4 #include <linux/errno.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
26 struct writeback_control
;
28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr
;
32 extern unsigned long num_physpages
;
33 extern unsigned long totalram_pages
;
34 extern void * high_memory
;
35 extern int page_cluster
;
38 extern int sysctl_legacy_va_layout
;
40 #define sysctl_legacy_va_layout 0
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
49 /* to align the pointer to the (next) page boundary */
50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
53 * Linux kernel virtual memory manager primitives.
54 * The idea being to have a "virtual" mm in the same way
55 * we have a virtual fs - giving a cleaner interface to the
56 * mm details, and allowing different kinds of memory mappings
57 * (from shared memory to executable loading to arbitrary
61 extern struct kmem_cache
*vm_area_cachep
;
64 extern struct rb_root nommu_region_tree
;
65 extern struct rw_semaphore nommu_region_sem
;
67 extern unsigned int kobjsize(const void *objp
);
71 * vm_flags in vm_area_struct, see mm_types.h.
73 #define VM_NONE 0x00000000
75 #define VM_READ 0x00000001 /* currently active flags */
76 #define VM_WRITE 0x00000002
77 #define VM_EXEC 0x00000004
78 #define VM_SHARED 0x00000008
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
82 #define VM_MAYWRITE 0x00000020
83 #define VM_MAYEXEC 0x00000040
84 #define VM_MAYSHARE 0x00000080
86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90 #define VM_LOCKED 0x00002000
91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
93 /* Used by sys_madvise() */
94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
99 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
100 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
104 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
106 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
107 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
108 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
109 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
111 #if defined(CONFIG_X86)
112 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
113 #elif defined(CONFIG_PPC)
114 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
115 #elif defined(CONFIG_PARISC)
116 # define VM_GROWSUP VM_ARCH_1
117 #elif defined(CONFIG_IA64)
118 # define VM_GROWSUP VM_ARCH_1
119 #elif !defined(CONFIG_MMU)
120 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
124 # define VM_GROWSUP VM_NONE
127 /* Bits set in the VMA until the stack is in its final location */
128 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
130 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
131 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
134 #ifdef CONFIG_STACK_GROWSUP
135 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
137 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
140 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
141 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
142 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
143 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
144 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
147 * Special vmas that are non-mergable, non-mlock()able.
148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
150 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
153 * mapping from the currently active vm_flags protection bits (the
154 * low four bits) to a page protection mask..
156 extern pgprot_t protection_map
[16];
158 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
159 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
160 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
161 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
162 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
163 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
166 * vm_fault is filled by the the pagefault handler and passed to the vma's
167 * ->fault function. The vma's ->fault is responsible for returning a bitmask
168 * of VM_FAULT_xxx flags that give details about how the fault was handled.
170 * pgoff should be used in favour of virtual_address, if possible. If pgoff
171 * is used, one may implement ->remap_pages to get nonlinear mapping support.
174 unsigned int flags
; /* FAULT_FLAG_xxx flags */
175 pgoff_t pgoff
; /* Logical page offset based on vma */
176 void __user
*virtual_address
; /* Faulting virtual address */
178 struct page
*page
; /* ->fault handlers should return a
179 * page here, unless VM_FAULT_NOPAGE
180 * is set (which is also implied by
186 * These are the virtual MM functions - opening of an area, closing and
187 * unmapping it (needed to keep files on disk up-to-date etc), pointer
188 * to the functions called when a no-page or a wp-page exception occurs.
190 struct vm_operations_struct
{
191 void (*open
)(struct vm_area_struct
* area
);
192 void (*close
)(struct vm_area_struct
* area
);
193 int (*fault
)(struct vm_area_struct
*vma
, struct vm_fault
*vmf
);
195 /* notification that a previously read-only page is about to become
196 * writable, if an error is returned it will cause a SIGBUS */
197 int (*page_mkwrite
)(struct vm_area_struct
*vma
, struct vm_fault
*vmf
);
199 /* called by access_process_vm when get_user_pages() fails, typically
200 * for use by special VMAs that can switch between memory and hardware
202 int (*access
)(struct vm_area_struct
*vma
, unsigned long addr
,
203 void *buf
, int len
, int write
);
206 * set_policy() op must add a reference to any non-NULL @new mempolicy
207 * to hold the policy upon return. Caller should pass NULL @new to
208 * remove a policy and fall back to surrounding context--i.e. do not
209 * install a MPOL_DEFAULT policy, nor the task or system default
212 int (*set_policy
)(struct vm_area_struct
*vma
, struct mempolicy
*new);
215 * get_policy() op must add reference [mpol_get()] to any policy at
216 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
217 * in mm/mempolicy.c will do this automatically.
218 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
219 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
220 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
221 * must return NULL--i.e., do not "fallback" to task or system default
224 struct mempolicy
*(*get_policy
)(struct vm_area_struct
*vma
,
226 int (*migrate
)(struct vm_area_struct
*vma
, const nodemask_t
*from
,
227 const nodemask_t
*to
, unsigned long flags
);
229 /* called by sys_remap_file_pages() to populate non-linear mapping */
230 int (*remap_pages
)(struct vm_area_struct
*vma
, unsigned long addr
,
231 unsigned long size
, pgoff_t pgoff
);
237 #define page_private(page) ((page)->private)
238 #define set_page_private(page, v) ((page)->private = (v))
241 * FIXME: take this include out, include page-flags.h in
242 * files which need it (119 of them)
244 #include <linux/page-flags.h>
245 #include <linux/huge_mm.h>
248 * Methods to modify the page usage count.
250 * What counts for a page usage:
251 * - cache mapping (page->mapping)
252 * - private data (page->private)
253 * - page mapped in a task's page tables, each mapping
254 * is counted separately
256 * Also, many kernel routines increase the page count before a critical
257 * routine so they can be sure the page doesn't go away from under them.
261 * Drop a ref, return true if the refcount fell to zero (the page has no users)
263 static inline int put_page_testzero(struct page
*page
)
265 VM_BUG_ON(atomic_read(&page
->_count
) == 0);
266 return atomic_dec_and_test(&page
->_count
);
270 * Try to grab a ref unless the page has a refcount of zero, return false if
273 static inline int get_page_unless_zero(struct page
*page
)
275 return atomic_inc_not_zero(&page
->_count
);
278 extern int page_is_ram(unsigned long pfn
);
280 /* Support for virtually mapped pages */
281 struct page
*vmalloc_to_page(const void *addr
);
282 unsigned long vmalloc_to_pfn(const void *addr
);
285 * Determine if an address is within the vmalloc range
287 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
288 * is no special casing required.
290 static inline int is_vmalloc_addr(const void *x
)
293 unsigned long addr
= (unsigned long)x
;
295 return addr
>= VMALLOC_START
&& addr
< VMALLOC_END
;
301 extern int is_vmalloc_or_module_addr(const void *x
);
303 static inline int is_vmalloc_or_module_addr(const void *x
)
309 static inline void compound_lock(struct page
*page
)
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 VM_BUG_ON(PageSlab(page
));
313 bit_spin_lock(PG_compound_lock
, &page
->flags
);
317 static inline void compound_unlock(struct page
*page
)
319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 VM_BUG_ON(PageSlab(page
));
321 bit_spin_unlock(PG_compound_lock
, &page
->flags
);
325 static inline unsigned long compound_lock_irqsave(struct page
*page
)
327 unsigned long uninitialized_var(flags
);
328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
329 local_irq_save(flags
);
335 static inline void compound_unlock_irqrestore(struct page
*page
,
338 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
339 compound_unlock(page
);
340 local_irq_restore(flags
);
344 static inline struct page
*compound_head(struct page
*page
)
346 if (unlikely(PageTail(page
)))
347 return page
->first_page
;
352 * The atomic page->_mapcount, starts from -1: so that transitions
353 * both from it and to it can be tracked, using atomic_inc_and_test
354 * and atomic_add_negative(-1).
356 static inline void reset_page_mapcount(struct page
*page
)
358 atomic_set(&(page
)->_mapcount
, -1);
361 static inline int page_mapcount(struct page
*page
)
363 return atomic_read(&(page
)->_mapcount
) + 1;
366 static inline int page_count(struct page
*page
)
368 return atomic_read(&compound_head(page
)->_count
);
371 static inline void get_huge_page_tail(struct page
*page
)
374 * __split_huge_page_refcount() cannot run
377 VM_BUG_ON(page_mapcount(page
) < 0);
378 VM_BUG_ON(atomic_read(&page
->_count
) != 0);
379 atomic_inc(&page
->_mapcount
);
382 extern bool __get_page_tail(struct page
*page
);
384 static inline void get_page(struct page
*page
)
386 if (unlikely(PageTail(page
)))
387 if (likely(__get_page_tail(page
)))
390 * Getting a normal page or the head of a compound page
391 * requires to already have an elevated page->_count.
393 VM_BUG_ON(atomic_read(&page
->_count
) <= 0);
394 atomic_inc(&page
->_count
);
397 static inline struct page
*virt_to_head_page(const void *x
)
399 struct page
*page
= virt_to_page(x
);
400 return compound_head(page
);
404 * Setup the page count before being freed into the page allocator for
405 * the first time (boot or memory hotplug)
407 static inline void init_page_count(struct page
*page
)
409 atomic_set(&page
->_count
, 1);
413 * PageBuddy() indicate that the page is free and in the buddy system
414 * (see mm/page_alloc.c).
416 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
417 * -2 so that an underflow of the page_mapcount() won't be mistaken
418 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
419 * efficiently by most CPU architectures.
421 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
423 static inline int PageBuddy(struct page
*page
)
425 return atomic_read(&page
->_mapcount
) == PAGE_BUDDY_MAPCOUNT_VALUE
;
428 static inline void __SetPageBuddy(struct page
*page
)
430 VM_BUG_ON(atomic_read(&page
->_mapcount
) != -1);
431 atomic_set(&page
->_mapcount
, PAGE_BUDDY_MAPCOUNT_VALUE
);
434 static inline void __ClearPageBuddy(struct page
*page
)
436 VM_BUG_ON(!PageBuddy(page
));
437 atomic_set(&page
->_mapcount
, -1);
440 void put_page(struct page
*page
);
441 void put_pages_list(struct list_head
*pages
);
443 void split_page(struct page
*page
, unsigned int order
);
444 int split_free_page(struct page
*page
);
445 int capture_free_page(struct page
*page
, int alloc_order
, int migratetype
);
448 * Compound pages have a destructor function. Provide a
449 * prototype for that function and accessor functions.
450 * These are _only_ valid on the head of a PG_compound page.
452 typedef void compound_page_dtor(struct page
*);
454 static inline void set_compound_page_dtor(struct page
*page
,
455 compound_page_dtor
*dtor
)
457 page
[1].lru
.next
= (void *)dtor
;
460 static inline compound_page_dtor
*get_compound_page_dtor(struct page
*page
)
462 return (compound_page_dtor
*)page
[1].lru
.next
;
465 static inline int compound_order(struct page
*page
)
469 return (unsigned long)page
[1].lru
.prev
;
472 static inline int compound_trans_order(struct page
*page
)
480 flags
= compound_lock_irqsave(page
);
481 order
= compound_order(page
);
482 compound_unlock_irqrestore(page
, flags
);
486 static inline void set_compound_order(struct page
*page
, unsigned long order
)
488 page
[1].lru
.prev
= (void *)order
;
493 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
494 * servicing faults for write access. In the normal case, do always want
495 * pte_mkwrite. But get_user_pages can cause write faults for mappings
496 * that do not have writing enabled, when used by access_process_vm.
498 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
500 if (likely(vma
->vm_flags
& VM_WRITE
))
501 pte
= pte_mkwrite(pte
);
507 * Multiple processes may "see" the same page. E.g. for untouched
508 * mappings of /dev/null, all processes see the same page full of
509 * zeroes, and text pages of executables and shared libraries have
510 * only one copy in memory, at most, normally.
512 * For the non-reserved pages, page_count(page) denotes a reference count.
513 * page_count() == 0 means the page is free. page->lru is then used for
514 * freelist management in the buddy allocator.
515 * page_count() > 0 means the page has been allocated.
517 * Pages are allocated by the slab allocator in order to provide memory
518 * to kmalloc and kmem_cache_alloc. In this case, the management of the
519 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
520 * unless a particular usage is carefully commented. (the responsibility of
521 * freeing the kmalloc memory is the caller's, of course).
523 * A page may be used by anyone else who does a __get_free_page().
524 * In this case, page_count still tracks the references, and should only
525 * be used through the normal accessor functions. The top bits of page->flags
526 * and page->virtual store page management information, but all other fields
527 * are unused and could be used privately, carefully. The management of this
528 * page is the responsibility of the one who allocated it, and those who have
529 * subsequently been given references to it.
531 * The other pages (we may call them "pagecache pages") are completely
532 * managed by the Linux memory manager: I/O, buffers, swapping etc.
533 * The following discussion applies only to them.
535 * A pagecache page contains an opaque `private' member, which belongs to the
536 * page's address_space. Usually, this is the address of a circular list of
537 * the page's disk buffers. PG_private must be set to tell the VM to call
538 * into the filesystem to release these pages.
540 * A page may belong to an inode's memory mapping. In this case, page->mapping
541 * is the pointer to the inode, and page->index is the file offset of the page,
542 * in units of PAGE_CACHE_SIZE.
544 * If pagecache pages are not associated with an inode, they are said to be
545 * anonymous pages. These may become associated with the swapcache, and in that
546 * case PG_swapcache is set, and page->private is an offset into the swapcache.
548 * In either case (swapcache or inode backed), the pagecache itself holds one
549 * reference to the page. Setting PG_private should also increment the
550 * refcount. The each user mapping also has a reference to the page.
552 * The pagecache pages are stored in a per-mapping radix tree, which is
553 * rooted at mapping->page_tree, and indexed by offset.
554 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
555 * lists, we instead now tag pages as dirty/writeback in the radix tree.
557 * All pagecache pages may be subject to I/O:
558 * - inode pages may need to be read from disk,
559 * - inode pages which have been modified and are MAP_SHARED may need
560 * to be written back to the inode on disk,
561 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
562 * modified may need to be swapped out to swap space and (later) to be read
567 * The zone field is never updated after free_area_init_core()
568 * sets it, so none of the operations on it need to be atomic.
573 * page->flags layout:
575 * There are three possibilities for how page->flags get
576 * laid out. The first is for the normal case, without
577 * sparsemem. The second is for sparsemem when there is
578 * plenty of space for node and section. The last is when
579 * we have run out of space and have to fall back to an
580 * alternate (slower) way of determining the node.
582 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
583 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
584 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
586 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
587 #define SECTIONS_WIDTH SECTIONS_SHIFT
589 #define SECTIONS_WIDTH 0
592 #define ZONES_WIDTH ZONES_SHIFT
594 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
595 #define NODES_WIDTH NODES_SHIFT
597 #ifdef CONFIG_SPARSEMEM_VMEMMAP
598 #error "Vmemmap: No space for nodes field in page flags"
600 #define NODES_WIDTH 0
603 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
604 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
605 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
606 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
609 * We are going to use the flags for the page to node mapping if its in
610 * there. This includes the case where there is no node, so it is implicit.
612 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
613 #define NODE_NOT_IN_PAGE_FLAGS
617 * Define the bit shifts to access each section. For non-existent
618 * sections we define the shift as 0; that plus a 0 mask ensures
619 * the compiler will optimise away reference to them.
621 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
622 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
623 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
625 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
626 #ifdef NODE_NOT_IN_PAGE_FLAGS
627 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
628 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
629 SECTIONS_PGOFF : ZONES_PGOFF)
631 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
632 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
633 NODES_PGOFF : ZONES_PGOFF)
636 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
638 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
639 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
642 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
643 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
644 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
645 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
647 static inline enum zone_type
page_zonenum(const struct page
*page
)
649 return (page
->flags
>> ZONES_PGSHIFT
) & ZONES_MASK
;
653 * The identification function is only used by the buddy allocator for
654 * determining if two pages could be buddies. We are not really
655 * identifying a zone since we could be using a the section number
656 * id if we have not node id available in page flags.
657 * We guarantee only that it will return the same value for two
658 * combinable pages in a zone.
660 static inline int page_zone_id(struct page
*page
)
662 return (page
->flags
>> ZONEID_PGSHIFT
) & ZONEID_MASK
;
665 static inline int zone_to_nid(struct zone
*zone
)
674 #ifdef NODE_NOT_IN_PAGE_FLAGS
675 extern int page_to_nid(const struct page
*page
);
677 static inline int page_to_nid(const struct page
*page
)
679 return (page
->flags
>> NODES_PGSHIFT
) & NODES_MASK
;
683 static inline struct zone
*page_zone(const struct page
*page
)
685 return &NODE_DATA(page_to_nid(page
))->node_zones
[page_zonenum(page
)];
688 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
689 static inline void set_page_section(struct page
*page
, unsigned long section
)
691 page
->flags
&= ~(SECTIONS_MASK
<< SECTIONS_PGSHIFT
);
692 page
->flags
|= (section
& SECTIONS_MASK
) << SECTIONS_PGSHIFT
;
695 static inline unsigned long page_to_section(const struct page
*page
)
697 return (page
->flags
>> SECTIONS_PGSHIFT
) & SECTIONS_MASK
;
701 static inline void set_page_zone(struct page
*page
, enum zone_type zone
)
703 page
->flags
&= ~(ZONES_MASK
<< ZONES_PGSHIFT
);
704 page
->flags
|= (zone
& ZONES_MASK
) << ZONES_PGSHIFT
;
707 static inline void set_page_node(struct page
*page
, unsigned long node
)
709 page
->flags
&= ~(NODES_MASK
<< NODES_PGSHIFT
);
710 page
->flags
|= (node
& NODES_MASK
) << NODES_PGSHIFT
;
713 static inline void set_page_links(struct page
*page
, enum zone_type zone
,
714 unsigned long node
, unsigned long pfn
)
716 set_page_zone(page
, zone
);
717 set_page_node(page
, node
);
718 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
719 set_page_section(page
, pfn_to_section_nr(pfn
));
724 * Some inline functions in vmstat.h depend on page_zone()
726 #include <linux/vmstat.h>
728 static __always_inline
void *lowmem_page_address(const struct page
*page
)
730 return __va(PFN_PHYS(page_to_pfn(page
)));
733 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
734 #define HASHED_PAGE_VIRTUAL
737 #if defined(WANT_PAGE_VIRTUAL)
738 #define page_address(page) ((page)->virtual)
739 #define set_page_address(page, address) \
741 (page)->virtual = (address); \
743 #define page_address_init() do { } while(0)
746 #if defined(HASHED_PAGE_VIRTUAL)
747 void *page_address(const struct page
*page
);
748 void set_page_address(struct page
*page
, void *virtual);
749 void page_address_init(void);
752 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
753 #define page_address(page) lowmem_page_address(page)
754 #define set_page_address(page, address) do { } while(0)
755 #define page_address_init() do { } while(0)
759 * On an anonymous page mapped into a user virtual memory area,
760 * page->mapping points to its anon_vma, not to a struct address_space;
761 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
763 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
764 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
765 * and then page->mapping points, not to an anon_vma, but to a private
766 * structure which KSM associates with that merged page. See ksm.h.
768 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
770 * Please note that, confusingly, "page_mapping" refers to the inode
771 * address_space which maps the page from disk; whereas "page_mapped"
772 * refers to user virtual address space into which the page is mapped.
774 #define PAGE_MAPPING_ANON 1
775 #define PAGE_MAPPING_KSM 2
776 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
778 extern struct address_space swapper_space
;
779 static inline struct address_space
*page_mapping(struct page
*page
)
781 struct address_space
*mapping
= page
->mapping
;
783 VM_BUG_ON(PageSlab(page
));
784 if (unlikely(PageSwapCache(page
)))
785 mapping
= &swapper_space
;
786 else if ((unsigned long)mapping
& PAGE_MAPPING_ANON
)
791 /* Neutral page->mapping pointer to address_space or anon_vma or other */
792 static inline void *page_rmapping(struct page
*page
)
794 return (void *)((unsigned long)page
->mapping
& ~PAGE_MAPPING_FLAGS
);
797 extern struct address_space
*__page_file_mapping(struct page
*);
800 struct address_space
*page_file_mapping(struct page
*page
)
802 if (unlikely(PageSwapCache(page
)))
803 return __page_file_mapping(page
);
805 return page
->mapping
;
808 static inline int PageAnon(struct page
*page
)
810 return ((unsigned long)page
->mapping
& PAGE_MAPPING_ANON
) != 0;
814 * Return the pagecache index of the passed page. Regular pagecache pages
815 * use ->index whereas swapcache pages use ->private
817 static inline pgoff_t
page_index(struct page
*page
)
819 if (unlikely(PageSwapCache(page
)))
820 return page_private(page
);
824 extern pgoff_t
__page_file_index(struct page
*page
);
827 * Return the file index of the page. Regular pagecache pages use ->index
828 * whereas swapcache pages use swp_offset(->private)
830 static inline pgoff_t
page_file_index(struct page
*page
)
832 if (unlikely(PageSwapCache(page
)))
833 return __page_file_index(page
);
839 * Return true if this page is mapped into pagetables.
841 static inline int page_mapped(struct page
*page
)
843 return atomic_read(&(page
)->_mapcount
) >= 0;
847 * Different kinds of faults, as returned by handle_mm_fault().
848 * Used to decide whether a process gets delivered SIGBUS or
849 * just gets major/minor fault counters bumped up.
852 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
854 #define VM_FAULT_OOM 0x0001
855 #define VM_FAULT_SIGBUS 0x0002
856 #define VM_FAULT_MAJOR 0x0004
857 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
858 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
859 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
861 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
862 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
863 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
865 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
867 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
868 VM_FAULT_HWPOISON_LARGE)
870 /* Encode hstate index for a hwpoisoned large page */
871 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
872 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
875 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
877 extern void pagefault_out_of_memory(void);
879 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
882 * Flags passed to show_mem() and show_free_areas() to suppress output in
885 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
887 extern void show_free_areas(unsigned int flags
);
888 extern bool skip_free_areas_node(unsigned int flags
, int nid
);
890 int shmem_zero_setup(struct vm_area_struct
*);
892 extern int can_do_mlock(void);
893 extern int user_shm_lock(size_t, struct user_struct
*);
894 extern void user_shm_unlock(size_t, struct user_struct
*);
897 * Parameter block passed down to zap_pte_range in exceptional cases.
900 struct vm_area_struct
*nonlinear_vma
; /* Check page->index if set */
901 struct address_space
*check_mapping
; /* Check page->mapping if set */
902 pgoff_t first_index
; /* Lowest page->index to unmap */
903 pgoff_t last_index
; /* Highest page->index to unmap */
906 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
909 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
911 void zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
912 unsigned long size
, struct zap_details
*);
913 void unmap_vmas(struct mmu_gather
*tlb
, struct vm_area_struct
*start_vma
,
914 unsigned long start
, unsigned long end
);
917 * mm_walk - callbacks for walk_page_range
918 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
919 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
920 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
921 * this handler is required to be able to handle
922 * pmd_trans_huge() pmds. They may simply choose to
923 * split_huge_page() instead of handling it explicitly.
924 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
925 * @pte_hole: if set, called for each hole at all levels
926 * @hugetlb_entry: if set, called for each hugetlb entry
927 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
930 * (see walk_page_range for more details)
933 int (*pgd_entry
)(pgd_t
*, unsigned long, unsigned long, struct mm_walk
*);
934 int (*pud_entry
)(pud_t
*, unsigned long, unsigned long, struct mm_walk
*);
935 int (*pmd_entry
)(pmd_t
*, unsigned long, unsigned long, struct mm_walk
*);
936 int (*pte_entry
)(pte_t
*, unsigned long, unsigned long, struct mm_walk
*);
937 int (*pte_hole
)(unsigned long, unsigned long, struct mm_walk
*);
938 int (*hugetlb_entry
)(pte_t
*, unsigned long,
939 unsigned long, unsigned long, struct mm_walk
*);
940 struct mm_struct
*mm
;
944 int walk_page_range(unsigned long addr
, unsigned long end
,
945 struct mm_walk
*walk
);
946 void free_pgd_range(struct mmu_gather
*tlb
, unsigned long addr
,
947 unsigned long end
, unsigned long floor
, unsigned long ceiling
);
948 int copy_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
949 struct vm_area_struct
*vma
);
950 void unmap_mapping_range(struct address_space
*mapping
,
951 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
);
952 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
954 int follow_phys(struct vm_area_struct
*vma
, unsigned long address
,
955 unsigned int flags
, unsigned long *prot
, resource_size_t
*phys
);
956 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
957 void *buf
, int len
, int write
);
959 static inline void unmap_shared_mapping_range(struct address_space
*mapping
,
960 loff_t
const holebegin
, loff_t
const holelen
)
962 unmap_mapping_range(mapping
, holebegin
, holelen
, 0);
965 extern void truncate_pagecache(struct inode
*inode
, loff_t old
, loff_t
new);
966 extern void truncate_setsize(struct inode
*inode
, loff_t newsize
);
967 extern int vmtruncate(struct inode
*inode
, loff_t offset
);
968 void truncate_pagecache_range(struct inode
*inode
, loff_t offset
, loff_t end
);
969 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
);
970 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
);
971 int invalidate_inode_page(struct page
*page
);
974 extern int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
975 unsigned long address
, unsigned int flags
);
976 extern int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
977 unsigned long address
, unsigned int fault_flags
);
979 static inline int handle_mm_fault(struct mm_struct
*mm
,
980 struct vm_area_struct
*vma
, unsigned long address
,
983 /* should never happen if there's no MMU */
985 return VM_FAULT_SIGBUS
;
987 static inline int fixup_user_fault(struct task_struct
*tsk
,
988 struct mm_struct
*mm
, unsigned long address
,
989 unsigned int fault_flags
)
991 /* should never happen if there's no MMU */
997 extern int make_pages_present(unsigned long addr
, unsigned long end
);
998 extern int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
);
999 extern int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
1000 void *buf
, int len
, int write
);
1002 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1003 unsigned long start
, int len
, unsigned int foll_flags
,
1004 struct page
**pages
, struct vm_area_struct
**vmas
,
1006 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1007 unsigned long start
, int nr_pages
, int write
, int force
,
1008 struct page
**pages
, struct vm_area_struct
**vmas
);
1009 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1010 struct page
**pages
);
1012 int get_kernel_pages(const struct kvec
*iov
, int nr_pages
, int write
,
1013 struct page
**pages
);
1014 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
);
1015 struct page
*get_dump_page(unsigned long addr
);
1017 extern int try_to_release_page(struct page
* page
, gfp_t gfp_mask
);
1018 extern void do_invalidatepage(struct page
*page
, unsigned long offset
);
1020 int __set_page_dirty_nobuffers(struct page
*page
);
1021 int __set_page_dirty_no_writeback(struct page
*page
);
1022 int redirty_page_for_writepage(struct writeback_control
*wbc
,
1024 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
);
1025 void account_page_writeback(struct page
*page
);
1026 int set_page_dirty(struct page
*page
);
1027 int set_page_dirty_lock(struct page
*page
);
1028 int clear_page_dirty_for_io(struct page
*page
);
1030 /* Is the vma a continuation of the stack vma above it? */
1031 static inline int vma_growsdown(struct vm_area_struct
*vma
, unsigned long addr
)
1033 return vma
&& (vma
->vm_end
== addr
) && (vma
->vm_flags
& VM_GROWSDOWN
);
1036 static inline int stack_guard_page_start(struct vm_area_struct
*vma
,
1039 return (vma
->vm_flags
& VM_GROWSDOWN
) &&
1040 (vma
->vm_start
== addr
) &&
1041 !vma_growsdown(vma
->vm_prev
, addr
);
1044 /* Is the vma a continuation of the stack vma below it? */
1045 static inline int vma_growsup(struct vm_area_struct
*vma
, unsigned long addr
)
1047 return vma
&& (vma
->vm_start
== addr
) && (vma
->vm_flags
& VM_GROWSUP
);
1050 static inline int stack_guard_page_end(struct vm_area_struct
*vma
,
1053 return (vma
->vm_flags
& VM_GROWSUP
) &&
1054 (vma
->vm_end
== addr
) &&
1055 !vma_growsup(vma
->vm_next
, addr
);
1059 vm_is_stack(struct task_struct
*task
, struct vm_area_struct
*vma
, int in_group
);
1061 extern unsigned long move_page_tables(struct vm_area_struct
*vma
,
1062 unsigned long old_addr
, struct vm_area_struct
*new_vma
,
1063 unsigned long new_addr
, unsigned long len
);
1064 extern unsigned long do_mremap(unsigned long addr
,
1065 unsigned long old_len
, unsigned long new_len
,
1066 unsigned long flags
, unsigned long new_addr
);
1067 extern int mprotect_fixup(struct vm_area_struct
*vma
,
1068 struct vm_area_struct
**pprev
, unsigned long start
,
1069 unsigned long end
, unsigned long newflags
);
1072 * doesn't attempt to fault and will return short.
1074 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1075 struct page
**pages
);
1077 * per-process(per-mm_struct) statistics.
1079 static inline unsigned long get_mm_counter(struct mm_struct
*mm
, int member
)
1081 long val
= atomic_long_read(&mm
->rss_stat
.count
[member
]);
1083 #ifdef SPLIT_RSS_COUNTING
1085 * counter is updated in asynchronous manner and may go to minus.
1086 * But it's never be expected number for users.
1091 return (unsigned long)val
;
1094 static inline void add_mm_counter(struct mm_struct
*mm
, int member
, long value
)
1096 atomic_long_add(value
, &mm
->rss_stat
.count
[member
]);
1099 static inline void inc_mm_counter(struct mm_struct
*mm
, int member
)
1101 atomic_long_inc(&mm
->rss_stat
.count
[member
]);
1104 static inline void dec_mm_counter(struct mm_struct
*mm
, int member
)
1106 atomic_long_dec(&mm
->rss_stat
.count
[member
]);
1109 static inline unsigned long get_mm_rss(struct mm_struct
*mm
)
1111 return get_mm_counter(mm
, MM_FILEPAGES
) +
1112 get_mm_counter(mm
, MM_ANONPAGES
);
1115 static inline unsigned long get_mm_hiwater_rss(struct mm_struct
*mm
)
1117 return max(mm
->hiwater_rss
, get_mm_rss(mm
));
1120 static inline unsigned long get_mm_hiwater_vm(struct mm_struct
*mm
)
1122 return max(mm
->hiwater_vm
, mm
->total_vm
);
1125 static inline void update_hiwater_rss(struct mm_struct
*mm
)
1127 unsigned long _rss
= get_mm_rss(mm
);
1129 if ((mm
)->hiwater_rss
< _rss
)
1130 (mm
)->hiwater_rss
= _rss
;
1133 static inline void update_hiwater_vm(struct mm_struct
*mm
)
1135 if (mm
->hiwater_vm
< mm
->total_vm
)
1136 mm
->hiwater_vm
= mm
->total_vm
;
1139 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss
,
1140 struct mm_struct
*mm
)
1142 unsigned long hiwater_rss
= get_mm_hiwater_rss(mm
);
1144 if (*maxrss
< hiwater_rss
)
1145 *maxrss
= hiwater_rss
;
1148 #if defined(SPLIT_RSS_COUNTING)
1149 void sync_mm_rss(struct mm_struct
*mm
);
1151 static inline void sync_mm_rss(struct mm_struct
*mm
)
1156 int vma_wants_writenotify(struct vm_area_struct
*vma
);
1158 extern pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1160 static inline pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1164 __cond_lock(*ptl
, ptep
= __get_locked_pte(mm
, addr
, ptl
));
1168 #ifdef __PAGETABLE_PUD_FOLDED
1169 static inline int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
,
1170 unsigned long address
)
1175 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
);
1178 #ifdef __PAGETABLE_PMD_FOLDED
1179 static inline int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
,
1180 unsigned long address
)
1185 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
);
1188 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1189 pmd_t
*pmd
, unsigned long address
);
1190 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
);
1193 * The following ifdef needed to get the 4level-fixup.h header to work.
1194 * Remove it when 4level-fixup.h has been removed.
1196 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1197 static inline pud_t
*pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
1199 return (unlikely(pgd_none(*pgd
)) && __pud_alloc(mm
, pgd
, address
))?
1200 NULL
: pud_offset(pgd
, address
);
1203 static inline pmd_t
*pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
1205 return (unlikely(pud_none(*pud
)) && __pmd_alloc(mm
, pud
, address
))?
1206 NULL
: pmd_offset(pud
, address
);
1208 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1210 #if USE_SPLIT_PTLOCKS
1212 * We tuck a spinlock to guard each pagetable page into its struct page,
1213 * at page->private, with BUILD_BUG_ON to make sure that this will not
1214 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1215 * When freeing, reset page->mapping so free_pages_check won't complain.
1217 #define __pte_lockptr(page) &((page)->ptl)
1218 #define pte_lock_init(_page) do { \
1219 spin_lock_init(__pte_lockptr(_page)); \
1221 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1222 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1223 #else /* !USE_SPLIT_PTLOCKS */
1225 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1227 #define pte_lock_init(page) do {} while (0)
1228 #define pte_lock_deinit(page) do {} while (0)
1229 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1230 #endif /* USE_SPLIT_PTLOCKS */
1232 static inline void pgtable_page_ctor(struct page
*page
)
1234 pte_lock_init(page
);
1235 inc_zone_page_state(page
, NR_PAGETABLE
);
1238 static inline void pgtable_page_dtor(struct page
*page
)
1240 pte_lock_deinit(page
);
1241 dec_zone_page_state(page
, NR_PAGETABLE
);
1244 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1246 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1247 pte_t *__pte = pte_offset_map(pmd, address); \
1253 #define pte_unmap_unlock(pte, ptl) do { \
1258 #define pte_alloc_map(mm, vma, pmd, address) \
1259 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1261 NULL: pte_offset_map(pmd, address))
1263 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1264 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1266 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1268 #define pte_alloc_kernel(pmd, address) \
1269 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1270 NULL: pte_offset_kernel(pmd, address))
1272 extern void free_area_init(unsigned long * zones_size
);
1273 extern void free_area_init_node(int nid
, unsigned long * zones_size
,
1274 unsigned long zone_start_pfn
, unsigned long *zholes_size
);
1275 extern void free_initmem(void);
1277 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1279 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1280 * zones, allocate the backing mem_map and account for memory holes in a more
1281 * architecture independent manner. This is a substitute for creating the
1282 * zone_sizes[] and zholes_size[] arrays and passing them to
1283 * free_area_init_node()
1285 * An architecture is expected to register range of page frames backed by
1286 * physical memory with memblock_add[_node]() before calling
1287 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1288 * usage, an architecture is expected to do something like
1290 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1292 * for_each_valid_physical_page_range()
1293 * memblock_add_node(base, size, nid)
1294 * free_area_init_nodes(max_zone_pfns);
1296 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1297 * registered physical page range. Similarly
1298 * sparse_memory_present_with_active_regions() calls memory_present() for
1299 * each range when SPARSEMEM is enabled.
1301 * See mm/page_alloc.c for more information on each function exposed by
1302 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1304 extern void free_area_init_nodes(unsigned long *max_zone_pfn
);
1305 unsigned long node_map_pfn_alignment(void);
1306 unsigned long __absent_pages_in_range(int nid
, unsigned long start_pfn
,
1307 unsigned long end_pfn
);
1308 extern unsigned long absent_pages_in_range(unsigned long start_pfn
,
1309 unsigned long end_pfn
);
1310 extern void get_pfn_range_for_nid(unsigned int nid
,
1311 unsigned long *start_pfn
, unsigned long *end_pfn
);
1312 extern unsigned long find_min_pfn_with_active_regions(void);
1313 extern void free_bootmem_with_active_regions(int nid
,
1314 unsigned long max_low_pfn
);
1315 extern void sparse_memory_present_with_active_regions(int nid
);
1317 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1319 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1320 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1321 static inline int __early_pfn_to_nid(unsigned long pfn
)
1326 /* please see mm/page_alloc.c */
1327 extern int __meminit
early_pfn_to_nid(unsigned long pfn
);
1328 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1329 /* there is a per-arch backend function. */
1330 extern int __meminit
__early_pfn_to_nid(unsigned long pfn
);
1331 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1334 extern void set_dma_reserve(unsigned long new_dma_reserve
);
1335 extern void memmap_init_zone(unsigned long, int, unsigned long,
1336 unsigned long, enum memmap_context
);
1337 extern void setup_per_zone_wmarks(void);
1338 extern int __meminit
init_per_zone_wmark_min(void);
1339 extern void mem_init(void);
1340 extern void __init
mmap_init(void);
1341 extern void show_mem(unsigned int flags
);
1342 extern void si_meminfo(struct sysinfo
* val
);
1343 extern void si_meminfo_node(struct sysinfo
*val
, int nid
);
1344 extern int after_bootmem
;
1346 extern __printf(3, 4)
1347 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...);
1349 extern void setup_per_cpu_pageset(void);
1351 extern void zone_pcp_update(struct zone
*zone
);
1352 extern void zone_pcp_reset(struct zone
*zone
);
1355 extern atomic_long_t mmap_pages_allocated
;
1356 extern int nommu_shrink_inode_mappings(struct inode
*, size_t, size_t);
1359 void vma_prio_tree_add(struct vm_area_struct
*, struct vm_area_struct
*old
);
1360 void vma_prio_tree_insert(struct vm_area_struct
*, struct prio_tree_root
*);
1361 void vma_prio_tree_remove(struct vm_area_struct
*, struct prio_tree_root
*);
1362 struct vm_area_struct
*vma_prio_tree_next(struct vm_area_struct
*vma
,
1363 struct prio_tree_iter
*iter
);
1365 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1366 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1367 (vma = vma_prio_tree_next(vma, iter)); )
1369 static inline void vma_nonlinear_insert(struct vm_area_struct
*vma
,
1370 struct list_head
*list
)
1372 vma
->shared
.vm_set
.parent
= NULL
;
1373 list_add_tail(&vma
->shared
.vm_set
.list
, list
);
1377 extern int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
);
1378 extern int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
1379 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
);
1380 extern struct vm_area_struct
*vma_merge(struct mm_struct
*,
1381 struct vm_area_struct
*prev
, unsigned long addr
, unsigned long end
,
1382 unsigned long vm_flags
, struct anon_vma
*, struct file
*, pgoff_t
,
1383 struct mempolicy
*);
1384 extern struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*);
1385 extern int split_vma(struct mm_struct
*,
1386 struct vm_area_struct
*, unsigned long addr
, int new_below
);
1387 extern int insert_vm_struct(struct mm_struct
*, struct vm_area_struct
*);
1388 extern void __vma_link_rb(struct mm_struct
*, struct vm_area_struct
*,
1389 struct rb_node
**, struct rb_node
*);
1390 extern void unlink_file_vma(struct vm_area_struct
*);
1391 extern struct vm_area_struct
*copy_vma(struct vm_area_struct
**,
1392 unsigned long addr
, unsigned long len
, pgoff_t pgoff
);
1393 extern void exit_mmap(struct mm_struct
*);
1395 extern int mm_take_all_locks(struct mm_struct
*mm
);
1396 extern void mm_drop_all_locks(struct mm_struct
*mm
);
1398 extern void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
);
1399 extern struct file
*get_mm_exe_file(struct mm_struct
*mm
);
1401 extern int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
);
1402 extern int install_special_mapping(struct mm_struct
*mm
,
1403 unsigned long addr
, unsigned long len
,
1404 unsigned long flags
, struct page
**pages
);
1406 extern unsigned long get_unmapped_area(struct file
*, unsigned long, unsigned long, unsigned long, unsigned long);
1408 extern unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1409 unsigned long len
, unsigned long flags
,
1410 vm_flags_t vm_flags
, unsigned long pgoff
);
1411 extern unsigned long do_mmap_pgoff(struct file
*, unsigned long,
1412 unsigned long, unsigned long,
1413 unsigned long, unsigned long);
1414 extern int do_munmap(struct mm_struct
*, unsigned long, size_t);
1416 /* These take the mm semaphore themselves */
1417 extern unsigned long vm_brk(unsigned long, unsigned long);
1418 extern int vm_munmap(unsigned long, size_t);
1419 extern unsigned long vm_mmap(struct file
*, unsigned long,
1420 unsigned long, unsigned long,
1421 unsigned long, unsigned long);
1424 extern void truncate_inode_pages(struct address_space
*, loff_t
);
1425 extern void truncate_inode_pages_range(struct address_space
*,
1426 loff_t lstart
, loff_t lend
);
1428 /* generic vm_area_ops exported for stackable file systems */
1429 extern int filemap_fault(struct vm_area_struct
*, struct vm_fault
*);
1430 extern int filemap_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
);
1432 /* mm/page-writeback.c */
1433 int write_one_page(struct page
*page
, int wait
);
1434 void task_dirty_inc(struct task_struct
*tsk
);
1437 #define VM_MAX_READAHEAD 128 /* kbytes */
1438 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1440 int force_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
1441 pgoff_t offset
, unsigned long nr_to_read
);
1443 void page_cache_sync_readahead(struct address_space
*mapping
,
1444 struct file_ra_state
*ra
,
1447 unsigned long size
);
1449 void page_cache_async_readahead(struct address_space
*mapping
,
1450 struct file_ra_state
*ra
,
1454 unsigned long size
);
1456 unsigned long max_sane_readahead(unsigned long nr
);
1457 unsigned long ra_submit(struct file_ra_state
*ra
,
1458 struct address_space
*mapping
,
1461 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1462 extern int expand_stack(struct vm_area_struct
*vma
, unsigned long address
);
1464 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1465 extern int expand_downwards(struct vm_area_struct
*vma
,
1466 unsigned long address
);
1468 extern int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
);
1470 #define expand_upwards(vma, address) do { } while (0)
1473 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1474 extern struct vm_area_struct
* find_vma(struct mm_struct
* mm
, unsigned long addr
);
1475 extern struct vm_area_struct
* find_vma_prev(struct mm_struct
* mm
, unsigned long addr
,
1476 struct vm_area_struct
**pprev
);
1478 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1479 NULL if none. Assume start_addr < end_addr. */
1480 static inline struct vm_area_struct
* find_vma_intersection(struct mm_struct
* mm
, unsigned long start_addr
, unsigned long end_addr
)
1482 struct vm_area_struct
* vma
= find_vma(mm
,start_addr
);
1484 if (vma
&& end_addr
<= vma
->vm_start
)
1489 static inline unsigned long vma_pages(struct vm_area_struct
*vma
)
1491 return (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
1494 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1495 static inline struct vm_area_struct
*find_exact_vma(struct mm_struct
*mm
,
1496 unsigned long vm_start
, unsigned long vm_end
)
1498 struct vm_area_struct
*vma
= find_vma(mm
, vm_start
);
1500 if (vma
&& (vma
->vm_start
!= vm_start
|| vma
->vm_end
!= vm_end
))
1507 pgprot_t
vm_get_page_prot(unsigned long vm_flags
);
1509 static inline pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
1515 struct vm_area_struct
*find_extend_vma(struct mm_struct
*, unsigned long addr
);
1516 int remap_pfn_range(struct vm_area_struct
*, unsigned long addr
,
1517 unsigned long pfn
, unsigned long size
, pgprot_t
);
1518 int vm_insert_page(struct vm_area_struct
*, unsigned long addr
, struct page
*);
1519 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1521 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1524 struct page
*follow_page(struct vm_area_struct
*, unsigned long address
,
1525 unsigned int foll_flags
);
1526 #define FOLL_WRITE 0x01 /* check pte is writable */
1527 #define FOLL_TOUCH 0x02 /* mark page accessed */
1528 #define FOLL_GET 0x04 /* do get_page on page */
1529 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1530 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1531 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1532 * and return without waiting upon it */
1533 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1534 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1535 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1537 typedef int (*pte_fn_t
)(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
1539 extern int apply_to_page_range(struct mm_struct
*mm
, unsigned long address
,
1540 unsigned long size
, pte_fn_t fn
, void *data
);
1542 #ifdef CONFIG_PROC_FS
1543 void vm_stat_account(struct mm_struct
*, unsigned long, struct file
*, long);
1545 static inline void vm_stat_account(struct mm_struct
*mm
,
1546 unsigned long flags
, struct file
*file
, long pages
)
1548 mm
->total_vm
+= pages
;
1550 #endif /* CONFIG_PROC_FS */
1552 #ifdef CONFIG_DEBUG_PAGEALLOC
1553 extern void kernel_map_pages(struct page
*page
, int numpages
, int enable
);
1554 #ifdef CONFIG_HIBERNATION
1555 extern bool kernel_page_present(struct page
*page
);
1556 #endif /* CONFIG_HIBERNATION */
1559 kernel_map_pages(struct page
*page
, int numpages
, int enable
) {}
1560 #ifdef CONFIG_HIBERNATION
1561 static inline bool kernel_page_present(struct page
*page
) { return true; }
1562 #endif /* CONFIG_HIBERNATION */
1565 extern struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
);
1566 #ifdef __HAVE_ARCH_GATE_AREA
1567 int in_gate_area_no_mm(unsigned long addr
);
1568 int in_gate_area(struct mm_struct
*mm
, unsigned long addr
);
1570 int in_gate_area_no_mm(unsigned long addr
);
1571 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1572 #endif /* __HAVE_ARCH_GATE_AREA */
1574 int drop_caches_sysctl_handler(struct ctl_table
*, int,
1575 void __user
*, size_t *, loff_t
*);
1576 unsigned long shrink_slab(struct shrink_control
*shrink
,
1577 unsigned long nr_pages_scanned
,
1578 unsigned long lru_pages
);
1581 #define randomize_va_space 0
1583 extern int randomize_va_space
;
1586 const char * arch_vma_name(struct vm_area_struct
*vma
);
1587 void print_vma_addr(char *prefix
, unsigned long rip
);
1589 void sparse_mem_maps_populate_node(struct page
**map_map
,
1590 unsigned long pnum_begin
,
1591 unsigned long pnum_end
,
1592 unsigned long map_count
,
1595 struct page
*sparse_mem_map_populate(unsigned long pnum
, int nid
);
1596 pgd_t
*vmemmap_pgd_populate(unsigned long addr
, int node
);
1597 pud_t
*vmemmap_pud_populate(pgd_t
*pgd
, unsigned long addr
, int node
);
1598 pmd_t
*vmemmap_pmd_populate(pud_t
*pud
, unsigned long addr
, int node
);
1599 pte_t
*vmemmap_pte_populate(pmd_t
*pmd
, unsigned long addr
, int node
);
1600 void *vmemmap_alloc_block(unsigned long size
, int node
);
1601 void *vmemmap_alloc_block_buf(unsigned long size
, int node
);
1602 void vmemmap_verify(pte_t
*, int, unsigned long, unsigned long);
1603 int vmemmap_populate_basepages(struct page
*start_page
,
1604 unsigned long pages
, int node
);
1605 int vmemmap_populate(struct page
*start_page
, unsigned long pages
, int node
);
1606 void vmemmap_populate_print_last(void);
1610 MF_COUNT_INCREASED
= 1 << 0,
1611 MF_ACTION_REQUIRED
= 1 << 1,
1612 MF_MUST_KILL
= 1 << 2,
1614 extern int memory_failure(unsigned long pfn
, int trapno
, int flags
);
1615 extern void memory_failure_queue(unsigned long pfn
, int trapno
, int flags
);
1616 extern int unpoison_memory(unsigned long pfn
);
1617 extern int sysctl_memory_failure_early_kill
;
1618 extern int sysctl_memory_failure_recovery
;
1619 extern void shake_page(struct page
*p
, int access
);
1620 extern atomic_long_t mce_bad_pages
;
1621 extern int soft_offline_page(struct page
*page
, int flags
);
1623 extern void dump_page(struct page
*page
);
1625 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1626 extern void clear_huge_page(struct page
*page
,
1628 unsigned int pages_per_huge_page
);
1629 extern void copy_user_huge_page(struct page
*dst
, struct page
*src
,
1630 unsigned long addr
, struct vm_area_struct
*vma
,
1631 unsigned int pages_per_huge_page
);
1632 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1634 #ifdef CONFIG_DEBUG_PAGEALLOC
1635 extern unsigned int _debug_guardpage_minorder
;
1637 static inline unsigned int debug_guardpage_minorder(void)
1639 return _debug_guardpage_minorder
;
1642 static inline bool page_is_guard(struct page
*page
)
1644 return test_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
1647 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1648 static inline bool page_is_guard(struct page
*page
) { return false; }
1649 #endif /* CONFIG_DEBUG_PAGEALLOC */
1651 #endif /* __KERNEL__ */
1652 #endif /* _LINUX_MM_H */