pm_restore_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex
));
126 if (saved_gfp_mask
) {
127 gfp_allowed_mask
= saved_gfp_mask
;
132 void pm_restrict_gfp_mask(void)
134 WARN_ON(!mutex_is_locked(&pm_mutex
));
135 WARN_ON(saved_gfp_mask
);
136 saved_gfp_mask
= gfp_allowed_mask
;
137 gfp_allowed_mask
&= ~GFP_IOFS
;
140 bool pm_suspended_storage(void)
142 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
146 #endif /* CONFIG_PM_SLEEP */
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly
;
152 static void __free_pages_ok(struct page
*page
, unsigned int order
);
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
165 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
166 #ifdef CONFIG_ZONE_DMA
169 #ifdef CONFIG_ZONE_DMA32
172 #ifdef CONFIG_HIGHMEM
178 EXPORT_SYMBOL(totalram_pages
);
180 static char * const zone_names
[MAX_NR_ZONES
] = {
181 #ifdef CONFIG_ZONE_DMA
184 #ifdef CONFIG_ZONE_DMA32
188 #ifdef CONFIG_HIGHMEM
194 int min_free_kbytes
= 1024;
196 static unsigned long __meminitdata nr_kernel_pages
;
197 static unsigned long __meminitdata nr_all_pages
;
198 static unsigned long __meminitdata dma_reserve
;
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
203 static unsigned long __initdata required_kernelcore
;
204 static unsigned long __initdata required_movablecore
;
205 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209 EXPORT_SYMBOL(movable_zone
);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
213 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
214 int nr_online_nodes __read_mostly
= 1;
215 EXPORT_SYMBOL(nr_node_ids
);
216 EXPORT_SYMBOL(nr_online_nodes
);
219 int page_group_by_mobility_disabled __read_mostly
;
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
226 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
229 if (unlikely(page_group_by_mobility_disabled
))
230 migratetype
= MIGRATE_UNMOVABLE
;
232 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
233 PB_migrate
, PB_migrate_end
);
236 bool oom_killer_disabled __read_mostly
;
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
243 unsigned long pfn
= page_to_pfn(page
);
246 seq
= zone_span_seqbegin(zone
);
247 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
249 else if (pfn
< zone
->zone_start_pfn
)
251 } while (zone_span_seqretry(zone
, seq
));
256 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
258 if (!pfn_valid_within(page_to_pfn(page
)))
260 if (zone
!= page_zone(page
))
266 * Temporary debugging check for pages not lying within a given zone.
268 static int bad_range(struct zone
*zone
, struct page
*page
)
270 if (page_outside_zone_boundaries(zone
, page
))
272 if (!page_is_consistent(zone
, page
))
278 static inline int bad_range(struct zone
*zone
, struct page
*page
)
284 static void bad_page(struct page
*page
)
286 static unsigned long resume
;
287 static unsigned long nr_shown
;
288 static unsigned long nr_unshown
;
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page
)) {
292 reset_page_mapcount(page
); /* remove PageBuddy */
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
300 if (nr_shown
== 60) {
301 if (time_before(jiffies
, resume
)) {
307 "BUG: Bad page state: %lu messages suppressed\n",
314 resume
= jiffies
+ 60 * HZ
;
316 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
317 current
->comm
, page_to_pfn(page
));
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page
); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE
);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page
*page
)
345 __free_pages_ok(page
, compound_order(page
));
348 void prep_compound_page(struct page
*page
, unsigned long order
)
351 int nr_pages
= 1 << order
;
353 set_compound_page_dtor(page
, free_compound_page
);
354 set_compound_order(page
, order
);
356 for (i
= 1; i
< nr_pages
; i
++) {
357 struct page
*p
= page
+ i
;
359 set_page_count(p
, 0);
360 p
->first_page
= page
;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page
*page
, unsigned long order
)
368 int nr_pages
= 1 << order
;
371 if (unlikely(compound_order(page
) != order
) ||
372 unlikely(!PageHead(page
))) {
377 __ClearPageHead(page
);
379 for (i
= 1; i
< nr_pages
; i
++) {
380 struct page
*p
= page
+ i
;
382 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
392 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
401 for (i
= 0; i
< (1 << order
); i
++)
402 clear_highpage(page
+ i
);
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder
;
408 static int __init
debug_guardpage_minorder_setup(char *buf
)
412 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
413 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
416 _debug_guardpage_minorder
= res
;
417 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
422 static inline void set_page_guard_flag(struct page
*page
)
424 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
427 static inline void clear_page_guard_flag(struct page
*page
)
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
432 static inline void set_page_guard_flag(struct page
*page
) { }
433 static inline void clear_page_guard_flag(struct page
*page
) { }
436 static inline void set_page_order(struct page
*page
, int order
)
438 set_page_private(page
, order
);
439 __SetPageBuddy(page
);
442 static inline void rmv_page_order(struct page
*page
)
444 __ClearPageBuddy(page
);
445 set_page_private(page
, 0);
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
455 * For example, if the starting buddy (buddy2) is #8 its order
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
468 return page_idx
^ (1 << order
);
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
482 * For recording page's order, we use page_private(page).
484 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
487 if (!pfn_valid_within(page_to_pfn(buddy
)))
490 if (page_zone_id(page
) != page_zone_id(buddy
))
493 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
494 VM_BUG_ON(page_count(buddy
) != 0);
498 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
499 VM_BUG_ON(page_count(buddy
) != 0);
506 * Freeing function for a buddy system allocator.
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
529 static inline void __free_one_page(struct page
*page
,
530 struct zone
*zone
, unsigned int order
,
533 unsigned long page_idx
;
534 unsigned long combined_idx
;
535 unsigned long uninitialized_var(buddy_idx
);
538 if (unlikely(PageCompound(page
)))
539 if (unlikely(destroy_compound_page(page
, order
)))
542 VM_BUG_ON(migratetype
== -1);
544 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
546 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
547 VM_BUG_ON(bad_range(zone
, page
));
549 while (order
< MAX_ORDER
-1) {
550 buddy_idx
= __find_buddy_index(page_idx
, order
);
551 buddy
= page
+ (buddy_idx
- page_idx
);
552 if (!page_is_buddy(page
, buddy
, order
))
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
558 if (page_is_guard(buddy
)) {
559 clear_page_guard_flag(buddy
);
560 set_page_private(page
, 0);
561 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
563 list_del(&buddy
->lru
);
564 zone
->free_area
[order
].nr_free
--;
565 rmv_page_order(buddy
);
567 combined_idx
= buddy_idx
& page_idx
;
568 page
= page
+ (combined_idx
- page_idx
);
569 page_idx
= combined_idx
;
572 set_page_order(page
, order
);
575 * If this is not the largest possible page, check if the buddy
576 * of the next-highest order is free. If it is, it's possible
577 * that pages are being freed that will coalesce soon. In case,
578 * that is happening, add the free page to the tail of the list
579 * so it's less likely to be used soon and more likely to be merged
580 * as a higher order page
582 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
583 struct page
*higher_page
, *higher_buddy
;
584 combined_idx
= buddy_idx
& page_idx
;
585 higher_page
= page
+ (combined_idx
- page_idx
);
586 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
587 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
588 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
589 list_add_tail(&page
->lru
,
590 &zone
->free_area
[order
].free_list
[migratetype
]);
595 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
597 zone
->free_area
[order
].nr_free
++;
601 * free_page_mlock() -- clean up attempts to free and mlocked() page.
602 * Page should not be on lru, so no need to fix that up.
603 * free_pages_check() will verify...
605 static inline void free_page_mlock(struct page
*page
)
607 __dec_zone_page_state(page
, NR_MLOCK
);
608 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
611 static inline int free_pages_check(struct page
*page
)
613 if (unlikely(page_mapcount(page
) |
614 (page
->mapping
!= NULL
) |
615 (atomic_read(&page
->_count
) != 0) |
616 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
617 (mem_cgroup_bad_page_check(page
)))) {
621 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
622 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
627 * Frees a number of pages from the PCP lists
628 * Assumes all pages on list are in same zone, and of same order.
629 * count is the number of pages to free.
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
637 static void free_pcppages_bulk(struct zone
*zone
, int count
,
638 struct per_cpu_pages
*pcp
)
644 spin_lock(&zone
->lock
);
645 zone
->all_unreclaimable
= 0;
646 zone
->pages_scanned
= 0;
650 struct list_head
*list
;
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
661 if (++migratetype
== MIGRATE_PCPTYPES
)
663 list
= &pcp
->lists
[migratetype
];
664 } while (list_empty(list
));
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free
== MIGRATE_PCPTYPES
)
668 batch_free
= to_free
;
671 page
= list_entry(list
->prev
, struct page
, lru
);
672 /* must delete as __free_one_page list manipulates */
673 list_del(&page
->lru
);
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page
, zone
, 0, page_private(page
));
676 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
677 } while (--to_free
&& --batch_free
&& !list_empty(list
));
679 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
680 spin_unlock(&zone
->lock
);
683 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
686 spin_lock(&zone
->lock
);
687 zone
->all_unreclaimable
= 0;
688 zone
->pages_scanned
= 0;
690 __free_one_page(page
, zone
, order
, migratetype
);
691 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
692 spin_unlock(&zone
->lock
);
695 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
700 trace_mm_page_free(page
, order
);
701 kmemcheck_free_shadow(page
, order
);
704 page
->mapping
= NULL
;
705 for (i
= 0; i
< (1 << order
); i
++)
706 bad
+= free_pages_check(page
+ i
);
710 if (!PageHighMem(page
)) {
711 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
712 debug_check_no_obj_freed(page_address(page
),
715 arch_free_page(page
, order
);
716 kernel_map_pages(page
, 1 << order
, 0);
721 static void __free_pages_ok(struct page
*page
, unsigned int order
)
724 int wasMlocked
= __TestClearPageMlocked(page
);
726 if (!free_pages_prepare(page
, order
))
729 local_irq_save(flags
);
730 if (unlikely(wasMlocked
))
731 free_page_mlock(page
);
732 __count_vm_events(PGFREE
, 1 << order
);
733 free_one_page(page_zone(page
), page
, order
,
734 get_pageblock_migratetype(page
));
735 local_irq_restore(flags
);
738 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
740 unsigned int nr_pages
= 1 << order
;
744 for (loop
= 0; loop
< nr_pages
; loop
++) {
745 struct page
*p
= &page
[loop
];
747 if (loop
+ 1 < nr_pages
)
749 __ClearPageReserved(p
);
750 set_page_count(p
, 0);
753 set_page_refcounted(page
);
754 __free_pages(page
, order
);
758 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759 void __init
init_cma_reserved_pageblock(struct page
*page
)
761 unsigned i
= pageblock_nr_pages
;
762 struct page
*p
= page
;
765 __ClearPageReserved(p
);
766 set_page_count(p
, 0);
769 set_page_refcounted(page
);
770 set_pageblock_migratetype(page
, MIGRATE_CMA
);
771 __free_pages(page
, pageblock_order
);
772 totalram_pages
+= pageblock_nr_pages
;
777 * The order of subdivision here is critical for the IO subsystem.
778 * Please do not alter this order without good reasons and regression
779 * testing. Specifically, as large blocks of memory are subdivided,
780 * the order in which smaller blocks are delivered depends on the order
781 * they're subdivided in this function. This is the primary factor
782 * influencing the order in which pages are delivered to the IO
783 * subsystem according to empirical testing, and this is also justified
784 * by considering the behavior of a buddy system containing a single
785 * large block of memory acted on by a series of small allocations.
786 * This behavior is a critical factor in sglist merging's success.
790 static inline void expand(struct zone
*zone
, struct page
*page
,
791 int low
, int high
, struct free_area
*area
,
794 unsigned long size
= 1 << high
;
800 VM_BUG_ON(bad_range(zone
, &page
[size
]));
802 #ifdef CONFIG_DEBUG_PAGEALLOC
803 if (high
< debug_guardpage_minorder()) {
805 * Mark as guard pages (or page), that will allow to
806 * merge back to allocator when buddy will be freed.
807 * Corresponding page table entries will not be touched,
808 * pages will stay not present in virtual address space
810 INIT_LIST_HEAD(&page
[size
].lru
);
811 set_page_guard_flag(&page
[size
]);
812 set_page_private(&page
[size
], high
);
813 /* Guard pages are not available for any usage */
814 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << high
));
818 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
820 set_page_order(&page
[size
], high
);
825 * This page is about to be returned from the page allocator
827 static inline int check_new_page(struct page
*page
)
829 if (unlikely(page_mapcount(page
) |
830 (page
->mapping
!= NULL
) |
831 (atomic_read(&page
->_count
) != 0) |
832 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
833 (mem_cgroup_bad_page_check(page
)))) {
840 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
844 for (i
= 0; i
< (1 << order
); i
++) {
845 struct page
*p
= page
+ i
;
846 if (unlikely(check_new_page(p
)))
850 set_page_private(page
, 0);
851 set_page_refcounted(page
);
853 arch_alloc_page(page
, order
);
854 kernel_map_pages(page
, 1 << order
, 1);
856 if (gfp_flags
& __GFP_ZERO
)
857 prep_zero_page(page
, order
, gfp_flags
);
859 if (order
&& (gfp_flags
& __GFP_COMP
))
860 prep_compound_page(page
, order
);
866 * Go through the free lists for the given migratetype and remove
867 * the smallest available page from the freelists
870 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
873 unsigned int current_order
;
874 struct free_area
* area
;
877 /* Find a page of the appropriate size in the preferred list */
878 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
879 area
= &(zone
->free_area
[current_order
]);
880 if (list_empty(&area
->free_list
[migratetype
]))
883 page
= list_entry(area
->free_list
[migratetype
].next
,
885 list_del(&page
->lru
);
886 rmv_page_order(page
);
888 expand(zone
, page
, order
, current_order
, area
, migratetype
);
897 * This array describes the order lists are fallen back to when
898 * the free lists for the desirable migrate type are depleted
900 static int fallbacks
[MIGRATE_TYPES
][4] = {
901 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
902 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
904 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
905 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
907 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
909 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
910 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
914 * Move the free pages in a range to the free lists of the requested type.
915 * Note that start_page and end_pages are not aligned on a pageblock
916 * boundary. If alignment is required, use move_freepages_block()
918 static int move_freepages(struct zone
*zone
,
919 struct page
*start_page
, struct page
*end_page
,
926 #ifndef CONFIG_HOLES_IN_ZONE
928 * page_zone is not safe to call in this context when
929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 * anyway as we check zone boundaries in move_freepages_block().
931 * Remove at a later date when no bug reports exist related to
932 * grouping pages by mobility
934 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
937 for (page
= start_page
; page
<= end_page
;) {
938 /* Make sure we are not inadvertently changing nodes */
939 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
941 if (!pfn_valid_within(page_to_pfn(page
))) {
946 if (!PageBuddy(page
)) {
951 order
= page_order(page
);
952 list_move(&page
->lru
,
953 &zone
->free_area
[order
].free_list
[migratetype
]);
955 pages_moved
+= 1 << order
;
961 int move_freepages_block(struct zone
*zone
, struct page
*page
,
964 unsigned long start_pfn
, end_pfn
;
965 struct page
*start_page
, *end_page
;
967 start_pfn
= page_to_pfn(page
);
968 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
969 start_page
= pfn_to_page(start_pfn
);
970 end_page
= start_page
+ pageblock_nr_pages
- 1;
971 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
973 /* Do not cross zone boundaries */
974 if (start_pfn
< zone
->zone_start_pfn
)
976 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
979 return move_freepages(zone
, start_page
, end_page
, migratetype
);
982 static void change_pageblock_range(struct page
*pageblock_page
,
983 int start_order
, int migratetype
)
985 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
987 while (nr_pageblocks
--) {
988 set_pageblock_migratetype(pageblock_page
, migratetype
);
989 pageblock_page
+= pageblock_nr_pages
;
993 /* Remove an element from the buddy allocator from the fallback list */
994 static inline struct page
*
995 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
997 struct free_area
* area
;
1002 /* Find the largest possible block of pages in the other list */
1003 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
1006 migratetype
= fallbacks
[start_migratetype
][i
];
1008 /* MIGRATE_RESERVE handled later if necessary */
1009 if (migratetype
== MIGRATE_RESERVE
)
1012 area
= &(zone
->free_area
[current_order
]);
1013 if (list_empty(&area
->free_list
[migratetype
]))
1016 page
= list_entry(area
->free_list
[migratetype
].next
,
1021 * If breaking a large block of pages, move all free
1022 * pages to the preferred allocation list. If falling
1023 * back for a reclaimable kernel allocation, be more
1024 * aggressive about taking ownership of free pages
1026 * On the other hand, never change migration
1027 * type of MIGRATE_CMA pageblocks nor move CMA
1028 * pages on different free lists. We don't
1029 * want unmovable pages to be allocated from
1030 * MIGRATE_CMA areas.
1032 if (!is_migrate_cma(migratetype
) &&
1033 (unlikely(current_order
>= pageblock_order
/ 2) ||
1034 start_migratetype
== MIGRATE_RECLAIMABLE
||
1035 page_group_by_mobility_disabled
)) {
1037 pages
= move_freepages_block(zone
, page
,
1040 /* Claim the whole block if over half of it is free */
1041 if (pages
>= (1 << (pageblock_order
-1)) ||
1042 page_group_by_mobility_disabled
)
1043 set_pageblock_migratetype(page
,
1046 migratetype
= start_migratetype
;
1049 /* Remove the page from the freelists */
1050 list_del(&page
->lru
);
1051 rmv_page_order(page
);
1053 /* Take ownership for orders >= pageblock_order */
1054 if (current_order
>= pageblock_order
&&
1055 !is_migrate_cma(migratetype
))
1056 change_pageblock_range(page
, current_order
,
1059 expand(zone
, page
, order
, current_order
, area
,
1060 is_migrate_cma(migratetype
)
1061 ? migratetype
: start_migratetype
);
1063 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1064 start_migratetype
, migratetype
);
1074 * Do the hard work of removing an element from the buddy allocator.
1075 * Call me with the zone->lock already held.
1077 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1083 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1085 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1086 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 * is used because __rmqueue_smallest is an inline function
1091 * and we want just one call site
1094 migratetype
= MIGRATE_RESERVE
;
1099 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1104 * Obtain a specified number of elements from the buddy allocator, all under
1105 * a single hold of the lock, for efficiency. Add them to the supplied list.
1106 * Returns the number of new pages which were placed at *list.
1108 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1109 unsigned long count
, struct list_head
*list
,
1110 int migratetype
, int cold
)
1112 int mt
= migratetype
, i
;
1114 spin_lock(&zone
->lock
);
1115 for (i
= 0; i
< count
; ++i
) {
1116 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1117 if (unlikely(page
== NULL
))
1121 * Split buddy pages returned by expand() are received here
1122 * in physical page order. The page is added to the callers and
1123 * list and the list head then moves forward. From the callers
1124 * perspective, the linked list is ordered by page number in
1125 * some conditions. This is useful for IO devices that can
1126 * merge IO requests if the physical pages are ordered
1129 if (likely(cold
== 0))
1130 list_add(&page
->lru
, list
);
1132 list_add_tail(&page
->lru
, list
);
1133 if (IS_ENABLED(CONFIG_CMA
)) {
1134 mt
= get_pageblock_migratetype(page
);
1135 if (!is_migrate_cma(mt
) && mt
!= MIGRATE_ISOLATE
)
1138 set_page_private(page
, mt
);
1141 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1142 spin_unlock(&zone
->lock
);
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
1155 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1157 unsigned long flags
;
1160 local_irq_save(flags
);
1161 if (pcp
->count
>= pcp
->batch
)
1162 to_drain
= pcp
->batch
;
1164 to_drain
= pcp
->count
;
1166 free_pcppages_bulk(zone
, to_drain
, pcp
);
1167 pcp
->count
-= to_drain
;
1169 local_irq_restore(flags
);
1174 * Drain pages of the indicated processor.
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1180 static void drain_pages(unsigned int cpu
)
1182 unsigned long flags
;
1185 for_each_populated_zone(zone
) {
1186 struct per_cpu_pageset
*pset
;
1187 struct per_cpu_pages
*pcp
;
1189 local_irq_save(flags
);
1190 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1194 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1197 local_irq_restore(flags
);
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1204 void drain_local_pages(void *arg
)
1206 drain_pages(smp_processor_id());
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
1218 void drain_all_pages(void)
1221 struct per_cpu_pageset
*pcp
;
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1228 static cpumask_t cpus_with_pcps
;
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1236 for_each_online_cpu(cpu
) {
1237 bool has_pcps
= false;
1238 for_each_populated_zone(zone
) {
1239 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1240 if (pcp
->pcp
.count
) {
1246 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1248 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1250 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1253 #ifdef CONFIG_HIBERNATION
1255 void mark_free_pages(struct zone
*zone
)
1257 unsigned long pfn
, max_zone_pfn
;
1258 unsigned long flags
;
1260 struct list_head
*curr
;
1262 if (!zone
->spanned_pages
)
1265 spin_lock_irqsave(&zone
->lock
, flags
);
1267 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1268 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1269 if (pfn_valid(pfn
)) {
1270 struct page
*page
= pfn_to_page(pfn
);
1272 if (!swsusp_page_is_forbidden(page
))
1273 swsusp_unset_page_free(page
);
1276 for_each_migratetype_order(order
, t
) {
1277 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1280 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1281 for (i
= 0; i
< (1UL << order
); i
++)
1282 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1285 spin_unlock_irqrestore(&zone
->lock
, flags
);
1287 #endif /* CONFIG_PM */
1290 * Free a 0-order page
1291 * cold == 1 ? free a cold page : free a hot page
1293 void free_hot_cold_page(struct page
*page
, int cold
)
1295 struct zone
*zone
= page_zone(page
);
1296 struct per_cpu_pages
*pcp
;
1297 unsigned long flags
;
1299 int wasMlocked
= __TestClearPageMlocked(page
);
1301 if (!free_pages_prepare(page
, 0))
1304 migratetype
= get_pageblock_migratetype(page
);
1305 set_page_private(page
, migratetype
);
1306 local_irq_save(flags
);
1307 if (unlikely(wasMlocked
))
1308 free_page_mlock(page
);
1309 __count_vm_event(PGFREE
);
1312 * We only track unmovable, reclaimable and movable on pcp lists.
1313 * Free ISOLATE pages back to the allocator because they are being
1314 * offlined but treat RESERVE as movable pages so we can get those
1315 * areas back if necessary. Otherwise, we may have to free
1316 * excessively into the page allocator
1318 if (migratetype
>= MIGRATE_PCPTYPES
) {
1319 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1320 free_one_page(zone
, page
, 0, migratetype
);
1323 migratetype
= MIGRATE_MOVABLE
;
1326 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1328 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1330 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1332 if (pcp
->count
>= pcp
->high
) {
1333 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1334 pcp
->count
-= pcp
->batch
;
1338 local_irq_restore(flags
);
1342 * Free a list of 0-order pages
1344 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1346 struct page
*page
, *next
;
1348 list_for_each_entry_safe(page
, next
, list
, lru
) {
1349 trace_mm_page_free_batched(page
, cold
);
1350 free_hot_cold_page(page
, cold
);
1355 * split_page takes a non-compound higher-order page, and splits it into
1356 * n (1<<order) sub-pages: page[0..n]
1357 * Each sub-page must be freed individually.
1359 * Note: this is probably too low level an operation for use in drivers.
1360 * Please consult with lkml before using this in your driver.
1362 void split_page(struct page
*page
, unsigned int order
)
1366 VM_BUG_ON(PageCompound(page
));
1367 VM_BUG_ON(!page_count(page
));
1369 #ifdef CONFIG_KMEMCHECK
1371 * Split shadow pages too, because free(page[0]) would
1372 * otherwise free the whole shadow.
1374 if (kmemcheck_page_is_tracked(page
))
1375 split_page(virt_to_page(page
[0].shadow
), order
);
1378 for (i
= 1; i
< (1 << order
); i
++)
1379 set_page_refcounted(page
+ i
);
1383 * Similar to the split_page family of functions except that the page
1384 * required at the given order and being isolated now to prevent races
1385 * with parallel allocators
1387 int capture_free_page(struct page
*page
, int alloc_order
, int migratetype
)
1390 unsigned long watermark
;
1393 BUG_ON(!PageBuddy(page
));
1395 zone
= page_zone(page
);
1396 order
= page_order(page
);
1398 /* Obey watermarks as if the page was being allocated */
1399 watermark
= low_wmark_pages(zone
) + (1 << order
);
1400 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1403 /* Remove page from free list */
1404 list_del(&page
->lru
);
1405 zone
->free_area
[order
].nr_free
--;
1406 rmv_page_order(page
);
1407 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1409 if (alloc_order
!= order
)
1410 expand(zone
, page
, alloc_order
, order
,
1411 &zone
->free_area
[order
], migratetype
);
1413 /* Set the pageblock if the captured page is at least a pageblock */
1414 if (order
>= pageblock_order
- 1) {
1415 struct page
*endpage
= page
+ (1 << order
) - 1;
1416 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1417 int mt
= get_pageblock_migratetype(page
);
1418 if (mt
!= MIGRATE_ISOLATE
&& !is_migrate_cma(mt
))
1419 set_pageblock_migratetype(page
,
1424 return 1UL << order
;
1428 * Similar to split_page except the page is already free. As this is only
1429 * being used for migration, the migratetype of the block also changes.
1430 * As this is called with interrupts disabled, the caller is responsible
1431 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1434 * Note: this is probably too low level an operation for use in drivers.
1435 * Please consult with lkml before using this in your driver.
1437 int split_free_page(struct page
*page
)
1442 BUG_ON(!PageBuddy(page
));
1443 order
= page_order(page
);
1445 nr_pages
= capture_free_page(page
, order
, 0);
1449 /* Split into individual pages */
1450 set_page_refcounted(page
);
1451 split_page(page
, order
);
1456 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1457 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1461 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1462 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1465 unsigned long flags
;
1467 int cold
= !!(gfp_flags
& __GFP_COLD
);
1470 if (likely(order
== 0)) {
1471 struct per_cpu_pages
*pcp
;
1472 struct list_head
*list
;
1474 local_irq_save(flags
);
1475 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1476 list
= &pcp
->lists
[migratetype
];
1477 if (list_empty(list
)) {
1478 pcp
->count
+= rmqueue_bulk(zone
, 0,
1481 if (unlikely(list_empty(list
)))
1486 page
= list_entry(list
->prev
, struct page
, lru
);
1488 page
= list_entry(list
->next
, struct page
, lru
);
1490 list_del(&page
->lru
);
1493 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1495 * __GFP_NOFAIL is not to be used in new code.
1497 * All __GFP_NOFAIL callers should be fixed so that they
1498 * properly detect and handle allocation failures.
1500 * We most definitely don't want callers attempting to
1501 * allocate greater than order-1 page units with
1504 WARN_ON_ONCE(order
> 1);
1506 spin_lock_irqsave(&zone
->lock
, flags
);
1507 page
= __rmqueue(zone
, order
, migratetype
);
1508 spin_unlock(&zone
->lock
);
1511 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1514 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1515 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1516 local_irq_restore(flags
);
1518 VM_BUG_ON(bad_range(zone
, page
));
1519 if (prep_new_page(page
, order
, gfp_flags
))
1524 local_irq_restore(flags
);
1528 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1529 #define ALLOC_WMARK_MIN WMARK_MIN
1530 #define ALLOC_WMARK_LOW WMARK_LOW
1531 #define ALLOC_WMARK_HIGH WMARK_HIGH
1532 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1534 /* Mask to get the watermark bits */
1535 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1537 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1538 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1539 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1541 #ifdef CONFIG_FAIL_PAGE_ALLOC
1544 struct fault_attr attr
;
1546 u32 ignore_gfp_highmem
;
1547 u32 ignore_gfp_wait
;
1549 } fail_page_alloc
= {
1550 .attr
= FAULT_ATTR_INITIALIZER
,
1551 .ignore_gfp_wait
= 1,
1552 .ignore_gfp_highmem
= 1,
1556 static int __init
setup_fail_page_alloc(char *str
)
1558 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1560 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1562 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1564 if (order
< fail_page_alloc
.min_order
)
1566 if (gfp_mask
& __GFP_NOFAIL
)
1568 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1570 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1573 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1576 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1578 static int __init
fail_page_alloc_debugfs(void)
1580 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1583 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1584 &fail_page_alloc
.attr
);
1586 return PTR_ERR(dir
);
1588 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1589 &fail_page_alloc
.ignore_gfp_wait
))
1591 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1592 &fail_page_alloc
.ignore_gfp_highmem
))
1594 if (!debugfs_create_u32("min-order", mode
, dir
,
1595 &fail_page_alloc
.min_order
))
1600 debugfs_remove_recursive(dir
);
1605 late_initcall(fail_page_alloc_debugfs
);
1607 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1609 #else /* CONFIG_FAIL_PAGE_ALLOC */
1611 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1616 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1619 * Return true if free pages are above 'mark'. This takes into account the order
1620 * of the allocation.
1622 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1623 int classzone_idx
, int alloc_flags
, long free_pages
)
1625 /* free_pages my go negative - that's OK */
1627 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1630 free_pages
-= (1 << order
) - 1;
1631 if (alloc_flags
& ALLOC_HIGH
)
1633 if (alloc_flags
& ALLOC_HARDER
)
1636 if (free_pages
<= min
+ lowmem_reserve
)
1638 for (o
= 0; o
< order
; o
++) {
1639 /* At the next order, this order's pages become unavailable */
1640 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1642 /* Require fewer higher order pages to be free */
1645 if (free_pages
<= min
)
1651 #ifdef CONFIG_MEMORY_ISOLATION
1652 static inline unsigned long nr_zone_isolate_freepages(struct zone
*zone
)
1654 if (unlikely(zone
->nr_pageblock_isolate
))
1655 return zone
->nr_pageblock_isolate
* pageblock_nr_pages
;
1659 static inline unsigned long nr_zone_isolate_freepages(struct zone
*zone
)
1665 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1666 int classzone_idx
, int alloc_flags
)
1668 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1669 zone_page_state(z
, NR_FREE_PAGES
));
1672 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1673 int classzone_idx
, int alloc_flags
)
1675 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1677 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1678 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1681 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1682 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1683 * sleep although it could do so. But this is more desirable for memory
1684 * hotplug than sleeping which can cause a livelock in the direct
1687 free_pages
-= nr_zone_isolate_freepages(z
);
1688 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1694 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1695 * skip over zones that are not allowed by the cpuset, or that have
1696 * been recently (in last second) found to be nearly full. See further
1697 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1698 * that have to skip over a lot of full or unallowed zones.
1700 * If the zonelist cache is present in the passed in zonelist, then
1701 * returns a pointer to the allowed node mask (either the current
1702 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1704 * If the zonelist cache is not available for this zonelist, does
1705 * nothing and returns NULL.
1707 * If the fullzones BITMAP in the zonelist cache is stale (more than
1708 * a second since last zap'd) then we zap it out (clear its bits.)
1710 * We hold off even calling zlc_setup, until after we've checked the
1711 * first zone in the zonelist, on the theory that most allocations will
1712 * be satisfied from that first zone, so best to examine that zone as
1713 * quickly as we can.
1715 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1717 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1718 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1720 zlc
= zonelist
->zlcache_ptr
;
1724 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1725 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1726 zlc
->last_full_zap
= jiffies
;
1729 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1730 &cpuset_current_mems_allowed
:
1731 &node_states
[N_HIGH_MEMORY
];
1732 return allowednodes
;
1736 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1737 * if it is worth looking at further for free memory:
1738 * 1) Check that the zone isn't thought to be full (doesn't have its
1739 * bit set in the zonelist_cache fullzones BITMAP).
1740 * 2) Check that the zones node (obtained from the zonelist_cache
1741 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1742 * Return true (non-zero) if zone is worth looking at further, or
1743 * else return false (zero) if it is not.
1745 * This check -ignores- the distinction between various watermarks,
1746 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1747 * found to be full for any variation of these watermarks, it will
1748 * be considered full for up to one second by all requests, unless
1749 * we are so low on memory on all allowed nodes that we are forced
1750 * into the second scan of the zonelist.
1752 * In the second scan we ignore this zonelist cache and exactly
1753 * apply the watermarks to all zones, even it is slower to do so.
1754 * We are low on memory in the second scan, and should leave no stone
1755 * unturned looking for a free page.
1757 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1758 nodemask_t
*allowednodes
)
1760 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1761 int i
; /* index of *z in zonelist zones */
1762 int n
; /* node that zone *z is on */
1764 zlc
= zonelist
->zlcache_ptr
;
1768 i
= z
- zonelist
->_zonerefs
;
1771 /* This zone is worth trying if it is allowed but not full */
1772 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1776 * Given 'z' scanning a zonelist, set the corresponding bit in
1777 * zlc->fullzones, so that subsequent attempts to allocate a page
1778 * from that zone don't waste time re-examining it.
1780 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1782 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1783 int i
; /* index of *z in zonelist zones */
1785 zlc
= zonelist
->zlcache_ptr
;
1789 i
= z
- zonelist
->_zonerefs
;
1791 set_bit(i
, zlc
->fullzones
);
1795 * clear all zones full, called after direct reclaim makes progress so that
1796 * a zone that was recently full is not skipped over for up to a second
1798 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1800 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1802 zlc
= zonelist
->zlcache_ptr
;
1806 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1809 #else /* CONFIG_NUMA */
1811 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1816 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1817 nodemask_t
*allowednodes
)
1822 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1826 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1829 #endif /* CONFIG_NUMA */
1832 * get_page_from_freelist goes through the zonelist trying to allocate
1835 static struct page
*
1836 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1837 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1838 struct zone
*preferred_zone
, int migratetype
)
1841 struct page
*page
= NULL
;
1844 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1845 int zlc_active
= 0; /* set if using zonelist_cache */
1846 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1848 classzone_idx
= zone_idx(preferred_zone
);
1851 * Scan zonelist, looking for a zone with enough free.
1852 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1854 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1855 high_zoneidx
, nodemask
) {
1856 if (NUMA_BUILD
&& zlc_active
&&
1857 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1859 if ((alloc_flags
& ALLOC_CPUSET
) &&
1860 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1863 * When allocating a page cache page for writing, we
1864 * want to get it from a zone that is within its dirty
1865 * limit, such that no single zone holds more than its
1866 * proportional share of globally allowed dirty pages.
1867 * The dirty limits take into account the zone's
1868 * lowmem reserves and high watermark so that kswapd
1869 * should be able to balance it without having to
1870 * write pages from its LRU list.
1872 * This may look like it could increase pressure on
1873 * lower zones by failing allocations in higher zones
1874 * before they are full. But the pages that do spill
1875 * over are limited as the lower zones are protected
1876 * by this very same mechanism. It should not become
1877 * a practical burden to them.
1879 * XXX: For now, allow allocations to potentially
1880 * exceed the per-zone dirty limit in the slowpath
1881 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1882 * which is important when on a NUMA setup the allowed
1883 * zones are together not big enough to reach the
1884 * global limit. The proper fix for these situations
1885 * will require awareness of zones in the
1886 * dirty-throttling and the flusher threads.
1888 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1889 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1890 goto this_zone_full
;
1892 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1893 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1897 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1898 if (zone_watermark_ok(zone
, order
, mark
,
1899 classzone_idx
, alloc_flags
))
1902 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1904 * we do zlc_setup if there are multiple nodes
1905 * and before considering the first zone allowed
1908 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1913 if (zone_reclaim_mode
== 0)
1914 goto this_zone_full
;
1917 * As we may have just activated ZLC, check if the first
1918 * eligible zone has failed zone_reclaim recently.
1920 if (NUMA_BUILD
&& zlc_active
&&
1921 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1924 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1926 case ZONE_RECLAIM_NOSCAN
:
1929 case ZONE_RECLAIM_FULL
:
1930 /* scanned but unreclaimable */
1933 /* did we reclaim enough */
1934 if (!zone_watermark_ok(zone
, order
, mark
,
1935 classzone_idx
, alloc_flags
))
1936 goto this_zone_full
;
1941 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1942 gfp_mask
, migratetype
);
1947 zlc_mark_zone_full(zonelist
, z
);
1950 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1951 /* Disable zlc cache for second zonelist scan */
1958 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1959 * necessary to allocate the page. The expectation is
1960 * that the caller is taking steps that will free more
1961 * memory. The caller should avoid the page being used
1962 * for !PFMEMALLOC purposes.
1964 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
1970 * Large machines with many possible nodes should not always dump per-node
1971 * meminfo in irq context.
1973 static inline bool should_suppress_show_mem(void)
1978 ret
= in_interrupt();
1983 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1984 DEFAULT_RATELIMIT_INTERVAL
,
1985 DEFAULT_RATELIMIT_BURST
);
1987 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1989 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
1991 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
1992 debug_guardpage_minorder() > 0)
1996 * This documents exceptions given to allocations in certain
1997 * contexts that are allowed to allocate outside current's set
2000 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2001 if (test_thread_flag(TIF_MEMDIE
) ||
2002 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2003 filter
&= ~SHOW_MEM_FILTER_NODES
;
2004 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2005 filter
&= ~SHOW_MEM_FILTER_NODES
;
2008 struct va_format vaf
;
2011 va_start(args
, fmt
);
2016 pr_warn("%pV", &vaf
);
2021 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2022 current
->comm
, order
, gfp_mask
);
2025 if (!should_suppress_show_mem())
2030 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2031 unsigned long did_some_progress
,
2032 unsigned long pages_reclaimed
)
2034 /* Do not loop if specifically requested */
2035 if (gfp_mask
& __GFP_NORETRY
)
2038 /* Always retry if specifically requested */
2039 if (gfp_mask
& __GFP_NOFAIL
)
2043 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2044 * making forward progress without invoking OOM. Suspend also disables
2045 * storage devices so kswapd will not help. Bail if we are suspending.
2047 if (!did_some_progress
&& pm_suspended_storage())
2051 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2052 * means __GFP_NOFAIL, but that may not be true in other
2055 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2059 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2060 * specified, then we retry until we no longer reclaim any pages
2061 * (above), or we've reclaimed an order of pages at least as
2062 * large as the allocation's order. In both cases, if the
2063 * allocation still fails, we stop retrying.
2065 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2071 static inline struct page
*
2072 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2073 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2074 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2079 /* Acquire the OOM killer lock for the zones in zonelist */
2080 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2081 schedule_timeout_uninterruptible(1);
2086 * Go through the zonelist yet one more time, keep very high watermark
2087 * here, this is only to catch a parallel oom killing, we must fail if
2088 * we're still under heavy pressure.
2090 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2091 order
, zonelist
, high_zoneidx
,
2092 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2093 preferred_zone
, migratetype
);
2097 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2098 /* The OOM killer will not help higher order allocs */
2099 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2101 /* The OOM killer does not needlessly kill tasks for lowmem */
2102 if (high_zoneidx
< ZONE_NORMAL
)
2105 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2106 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2107 * The caller should handle page allocation failure by itself if
2108 * it specifies __GFP_THISNODE.
2109 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2111 if (gfp_mask
& __GFP_THISNODE
)
2114 /* Exhausted what can be done so it's blamo time */
2115 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2118 clear_zonelist_oom(zonelist
, gfp_mask
);
2122 #ifdef CONFIG_COMPACTION
2123 /* Try memory compaction for high-order allocations before reclaim */
2124 static struct page
*
2125 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2126 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2127 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2128 int migratetype
, bool sync_migration
,
2129 bool *contended_compaction
, bool *deferred_compaction
,
2130 unsigned long *did_some_progress
)
2132 struct page
*page
= NULL
;
2137 if (compaction_deferred(preferred_zone
, order
)) {
2138 *deferred_compaction
= true;
2142 current
->flags
|= PF_MEMALLOC
;
2143 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2144 nodemask
, sync_migration
,
2145 contended_compaction
, &page
);
2146 current
->flags
&= ~PF_MEMALLOC
;
2148 /* If compaction captured a page, prep and use it */
2150 prep_new_page(page
, order
, gfp_mask
);
2154 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2155 /* Page migration frees to the PCP lists but we want merging */
2156 drain_pages(get_cpu());
2159 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2160 order
, zonelist
, high_zoneidx
,
2161 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2162 preferred_zone
, migratetype
);
2165 preferred_zone
->compact_considered
= 0;
2166 preferred_zone
->compact_defer_shift
= 0;
2167 if (order
>= preferred_zone
->compact_order_failed
)
2168 preferred_zone
->compact_order_failed
= order
+ 1;
2169 count_vm_event(COMPACTSUCCESS
);
2174 * It's bad if compaction run occurs and fails.
2175 * The most likely reason is that pages exist,
2176 * but not enough to satisfy watermarks.
2178 count_vm_event(COMPACTFAIL
);
2181 * As async compaction considers a subset of pageblocks, only
2182 * defer if the failure was a sync compaction failure.
2185 defer_compaction(preferred_zone
, order
);
2193 static inline struct page
*
2194 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2195 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2196 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2197 int migratetype
, bool sync_migration
,
2198 bool *contended_compaction
, bool *deferred_compaction
,
2199 unsigned long *did_some_progress
)
2203 #endif /* CONFIG_COMPACTION */
2205 /* Perform direct synchronous page reclaim */
2207 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2208 nodemask_t
*nodemask
)
2210 struct reclaim_state reclaim_state
;
2215 /* We now go into synchronous reclaim */
2216 cpuset_memory_pressure_bump();
2217 current
->flags
|= PF_MEMALLOC
;
2218 lockdep_set_current_reclaim_state(gfp_mask
);
2219 reclaim_state
.reclaimed_slab
= 0;
2220 current
->reclaim_state
= &reclaim_state
;
2222 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2224 current
->reclaim_state
= NULL
;
2225 lockdep_clear_current_reclaim_state();
2226 current
->flags
&= ~PF_MEMALLOC
;
2233 /* The really slow allocator path where we enter direct reclaim */
2234 static inline struct page
*
2235 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2236 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2237 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2238 int migratetype
, unsigned long *did_some_progress
)
2240 struct page
*page
= NULL
;
2241 bool drained
= false;
2243 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2245 if (unlikely(!(*did_some_progress
)))
2248 /* After successful reclaim, reconsider all zones for allocation */
2250 zlc_clear_zones_full(zonelist
);
2253 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2254 zonelist
, high_zoneidx
,
2255 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2256 preferred_zone
, migratetype
);
2259 * If an allocation failed after direct reclaim, it could be because
2260 * pages are pinned on the per-cpu lists. Drain them and try again
2262 if (!page
&& !drained
) {
2272 * This is called in the allocator slow-path if the allocation request is of
2273 * sufficient urgency to ignore watermarks and take other desperate measures
2275 static inline struct page
*
2276 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2277 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2278 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2284 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2285 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2286 preferred_zone
, migratetype
);
2288 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2289 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2290 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2296 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2297 enum zone_type high_zoneidx
,
2298 enum zone_type classzone_idx
)
2303 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2304 wakeup_kswapd(zone
, order
, classzone_idx
);
2308 gfp_to_alloc_flags(gfp_t gfp_mask
)
2310 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2311 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2313 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2314 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2317 * The caller may dip into page reserves a bit more if the caller
2318 * cannot run direct reclaim, or if the caller has realtime scheduling
2319 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2320 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2322 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2326 * Not worth trying to allocate harder for
2327 * __GFP_NOMEMALLOC even if it can't schedule.
2329 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2330 alloc_flags
|= ALLOC_HARDER
;
2332 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2333 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2335 alloc_flags
&= ~ALLOC_CPUSET
;
2336 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2337 alloc_flags
|= ALLOC_HARDER
;
2339 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2340 if (gfp_mask
& __GFP_MEMALLOC
)
2341 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2342 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2343 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2344 else if (!in_interrupt() &&
2345 ((current
->flags
& PF_MEMALLOC
) ||
2346 unlikely(test_thread_flag(TIF_MEMDIE
))))
2347 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2353 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2355 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2358 static inline struct page
*
2359 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2360 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2361 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2364 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2365 struct page
*page
= NULL
;
2367 unsigned long pages_reclaimed
= 0;
2368 unsigned long did_some_progress
;
2369 bool sync_migration
= false;
2370 bool deferred_compaction
= false;
2371 bool contended_compaction
= false;
2374 * In the slowpath, we sanity check order to avoid ever trying to
2375 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2376 * be using allocators in order of preference for an area that is
2379 if (order
>= MAX_ORDER
) {
2380 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2385 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2386 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2387 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2388 * using a larger set of nodes after it has established that the
2389 * allowed per node queues are empty and that nodes are
2392 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2396 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2397 zone_idx(preferred_zone
));
2400 * OK, we're below the kswapd watermark and have kicked background
2401 * reclaim. Now things get more complex, so set up alloc_flags according
2402 * to how we want to proceed.
2404 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2407 * Find the true preferred zone if the allocation is unconstrained by
2410 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2411 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2415 /* This is the last chance, in general, before the goto nopage. */
2416 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2417 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2418 preferred_zone
, migratetype
);
2422 /* Allocate without watermarks if the context allows */
2423 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2425 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2426 * the allocation is high priority and these type of
2427 * allocations are system rather than user orientated
2429 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2431 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2432 zonelist
, high_zoneidx
, nodemask
,
2433 preferred_zone
, migratetype
);
2439 /* Atomic allocations - we can't balance anything */
2443 /* Avoid recursion of direct reclaim */
2444 if (current
->flags
& PF_MEMALLOC
)
2447 /* Avoid allocations with no watermarks from looping endlessly */
2448 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2452 * Try direct compaction. The first pass is asynchronous. Subsequent
2453 * attempts after direct reclaim are synchronous
2455 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2456 zonelist
, high_zoneidx
,
2458 alloc_flags
, preferred_zone
,
2459 migratetype
, sync_migration
,
2460 &contended_compaction
,
2461 &deferred_compaction
,
2462 &did_some_progress
);
2465 sync_migration
= true;
2468 * If compaction is deferred for high-order allocations, it is because
2469 * sync compaction recently failed. In this is the case and the caller
2470 * requested a movable allocation that does not heavily disrupt the
2471 * system then fail the allocation instead of entering direct reclaim.
2473 if ((deferred_compaction
|| contended_compaction
) &&
2474 (gfp_mask
& (__GFP_MOVABLE
|__GFP_REPEAT
)) == __GFP_MOVABLE
)
2477 /* Try direct reclaim and then allocating */
2478 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2479 zonelist
, high_zoneidx
,
2481 alloc_flags
, preferred_zone
,
2482 migratetype
, &did_some_progress
);
2487 * If we failed to make any progress reclaiming, then we are
2488 * running out of options and have to consider going OOM
2490 if (!did_some_progress
) {
2491 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2492 if (oom_killer_disabled
)
2494 /* Coredumps can quickly deplete all memory reserves */
2495 if ((current
->flags
& PF_DUMPCORE
) &&
2496 !(gfp_mask
& __GFP_NOFAIL
))
2498 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2499 zonelist
, high_zoneidx
,
2500 nodemask
, preferred_zone
,
2505 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2507 * The oom killer is not called for high-order
2508 * allocations that may fail, so if no progress
2509 * is being made, there are no other options and
2510 * retrying is unlikely to help.
2512 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2515 * The oom killer is not called for lowmem
2516 * allocations to prevent needlessly killing
2519 if (high_zoneidx
< ZONE_NORMAL
)
2527 /* Check if we should retry the allocation */
2528 pages_reclaimed
+= did_some_progress
;
2529 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2531 /* Wait for some write requests to complete then retry */
2532 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2536 * High-order allocations do not necessarily loop after
2537 * direct reclaim and reclaim/compaction depends on compaction
2538 * being called after reclaim so call directly if necessary
2540 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2541 zonelist
, high_zoneidx
,
2543 alloc_flags
, preferred_zone
,
2544 migratetype
, sync_migration
,
2545 &contended_compaction
,
2546 &deferred_compaction
,
2547 &did_some_progress
);
2553 warn_alloc_failed(gfp_mask
, order
, NULL
);
2556 if (kmemcheck_enabled
)
2557 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2563 * This is the 'heart' of the zoned buddy allocator.
2566 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2567 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2569 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2570 struct zone
*preferred_zone
;
2571 struct page
*page
= NULL
;
2572 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2573 unsigned int cpuset_mems_cookie
;
2575 gfp_mask
&= gfp_allowed_mask
;
2577 lockdep_trace_alloc(gfp_mask
);
2579 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2581 if (should_fail_alloc_page(gfp_mask
, order
))
2585 * Check the zones suitable for the gfp_mask contain at least one
2586 * valid zone. It's possible to have an empty zonelist as a result
2587 * of GFP_THISNODE and a memoryless node
2589 if (unlikely(!zonelist
->_zonerefs
->zone
))
2593 cpuset_mems_cookie
= get_mems_allowed();
2595 /* The preferred zone is used for statistics later */
2596 first_zones_zonelist(zonelist
, high_zoneidx
,
2597 nodemask
? : &cpuset_current_mems_allowed
,
2599 if (!preferred_zone
)
2602 /* First allocation attempt */
2603 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2604 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2605 preferred_zone
, migratetype
);
2606 if (unlikely(!page
))
2607 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2608 zonelist
, high_zoneidx
, nodemask
,
2609 preferred_zone
, migratetype
);
2611 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2615 * When updating a task's mems_allowed, it is possible to race with
2616 * parallel threads in such a way that an allocation can fail while
2617 * the mask is being updated. If a page allocation is about to fail,
2618 * check if the cpuset changed during allocation and if so, retry.
2620 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
2625 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2628 * Common helper functions.
2630 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2635 * __get_free_pages() returns a 32-bit address, which cannot represent
2638 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2640 page
= alloc_pages(gfp_mask
, order
);
2643 return (unsigned long) page_address(page
);
2645 EXPORT_SYMBOL(__get_free_pages
);
2647 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2649 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2651 EXPORT_SYMBOL(get_zeroed_page
);
2653 void __free_pages(struct page
*page
, unsigned int order
)
2655 if (put_page_testzero(page
)) {
2657 free_hot_cold_page(page
, 0);
2659 __free_pages_ok(page
, order
);
2663 EXPORT_SYMBOL(__free_pages
);
2665 void free_pages(unsigned long addr
, unsigned int order
)
2668 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2669 __free_pages(virt_to_page((void *)addr
), order
);
2673 EXPORT_SYMBOL(free_pages
);
2675 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2678 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2679 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2681 split_page(virt_to_page((void *)addr
), order
);
2682 while (used
< alloc_end
) {
2687 return (void *)addr
;
2691 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2692 * @size: the number of bytes to allocate
2693 * @gfp_mask: GFP flags for the allocation
2695 * This function is similar to alloc_pages(), except that it allocates the
2696 * minimum number of pages to satisfy the request. alloc_pages() can only
2697 * allocate memory in power-of-two pages.
2699 * This function is also limited by MAX_ORDER.
2701 * Memory allocated by this function must be released by free_pages_exact().
2703 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2705 unsigned int order
= get_order(size
);
2708 addr
= __get_free_pages(gfp_mask
, order
);
2709 return make_alloc_exact(addr
, order
, size
);
2711 EXPORT_SYMBOL(alloc_pages_exact
);
2714 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2716 * @nid: the preferred node ID where memory should be allocated
2717 * @size: the number of bytes to allocate
2718 * @gfp_mask: GFP flags for the allocation
2720 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2722 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2725 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2727 unsigned order
= get_order(size
);
2728 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2731 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2733 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2736 * free_pages_exact - release memory allocated via alloc_pages_exact()
2737 * @virt: the value returned by alloc_pages_exact.
2738 * @size: size of allocation, same value as passed to alloc_pages_exact().
2740 * Release the memory allocated by a previous call to alloc_pages_exact.
2742 void free_pages_exact(void *virt
, size_t size
)
2744 unsigned long addr
= (unsigned long)virt
;
2745 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2747 while (addr
< end
) {
2752 EXPORT_SYMBOL(free_pages_exact
);
2754 static unsigned int nr_free_zone_pages(int offset
)
2759 /* Just pick one node, since fallback list is circular */
2760 unsigned int sum
= 0;
2762 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2764 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2765 unsigned long size
= zone
->present_pages
;
2766 unsigned long high
= high_wmark_pages(zone
);
2775 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2777 unsigned int nr_free_buffer_pages(void)
2779 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2781 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2784 * Amount of free RAM allocatable within all zones
2786 unsigned int nr_free_pagecache_pages(void)
2788 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2791 static inline void show_node(struct zone
*zone
)
2794 printk("Node %d ", zone_to_nid(zone
));
2797 void si_meminfo(struct sysinfo
*val
)
2799 val
->totalram
= totalram_pages
;
2801 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2802 val
->bufferram
= nr_blockdev_pages();
2803 val
->totalhigh
= totalhigh_pages
;
2804 val
->freehigh
= nr_free_highpages();
2805 val
->mem_unit
= PAGE_SIZE
;
2808 EXPORT_SYMBOL(si_meminfo
);
2811 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2813 pg_data_t
*pgdat
= NODE_DATA(nid
);
2815 val
->totalram
= pgdat
->node_present_pages
;
2816 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2817 #ifdef CONFIG_HIGHMEM
2818 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2819 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2825 val
->mem_unit
= PAGE_SIZE
;
2830 * Determine whether the node should be displayed or not, depending on whether
2831 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2833 bool skip_free_areas_node(unsigned int flags
, int nid
)
2836 unsigned int cpuset_mems_cookie
;
2838 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2842 cpuset_mems_cookie
= get_mems_allowed();
2843 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2844 } while (!put_mems_allowed(cpuset_mems_cookie
));
2849 #define K(x) ((x) << (PAGE_SHIFT-10))
2852 * Show free area list (used inside shift_scroll-lock stuff)
2853 * We also calculate the percentage fragmentation. We do this by counting the
2854 * memory on each free list with the exception of the first item on the list.
2855 * Suppresses nodes that are not allowed by current's cpuset if
2856 * SHOW_MEM_FILTER_NODES is passed.
2858 void show_free_areas(unsigned int filter
)
2863 for_each_populated_zone(zone
) {
2864 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2867 printk("%s per-cpu:\n", zone
->name
);
2869 for_each_online_cpu(cpu
) {
2870 struct per_cpu_pageset
*pageset
;
2872 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2874 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2875 cpu
, pageset
->pcp
.high
,
2876 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2880 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2881 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2883 " dirty:%lu writeback:%lu unstable:%lu\n"
2884 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2885 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2886 global_page_state(NR_ACTIVE_ANON
),
2887 global_page_state(NR_INACTIVE_ANON
),
2888 global_page_state(NR_ISOLATED_ANON
),
2889 global_page_state(NR_ACTIVE_FILE
),
2890 global_page_state(NR_INACTIVE_FILE
),
2891 global_page_state(NR_ISOLATED_FILE
),
2892 global_page_state(NR_UNEVICTABLE
),
2893 global_page_state(NR_FILE_DIRTY
),
2894 global_page_state(NR_WRITEBACK
),
2895 global_page_state(NR_UNSTABLE_NFS
),
2896 global_page_state(NR_FREE_PAGES
),
2897 global_page_state(NR_SLAB_RECLAIMABLE
),
2898 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2899 global_page_state(NR_FILE_MAPPED
),
2900 global_page_state(NR_SHMEM
),
2901 global_page_state(NR_PAGETABLE
),
2902 global_page_state(NR_BOUNCE
));
2904 for_each_populated_zone(zone
) {
2907 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2915 " active_anon:%lukB"
2916 " inactive_anon:%lukB"
2917 " active_file:%lukB"
2918 " inactive_file:%lukB"
2919 " unevictable:%lukB"
2920 " isolated(anon):%lukB"
2921 " isolated(file):%lukB"
2928 " slab_reclaimable:%lukB"
2929 " slab_unreclaimable:%lukB"
2930 " kernel_stack:%lukB"
2934 " writeback_tmp:%lukB"
2935 " pages_scanned:%lu"
2936 " all_unreclaimable? %s"
2939 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2940 K(min_wmark_pages(zone
)),
2941 K(low_wmark_pages(zone
)),
2942 K(high_wmark_pages(zone
)),
2943 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2944 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2945 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2946 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2947 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2948 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2949 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2950 K(zone
->present_pages
),
2951 K(zone_page_state(zone
, NR_MLOCK
)),
2952 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2953 K(zone_page_state(zone
, NR_WRITEBACK
)),
2954 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2955 K(zone_page_state(zone
, NR_SHMEM
)),
2956 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2957 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2958 zone_page_state(zone
, NR_KERNEL_STACK
) *
2960 K(zone_page_state(zone
, NR_PAGETABLE
)),
2961 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2962 K(zone_page_state(zone
, NR_BOUNCE
)),
2963 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2964 zone
->pages_scanned
,
2965 (zone
->all_unreclaimable
? "yes" : "no")
2967 printk("lowmem_reserve[]:");
2968 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2969 printk(" %lu", zone
->lowmem_reserve
[i
]);
2973 for_each_populated_zone(zone
) {
2974 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2976 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2979 printk("%s: ", zone
->name
);
2981 spin_lock_irqsave(&zone
->lock
, flags
);
2982 for (order
= 0; order
< MAX_ORDER
; order
++) {
2983 nr
[order
] = zone
->free_area
[order
].nr_free
;
2984 total
+= nr
[order
] << order
;
2986 spin_unlock_irqrestore(&zone
->lock
, flags
);
2987 for (order
= 0; order
< MAX_ORDER
; order
++)
2988 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2989 printk("= %lukB\n", K(total
));
2992 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2994 show_swap_cache_info();
2997 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2999 zoneref
->zone
= zone
;
3000 zoneref
->zone_idx
= zone_idx(zone
);
3004 * Builds allocation fallback zone lists.
3006 * Add all populated zones of a node to the zonelist.
3008 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3009 int nr_zones
, enum zone_type zone_type
)
3013 BUG_ON(zone_type
>= MAX_NR_ZONES
);
3018 zone
= pgdat
->node_zones
+ zone_type
;
3019 if (populated_zone(zone
)) {
3020 zoneref_set_zone(zone
,
3021 &zonelist
->_zonerefs
[nr_zones
++]);
3022 check_highest_zone(zone_type
);
3025 } while (zone_type
);
3032 * 0 = automatic detection of better ordering.
3033 * 1 = order by ([node] distance, -zonetype)
3034 * 2 = order by (-zonetype, [node] distance)
3036 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3037 * the same zonelist. So only NUMA can configure this param.
3039 #define ZONELIST_ORDER_DEFAULT 0
3040 #define ZONELIST_ORDER_NODE 1
3041 #define ZONELIST_ORDER_ZONE 2
3043 /* zonelist order in the kernel.
3044 * set_zonelist_order() will set this to NODE or ZONE.
3046 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3047 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3051 /* The value user specified ....changed by config */
3052 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3053 /* string for sysctl */
3054 #define NUMA_ZONELIST_ORDER_LEN 16
3055 char numa_zonelist_order
[16] = "default";
3058 * interface for configure zonelist ordering.
3059 * command line option "numa_zonelist_order"
3060 * = "[dD]efault - default, automatic configuration.
3061 * = "[nN]ode - order by node locality, then by zone within node
3062 * = "[zZ]one - order by zone, then by locality within zone
3065 static int __parse_numa_zonelist_order(char *s
)
3067 if (*s
== 'd' || *s
== 'D') {
3068 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3069 } else if (*s
== 'n' || *s
== 'N') {
3070 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3071 } else if (*s
== 'z' || *s
== 'Z') {
3072 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3075 "Ignoring invalid numa_zonelist_order value: "
3082 static __init
int setup_numa_zonelist_order(char *s
)
3089 ret
= __parse_numa_zonelist_order(s
);
3091 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3095 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3098 * sysctl handler for numa_zonelist_order
3100 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3101 void __user
*buffer
, size_t *length
,
3104 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3106 static DEFINE_MUTEX(zl_order_mutex
);
3108 mutex_lock(&zl_order_mutex
);
3110 strcpy(saved_string
, (char*)table
->data
);
3111 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3115 int oldval
= user_zonelist_order
;
3116 if (__parse_numa_zonelist_order((char*)table
->data
)) {
3118 * bogus value. restore saved string
3120 strncpy((char*)table
->data
, saved_string
,
3121 NUMA_ZONELIST_ORDER_LEN
);
3122 user_zonelist_order
= oldval
;
3123 } else if (oldval
!= user_zonelist_order
) {
3124 mutex_lock(&zonelists_mutex
);
3125 build_all_zonelists(NULL
, NULL
);
3126 mutex_unlock(&zonelists_mutex
);
3130 mutex_unlock(&zl_order_mutex
);
3135 #define MAX_NODE_LOAD (nr_online_nodes)
3136 static int node_load
[MAX_NUMNODES
];
3139 * find_next_best_node - find the next node that should appear in a given node's fallback list
3140 * @node: node whose fallback list we're appending
3141 * @used_node_mask: nodemask_t of already used nodes
3143 * We use a number of factors to determine which is the next node that should
3144 * appear on a given node's fallback list. The node should not have appeared
3145 * already in @node's fallback list, and it should be the next closest node
3146 * according to the distance array (which contains arbitrary distance values
3147 * from each node to each node in the system), and should also prefer nodes
3148 * with no CPUs, since presumably they'll have very little allocation pressure
3149 * on them otherwise.
3150 * It returns -1 if no node is found.
3152 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3155 int min_val
= INT_MAX
;
3157 const struct cpumask
*tmp
= cpumask_of_node(0);
3159 /* Use the local node if we haven't already */
3160 if (!node_isset(node
, *used_node_mask
)) {
3161 node_set(node
, *used_node_mask
);
3165 for_each_node_state(n
, N_HIGH_MEMORY
) {
3167 /* Don't want a node to appear more than once */
3168 if (node_isset(n
, *used_node_mask
))
3171 /* Use the distance array to find the distance */
3172 val
= node_distance(node
, n
);
3174 /* Penalize nodes under us ("prefer the next node") */
3177 /* Give preference to headless and unused nodes */
3178 tmp
= cpumask_of_node(n
);
3179 if (!cpumask_empty(tmp
))
3180 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3182 /* Slight preference for less loaded node */
3183 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3184 val
+= node_load
[n
];
3186 if (val
< min_val
) {
3193 node_set(best_node
, *used_node_mask
);
3200 * Build zonelists ordered by node and zones within node.
3201 * This results in maximum locality--normal zone overflows into local
3202 * DMA zone, if any--but risks exhausting DMA zone.
3204 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3207 struct zonelist
*zonelist
;
3209 zonelist
= &pgdat
->node_zonelists
[0];
3210 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3212 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3214 zonelist
->_zonerefs
[j
].zone
= NULL
;
3215 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3219 * Build gfp_thisnode zonelists
3221 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3224 struct zonelist
*zonelist
;
3226 zonelist
= &pgdat
->node_zonelists
[1];
3227 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3228 zonelist
->_zonerefs
[j
].zone
= NULL
;
3229 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3233 * Build zonelists ordered by zone and nodes within zones.
3234 * This results in conserving DMA zone[s] until all Normal memory is
3235 * exhausted, but results in overflowing to remote node while memory
3236 * may still exist in local DMA zone.
3238 static int node_order
[MAX_NUMNODES
];
3240 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3243 int zone_type
; /* needs to be signed */
3245 struct zonelist
*zonelist
;
3247 zonelist
= &pgdat
->node_zonelists
[0];
3249 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3250 for (j
= 0; j
< nr_nodes
; j
++) {
3251 node
= node_order
[j
];
3252 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3253 if (populated_zone(z
)) {
3255 &zonelist
->_zonerefs
[pos
++]);
3256 check_highest_zone(zone_type
);
3260 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3261 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3264 static int default_zonelist_order(void)
3267 unsigned long low_kmem_size
,total_size
;
3271 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3272 * If they are really small and used heavily, the system can fall
3273 * into OOM very easily.
3274 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3276 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3279 for_each_online_node(nid
) {
3280 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3281 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3282 if (populated_zone(z
)) {
3283 if (zone_type
< ZONE_NORMAL
)
3284 low_kmem_size
+= z
->present_pages
;
3285 total_size
+= z
->present_pages
;
3286 } else if (zone_type
== ZONE_NORMAL
) {
3288 * If any node has only lowmem, then node order
3289 * is preferred to allow kernel allocations
3290 * locally; otherwise, they can easily infringe
3291 * on other nodes when there is an abundance of
3292 * lowmem available to allocate from.
3294 return ZONELIST_ORDER_NODE
;
3298 if (!low_kmem_size
|| /* there are no DMA area. */
3299 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3300 return ZONELIST_ORDER_NODE
;
3302 * look into each node's config.
3303 * If there is a node whose DMA/DMA32 memory is very big area on
3304 * local memory, NODE_ORDER may be suitable.
3306 average_size
= total_size
/
3307 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
3308 for_each_online_node(nid
) {
3311 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3312 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3313 if (populated_zone(z
)) {
3314 if (zone_type
< ZONE_NORMAL
)
3315 low_kmem_size
+= z
->present_pages
;
3316 total_size
+= z
->present_pages
;
3319 if (low_kmem_size
&&
3320 total_size
> average_size
&& /* ignore small node */
3321 low_kmem_size
> total_size
* 70/100)
3322 return ZONELIST_ORDER_NODE
;
3324 return ZONELIST_ORDER_ZONE
;
3327 static void set_zonelist_order(void)
3329 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3330 current_zonelist_order
= default_zonelist_order();
3332 current_zonelist_order
= user_zonelist_order
;
3335 static void build_zonelists(pg_data_t
*pgdat
)
3339 nodemask_t used_mask
;
3340 int local_node
, prev_node
;
3341 struct zonelist
*zonelist
;
3342 int order
= current_zonelist_order
;
3344 /* initialize zonelists */
3345 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3346 zonelist
= pgdat
->node_zonelists
+ i
;
3347 zonelist
->_zonerefs
[0].zone
= NULL
;
3348 zonelist
->_zonerefs
[0].zone_idx
= 0;
3351 /* NUMA-aware ordering of nodes */
3352 local_node
= pgdat
->node_id
;
3353 load
= nr_online_nodes
;
3354 prev_node
= local_node
;
3355 nodes_clear(used_mask
);
3357 memset(node_order
, 0, sizeof(node_order
));
3360 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3361 int distance
= node_distance(local_node
, node
);
3364 * If another node is sufficiently far away then it is better
3365 * to reclaim pages in a zone before going off node.
3367 if (distance
> RECLAIM_DISTANCE
)
3368 zone_reclaim_mode
= 1;
3371 * We don't want to pressure a particular node.
3372 * So adding penalty to the first node in same
3373 * distance group to make it round-robin.
3375 if (distance
!= node_distance(local_node
, prev_node
))
3376 node_load
[node
] = load
;
3380 if (order
== ZONELIST_ORDER_NODE
)
3381 build_zonelists_in_node_order(pgdat
, node
);
3383 node_order
[j
++] = node
; /* remember order */
3386 if (order
== ZONELIST_ORDER_ZONE
) {
3387 /* calculate node order -- i.e., DMA last! */
3388 build_zonelists_in_zone_order(pgdat
, j
);
3391 build_thisnode_zonelists(pgdat
);
3394 /* Construct the zonelist performance cache - see further mmzone.h */
3395 static void build_zonelist_cache(pg_data_t
*pgdat
)
3397 struct zonelist
*zonelist
;
3398 struct zonelist_cache
*zlc
;
3401 zonelist
= &pgdat
->node_zonelists
[0];
3402 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3403 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3404 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3405 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3408 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3410 * Return node id of node used for "local" allocations.
3411 * I.e., first node id of first zone in arg node's generic zonelist.
3412 * Used for initializing percpu 'numa_mem', which is used primarily
3413 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3415 int local_memory_node(int node
)
3419 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3420 gfp_zone(GFP_KERNEL
),
3427 #else /* CONFIG_NUMA */
3429 static void set_zonelist_order(void)
3431 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3434 static void build_zonelists(pg_data_t
*pgdat
)
3436 int node
, local_node
;
3438 struct zonelist
*zonelist
;
3440 local_node
= pgdat
->node_id
;
3442 zonelist
= &pgdat
->node_zonelists
[0];
3443 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3446 * Now we build the zonelist so that it contains the zones
3447 * of all the other nodes.
3448 * We don't want to pressure a particular node, so when
3449 * building the zones for node N, we make sure that the
3450 * zones coming right after the local ones are those from
3451 * node N+1 (modulo N)
3453 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3454 if (!node_online(node
))
3456 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3459 for (node
= 0; node
< local_node
; node
++) {
3460 if (!node_online(node
))
3462 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3466 zonelist
->_zonerefs
[j
].zone
= NULL
;
3467 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3470 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3471 static void build_zonelist_cache(pg_data_t
*pgdat
)
3473 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3476 #endif /* CONFIG_NUMA */
3479 * Boot pageset table. One per cpu which is going to be used for all
3480 * zones and all nodes. The parameters will be set in such a way
3481 * that an item put on a list will immediately be handed over to
3482 * the buddy list. This is safe since pageset manipulation is done
3483 * with interrupts disabled.
3485 * The boot_pagesets must be kept even after bootup is complete for
3486 * unused processors and/or zones. They do play a role for bootstrapping
3487 * hotplugged processors.
3489 * zoneinfo_show() and maybe other functions do
3490 * not check if the processor is online before following the pageset pointer.
3491 * Other parts of the kernel may not check if the zone is available.
3493 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3494 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3495 static void setup_zone_pageset(struct zone
*zone
);
3498 * Global mutex to protect against size modification of zonelists
3499 * as well as to serialize pageset setup for the new populated zone.
3501 DEFINE_MUTEX(zonelists_mutex
);
3503 /* return values int ....just for stop_machine() */
3504 static int __build_all_zonelists(void *data
)
3508 pg_data_t
*self
= data
;
3511 memset(node_load
, 0, sizeof(node_load
));
3514 if (self
&& !node_online(self
->node_id
)) {
3515 build_zonelists(self
);
3516 build_zonelist_cache(self
);
3519 for_each_online_node(nid
) {
3520 pg_data_t
*pgdat
= NODE_DATA(nid
);
3522 build_zonelists(pgdat
);
3523 build_zonelist_cache(pgdat
);
3527 * Initialize the boot_pagesets that are going to be used
3528 * for bootstrapping processors. The real pagesets for
3529 * each zone will be allocated later when the per cpu
3530 * allocator is available.
3532 * boot_pagesets are used also for bootstrapping offline
3533 * cpus if the system is already booted because the pagesets
3534 * are needed to initialize allocators on a specific cpu too.
3535 * F.e. the percpu allocator needs the page allocator which
3536 * needs the percpu allocator in order to allocate its pagesets
3537 * (a chicken-egg dilemma).
3539 for_each_possible_cpu(cpu
) {
3540 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3542 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3544 * We now know the "local memory node" for each node--
3545 * i.e., the node of the first zone in the generic zonelist.
3546 * Set up numa_mem percpu variable for on-line cpus. During
3547 * boot, only the boot cpu should be on-line; we'll init the
3548 * secondary cpus' numa_mem as they come on-line. During
3549 * node/memory hotplug, we'll fixup all on-line cpus.
3551 if (cpu_online(cpu
))
3552 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3560 * Called with zonelists_mutex held always
3561 * unless system_state == SYSTEM_BOOTING.
3563 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3565 set_zonelist_order();
3567 if (system_state
== SYSTEM_BOOTING
) {
3568 __build_all_zonelists(NULL
);
3569 mminit_verify_zonelist();
3570 cpuset_init_current_mems_allowed();
3572 /* we have to stop all cpus to guarantee there is no user
3574 #ifdef CONFIG_MEMORY_HOTPLUG
3576 setup_zone_pageset(zone
);
3578 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3579 /* cpuset refresh routine should be here */
3581 vm_total_pages
= nr_free_pagecache_pages();
3583 * Disable grouping by mobility if the number of pages in the
3584 * system is too low to allow the mechanism to work. It would be
3585 * more accurate, but expensive to check per-zone. This check is
3586 * made on memory-hotadd so a system can start with mobility
3587 * disabled and enable it later
3589 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3590 page_group_by_mobility_disabled
= 1;
3592 page_group_by_mobility_disabled
= 0;
3594 printk("Built %i zonelists in %s order, mobility grouping %s. "
3595 "Total pages: %ld\n",
3597 zonelist_order_name
[current_zonelist_order
],
3598 page_group_by_mobility_disabled
? "off" : "on",
3601 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3606 * Helper functions to size the waitqueue hash table.
3607 * Essentially these want to choose hash table sizes sufficiently
3608 * large so that collisions trying to wait on pages are rare.
3609 * But in fact, the number of active page waitqueues on typical
3610 * systems is ridiculously low, less than 200. So this is even
3611 * conservative, even though it seems large.
3613 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3614 * waitqueues, i.e. the size of the waitq table given the number of pages.
3616 #define PAGES_PER_WAITQUEUE 256
3618 #ifndef CONFIG_MEMORY_HOTPLUG
3619 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3621 unsigned long size
= 1;
3623 pages
/= PAGES_PER_WAITQUEUE
;
3625 while (size
< pages
)
3629 * Once we have dozens or even hundreds of threads sleeping
3630 * on IO we've got bigger problems than wait queue collision.
3631 * Limit the size of the wait table to a reasonable size.
3633 size
= min(size
, 4096UL);
3635 return max(size
, 4UL);
3639 * A zone's size might be changed by hot-add, so it is not possible to determine
3640 * a suitable size for its wait_table. So we use the maximum size now.
3642 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3644 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3645 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3646 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3648 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3649 * or more by the traditional way. (See above). It equals:
3651 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3652 * ia64(16K page size) : = ( 8G + 4M)byte.
3653 * powerpc (64K page size) : = (32G +16M)byte.
3655 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3662 * This is an integer logarithm so that shifts can be used later
3663 * to extract the more random high bits from the multiplicative
3664 * hash function before the remainder is taken.
3666 static inline unsigned long wait_table_bits(unsigned long size
)
3671 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3674 * Check if a pageblock contains reserved pages
3676 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3680 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3681 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3688 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3689 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3690 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3691 * higher will lead to a bigger reserve which will get freed as contiguous
3692 * blocks as reclaim kicks in
3694 static void setup_zone_migrate_reserve(struct zone
*zone
)
3696 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3698 unsigned long block_migratetype
;
3702 * Get the start pfn, end pfn and the number of blocks to reserve
3703 * We have to be careful to be aligned to pageblock_nr_pages to
3704 * make sure that we always check pfn_valid for the first page in
3707 start_pfn
= zone
->zone_start_pfn
;
3708 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3709 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3710 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3714 * Reserve blocks are generally in place to help high-order atomic
3715 * allocations that are short-lived. A min_free_kbytes value that
3716 * would result in more than 2 reserve blocks for atomic allocations
3717 * is assumed to be in place to help anti-fragmentation for the
3718 * future allocation of hugepages at runtime.
3720 reserve
= min(2, reserve
);
3722 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3723 if (!pfn_valid(pfn
))
3725 page
= pfn_to_page(pfn
);
3727 /* Watch out for overlapping nodes */
3728 if (page_to_nid(page
) != zone_to_nid(zone
))
3731 block_migratetype
= get_pageblock_migratetype(page
);
3733 /* Only test what is necessary when the reserves are not met */
3736 * Blocks with reserved pages will never free, skip
3739 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3740 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3743 /* If this block is reserved, account for it */
3744 if (block_migratetype
== MIGRATE_RESERVE
) {
3749 /* Suitable for reserving if this block is movable */
3750 if (block_migratetype
== MIGRATE_MOVABLE
) {
3751 set_pageblock_migratetype(page
,
3753 move_freepages_block(zone
, page
,
3761 * If the reserve is met and this is a previous reserved block,
3764 if (block_migratetype
== MIGRATE_RESERVE
) {
3765 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3766 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3772 * Initially all pages are reserved - free ones are freed
3773 * up by free_all_bootmem() once the early boot process is
3774 * done. Non-atomic initialization, single-pass.
3776 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3777 unsigned long start_pfn
, enum memmap_context context
)
3780 unsigned long end_pfn
= start_pfn
+ size
;
3784 if (highest_memmap_pfn
< end_pfn
- 1)
3785 highest_memmap_pfn
= end_pfn
- 1;
3787 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3788 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3790 * There can be holes in boot-time mem_map[]s
3791 * handed to this function. They do not
3792 * exist on hotplugged memory.
3794 if (context
== MEMMAP_EARLY
) {
3795 if (!early_pfn_valid(pfn
))
3797 if (!early_pfn_in_nid(pfn
, nid
))
3800 page
= pfn_to_page(pfn
);
3801 set_page_links(page
, zone
, nid
, pfn
);
3802 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3803 init_page_count(page
);
3804 reset_page_mapcount(page
);
3805 SetPageReserved(page
);
3807 * Mark the block movable so that blocks are reserved for
3808 * movable at startup. This will force kernel allocations
3809 * to reserve their blocks rather than leaking throughout
3810 * the address space during boot when many long-lived
3811 * kernel allocations are made. Later some blocks near
3812 * the start are marked MIGRATE_RESERVE by
3813 * setup_zone_migrate_reserve()
3815 * bitmap is created for zone's valid pfn range. but memmap
3816 * can be created for invalid pages (for alignment)
3817 * check here not to call set_pageblock_migratetype() against
3820 if ((z
->zone_start_pfn
<= pfn
)
3821 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3822 && !(pfn
& (pageblock_nr_pages
- 1)))
3823 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3825 INIT_LIST_HEAD(&page
->lru
);
3826 #ifdef WANT_PAGE_VIRTUAL
3827 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3828 if (!is_highmem_idx(zone
))
3829 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3834 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3837 for_each_migratetype_order(order
, t
) {
3838 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3839 zone
->free_area
[order
].nr_free
= 0;
3843 #ifndef __HAVE_ARCH_MEMMAP_INIT
3844 #define memmap_init(size, nid, zone, start_pfn) \
3845 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3848 static int __meminit
zone_batchsize(struct zone
*zone
)
3854 * The per-cpu-pages pools are set to around 1000th of the
3855 * size of the zone. But no more than 1/2 of a meg.
3857 * OK, so we don't know how big the cache is. So guess.
3859 batch
= zone
->present_pages
/ 1024;
3860 if (batch
* PAGE_SIZE
> 512 * 1024)
3861 batch
= (512 * 1024) / PAGE_SIZE
;
3862 batch
/= 4; /* We effectively *= 4 below */
3867 * Clamp the batch to a 2^n - 1 value. Having a power
3868 * of 2 value was found to be more likely to have
3869 * suboptimal cache aliasing properties in some cases.
3871 * For example if 2 tasks are alternately allocating
3872 * batches of pages, one task can end up with a lot
3873 * of pages of one half of the possible page colors
3874 * and the other with pages of the other colors.
3876 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3881 /* The deferral and batching of frees should be suppressed under NOMMU
3884 * The problem is that NOMMU needs to be able to allocate large chunks
3885 * of contiguous memory as there's no hardware page translation to
3886 * assemble apparent contiguous memory from discontiguous pages.
3888 * Queueing large contiguous runs of pages for batching, however,
3889 * causes the pages to actually be freed in smaller chunks. As there
3890 * can be a significant delay between the individual batches being
3891 * recycled, this leads to the once large chunks of space being
3892 * fragmented and becoming unavailable for high-order allocations.
3898 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3900 struct per_cpu_pages
*pcp
;
3903 memset(p
, 0, sizeof(*p
));
3907 pcp
->high
= 6 * batch
;
3908 pcp
->batch
= max(1UL, 1 * batch
);
3909 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3910 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3914 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3915 * to the value high for the pageset p.
3918 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3921 struct per_cpu_pages
*pcp
;
3925 pcp
->batch
= max(1UL, high
/4);
3926 if ((high
/4) > (PAGE_SHIFT
* 8))
3927 pcp
->batch
= PAGE_SHIFT
* 8;
3930 static void __meminit
setup_zone_pageset(struct zone
*zone
)
3934 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3936 for_each_possible_cpu(cpu
) {
3937 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3939 setup_pageset(pcp
, zone_batchsize(zone
));
3941 if (percpu_pagelist_fraction
)
3942 setup_pagelist_highmark(pcp
,
3943 (zone
->present_pages
/
3944 percpu_pagelist_fraction
));
3949 * Allocate per cpu pagesets and initialize them.
3950 * Before this call only boot pagesets were available.
3952 void __init
setup_per_cpu_pageset(void)
3956 for_each_populated_zone(zone
)
3957 setup_zone_pageset(zone
);
3960 static noinline __init_refok
3961 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3964 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3968 * The per-page waitqueue mechanism uses hashed waitqueues
3971 zone
->wait_table_hash_nr_entries
=
3972 wait_table_hash_nr_entries(zone_size_pages
);
3973 zone
->wait_table_bits
=
3974 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3975 alloc_size
= zone
->wait_table_hash_nr_entries
3976 * sizeof(wait_queue_head_t
);
3978 if (!slab_is_available()) {
3979 zone
->wait_table
= (wait_queue_head_t
*)
3980 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3983 * This case means that a zone whose size was 0 gets new memory
3984 * via memory hot-add.
3985 * But it may be the case that a new node was hot-added. In
3986 * this case vmalloc() will not be able to use this new node's
3987 * memory - this wait_table must be initialized to use this new
3988 * node itself as well.
3989 * To use this new node's memory, further consideration will be
3992 zone
->wait_table
= vmalloc(alloc_size
);
3994 if (!zone
->wait_table
)
3997 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3998 init_waitqueue_head(zone
->wait_table
+ i
);
4003 static __meminit
void zone_pcp_init(struct zone
*zone
)
4006 * per cpu subsystem is not up at this point. The following code
4007 * relies on the ability of the linker to provide the
4008 * offset of a (static) per cpu variable into the per cpu area.
4010 zone
->pageset
= &boot_pageset
;
4012 if (zone
->present_pages
)
4013 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4014 zone
->name
, zone
->present_pages
,
4015 zone_batchsize(zone
));
4018 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4019 unsigned long zone_start_pfn
,
4021 enum memmap_context context
)
4023 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4025 ret
= zone_wait_table_init(zone
, size
);
4028 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4030 zone
->zone_start_pfn
= zone_start_pfn
;
4032 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4033 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4035 (unsigned long)zone_idx(zone
),
4036 zone_start_pfn
, (zone_start_pfn
+ size
));
4038 zone_init_free_lists(zone
);
4043 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4044 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4046 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4047 * Architectures may implement their own version but if add_active_range()
4048 * was used and there are no special requirements, this is a convenient
4051 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4053 unsigned long start_pfn
, end_pfn
;
4056 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
4057 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
4059 /* This is a memory hole */
4062 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4064 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4068 nid
= __early_pfn_to_nid(pfn
);
4071 /* just returns 0 */
4075 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4076 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4080 nid
= __early_pfn_to_nid(pfn
);
4081 if (nid
>= 0 && nid
!= node
)
4088 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4089 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4090 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4092 * If an architecture guarantees that all ranges registered with
4093 * add_active_ranges() contain no holes and may be freed, this
4094 * this function may be used instead of calling free_bootmem() manually.
4096 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4098 unsigned long start_pfn
, end_pfn
;
4101 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4102 start_pfn
= min(start_pfn
, max_low_pfn
);
4103 end_pfn
= min(end_pfn
, max_low_pfn
);
4105 if (start_pfn
< end_pfn
)
4106 free_bootmem_node(NODE_DATA(this_nid
),
4107 PFN_PHYS(start_pfn
),
4108 (end_pfn
- start_pfn
) << PAGE_SHIFT
);
4113 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4114 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4116 * If an architecture guarantees that all ranges registered with
4117 * add_active_ranges() contain no holes and may be freed, this
4118 * function may be used instead of calling memory_present() manually.
4120 void __init
sparse_memory_present_with_active_regions(int nid
)
4122 unsigned long start_pfn
, end_pfn
;
4125 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4126 memory_present(this_nid
, start_pfn
, end_pfn
);
4130 * get_pfn_range_for_nid - Return the start and end page frames for a node
4131 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4132 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4133 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4135 * It returns the start and end page frame of a node based on information
4136 * provided by an arch calling add_active_range(). If called for a node
4137 * with no available memory, a warning is printed and the start and end
4140 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4141 unsigned long *start_pfn
, unsigned long *end_pfn
)
4143 unsigned long this_start_pfn
, this_end_pfn
;
4149 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4150 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4151 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4154 if (*start_pfn
== -1UL)
4159 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4160 * assumption is made that zones within a node are ordered in monotonic
4161 * increasing memory addresses so that the "highest" populated zone is used
4163 static void __init
find_usable_zone_for_movable(void)
4166 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4167 if (zone_index
== ZONE_MOVABLE
)
4170 if (arch_zone_highest_possible_pfn
[zone_index
] >
4171 arch_zone_lowest_possible_pfn
[zone_index
])
4175 VM_BUG_ON(zone_index
== -1);
4176 movable_zone
= zone_index
;
4180 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4181 * because it is sized independent of architecture. Unlike the other zones,
4182 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4183 * in each node depending on the size of each node and how evenly kernelcore
4184 * is distributed. This helper function adjusts the zone ranges
4185 * provided by the architecture for a given node by using the end of the
4186 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4187 * zones within a node are in order of monotonic increases memory addresses
4189 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4190 unsigned long zone_type
,
4191 unsigned long node_start_pfn
,
4192 unsigned long node_end_pfn
,
4193 unsigned long *zone_start_pfn
,
4194 unsigned long *zone_end_pfn
)
4196 /* Only adjust if ZONE_MOVABLE is on this node */
4197 if (zone_movable_pfn
[nid
]) {
4198 /* Size ZONE_MOVABLE */
4199 if (zone_type
== ZONE_MOVABLE
) {
4200 *zone_start_pfn
= zone_movable_pfn
[nid
];
4201 *zone_end_pfn
= min(node_end_pfn
,
4202 arch_zone_highest_possible_pfn
[movable_zone
]);
4204 /* Adjust for ZONE_MOVABLE starting within this range */
4205 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4206 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4207 *zone_end_pfn
= zone_movable_pfn
[nid
];
4209 /* Check if this whole range is within ZONE_MOVABLE */
4210 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4211 *zone_start_pfn
= *zone_end_pfn
;
4216 * Return the number of pages a zone spans in a node, including holes
4217 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4219 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4220 unsigned long zone_type
,
4221 unsigned long *ignored
)
4223 unsigned long node_start_pfn
, node_end_pfn
;
4224 unsigned long zone_start_pfn
, zone_end_pfn
;
4226 /* Get the start and end of the node and zone */
4227 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4228 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4229 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4230 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4231 node_start_pfn
, node_end_pfn
,
4232 &zone_start_pfn
, &zone_end_pfn
);
4234 /* Check that this node has pages within the zone's required range */
4235 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4238 /* Move the zone boundaries inside the node if necessary */
4239 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4240 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4242 /* Return the spanned pages */
4243 return zone_end_pfn
- zone_start_pfn
;
4247 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4248 * then all holes in the requested range will be accounted for.
4250 unsigned long __meminit
__absent_pages_in_range(int nid
,
4251 unsigned long range_start_pfn
,
4252 unsigned long range_end_pfn
)
4254 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4255 unsigned long start_pfn
, end_pfn
;
4258 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4259 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4260 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4261 nr_absent
-= end_pfn
- start_pfn
;
4267 * absent_pages_in_range - Return number of page frames in holes within a range
4268 * @start_pfn: The start PFN to start searching for holes
4269 * @end_pfn: The end PFN to stop searching for holes
4271 * It returns the number of pages frames in memory holes within a range.
4273 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4274 unsigned long end_pfn
)
4276 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4279 /* Return the number of page frames in holes in a zone on a node */
4280 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4281 unsigned long zone_type
,
4282 unsigned long *ignored
)
4284 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4285 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4286 unsigned long node_start_pfn
, node_end_pfn
;
4287 unsigned long zone_start_pfn
, zone_end_pfn
;
4289 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4290 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4291 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4293 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4294 node_start_pfn
, node_end_pfn
,
4295 &zone_start_pfn
, &zone_end_pfn
);
4296 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4299 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4300 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4301 unsigned long zone_type
,
4302 unsigned long *zones_size
)
4304 return zones_size
[zone_type
];
4307 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4308 unsigned long zone_type
,
4309 unsigned long *zholes_size
)
4314 return zholes_size
[zone_type
];
4317 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4319 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4320 unsigned long *zones_size
, unsigned long *zholes_size
)
4322 unsigned long realtotalpages
, totalpages
= 0;
4325 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4326 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4328 pgdat
->node_spanned_pages
= totalpages
;
4330 realtotalpages
= totalpages
;
4331 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4333 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4335 pgdat
->node_present_pages
= realtotalpages
;
4336 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4340 #ifndef CONFIG_SPARSEMEM
4342 * Calculate the size of the zone->blockflags rounded to an unsigned long
4343 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4344 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4345 * round what is now in bits to nearest long in bits, then return it in
4348 static unsigned long __init
usemap_size(unsigned long zonesize
)
4350 unsigned long usemapsize
;
4352 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4353 usemapsize
= usemapsize
>> pageblock_order
;
4354 usemapsize
*= NR_PAGEBLOCK_BITS
;
4355 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4357 return usemapsize
/ 8;
4360 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4361 struct zone
*zone
, unsigned long zonesize
)
4363 unsigned long usemapsize
= usemap_size(zonesize
);
4364 zone
->pageblock_flags
= NULL
;
4366 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4370 static inline void setup_usemap(struct pglist_data
*pgdat
,
4371 struct zone
*zone
, unsigned long zonesize
) {}
4372 #endif /* CONFIG_SPARSEMEM */
4374 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4376 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4377 void __init
set_pageblock_order(void)
4381 /* Check that pageblock_nr_pages has not already been setup */
4382 if (pageblock_order
)
4385 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4386 order
= HUGETLB_PAGE_ORDER
;
4388 order
= MAX_ORDER
- 1;
4391 * Assume the largest contiguous order of interest is a huge page.
4392 * This value may be variable depending on boot parameters on IA64 and
4395 pageblock_order
= order
;
4397 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4400 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4401 * is unused as pageblock_order is set at compile-time. See
4402 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4405 void __init
set_pageblock_order(void)
4409 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4412 * Set up the zone data structures:
4413 * - mark all pages reserved
4414 * - mark all memory queues empty
4415 * - clear the memory bitmaps
4417 * NOTE: pgdat should get zeroed by caller.
4419 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4420 unsigned long *zones_size
, unsigned long *zholes_size
)
4423 int nid
= pgdat
->node_id
;
4424 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4427 pgdat_resize_init(pgdat
);
4428 init_waitqueue_head(&pgdat
->kswapd_wait
);
4429 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4430 pgdat_page_cgroup_init(pgdat
);
4432 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4433 struct zone
*zone
= pgdat
->node_zones
+ j
;
4434 unsigned long size
, realsize
, memmap_pages
;
4436 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4437 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4441 * Adjust realsize so that it accounts for how much memory
4442 * is used by this zone for memmap. This affects the watermark
4443 * and per-cpu initialisations
4446 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4447 if (realsize
>= memmap_pages
) {
4448 realsize
-= memmap_pages
;
4451 " %s zone: %lu pages used for memmap\n",
4452 zone_names
[j
], memmap_pages
);
4455 " %s zone: %lu pages exceeds realsize %lu\n",
4456 zone_names
[j
], memmap_pages
, realsize
);
4458 /* Account for reserved pages */
4459 if (j
== 0 && realsize
> dma_reserve
) {
4460 realsize
-= dma_reserve
;
4461 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4462 zone_names
[0], dma_reserve
);
4465 if (!is_highmem_idx(j
))
4466 nr_kernel_pages
+= realsize
;
4467 nr_all_pages
+= realsize
;
4469 zone
->spanned_pages
= size
;
4470 zone
->present_pages
= realsize
;
4471 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
4472 zone
->compact_cached_free_pfn
= zone
->zone_start_pfn
+
4473 zone
->spanned_pages
;
4474 zone
->compact_cached_free_pfn
&= ~(pageblock_nr_pages
-1);
4478 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4480 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4482 zone
->name
= zone_names
[j
];
4483 spin_lock_init(&zone
->lock
);
4484 spin_lock_init(&zone
->lru_lock
);
4485 zone_seqlock_init(zone
);
4486 zone
->zone_pgdat
= pgdat
;
4488 zone_pcp_init(zone
);
4489 lruvec_init(&zone
->lruvec
, zone
);
4493 set_pageblock_order();
4494 setup_usemap(pgdat
, zone
, size
);
4495 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4496 size
, MEMMAP_EARLY
);
4498 memmap_init(size
, nid
, j
, zone_start_pfn
);
4499 zone_start_pfn
+= size
;
4503 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4505 /* Skip empty nodes */
4506 if (!pgdat
->node_spanned_pages
)
4509 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4510 /* ia64 gets its own node_mem_map, before this, without bootmem */
4511 if (!pgdat
->node_mem_map
) {
4512 unsigned long size
, start
, end
;
4516 * The zone's endpoints aren't required to be MAX_ORDER
4517 * aligned but the node_mem_map endpoints must be in order
4518 * for the buddy allocator to function correctly.
4520 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4521 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4522 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4523 size
= (end
- start
) * sizeof(struct page
);
4524 map
= alloc_remap(pgdat
->node_id
, size
);
4526 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4527 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4529 #ifndef CONFIG_NEED_MULTIPLE_NODES
4531 * With no DISCONTIG, the global mem_map is just set as node 0's
4533 if (pgdat
== NODE_DATA(0)) {
4534 mem_map
= NODE_DATA(0)->node_mem_map
;
4535 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4536 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4537 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4538 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4541 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4544 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4545 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4547 pg_data_t
*pgdat
= NODE_DATA(nid
);
4549 /* pg_data_t should be reset to zero when it's allocated */
4550 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4552 pgdat
->node_id
= nid
;
4553 pgdat
->node_start_pfn
= node_start_pfn
;
4554 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4556 alloc_node_mem_map(pgdat
);
4557 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4558 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4559 nid
, (unsigned long)pgdat
,
4560 (unsigned long)pgdat
->node_mem_map
);
4563 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4566 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4568 #if MAX_NUMNODES > 1
4570 * Figure out the number of possible node ids.
4572 static void __init
setup_nr_node_ids(void)
4575 unsigned int highest
= 0;
4577 for_each_node_mask(node
, node_possible_map
)
4579 nr_node_ids
= highest
+ 1;
4582 static inline void setup_nr_node_ids(void)
4588 * node_map_pfn_alignment - determine the maximum internode alignment
4590 * This function should be called after node map is populated and sorted.
4591 * It calculates the maximum power of two alignment which can distinguish
4594 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4595 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4596 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4597 * shifted, 1GiB is enough and this function will indicate so.
4599 * This is used to test whether pfn -> nid mapping of the chosen memory
4600 * model has fine enough granularity to avoid incorrect mapping for the
4601 * populated node map.
4603 * Returns the determined alignment in pfn's. 0 if there is no alignment
4604 * requirement (single node).
4606 unsigned long __init
node_map_pfn_alignment(void)
4608 unsigned long accl_mask
= 0, last_end
= 0;
4609 unsigned long start
, end
, mask
;
4613 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4614 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4621 * Start with a mask granular enough to pin-point to the
4622 * start pfn and tick off bits one-by-one until it becomes
4623 * too coarse to separate the current node from the last.
4625 mask
= ~((1 << __ffs(start
)) - 1);
4626 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4629 /* accumulate all internode masks */
4633 /* convert mask to number of pages */
4634 return ~accl_mask
+ 1;
4637 /* Find the lowest pfn for a node */
4638 static unsigned long __init
find_min_pfn_for_node(int nid
)
4640 unsigned long min_pfn
= ULONG_MAX
;
4641 unsigned long start_pfn
;
4644 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
4645 min_pfn
= min(min_pfn
, start_pfn
);
4647 if (min_pfn
== ULONG_MAX
) {
4649 "Could not find start_pfn for node %d\n", nid
);
4657 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4659 * It returns the minimum PFN based on information provided via
4660 * add_active_range().
4662 unsigned long __init
find_min_pfn_with_active_regions(void)
4664 return find_min_pfn_for_node(MAX_NUMNODES
);
4668 * early_calculate_totalpages()
4669 * Sum pages in active regions for movable zone.
4670 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4672 static unsigned long __init
early_calculate_totalpages(void)
4674 unsigned long totalpages
= 0;
4675 unsigned long start_pfn
, end_pfn
;
4678 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
4679 unsigned long pages
= end_pfn
- start_pfn
;
4681 totalpages
+= pages
;
4683 node_set_state(nid
, N_HIGH_MEMORY
);
4689 * Find the PFN the Movable zone begins in each node. Kernel memory
4690 * is spread evenly between nodes as long as the nodes have enough
4691 * memory. When they don't, some nodes will have more kernelcore than
4694 static void __init
find_zone_movable_pfns_for_nodes(void)
4697 unsigned long usable_startpfn
;
4698 unsigned long kernelcore_node
, kernelcore_remaining
;
4699 /* save the state before borrow the nodemask */
4700 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4701 unsigned long totalpages
= early_calculate_totalpages();
4702 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4705 * If movablecore was specified, calculate what size of
4706 * kernelcore that corresponds so that memory usable for
4707 * any allocation type is evenly spread. If both kernelcore
4708 * and movablecore are specified, then the value of kernelcore
4709 * will be used for required_kernelcore if it's greater than
4710 * what movablecore would have allowed.
4712 if (required_movablecore
) {
4713 unsigned long corepages
;
4716 * Round-up so that ZONE_MOVABLE is at least as large as what
4717 * was requested by the user
4719 required_movablecore
=
4720 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4721 corepages
= totalpages
- required_movablecore
;
4723 required_kernelcore
= max(required_kernelcore
, corepages
);
4726 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4727 if (!required_kernelcore
)
4730 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4731 find_usable_zone_for_movable();
4732 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4735 /* Spread kernelcore memory as evenly as possible throughout nodes */
4736 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4737 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4738 unsigned long start_pfn
, end_pfn
;
4741 * Recalculate kernelcore_node if the division per node
4742 * now exceeds what is necessary to satisfy the requested
4743 * amount of memory for the kernel
4745 if (required_kernelcore
< kernelcore_node
)
4746 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4749 * As the map is walked, we track how much memory is usable
4750 * by the kernel using kernelcore_remaining. When it is
4751 * 0, the rest of the node is usable by ZONE_MOVABLE
4753 kernelcore_remaining
= kernelcore_node
;
4755 /* Go through each range of PFNs within this node */
4756 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4757 unsigned long size_pages
;
4759 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
4760 if (start_pfn
>= end_pfn
)
4763 /* Account for what is only usable for kernelcore */
4764 if (start_pfn
< usable_startpfn
) {
4765 unsigned long kernel_pages
;
4766 kernel_pages
= min(end_pfn
, usable_startpfn
)
4769 kernelcore_remaining
-= min(kernel_pages
,
4770 kernelcore_remaining
);
4771 required_kernelcore
-= min(kernel_pages
,
4772 required_kernelcore
);
4774 /* Continue if range is now fully accounted */
4775 if (end_pfn
<= usable_startpfn
) {
4778 * Push zone_movable_pfn to the end so
4779 * that if we have to rebalance
4780 * kernelcore across nodes, we will
4781 * not double account here
4783 zone_movable_pfn
[nid
] = end_pfn
;
4786 start_pfn
= usable_startpfn
;
4790 * The usable PFN range for ZONE_MOVABLE is from
4791 * start_pfn->end_pfn. Calculate size_pages as the
4792 * number of pages used as kernelcore
4794 size_pages
= end_pfn
- start_pfn
;
4795 if (size_pages
> kernelcore_remaining
)
4796 size_pages
= kernelcore_remaining
;
4797 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4800 * Some kernelcore has been met, update counts and
4801 * break if the kernelcore for this node has been
4804 required_kernelcore
-= min(required_kernelcore
,
4806 kernelcore_remaining
-= size_pages
;
4807 if (!kernelcore_remaining
)
4813 * If there is still required_kernelcore, we do another pass with one
4814 * less node in the count. This will push zone_movable_pfn[nid] further
4815 * along on the nodes that still have memory until kernelcore is
4819 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4822 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4823 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4824 zone_movable_pfn
[nid
] =
4825 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4828 /* restore the node_state */
4829 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4832 /* Any regular memory on that node ? */
4833 static void __init
check_for_regular_memory(pg_data_t
*pgdat
)
4835 #ifdef CONFIG_HIGHMEM
4836 enum zone_type zone_type
;
4838 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4839 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4840 if (zone
->present_pages
) {
4841 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4849 * free_area_init_nodes - Initialise all pg_data_t and zone data
4850 * @max_zone_pfn: an array of max PFNs for each zone
4852 * This will call free_area_init_node() for each active node in the system.
4853 * Using the page ranges provided by add_active_range(), the size of each
4854 * zone in each node and their holes is calculated. If the maximum PFN
4855 * between two adjacent zones match, it is assumed that the zone is empty.
4856 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4857 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4858 * starts where the previous one ended. For example, ZONE_DMA32 starts
4859 * at arch_max_dma_pfn.
4861 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4863 unsigned long start_pfn
, end_pfn
;
4866 /* Record where the zone boundaries are */
4867 memset(arch_zone_lowest_possible_pfn
, 0,
4868 sizeof(arch_zone_lowest_possible_pfn
));
4869 memset(arch_zone_highest_possible_pfn
, 0,
4870 sizeof(arch_zone_highest_possible_pfn
));
4871 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4872 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4873 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4874 if (i
== ZONE_MOVABLE
)
4876 arch_zone_lowest_possible_pfn
[i
] =
4877 arch_zone_highest_possible_pfn
[i
-1];
4878 arch_zone_highest_possible_pfn
[i
] =
4879 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4881 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4882 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4884 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4885 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4886 find_zone_movable_pfns_for_nodes();
4888 /* Print out the zone ranges */
4889 printk("Zone ranges:\n");
4890 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4891 if (i
== ZONE_MOVABLE
)
4893 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
4894 if (arch_zone_lowest_possible_pfn
[i
] ==
4895 arch_zone_highest_possible_pfn
[i
])
4896 printk(KERN_CONT
"empty\n");
4898 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
4899 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
4900 (arch_zone_highest_possible_pfn
[i
]
4901 << PAGE_SHIFT
) - 1);
4904 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4905 printk("Movable zone start for each node\n");
4906 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4907 if (zone_movable_pfn
[i
])
4908 printk(" Node %d: %#010lx\n", i
,
4909 zone_movable_pfn
[i
] << PAGE_SHIFT
);
4912 /* Print out the early_node_map[] */
4913 printk("Early memory node ranges\n");
4914 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
4915 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
4916 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
4918 /* Initialise every node */
4919 mminit_verify_pageflags_layout();
4920 setup_nr_node_ids();
4921 for_each_online_node(nid
) {
4922 pg_data_t
*pgdat
= NODE_DATA(nid
);
4923 free_area_init_node(nid
, NULL
,
4924 find_min_pfn_for_node(nid
), NULL
);
4926 /* Any memory on that node */
4927 if (pgdat
->node_present_pages
)
4928 node_set_state(nid
, N_HIGH_MEMORY
);
4929 check_for_regular_memory(pgdat
);
4933 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4935 unsigned long long coremem
;
4939 coremem
= memparse(p
, &p
);
4940 *core
= coremem
>> PAGE_SHIFT
;
4942 /* Paranoid check that UL is enough for the coremem value */
4943 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4949 * kernelcore=size sets the amount of memory for use for allocations that
4950 * cannot be reclaimed or migrated.
4952 static int __init
cmdline_parse_kernelcore(char *p
)
4954 return cmdline_parse_core(p
, &required_kernelcore
);
4958 * movablecore=size sets the amount of memory for use for allocations that
4959 * can be reclaimed or migrated.
4961 static int __init
cmdline_parse_movablecore(char *p
)
4963 return cmdline_parse_core(p
, &required_movablecore
);
4966 early_param("kernelcore", cmdline_parse_kernelcore
);
4967 early_param("movablecore", cmdline_parse_movablecore
);
4969 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4972 * set_dma_reserve - set the specified number of pages reserved in the first zone
4973 * @new_dma_reserve: The number of pages to mark reserved
4975 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4976 * In the DMA zone, a significant percentage may be consumed by kernel image
4977 * and other unfreeable allocations which can skew the watermarks badly. This
4978 * function may optionally be used to account for unfreeable pages in the
4979 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4980 * smaller per-cpu batchsize.
4982 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4984 dma_reserve
= new_dma_reserve
;
4987 void __init
free_area_init(unsigned long *zones_size
)
4989 free_area_init_node(0, zones_size
,
4990 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4993 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4994 unsigned long action
, void *hcpu
)
4996 int cpu
= (unsigned long)hcpu
;
4998 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4999 lru_add_drain_cpu(cpu
);
5003 * Spill the event counters of the dead processor
5004 * into the current processors event counters.
5005 * This artificially elevates the count of the current
5008 vm_events_fold_cpu(cpu
);
5011 * Zero the differential counters of the dead processor
5012 * so that the vm statistics are consistent.
5014 * This is only okay since the processor is dead and cannot
5015 * race with what we are doing.
5017 refresh_cpu_vm_stats(cpu
);
5022 void __init
page_alloc_init(void)
5024 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5028 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5029 * or min_free_kbytes changes.
5031 static void calculate_totalreserve_pages(void)
5033 struct pglist_data
*pgdat
;
5034 unsigned long reserve_pages
= 0;
5035 enum zone_type i
, j
;
5037 for_each_online_pgdat(pgdat
) {
5038 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5039 struct zone
*zone
= pgdat
->node_zones
+ i
;
5040 unsigned long max
= 0;
5042 /* Find valid and maximum lowmem_reserve in the zone */
5043 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5044 if (zone
->lowmem_reserve
[j
] > max
)
5045 max
= zone
->lowmem_reserve
[j
];
5048 /* we treat the high watermark as reserved pages. */
5049 max
+= high_wmark_pages(zone
);
5051 if (max
> zone
->present_pages
)
5052 max
= zone
->present_pages
;
5053 reserve_pages
+= max
;
5055 * Lowmem reserves are not available to
5056 * GFP_HIGHUSER page cache allocations and
5057 * kswapd tries to balance zones to their high
5058 * watermark. As a result, neither should be
5059 * regarded as dirtyable memory, to prevent a
5060 * situation where reclaim has to clean pages
5061 * in order to balance the zones.
5063 zone
->dirty_balance_reserve
= max
;
5066 dirty_balance_reserve
= reserve_pages
;
5067 totalreserve_pages
= reserve_pages
;
5071 * setup_per_zone_lowmem_reserve - called whenever
5072 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5073 * has a correct pages reserved value, so an adequate number of
5074 * pages are left in the zone after a successful __alloc_pages().
5076 static void setup_per_zone_lowmem_reserve(void)
5078 struct pglist_data
*pgdat
;
5079 enum zone_type j
, idx
;
5081 for_each_online_pgdat(pgdat
) {
5082 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5083 struct zone
*zone
= pgdat
->node_zones
+ j
;
5084 unsigned long present_pages
= zone
->present_pages
;
5086 zone
->lowmem_reserve
[j
] = 0;
5090 struct zone
*lower_zone
;
5094 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5095 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5097 lower_zone
= pgdat
->node_zones
+ idx
;
5098 lower_zone
->lowmem_reserve
[j
] = present_pages
/
5099 sysctl_lowmem_reserve_ratio
[idx
];
5100 present_pages
+= lower_zone
->present_pages
;
5105 /* update totalreserve_pages */
5106 calculate_totalreserve_pages();
5109 static void __setup_per_zone_wmarks(void)
5111 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5112 unsigned long lowmem_pages
= 0;
5114 unsigned long flags
;
5116 /* Calculate total number of !ZONE_HIGHMEM pages */
5117 for_each_zone(zone
) {
5118 if (!is_highmem(zone
))
5119 lowmem_pages
+= zone
->present_pages
;
5122 for_each_zone(zone
) {
5125 spin_lock_irqsave(&zone
->lock
, flags
);
5126 tmp
= (u64
)pages_min
* zone
->present_pages
;
5127 do_div(tmp
, lowmem_pages
);
5128 if (is_highmem(zone
)) {
5130 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5131 * need highmem pages, so cap pages_min to a small
5134 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5135 * deltas controls asynch page reclaim, and so should
5136 * not be capped for highmem.
5140 min_pages
= zone
->present_pages
/ 1024;
5141 if (min_pages
< SWAP_CLUSTER_MAX
)
5142 min_pages
= SWAP_CLUSTER_MAX
;
5143 if (min_pages
> 128)
5145 zone
->watermark
[WMARK_MIN
] = min_pages
;
5148 * If it's a lowmem zone, reserve a number of pages
5149 * proportionate to the zone's size.
5151 zone
->watermark
[WMARK_MIN
] = tmp
;
5154 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5155 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5157 zone
->watermark
[WMARK_MIN
] += cma_wmark_pages(zone
);
5158 zone
->watermark
[WMARK_LOW
] += cma_wmark_pages(zone
);
5159 zone
->watermark
[WMARK_HIGH
] += cma_wmark_pages(zone
);
5161 setup_zone_migrate_reserve(zone
);
5162 spin_unlock_irqrestore(&zone
->lock
, flags
);
5165 /* update totalreserve_pages */
5166 calculate_totalreserve_pages();
5170 * setup_per_zone_wmarks - called when min_free_kbytes changes
5171 * or when memory is hot-{added|removed}
5173 * Ensures that the watermark[min,low,high] values for each zone are set
5174 * correctly with respect to min_free_kbytes.
5176 void setup_per_zone_wmarks(void)
5178 mutex_lock(&zonelists_mutex
);
5179 __setup_per_zone_wmarks();
5180 mutex_unlock(&zonelists_mutex
);
5184 * The inactive anon list should be small enough that the VM never has to
5185 * do too much work, but large enough that each inactive page has a chance
5186 * to be referenced again before it is swapped out.
5188 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5189 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5190 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5191 * the anonymous pages are kept on the inactive list.
5194 * memory ratio inactive anon
5195 * -------------------------------------
5204 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5206 unsigned int gb
, ratio
;
5208 /* Zone size in gigabytes */
5209 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5211 ratio
= int_sqrt(10 * gb
);
5215 zone
->inactive_ratio
= ratio
;
5218 static void __meminit
setup_per_zone_inactive_ratio(void)
5223 calculate_zone_inactive_ratio(zone
);
5227 * Initialise min_free_kbytes.
5229 * For small machines we want it small (128k min). For large machines
5230 * we want it large (64MB max). But it is not linear, because network
5231 * bandwidth does not increase linearly with machine size. We use
5233 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5234 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5250 int __meminit
init_per_zone_wmark_min(void)
5252 unsigned long lowmem_kbytes
;
5254 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5256 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5257 if (min_free_kbytes
< 128)
5258 min_free_kbytes
= 128;
5259 if (min_free_kbytes
> 65536)
5260 min_free_kbytes
= 65536;
5261 setup_per_zone_wmarks();
5262 refresh_zone_stat_thresholds();
5263 setup_per_zone_lowmem_reserve();
5264 setup_per_zone_inactive_ratio();
5267 module_init(init_per_zone_wmark_min
)
5270 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5271 * that we can call two helper functions whenever min_free_kbytes
5274 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5275 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5277 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5279 setup_per_zone_wmarks();
5284 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5285 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5290 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5295 zone
->min_unmapped_pages
= (zone
->present_pages
*
5296 sysctl_min_unmapped_ratio
) / 100;
5300 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5301 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5306 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5311 zone
->min_slab_pages
= (zone
->present_pages
*
5312 sysctl_min_slab_ratio
) / 100;
5318 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5319 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5320 * whenever sysctl_lowmem_reserve_ratio changes.
5322 * The reserve ratio obviously has absolutely no relation with the
5323 * minimum watermarks. The lowmem reserve ratio can only make sense
5324 * if in function of the boot time zone sizes.
5326 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5327 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5329 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5330 setup_per_zone_lowmem_reserve();
5335 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5336 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5337 * can have before it gets flushed back to buddy allocator.
5340 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5341 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5347 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5348 if (!write
|| (ret
< 0))
5350 for_each_populated_zone(zone
) {
5351 for_each_possible_cpu(cpu
) {
5353 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5354 setup_pagelist_highmark(
5355 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5361 int hashdist
= HASHDIST_DEFAULT
;
5364 static int __init
set_hashdist(char *str
)
5368 hashdist
= simple_strtoul(str
, &str
, 0);
5371 __setup("hashdist=", set_hashdist
);
5375 * allocate a large system hash table from bootmem
5376 * - it is assumed that the hash table must contain an exact power-of-2
5377 * quantity of entries
5378 * - limit is the number of hash buckets, not the total allocation size
5380 void *__init
alloc_large_system_hash(const char *tablename
,
5381 unsigned long bucketsize
,
5382 unsigned long numentries
,
5385 unsigned int *_hash_shift
,
5386 unsigned int *_hash_mask
,
5387 unsigned long low_limit
,
5388 unsigned long high_limit
)
5390 unsigned long long max
= high_limit
;
5391 unsigned long log2qty
, size
;
5394 /* allow the kernel cmdline to have a say */
5396 /* round applicable memory size up to nearest megabyte */
5397 numentries
= nr_kernel_pages
;
5398 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5399 numentries
>>= 20 - PAGE_SHIFT
;
5400 numentries
<<= 20 - PAGE_SHIFT
;
5402 /* limit to 1 bucket per 2^scale bytes of low memory */
5403 if (scale
> PAGE_SHIFT
)
5404 numentries
>>= (scale
- PAGE_SHIFT
);
5406 numentries
<<= (PAGE_SHIFT
- scale
);
5408 /* Make sure we've got at least a 0-order allocation.. */
5409 if (unlikely(flags
& HASH_SMALL
)) {
5410 /* Makes no sense without HASH_EARLY */
5411 WARN_ON(!(flags
& HASH_EARLY
));
5412 if (!(numentries
>> *_hash_shift
)) {
5413 numentries
= 1UL << *_hash_shift
;
5414 BUG_ON(!numentries
);
5416 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5417 numentries
= PAGE_SIZE
/ bucketsize
;
5419 numentries
= roundup_pow_of_two(numentries
);
5421 /* limit allocation size to 1/16 total memory by default */
5423 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5424 do_div(max
, bucketsize
);
5426 max
= min(max
, 0x80000000ULL
);
5428 if (numentries
< low_limit
)
5429 numentries
= low_limit
;
5430 if (numentries
> max
)
5433 log2qty
= ilog2(numentries
);
5436 size
= bucketsize
<< log2qty
;
5437 if (flags
& HASH_EARLY
)
5438 table
= alloc_bootmem_nopanic(size
);
5440 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5443 * If bucketsize is not a power-of-two, we may free
5444 * some pages at the end of hash table which
5445 * alloc_pages_exact() automatically does
5447 if (get_order(size
) < MAX_ORDER
) {
5448 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5449 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5452 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5455 panic("Failed to allocate %s hash table\n", tablename
);
5457 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5460 ilog2(size
) - PAGE_SHIFT
,
5464 *_hash_shift
= log2qty
;
5466 *_hash_mask
= (1 << log2qty
) - 1;
5471 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5472 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5475 #ifdef CONFIG_SPARSEMEM
5476 return __pfn_to_section(pfn
)->pageblock_flags
;
5478 return zone
->pageblock_flags
;
5479 #endif /* CONFIG_SPARSEMEM */
5482 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5484 #ifdef CONFIG_SPARSEMEM
5485 pfn
&= (PAGES_PER_SECTION
-1);
5486 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5488 pfn
= pfn
- zone
->zone_start_pfn
;
5489 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5490 #endif /* CONFIG_SPARSEMEM */
5494 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5495 * @page: The page within the block of interest
5496 * @start_bitidx: The first bit of interest to retrieve
5497 * @end_bitidx: The last bit of interest
5498 * returns pageblock_bits flags
5500 unsigned long get_pageblock_flags_group(struct page
*page
,
5501 int start_bitidx
, int end_bitidx
)
5504 unsigned long *bitmap
;
5505 unsigned long pfn
, bitidx
;
5506 unsigned long flags
= 0;
5507 unsigned long value
= 1;
5509 zone
= page_zone(page
);
5510 pfn
= page_to_pfn(page
);
5511 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5512 bitidx
= pfn_to_bitidx(zone
, pfn
);
5514 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5515 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5522 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5523 * @page: The page within the block of interest
5524 * @start_bitidx: The first bit of interest
5525 * @end_bitidx: The last bit of interest
5526 * @flags: The flags to set
5528 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5529 int start_bitidx
, int end_bitidx
)
5532 unsigned long *bitmap
;
5533 unsigned long pfn
, bitidx
;
5534 unsigned long value
= 1;
5536 zone
= page_zone(page
);
5537 pfn
= page_to_pfn(page
);
5538 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5539 bitidx
= pfn_to_bitidx(zone
, pfn
);
5540 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5541 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5543 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5545 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5547 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5551 * This function checks whether pageblock includes unmovable pages or not.
5552 * If @count is not zero, it is okay to include less @count unmovable pages
5554 * PageLRU check wihtout isolation or lru_lock could race so that
5555 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5556 * expect this function should be exact.
5558 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
)
5560 unsigned long pfn
, iter
, found
;
5564 * For avoiding noise data, lru_add_drain_all() should be called
5565 * If ZONE_MOVABLE, the zone never contains unmovable pages
5567 if (zone_idx(zone
) == ZONE_MOVABLE
)
5569 mt
= get_pageblock_migratetype(page
);
5570 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
5573 pfn
= page_to_pfn(page
);
5574 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5575 unsigned long check
= pfn
+ iter
;
5577 if (!pfn_valid_within(check
))
5580 page
= pfn_to_page(check
);
5582 * We can't use page_count without pin a page
5583 * because another CPU can free compound page.
5584 * This check already skips compound tails of THP
5585 * because their page->_count is zero at all time.
5587 if (!atomic_read(&page
->_count
)) {
5588 if (PageBuddy(page
))
5589 iter
+= (1 << page_order(page
)) - 1;
5596 * If there are RECLAIMABLE pages, we need to check it.
5597 * But now, memory offline itself doesn't call shrink_slab()
5598 * and it still to be fixed.
5601 * If the page is not RAM, page_count()should be 0.
5602 * we don't need more check. This is an _used_ not-movable page.
5604 * The problematic thing here is PG_reserved pages. PG_reserved
5605 * is set to both of a memory hole page and a _used_ kernel
5614 bool is_pageblock_removable_nolock(struct page
*page
)
5620 * We have to be careful here because we are iterating over memory
5621 * sections which are not zone aware so we might end up outside of
5622 * the zone but still within the section.
5623 * We have to take care about the node as well. If the node is offline
5624 * its NODE_DATA will be NULL - see page_zone.
5626 if (!node_online(page_to_nid(page
)))
5629 zone
= page_zone(page
);
5630 pfn
= page_to_pfn(page
);
5631 if (zone
->zone_start_pfn
> pfn
||
5632 zone
->zone_start_pfn
+ zone
->spanned_pages
<= pfn
)
5635 return !has_unmovable_pages(zone
, page
, 0);
5640 static unsigned long pfn_max_align_down(unsigned long pfn
)
5642 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5643 pageblock_nr_pages
) - 1);
5646 static unsigned long pfn_max_align_up(unsigned long pfn
)
5648 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5649 pageblock_nr_pages
));
5652 static struct page
*
5653 __alloc_contig_migrate_alloc(struct page
*page
, unsigned long private,
5656 gfp_t gfp_mask
= GFP_USER
| __GFP_MOVABLE
;
5658 if (PageHighMem(page
))
5659 gfp_mask
|= __GFP_HIGHMEM
;
5661 return alloc_page(gfp_mask
);
5664 /* [start, end) must belong to a single zone. */
5665 static int __alloc_contig_migrate_range(unsigned long start
, unsigned long end
)
5667 /* This function is based on compact_zone() from compaction.c. */
5669 unsigned long pfn
= start
;
5670 unsigned int tries
= 0;
5673 struct compact_control cc
= {
5674 .nr_migratepages
= 0,
5676 .zone
= page_zone(pfn_to_page(start
)),
5679 INIT_LIST_HEAD(&cc
.migratepages
);
5681 migrate_prep_local();
5683 while (pfn
< end
|| !list_empty(&cc
.migratepages
)) {
5684 if (fatal_signal_pending(current
)) {
5689 if (list_empty(&cc
.migratepages
)) {
5690 cc
.nr_migratepages
= 0;
5691 pfn
= isolate_migratepages_range(cc
.zone
, &cc
,
5698 } else if (++tries
== 5) {
5699 ret
= ret
< 0 ? ret
: -EBUSY
;
5703 ret
= migrate_pages(&cc
.migratepages
,
5704 __alloc_contig_migrate_alloc
,
5705 0, false, MIGRATE_SYNC
);
5708 putback_lru_pages(&cc
.migratepages
);
5709 return ret
> 0 ? 0 : ret
;
5713 * Update zone's cma pages counter used for watermark level calculation.
5715 static inline void __update_cma_watermarks(struct zone
*zone
, int count
)
5717 unsigned long flags
;
5718 spin_lock_irqsave(&zone
->lock
, flags
);
5719 zone
->min_cma_pages
+= count
;
5720 spin_unlock_irqrestore(&zone
->lock
, flags
);
5721 setup_per_zone_wmarks();
5725 * Trigger memory pressure bump to reclaim some pages in order to be able to
5726 * allocate 'count' pages in single page units. Does similar work as
5727 *__alloc_pages_slowpath() function.
5729 static int __reclaim_pages(struct zone
*zone
, gfp_t gfp_mask
, int count
)
5731 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
5732 struct zonelist
*zonelist
= node_zonelist(0, gfp_mask
);
5733 int did_some_progress
= 0;
5737 * Increase level of watermarks to force kswapd do his job
5738 * to stabilise at new watermark level.
5740 __update_cma_watermarks(zone
, count
);
5742 /* Obey watermarks as if the page was being allocated */
5743 while (!zone_watermark_ok(zone
, 0, low_wmark_pages(zone
), 0, 0)) {
5744 wake_all_kswapd(order
, zonelist
, high_zoneidx
, zone_idx(zone
));
5746 did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
5748 if (!did_some_progress
) {
5749 /* Exhausted what can be done so it's blamo time */
5750 out_of_memory(zonelist
, gfp_mask
, order
, NULL
, false);
5754 /* Restore original watermark levels. */
5755 __update_cma_watermarks(zone
, -count
);
5761 * alloc_contig_range() -- tries to allocate given range of pages
5762 * @start: start PFN to allocate
5763 * @end: one-past-the-last PFN to allocate
5764 * @migratetype: migratetype of the underlaying pageblocks (either
5765 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5766 * in range must have the same migratetype and it must
5767 * be either of the two.
5769 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5770 * aligned, however it's the caller's responsibility to guarantee that
5771 * we are the only thread that changes migrate type of pageblocks the
5774 * The PFN range must belong to a single zone.
5776 * Returns zero on success or negative error code. On success all
5777 * pages which PFN is in [start, end) are allocated for the caller and
5778 * need to be freed with free_contig_range().
5780 int alloc_contig_range(unsigned long start
, unsigned long end
,
5781 unsigned migratetype
)
5783 struct zone
*zone
= page_zone(pfn_to_page(start
));
5784 unsigned long outer_start
, outer_end
;
5788 * What we do here is we mark all pageblocks in range as
5789 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5790 * have different sizes, and due to the way page allocator
5791 * work, we align the range to biggest of the two pages so
5792 * that page allocator won't try to merge buddies from
5793 * different pageblocks and change MIGRATE_ISOLATE to some
5794 * other migration type.
5796 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5797 * migrate the pages from an unaligned range (ie. pages that
5798 * we are interested in). This will put all the pages in
5799 * range back to page allocator as MIGRATE_ISOLATE.
5801 * When this is done, we take the pages in range from page
5802 * allocator removing them from the buddy system. This way
5803 * page allocator will never consider using them.
5805 * This lets us mark the pageblocks back as
5806 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5807 * aligned range but not in the unaligned, original range are
5808 * put back to page allocator so that buddy can use them.
5811 ret
= start_isolate_page_range(pfn_max_align_down(start
),
5812 pfn_max_align_up(end
), migratetype
);
5816 ret
= __alloc_contig_migrate_range(start
, end
);
5821 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5822 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5823 * more, all pages in [start, end) are free in page allocator.
5824 * What we are going to do is to allocate all pages from
5825 * [start, end) (that is remove them from page allocator).
5827 * The only problem is that pages at the beginning and at the
5828 * end of interesting range may be not aligned with pages that
5829 * page allocator holds, ie. they can be part of higher order
5830 * pages. Because of this, we reserve the bigger range and
5831 * once this is done free the pages we are not interested in.
5833 * We don't have to hold zone->lock here because the pages are
5834 * isolated thus they won't get removed from buddy.
5837 lru_add_drain_all();
5841 outer_start
= start
;
5842 while (!PageBuddy(pfn_to_page(outer_start
))) {
5843 if (++order
>= MAX_ORDER
) {
5847 outer_start
&= ~0UL << order
;
5850 /* Make sure the range is really isolated. */
5851 if (test_pages_isolated(outer_start
, end
)) {
5852 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5859 * Reclaim enough pages to make sure that contiguous allocation
5860 * will not starve the system.
5862 __reclaim_pages(zone
, GFP_HIGHUSER_MOVABLE
, end
-start
);
5864 /* Grab isolated pages from freelists. */
5865 outer_end
= isolate_freepages_range(outer_start
, end
);
5871 /* Free head and tail (if any) */
5872 if (start
!= outer_start
)
5873 free_contig_range(outer_start
, start
- outer_start
);
5874 if (end
!= outer_end
)
5875 free_contig_range(end
, outer_end
- end
);
5878 undo_isolate_page_range(pfn_max_align_down(start
),
5879 pfn_max_align_up(end
), migratetype
);
5883 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
5885 for (; nr_pages
--; ++pfn
)
5886 __free_page(pfn_to_page(pfn
));
5890 #ifdef CONFIG_MEMORY_HOTPLUG
5891 static int __meminit
__zone_pcp_update(void *data
)
5893 struct zone
*zone
= data
;
5895 unsigned long batch
= zone_batchsize(zone
), flags
;
5897 for_each_possible_cpu(cpu
) {
5898 struct per_cpu_pageset
*pset
;
5899 struct per_cpu_pages
*pcp
;
5901 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
5904 local_irq_save(flags
);
5906 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
5907 setup_pageset(pset
, batch
);
5908 local_irq_restore(flags
);
5913 void __meminit
zone_pcp_update(struct zone
*zone
)
5915 stop_machine(__zone_pcp_update
, zone
, NULL
);
5919 #ifdef CONFIG_MEMORY_HOTREMOVE
5920 void zone_pcp_reset(struct zone
*zone
)
5922 unsigned long flags
;
5924 /* avoid races with drain_pages() */
5925 local_irq_save(flags
);
5926 if (zone
->pageset
!= &boot_pageset
) {
5927 free_percpu(zone
->pageset
);
5928 zone
->pageset
= &boot_pageset
;
5930 local_irq_restore(flags
);
5934 * All pages in the range must be isolated before calling this.
5937 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5943 unsigned long flags
;
5944 /* find the first valid pfn */
5945 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5950 zone
= page_zone(pfn_to_page(pfn
));
5951 spin_lock_irqsave(&zone
->lock
, flags
);
5953 while (pfn
< end_pfn
) {
5954 if (!pfn_valid(pfn
)) {
5958 page
= pfn_to_page(pfn
);
5959 BUG_ON(page_count(page
));
5960 BUG_ON(!PageBuddy(page
));
5961 order
= page_order(page
);
5962 #ifdef CONFIG_DEBUG_VM
5963 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5964 pfn
, 1 << order
, end_pfn
);
5966 list_del(&page
->lru
);
5967 rmv_page_order(page
);
5968 zone
->free_area
[order
].nr_free
--;
5969 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5971 for (i
= 0; i
< (1 << order
); i
++)
5972 SetPageReserved((page
+i
));
5973 pfn
+= (1 << order
);
5975 spin_unlock_irqrestore(&zone
->lock
, flags
);
5979 #ifdef CONFIG_MEMORY_FAILURE
5980 bool is_free_buddy_page(struct page
*page
)
5982 struct zone
*zone
= page_zone(page
);
5983 unsigned long pfn
= page_to_pfn(page
);
5984 unsigned long flags
;
5987 spin_lock_irqsave(&zone
->lock
, flags
);
5988 for (order
= 0; order
< MAX_ORDER
; order
++) {
5989 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5991 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5994 spin_unlock_irqrestore(&zone
->lock
, flags
);
5996 return order
< MAX_ORDER
;
6000 static const struct trace_print_flags pageflag_names
[] = {
6001 {1UL << PG_locked
, "locked" },
6002 {1UL << PG_error
, "error" },
6003 {1UL << PG_referenced
, "referenced" },
6004 {1UL << PG_uptodate
, "uptodate" },
6005 {1UL << PG_dirty
, "dirty" },
6006 {1UL << PG_lru
, "lru" },
6007 {1UL << PG_active
, "active" },
6008 {1UL << PG_slab
, "slab" },
6009 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6010 {1UL << PG_arch_1
, "arch_1" },
6011 {1UL << PG_reserved
, "reserved" },
6012 {1UL << PG_private
, "private" },
6013 {1UL << PG_private_2
, "private_2" },
6014 {1UL << PG_writeback
, "writeback" },
6015 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6016 {1UL << PG_head
, "head" },
6017 {1UL << PG_tail
, "tail" },
6019 {1UL << PG_compound
, "compound" },
6021 {1UL << PG_swapcache
, "swapcache" },
6022 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6023 {1UL << PG_reclaim
, "reclaim" },
6024 {1UL << PG_swapbacked
, "swapbacked" },
6025 {1UL << PG_unevictable
, "unevictable" },
6027 {1UL << PG_mlocked
, "mlocked" },
6029 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6030 {1UL << PG_uncached
, "uncached" },
6032 #ifdef CONFIG_MEMORY_FAILURE
6033 {1UL << PG_hwpoison
, "hwpoison" },
6035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6036 {1UL << PG_compound_lock
, "compound_lock" },
6040 static void dump_page_flags(unsigned long flags
)
6042 const char *delim
= "";
6046 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6048 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6050 /* remove zone id */
6051 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6053 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6055 mask
= pageflag_names
[i
].mask
;
6056 if ((flags
& mask
) != mask
)
6060 printk("%s%s", delim
, pageflag_names
[i
].name
);
6064 /* check for left over flags */
6066 printk("%s%#lx", delim
, flags
);
6071 void dump_page(struct page
*page
)
6074 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6075 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6076 page
->mapping
, page
->index
);
6077 dump_page_flags(page
->flags
);
6078 mem_cgroup_print_bad_page(page
);