4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr
;
81 EXPORT_SYMBOL(max_mapnr
);
82 EXPORT_SYMBOL(mem_map
);
86 * A number of key systems in x86 including ioremap() rely on the assumption
87 * that high_memory defines the upper bound on direct map memory, then end
88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94 EXPORT_SYMBOL(high_memory
);
97 * Randomize the address space (stacks, mmaps, brk, etc.).
99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100 * as ancient (libc5 based) binaries can segfault. )
102 int randomize_va_space __read_mostly
=
103 #ifdef CONFIG_COMPAT_BRK
109 static int __init
disable_randmaps(char *s
)
111 randomize_va_space
= 0;
114 __setup("norandmaps", disable_randmaps
);
116 unsigned long zero_pfn __read_mostly
;
117 unsigned long highest_memmap_pfn __read_mostly
;
120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
122 static int __init
init_zero_pfn(void)
124 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
127 core_initcall(init_zero_pfn
);
130 #if defined(SPLIT_RSS_COUNTING)
132 void sync_mm_rss(struct mm_struct
*mm
)
136 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
137 if (current
->rss_stat
.count
[i
]) {
138 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
139 current
->rss_stat
.count
[i
] = 0;
142 current
->rss_stat
.events
= 0;
145 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
147 struct task_struct
*task
= current
;
149 if (likely(task
->mm
== mm
))
150 task
->rss_stat
.count
[member
] += val
;
152 add_mm_counter(mm
, member
, val
);
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH (64)
159 static void check_sync_rss_stat(struct task_struct
*task
)
161 if (unlikely(task
!= current
))
163 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
164 sync_mm_rss(task
->mm
);
166 #else /* SPLIT_RSS_COUNTING */
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
171 static void check_sync_rss_stat(struct task_struct
*task
)
175 #endif /* SPLIT_RSS_COUNTING */
177 #ifdef HAVE_GENERIC_MMU_GATHER
179 static int tlb_next_batch(struct mmu_gather
*tlb
)
181 struct mmu_gather_batch
*batch
;
185 tlb
->active
= batch
->next
;
189 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
192 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
199 batch
->max
= MAX_GATHER_BATCH
;
201 tlb
->active
->next
= batch
;
208 * Called to initialize an (on-stack) mmu_gather structure for page-table
209 * tear-down from @mm. The @fullmm argument is used when @mm is without
210 * users and we're going to destroy the full address space (exit/execve).
212 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
216 /* Is it from 0 to ~0? */
217 tlb
->fullmm
= !(start
| (end
+1));
218 tlb
->need_flush_all
= 0;
222 tlb
->local
.next
= NULL
;
224 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
225 tlb
->active
= &tlb
->local
;
226 tlb
->batch_count
= 0;
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 void tlb_flush_mmu(struct mmu_gather
*tlb
)
235 struct mmu_gather_batch
*batch
;
237 if (!tlb
->need_flush
)
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb
);
245 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
246 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
249 tlb
->active
= &tlb
->local
;
253 * Called at the end of the shootdown operation to free up any resources
254 * that were required.
256 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
258 struct mmu_gather_batch
*batch
, *next
;
262 /* keep the page table cache within bounds */
265 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
267 free_pages((unsigned long)batch
, 0);
269 tlb
->local
.next
= NULL
;
273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274 * handling the additional races in SMP caused by other CPUs caching valid
275 * mappings in their TLBs. Returns the number of free page slots left.
276 * When out of page slots we must call tlb_flush_mmu().
278 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
280 struct mmu_gather_batch
*batch
;
282 VM_BUG_ON(!tlb
->need_flush
);
285 batch
->pages
[batch
->nr
++] = page
;
286 if (batch
->nr
== batch
->max
) {
287 if (!tlb_next_batch(tlb
))
291 VM_BUG_ON(batch
->nr
> batch
->max
);
293 return batch
->max
- batch
->nr
;
296 #endif /* HAVE_GENERIC_MMU_GATHER */
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301 * See the comment near struct mmu_table_batch.
304 static void tlb_remove_table_smp_sync(void *arg
)
306 /* Simply deliver the interrupt */
309 static void tlb_remove_table_one(void *table
)
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
318 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
319 __tlb_remove_table(table
);
322 static void tlb_remove_table_rcu(struct rcu_head
*head
)
324 struct mmu_table_batch
*batch
;
327 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
329 for (i
= 0; i
< batch
->nr
; i
++)
330 __tlb_remove_table(batch
->tables
[i
]);
332 free_page((unsigned long)batch
);
335 void tlb_table_flush(struct mmu_gather
*tlb
)
337 struct mmu_table_batch
**batch
= &tlb
->batch
;
340 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
345 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
347 struct mmu_table_batch
**batch
= &tlb
->batch
;
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
355 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
356 __tlb_remove_table(table
);
360 if (*batch
== NULL
) {
361 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
362 if (*batch
== NULL
) {
363 tlb_remove_table_one(table
);
368 (*batch
)->tables
[(*batch
)->nr
++] = table
;
369 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
370 tlb_table_flush(tlb
);
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
381 void pgd_clear_bad(pgd_t
*pgd
)
387 void pud_clear_bad(pud_t
*pud
)
393 void pmd_clear_bad(pmd_t
*pmd
)
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
403 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
406 pgtable_t token
= pmd_pgtable(*pmd
);
408 pte_free_tlb(tlb
, token
, addr
);
412 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
413 unsigned long addr
, unsigned long end
,
414 unsigned long floor
, unsigned long ceiling
)
421 pmd
= pmd_offset(pud
, addr
);
423 next
= pmd_addr_end(addr
, end
);
424 if (pmd_none_or_clear_bad(pmd
))
426 free_pte_range(tlb
, pmd
, addr
);
427 } while (pmd
++, addr
= next
, addr
!= end
);
437 if (end
- 1 > ceiling
- 1)
440 pmd
= pmd_offset(pud
, start
);
442 pmd_free_tlb(tlb
, pmd
, start
);
445 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
446 unsigned long addr
, unsigned long end
,
447 unsigned long floor
, unsigned long ceiling
)
454 pud
= pud_offset(pgd
, addr
);
456 next
= pud_addr_end(addr
, end
);
457 if (pud_none_or_clear_bad(pud
))
459 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
460 } while (pud
++, addr
= next
, addr
!= end
);
466 ceiling
&= PGDIR_MASK
;
470 if (end
- 1 > ceiling
- 1)
473 pud
= pud_offset(pgd
, start
);
475 pud_free_tlb(tlb
, pud
, start
);
479 * This function frees user-level page tables of a process.
481 * Must be called with pagetable lock held.
483 void free_pgd_range(struct mmu_gather
*tlb
,
484 unsigned long addr
, unsigned long end
,
485 unsigned long floor
, unsigned long ceiling
)
491 * The next few lines have given us lots of grief...
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
527 if (end
- 1 > ceiling
- 1)
532 pgd
= pgd_offset(tlb
->mm
, addr
);
534 next
= pgd_addr_end(addr
, end
);
535 if (pgd_none_or_clear_bad(pgd
))
537 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
538 } while (pgd
++, addr
= next
, addr
!= end
);
541 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
542 unsigned long floor
, unsigned long ceiling
)
545 struct vm_area_struct
*next
= vma
->vm_next
;
546 unsigned long addr
= vma
->vm_start
;
549 * Hide vma from rmap and truncate_pagecache before freeing
552 unlink_anon_vmas(vma
);
553 unlink_file_vma(vma
);
555 if (is_vm_hugetlb_page(vma
)) {
556 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
557 floor
, next
? next
->vm_start
: ceiling
);
560 * Optimization: gather nearby vmas into one call down
562 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
563 && !is_vm_hugetlb_page(next
)) {
566 unlink_anon_vmas(vma
);
567 unlink_file_vma(vma
);
569 free_pgd_range(tlb
, addr
, vma
->vm_end
,
570 floor
, next
? next
->vm_start
: ceiling
);
576 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
577 pmd_t
*pmd
, unsigned long address
)
579 pgtable_t
new = pte_alloc_one(mm
, address
);
580 int wait_split_huge_page
;
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599 spin_lock(&mm
->page_table_lock
);
600 wait_split_huge_page
= 0;
601 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
603 pmd_populate(mm
, pmd
, new);
605 } else if (unlikely(pmd_trans_splitting(*pmd
)))
606 wait_split_huge_page
= 1;
607 spin_unlock(&mm
->page_table_lock
);
610 if (wait_split_huge_page
)
611 wait_split_huge_page(vma
->anon_vma
, pmd
);
615 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
617 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
621 smp_wmb(); /* See comment in __pte_alloc */
623 spin_lock(&init_mm
.page_table_lock
);
624 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
625 pmd_populate_kernel(&init_mm
, pmd
, new);
628 VM_BUG_ON(pmd_trans_splitting(*pmd
));
629 spin_unlock(&init_mm
.page_table_lock
);
631 pte_free_kernel(&init_mm
, new);
635 static inline void init_rss_vec(int *rss
)
637 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
640 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
644 if (current
->mm
== mm
)
646 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
648 add_mm_counter(mm
, i
, rss
[i
]);
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
656 * The calling function must still handle the error.
658 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
659 pte_t pte
, struct page
*page
)
661 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
662 pud_t
*pud
= pud_offset(pgd
, addr
);
663 pmd_t
*pmd
= pmd_offset(pud
, addr
);
664 struct address_space
*mapping
;
666 static unsigned long resume
;
667 static unsigned long nr_shown
;
668 static unsigned long nr_unshown
;
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
674 if (nr_shown
== 60) {
675 if (time_before(jiffies
, resume
)) {
681 "BUG: Bad page map: %lu messages suppressed\n",
688 resume
= jiffies
+ 60 * HZ
;
690 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
691 index
= linear_page_index(vma
, addr
);
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
696 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
706 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
708 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
709 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
710 vma
->vm_file
->f_op
->mmap
);
712 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
715 static inline bool is_cow_mapping(vm_flags_t flags
)
717 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
721 * vm_normal_page -- This function gets the "struct page" associated with a pte.
723 * "Special" mappings do not wish to be associated with a "struct page" (either
724 * it doesn't exist, or it exists but they don't want to touch it). In this
725 * case, NULL is returned here. "Normal" mappings do have a struct page.
727 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
728 * pte bit, in which case this function is trivial. Secondly, an architecture
729 * may not have a spare pte bit, which requires a more complicated scheme,
732 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
733 * special mapping (even if there are underlying and valid "struct pages").
734 * COWed pages of a VM_PFNMAP are always normal.
736 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
737 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
738 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
739 * mapping will always honor the rule
741 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
743 * And for normal mappings this is false.
745 * This restricts such mappings to be a linear translation from virtual address
746 * to pfn. To get around this restriction, we allow arbitrary mappings so long
747 * as the vma is not a COW mapping; in that case, we know that all ptes are
748 * special (because none can have been COWed).
751 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
753 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
754 * page" backing, however the difference is that _all_ pages with a struct
755 * page (that is, those where pfn_valid is true) are refcounted and considered
756 * normal pages by the VM. The disadvantage is that pages are refcounted
757 * (which can be slower and simply not an option for some PFNMAP users). The
758 * advantage is that we don't have to follow the strict linearity rule of
759 * PFNMAP mappings in order to support COWable mappings.
762 #ifdef __HAVE_ARCH_PTE_SPECIAL
763 # define HAVE_PTE_SPECIAL 1
765 # define HAVE_PTE_SPECIAL 0
767 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
770 unsigned long pfn
= pte_pfn(pte
);
772 if (HAVE_PTE_SPECIAL
) {
773 if (likely(!pte_special(pte
)))
775 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
777 if (!is_zero_pfn(pfn
))
778 print_bad_pte(vma
, addr
, pte
, NULL
);
782 /* !HAVE_PTE_SPECIAL case follows: */
784 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
785 if (vma
->vm_flags
& VM_MIXEDMAP
) {
791 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
792 if (pfn
== vma
->vm_pgoff
+ off
)
794 if (!is_cow_mapping(vma
->vm_flags
))
799 if (is_zero_pfn(pfn
))
802 if (unlikely(pfn
> highest_memmap_pfn
)) {
803 print_bad_pte(vma
, addr
, pte
, NULL
);
808 * NOTE! We still have PageReserved() pages in the page tables.
809 * eg. VDSO mappings can cause them to exist.
812 return pfn_to_page(pfn
);
816 * copy one vm_area from one task to the other. Assumes the page tables
817 * already present in the new task to be cleared in the whole range
818 * covered by this vma.
821 static inline unsigned long
822 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
823 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
824 unsigned long addr
, int *rss
)
826 unsigned long vm_flags
= vma
->vm_flags
;
827 pte_t pte
= *src_pte
;
830 /* pte contains position in swap or file, so copy. */
831 if (unlikely(!pte_present(pte
))) {
832 if (!pte_file(pte
)) {
833 swp_entry_t entry
= pte_to_swp_entry(pte
);
835 if (swap_duplicate(entry
) < 0)
838 /* make sure dst_mm is on swapoff's mmlist. */
839 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
840 spin_lock(&mmlist_lock
);
841 if (list_empty(&dst_mm
->mmlist
))
842 list_add(&dst_mm
->mmlist
,
844 spin_unlock(&mmlist_lock
);
846 if (likely(!non_swap_entry(entry
)))
848 else if (is_migration_entry(entry
)) {
849 page
= migration_entry_to_page(entry
);
856 if (is_write_migration_entry(entry
) &&
857 is_cow_mapping(vm_flags
)) {
859 * COW mappings require pages in both
860 * parent and child to be set to read.
862 make_migration_entry_read(&entry
);
863 pte
= swp_entry_to_pte(entry
);
864 set_pte_at(src_mm
, addr
, src_pte
, pte
);
872 * If it's a COW mapping, write protect it both
873 * in the parent and the child
875 if (is_cow_mapping(vm_flags
)) {
876 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
877 pte
= pte_wrprotect(pte
);
881 * If it's a shared mapping, mark it clean in
884 if (vm_flags
& VM_SHARED
)
885 pte
= pte_mkclean(pte
);
886 pte
= pte_mkold(pte
);
888 page
= vm_normal_page(vma
, addr
, pte
);
899 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
903 int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
904 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
905 unsigned long addr
, unsigned long end
)
907 pte_t
*orig_src_pte
, *orig_dst_pte
;
908 pte_t
*src_pte
, *dst_pte
;
909 spinlock_t
*src_ptl
, *dst_ptl
;
911 int rss
[NR_MM_COUNTERS
];
912 swp_entry_t entry
= (swp_entry_t
){0};
917 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
920 src_pte
= pte_offset_map(src_pmd
, addr
);
921 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
922 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
923 orig_src_pte
= src_pte
;
924 orig_dst_pte
= dst_pte
;
925 arch_enter_lazy_mmu_mode();
929 * We are holding two locks at this point - either of them
930 * could generate latencies in another task on another CPU.
932 if (progress
>= 32) {
934 if (need_resched() ||
935 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
938 if (pte_none(*src_pte
)) {
942 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
947 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
949 arch_leave_lazy_mmu_mode();
950 spin_unlock(src_ptl
);
951 pte_unmap(orig_src_pte
);
952 add_mm_rss_vec(dst_mm
, rss
);
953 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
957 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
966 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
967 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
968 unsigned long addr
, unsigned long end
)
970 pmd_t
*src_pmd
, *dst_pmd
;
973 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
976 src_pmd
= pmd_offset(src_pud
, addr
);
978 next
= pmd_addr_end(addr
, end
);
979 if (pmd_trans_huge(*src_pmd
)) {
981 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
982 err
= copy_huge_pmd(dst_mm
, src_mm
,
983 dst_pmd
, src_pmd
, addr
, vma
);
990 if (pmd_none_or_clear_bad(src_pmd
))
992 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
995 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
999 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1000 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1001 unsigned long addr
, unsigned long end
)
1003 pud_t
*src_pud
, *dst_pud
;
1006 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1009 src_pud
= pud_offset(src_pgd
, addr
);
1011 next
= pud_addr_end(addr
, end
);
1012 if (pud_none_or_clear_bad(src_pud
))
1014 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1017 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1021 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1022 struct vm_area_struct
*vma
)
1024 pgd_t
*src_pgd
, *dst_pgd
;
1026 unsigned long addr
= vma
->vm_start
;
1027 unsigned long end
= vma
->vm_end
;
1028 unsigned long mmun_start
; /* For mmu_notifiers */
1029 unsigned long mmun_end
; /* For mmu_notifiers */
1034 * Don't copy ptes where a page fault will fill them correctly.
1035 * Fork becomes much lighter when there are big shared or private
1036 * readonly mappings. The tradeoff is that copy_page_range is more
1037 * efficient than faulting.
1039 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1040 VM_PFNMAP
| VM_MIXEDMAP
))) {
1045 if (is_vm_hugetlb_page(vma
))
1046 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1048 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1050 * We do not free on error cases below as remove_vma
1051 * gets called on error from higher level routine
1053 ret
= track_pfn_copy(vma
);
1059 * We need to invalidate the secondary MMU mappings only when
1060 * there could be a permission downgrade on the ptes of the
1061 * parent mm. And a permission downgrade will only happen if
1062 * is_cow_mapping() returns true.
1064 is_cow
= is_cow_mapping(vma
->vm_flags
);
1068 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1072 dst_pgd
= pgd_offset(dst_mm
, addr
);
1073 src_pgd
= pgd_offset(src_mm
, addr
);
1075 next
= pgd_addr_end(addr
, end
);
1076 if (pgd_none_or_clear_bad(src_pgd
))
1078 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1079 vma
, addr
, next
))) {
1083 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1086 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1090 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1091 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1092 unsigned long addr
, unsigned long end
,
1093 struct zap_details
*details
)
1095 struct mm_struct
*mm
= tlb
->mm
;
1096 int force_flush
= 0;
1097 int rss
[NR_MM_COUNTERS
];
1104 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1106 arch_enter_lazy_mmu_mode();
1109 if (pte_none(ptent
)) {
1113 if (pte_present(ptent
)) {
1116 page
= vm_normal_page(vma
, addr
, ptent
);
1117 if (unlikely(details
) && page
) {
1119 * unmap_shared_mapping_pages() wants to
1120 * invalidate cache without truncating:
1121 * unmap shared but keep private pages.
1123 if (details
->check_mapping
&&
1124 details
->check_mapping
!= page
->mapping
)
1127 * Each page->index must be checked when
1128 * invalidating or truncating nonlinear.
1130 if (details
->nonlinear_vma
&&
1131 (page
->index
< details
->first_index
||
1132 page
->index
> details
->last_index
))
1135 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1137 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1138 if (unlikely(!page
))
1140 if (unlikely(details
) && details
->nonlinear_vma
1141 && linear_page_index(details
->nonlinear_vma
,
1142 addr
) != page
->index
) {
1143 pte_t ptfile
= pgoff_to_pte(page
->index
);
1144 if (pte_soft_dirty(ptent
))
1145 pte_file_mksoft_dirty(ptfile
);
1146 set_pte_at(mm
, addr
, pte
, ptfile
);
1149 rss
[MM_ANONPAGES
]--;
1151 if (pte_dirty(ptent
))
1152 set_page_dirty(page
);
1153 if (pte_young(ptent
) &&
1154 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1155 mark_page_accessed(page
);
1156 rss
[MM_FILEPAGES
]--;
1158 page_remove_rmap(page
);
1159 if (unlikely(page_mapcount(page
) < 0))
1160 print_bad_pte(vma
, addr
, ptent
, page
);
1161 force_flush
= !__tlb_remove_page(tlb
, page
);
1167 * If details->check_mapping, we leave swap entries;
1168 * if details->nonlinear_vma, we leave file entries.
1170 if (unlikely(details
))
1172 if (pte_file(ptent
)) {
1173 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1174 print_bad_pte(vma
, addr
, ptent
, NULL
);
1176 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1178 if (!non_swap_entry(entry
))
1180 else if (is_migration_entry(entry
)) {
1183 page
= migration_entry_to_page(entry
);
1186 rss
[MM_ANONPAGES
]--;
1188 rss
[MM_FILEPAGES
]--;
1190 if (unlikely(!free_swap_and_cache(entry
)))
1191 print_bad_pte(vma
, addr
, ptent
, NULL
);
1193 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1194 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1196 add_mm_rss_vec(mm
, rss
);
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(start_pte
, ptl
);
1201 * mmu_gather ran out of room to batch pages, we break out of
1202 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 * and page-free while holding it.
1206 unsigned long old_end
;
1211 * Flush the TLB just for the previous segment,
1212 * then update the range to be the remaining
1230 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1231 struct vm_area_struct
*vma
, pud_t
*pud
,
1232 unsigned long addr
, unsigned long end
,
1233 struct zap_details
*details
)
1238 pmd
= pmd_offset(pud
, addr
);
1240 next
= pmd_addr_end(addr
, end
);
1241 if (pmd_trans_huge(*pmd
)) {
1242 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1243 #ifdef CONFIG_DEBUG_VM
1244 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1245 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1246 __func__
, addr
, end
,
1252 split_huge_page_pmd(vma
, addr
, pmd
);
1253 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1258 * Here there can be other concurrent MADV_DONTNEED or
1259 * trans huge page faults running, and if the pmd is
1260 * none or trans huge it can change under us. This is
1261 * because MADV_DONTNEED holds the mmap_sem in read
1264 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1266 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1269 } while (pmd
++, addr
= next
, addr
!= end
);
1274 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1275 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1276 unsigned long addr
, unsigned long end
,
1277 struct zap_details
*details
)
1282 pud
= pud_offset(pgd
, addr
);
1284 next
= pud_addr_end(addr
, end
);
1285 if (pud_none_or_clear_bad(pud
))
1287 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1288 } while (pud
++, addr
= next
, addr
!= end
);
1293 static void unmap_page_range(struct mmu_gather
*tlb
,
1294 struct vm_area_struct
*vma
,
1295 unsigned long addr
, unsigned long end
,
1296 struct zap_details
*details
)
1301 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1304 BUG_ON(addr
>= end
);
1305 mem_cgroup_uncharge_start();
1306 tlb_start_vma(tlb
, vma
);
1307 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1309 next
= pgd_addr_end(addr
, end
);
1310 if (pgd_none_or_clear_bad(pgd
))
1312 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1313 } while (pgd
++, addr
= next
, addr
!= end
);
1314 tlb_end_vma(tlb
, vma
);
1315 mem_cgroup_uncharge_end();
1319 static void unmap_single_vma(struct mmu_gather
*tlb
,
1320 struct vm_area_struct
*vma
, unsigned long start_addr
,
1321 unsigned long end_addr
,
1322 struct zap_details
*details
)
1324 unsigned long start
= max(vma
->vm_start
, start_addr
);
1327 if (start
>= vma
->vm_end
)
1329 end
= min(vma
->vm_end
, end_addr
);
1330 if (end
<= vma
->vm_start
)
1334 uprobe_munmap(vma
, start
, end
);
1336 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1337 untrack_pfn(vma
, 0, 0);
1340 if (unlikely(is_vm_hugetlb_page(vma
))) {
1342 * It is undesirable to test vma->vm_file as it
1343 * should be non-null for valid hugetlb area.
1344 * However, vm_file will be NULL in the error
1345 * cleanup path of do_mmap_pgoff. When
1346 * hugetlbfs ->mmap method fails,
1347 * do_mmap_pgoff() nullifies vma->vm_file
1348 * before calling this function to clean up.
1349 * Since no pte has actually been setup, it is
1350 * safe to do nothing in this case.
1353 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1354 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1355 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1358 unmap_page_range(tlb
, vma
, start
, end
, details
);
1363 * unmap_vmas - unmap a range of memory covered by a list of vma's
1364 * @tlb: address of the caller's struct mmu_gather
1365 * @vma: the starting vma
1366 * @start_addr: virtual address at which to start unmapping
1367 * @end_addr: virtual address at which to end unmapping
1369 * Unmap all pages in the vma list.
1371 * Only addresses between `start' and `end' will be unmapped.
1373 * The VMA list must be sorted in ascending virtual address order.
1375 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1376 * range after unmap_vmas() returns. So the only responsibility here is to
1377 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1378 * drops the lock and schedules.
1380 void unmap_vmas(struct mmu_gather
*tlb
,
1381 struct vm_area_struct
*vma
, unsigned long start_addr
,
1382 unsigned long end_addr
)
1384 struct mm_struct
*mm
= vma
->vm_mm
;
1386 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1387 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1388 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1389 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1393 * zap_page_range - remove user pages in a given range
1394 * @vma: vm_area_struct holding the applicable pages
1395 * @start: starting address of pages to zap
1396 * @size: number of bytes to zap
1397 * @details: details of nonlinear truncation or shared cache invalidation
1399 * Caller must protect the VMA list
1401 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1402 unsigned long size
, struct zap_details
*details
)
1404 struct mm_struct
*mm
= vma
->vm_mm
;
1405 struct mmu_gather tlb
;
1406 unsigned long end
= start
+ size
;
1409 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1410 update_hiwater_rss(mm
);
1411 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1412 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1413 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1414 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1415 tlb_finish_mmu(&tlb
, start
, end
);
1419 * zap_page_range_single - remove user pages in a given range
1420 * @vma: vm_area_struct holding the applicable pages
1421 * @address: starting address of pages to zap
1422 * @size: number of bytes to zap
1423 * @details: details of nonlinear truncation or shared cache invalidation
1425 * The range must fit into one VMA.
1427 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1428 unsigned long size
, struct zap_details
*details
)
1430 struct mm_struct
*mm
= vma
->vm_mm
;
1431 struct mmu_gather tlb
;
1432 unsigned long end
= address
+ size
;
1435 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1436 update_hiwater_rss(mm
);
1437 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1438 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1439 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1440 tlb_finish_mmu(&tlb
, address
, end
);
1444 * zap_vma_ptes - remove ptes mapping the vma
1445 * @vma: vm_area_struct holding ptes to be zapped
1446 * @address: starting address of pages to zap
1447 * @size: number of bytes to zap
1449 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1451 * The entire address range must be fully contained within the vma.
1453 * Returns 0 if successful.
1455 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1458 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1459 !(vma
->vm_flags
& VM_PFNMAP
))
1461 zap_page_range_single(vma
, address
, size
, NULL
);
1464 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1467 * follow_page_mask - look up a page descriptor from a user-virtual address
1468 * @vma: vm_area_struct mapping @address
1469 * @address: virtual address to look up
1470 * @flags: flags modifying lookup behaviour
1471 * @page_mask: on output, *page_mask is set according to the size of the page
1473 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1475 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1476 * an error pointer if there is a mapping to something not represented
1477 * by a page descriptor (see also vm_normal_page()).
1479 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1480 unsigned long address
, unsigned int flags
,
1481 unsigned int *page_mask
)
1489 struct mm_struct
*mm
= vma
->vm_mm
;
1493 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1494 if (!IS_ERR(page
)) {
1495 BUG_ON(flags
& FOLL_GET
);
1500 pgd
= pgd_offset(mm
, address
);
1501 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1504 pud
= pud_offset(pgd
, address
);
1507 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
1508 BUG_ON(flags
& FOLL_GET
);
1509 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1512 if (unlikely(pud_bad(*pud
)))
1515 pmd
= pmd_offset(pud
, address
);
1518 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
1519 BUG_ON(flags
& FOLL_GET
);
1520 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1523 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1525 if (pmd_trans_huge(*pmd
)) {
1526 if (flags
& FOLL_SPLIT
) {
1527 split_huge_page_pmd(vma
, address
, pmd
);
1528 goto split_fallthrough
;
1530 spin_lock(&mm
->page_table_lock
);
1531 if (likely(pmd_trans_huge(*pmd
))) {
1532 if (unlikely(pmd_trans_splitting(*pmd
))) {
1533 spin_unlock(&mm
->page_table_lock
);
1534 wait_split_huge_page(vma
->anon_vma
, pmd
);
1536 page
= follow_trans_huge_pmd(vma
, address
,
1538 spin_unlock(&mm
->page_table_lock
);
1539 *page_mask
= HPAGE_PMD_NR
- 1;
1543 spin_unlock(&mm
->page_table_lock
);
1547 if (unlikely(pmd_bad(*pmd
)))
1550 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1553 if (!pte_present(pte
)) {
1556 * KSM's break_ksm() relies upon recognizing a ksm page
1557 * even while it is being migrated, so for that case we
1558 * need migration_entry_wait().
1560 if (likely(!(flags
& FOLL_MIGRATION
)))
1562 if (pte_none(pte
) || pte_file(pte
))
1564 entry
= pte_to_swp_entry(pte
);
1565 if (!is_migration_entry(entry
))
1567 pte_unmap_unlock(ptep
, ptl
);
1568 migration_entry_wait(mm
, pmd
, address
);
1569 goto split_fallthrough
;
1571 if ((flags
& FOLL_NUMA
) && pte_numa(pte
))
1573 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1576 page
= vm_normal_page(vma
, address
, pte
);
1577 if (unlikely(!page
)) {
1578 if ((flags
& FOLL_DUMP
) ||
1579 !is_zero_pfn(pte_pfn(pte
)))
1581 page
= pte_page(pte
);
1584 if (flags
& FOLL_GET
)
1585 get_page_foll(page
);
1586 if (flags
& FOLL_TOUCH
) {
1587 if ((flags
& FOLL_WRITE
) &&
1588 !pte_dirty(pte
) && !PageDirty(page
))
1589 set_page_dirty(page
);
1591 * pte_mkyoung() would be more correct here, but atomic care
1592 * is needed to avoid losing the dirty bit: it is easier to use
1593 * mark_page_accessed().
1595 mark_page_accessed(page
);
1597 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1599 * The preliminary mapping check is mainly to avoid the
1600 * pointless overhead of lock_page on the ZERO_PAGE
1601 * which might bounce very badly if there is contention.
1603 * If the page is already locked, we don't need to
1604 * handle it now - vmscan will handle it later if and
1605 * when it attempts to reclaim the page.
1607 if (page
->mapping
&& trylock_page(page
)) {
1608 lru_add_drain(); /* push cached pages to LRU */
1610 * Because we lock page here, and migration is
1611 * blocked by the pte's page reference, and we
1612 * know the page is still mapped, we don't even
1613 * need to check for file-cache page truncation.
1615 mlock_vma_page(page
);
1620 pte_unmap_unlock(ptep
, ptl
);
1625 pte_unmap_unlock(ptep
, ptl
);
1626 return ERR_PTR(-EFAULT
);
1629 pte_unmap_unlock(ptep
, ptl
);
1635 * When core dumping an enormous anonymous area that nobody
1636 * has touched so far, we don't want to allocate unnecessary pages or
1637 * page tables. Return error instead of NULL to skip handle_mm_fault,
1638 * then get_dump_page() will return NULL to leave a hole in the dump.
1639 * But we can only make this optimization where a hole would surely
1640 * be zero-filled if handle_mm_fault() actually did handle it.
1642 if ((flags
& FOLL_DUMP
) &&
1643 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1644 return ERR_PTR(-EFAULT
);
1648 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
1650 return stack_guard_page_start(vma
, addr
) ||
1651 stack_guard_page_end(vma
, addr
+PAGE_SIZE
);
1655 * __get_user_pages() - pin user pages in memory
1656 * @tsk: task_struct of target task
1657 * @mm: mm_struct of target mm
1658 * @start: starting user address
1659 * @nr_pages: number of pages from start to pin
1660 * @gup_flags: flags modifying pin behaviour
1661 * @pages: array that receives pointers to the pages pinned.
1662 * Should be at least nr_pages long. Or NULL, if caller
1663 * only intends to ensure the pages are faulted in.
1664 * @vmas: array of pointers to vmas corresponding to each page.
1665 * Or NULL if the caller does not require them.
1666 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1668 * Returns number of pages pinned. This may be fewer than the number
1669 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1670 * were pinned, returns -errno. Each page returned must be released
1671 * with a put_page() call when it is finished with. vmas will only
1672 * remain valid while mmap_sem is held.
1674 * Must be called with mmap_sem held for read or write.
1676 * __get_user_pages walks a process's page tables and takes a reference to
1677 * each struct page that each user address corresponds to at a given
1678 * instant. That is, it takes the page that would be accessed if a user
1679 * thread accesses the given user virtual address at that instant.
1681 * This does not guarantee that the page exists in the user mappings when
1682 * __get_user_pages returns, and there may even be a completely different
1683 * page there in some cases (eg. if mmapped pagecache has been invalidated
1684 * and subsequently re faulted). However it does guarantee that the page
1685 * won't be freed completely. And mostly callers simply care that the page
1686 * contains data that was valid *at some point in time*. Typically, an IO
1687 * or similar operation cannot guarantee anything stronger anyway because
1688 * locks can't be held over the syscall boundary.
1690 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1691 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1692 * appropriate) must be called after the page is finished with, and
1693 * before put_page is called.
1695 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1696 * or mmap_sem contention, and if waiting is needed to pin all pages,
1697 * *@nonblocking will be set to 0.
1699 * In most cases, get_user_pages or get_user_pages_fast should be used
1700 * instead of __get_user_pages. __get_user_pages should be used only if
1701 * you need some special @gup_flags.
1703 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1704 unsigned long start
, unsigned long nr_pages
,
1705 unsigned int gup_flags
, struct page
**pages
,
1706 struct vm_area_struct
**vmas
, int *nonblocking
)
1709 unsigned long vm_flags
;
1710 unsigned int page_mask
;
1715 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1718 * Require read or write permissions.
1719 * If FOLL_FORCE is set, we only require the "MAY" flags.
1721 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1722 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1723 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1724 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1727 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1728 * would be called on PROT_NONE ranges. We must never invoke
1729 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1730 * page faults would unprotect the PROT_NONE ranges if
1731 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1732 * bitflag. So to avoid that, don't set FOLL_NUMA if
1733 * FOLL_FORCE is set.
1735 if (!(gup_flags
& FOLL_FORCE
))
1736 gup_flags
|= FOLL_NUMA
;
1741 struct vm_area_struct
*vma
;
1743 vma
= find_extend_vma(mm
, start
);
1744 if (!vma
&& in_gate_area(mm
, start
)) {
1745 unsigned long pg
= start
& PAGE_MASK
;
1751 /* user gate pages are read-only */
1752 if (gup_flags
& FOLL_WRITE
)
1753 return i
? : -EFAULT
;
1755 pgd
= pgd_offset_k(pg
);
1757 pgd
= pgd_offset_gate(mm
, pg
);
1758 BUG_ON(pgd_none(*pgd
));
1759 pud
= pud_offset(pgd
, pg
);
1760 BUG_ON(pud_none(*pud
));
1761 pmd
= pmd_offset(pud
, pg
);
1763 return i
? : -EFAULT
;
1764 VM_BUG_ON(pmd_trans_huge(*pmd
));
1765 pte
= pte_offset_map(pmd
, pg
);
1766 if (pte_none(*pte
)) {
1768 return i
? : -EFAULT
;
1770 vma
= get_gate_vma(mm
);
1774 page
= vm_normal_page(vma
, start
, *pte
);
1776 if (!(gup_flags
& FOLL_DUMP
) &&
1777 is_zero_pfn(pte_pfn(*pte
)))
1778 page
= pte_page(*pte
);
1781 return i
? : -EFAULT
;
1793 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1794 !(vm_flags
& vma
->vm_flags
))
1795 return i
? : -EFAULT
;
1797 if (is_vm_hugetlb_page(vma
)) {
1798 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1799 &start
, &nr_pages
, i
, gup_flags
);
1805 unsigned int foll_flags
= gup_flags
;
1806 unsigned int page_increm
;
1809 * If we have a pending SIGKILL, don't keep faulting
1810 * pages and potentially allocating memory.
1812 if (unlikely(fatal_signal_pending(current
)))
1813 return i
? i
: -ERESTARTSYS
;
1816 while (!(page
= follow_page_mask(vma
, start
,
1817 foll_flags
, &page_mask
))) {
1819 unsigned int fault_flags
= 0;
1821 /* For mlock, just skip the stack guard page. */
1822 if (foll_flags
& FOLL_MLOCK
) {
1823 if (stack_guard_page(vma
, start
))
1826 if (foll_flags
& FOLL_WRITE
)
1827 fault_flags
|= FAULT_FLAG_WRITE
;
1829 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
1830 if (foll_flags
& FOLL_NOWAIT
)
1831 fault_flags
|= (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
);
1833 ret
= handle_mm_fault(mm
, vma
, start
,
1836 if (ret
& VM_FAULT_ERROR
) {
1837 if (ret
& VM_FAULT_OOM
)
1838 return i
? i
: -ENOMEM
;
1839 if (ret
& (VM_FAULT_HWPOISON
|
1840 VM_FAULT_HWPOISON_LARGE
)) {
1843 else if (gup_flags
& FOLL_HWPOISON
)
1848 if (ret
& VM_FAULT_SIGBUS
)
1849 return i
? i
: -EFAULT
;
1854 if (ret
& VM_FAULT_MAJOR
)
1860 if (ret
& VM_FAULT_RETRY
) {
1867 * The VM_FAULT_WRITE bit tells us that
1868 * do_wp_page has broken COW when necessary,
1869 * even if maybe_mkwrite decided not to set
1870 * pte_write. We can thus safely do subsequent
1871 * page lookups as if they were reads. But only
1872 * do so when looping for pte_write is futile:
1873 * in some cases userspace may also be wanting
1874 * to write to the gotten user page, which a
1875 * read fault here might prevent (a readonly
1876 * page might get reCOWed by userspace write).
1878 if ((ret
& VM_FAULT_WRITE
) &&
1879 !(vma
->vm_flags
& VM_WRITE
))
1880 foll_flags
&= ~FOLL_WRITE
;
1885 return i
? i
: PTR_ERR(page
);
1889 flush_anon_page(vma
, page
, start
);
1890 flush_dcache_page(page
);
1898 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
1899 if (page_increm
> nr_pages
)
1900 page_increm
= nr_pages
;
1902 start
+= page_increm
* PAGE_SIZE
;
1903 nr_pages
-= page_increm
;
1904 } while (nr_pages
&& start
< vma
->vm_end
);
1908 EXPORT_SYMBOL(__get_user_pages
);
1911 * fixup_user_fault() - manually resolve a user page fault
1912 * @tsk: the task_struct to use for page fault accounting, or
1913 * NULL if faults are not to be recorded.
1914 * @mm: mm_struct of target mm
1915 * @address: user address
1916 * @fault_flags:flags to pass down to handle_mm_fault()
1918 * This is meant to be called in the specific scenario where for locking reasons
1919 * we try to access user memory in atomic context (within a pagefault_disable()
1920 * section), this returns -EFAULT, and we want to resolve the user fault before
1923 * Typically this is meant to be used by the futex code.
1925 * The main difference with get_user_pages() is that this function will
1926 * unconditionally call handle_mm_fault() which will in turn perform all the
1927 * necessary SW fixup of the dirty and young bits in the PTE, while
1928 * handle_mm_fault() only guarantees to update these in the struct page.
1930 * This is important for some architectures where those bits also gate the
1931 * access permission to the page because they are maintained in software. On
1932 * such architectures, gup() will not be enough to make a subsequent access
1935 * This should be called with the mm_sem held for read.
1937 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1938 unsigned long address
, unsigned int fault_flags
)
1940 struct vm_area_struct
*vma
;
1943 vma
= find_extend_vma(mm
, address
);
1944 if (!vma
|| address
< vma
->vm_start
)
1947 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
1948 if (ret
& VM_FAULT_ERROR
) {
1949 if (ret
& VM_FAULT_OOM
)
1951 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
1953 if (ret
& VM_FAULT_SIGBUS
)
1958 if (ret
& VM_FAULT_MAJOR
)
1967 * get_user_pages() - pin user pages in memory
1968 * @tsk: the task_struct to use for page fault accounting, or
1969 * NULL if faults are not to be recorded.
1970 * @mm: mm_struct of target mm
1971 * @start: starting user address
1972 * @nr_pages: number of pages from start to pin
1973 * @write: whether pages will be written to by the caller
1974 * @force: whether to force write access even if user mapping is
1975 * readonly. This will result in the page being COWed even
1976 * in MAP_SHARED mappings. You do not want this.
1977 * @pages: array that receives pointers to the pages pinned.
1978 * Should be at least nr_pages long. Or NULL, if caller
1979 * only intends to ensure the pages are faulted in.
1980 * @vmas: array of pointers to vmas corresponding to each page.
1981 * Or NULL if the caller does not require them.
1983 * Returns number of pages pinned. This may be fewer than the number
1984 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1985 * were pinned, returns -errno. Each page returned must be released
1986 * with a put_page() call when it is finished with. vmas will only
1987 * remain valid while mmap_sem is held.
1989 * Must be called with mmap_sem held for read or write.
1991 * get_user_pages walks a process's page tables and takes a reference to
1992 * each struct page that each user address corresponds to at a given
1993 * instant. That is, it takes the page that would be accessed if a user
1994 * thread accesses the given user virtual address at that instant.
1996 * This does not guarantee that the page exists in the user mappings when
1997 * get_user_pages returns, and there may even be a completely different
1998 * page there in some cases (eg. if mmapped pagecache has been invalidated
1999 * and subsequently re faulted). However it does guarantee that the page
2000 * won't be freed completely. And mostly callers simply care that the page
2001 * contains data that was valid *at some point in time*. Typically, an IO
2002 * or similar operation cannot guarantee anything stronger anyway because
2003 * locks can't be held over the syscall boundary.
2005 * If write=0, the page must not be written to. If the page is written to,
2006 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2007 * after the page is finished with, and before put_page is called.
2009 * get_user_pages is typically used for fewer-copy IO operations, to get a
2010 * handle on the memory by some means other than accesses via the user virtual
2011 * addresses. The pages may be submitted for DMA to devices or accessed via
2012 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2013 * use the correct cache flushing APIs.
2015 * See also get_user_pages_fast, for performance critical applications.
2017 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
2018 unsigned long start
, unsigned long nr_pages
, int write
,
2019 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
2021 int flags
= FOLL_TOUCH
;
2026 flags
|= FOLL_WRITE
;
2028 flags
|= FOLL_FORCE
;
2030 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
2033 EXPORT_SYMBOL(get_user_pages
);
2036 * get_dump_page() - pin user page in memory while writing it to core dump
2037 * @addr: user address
2039 * Returns struct page pointer of user page pinned for dump,
2040 * to be freed afterwards by page_cache_release() or put_page().
2042 * Returns NULL on any kind of failure - a hole must then be inserted into
2043 * the corefile, to preserve alignment with its headers; and also returns
2044 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2045 * allowing a hole to be left in the corefile to save diskspace.
2047 * Called without mmap_sem, but after all other threads have been killed.
2049 #ifdef CONFIG_ELF_CORE
2050 struct page
*get_dump_page(unsigned long addr
)
2052 struct vm_area_struct
*vma
;
2055 if (__get_user_pages(current
, current
->mm
, addr
, 1,
2056 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
2059 flush_cache_page(vma
, addr
, page_to_pfn(page
));
2062 #endif /* CONFIG_ELF_CORE */
2064 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2067 pgd_t
* pgd
= pgd_offset(mm
, addr
);
2068 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
2070 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
2072 VM_BUG_ON(pmd_trans_huge(*pmd
));
2073 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2080 * This is the old fallback for page remapping.
2082 * For historical reasons, it only allows reserved pages. Only
2083 * old drivers should use this, and they needed to mark their
2084 * pages reserved for the old functions anyway.
2086 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2087 struct page
*page
, pgprot_t prot
)
2089 struct mm_struct
*mm
= vma
->vm_mm
;
2098 flush_dcache_page(page
);
2099 pte
= get_locked_pte(mm
, addr
, &ptl
);
2103 if (!pte_none(*pte
))
2106 /* Ok, finally just insert the thing.. */
2108 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2109 page_add_file_rmap(page
);
2110 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
2113 pte_unmap_unlock(pte
, ptl
);
2116 pte_unmap_unlock(pte
, ptl
);
2122 * vm_insert_page - insert single page into user vma
2123 * @vma: user vma to map to
2124 * @addr: target user address of this page
2125 * @page: source kernel page
2127 * This allows drivers to insert individual pages they've allocated
2130 * The page has to be a nice clean _individual_ kernel allocation.
2131 * If you allocate a compound page, you need to have marked it as
2132 * such (__GFP_COMP), or manually just split the page up yourself
2133 * (see split_page()).
2135 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2136 * took an arbitrary page protection parameter. This doesn't allow
2137 * that. Your vma protection will have to be set up correctly, which
2138 * means that if you want a shared writable mapping, you'd better
2139 * ask for a shared writable mapping!
2141 * The page does not need to be reserved.
2143 * Usually this function is called from f_op->mmap() handler
2144 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2145 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2146 * function from other places, for example from page-fault handler.
2148 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2151 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2153 if (!page_count(page
))
2155 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2156 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
2157 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2158 vma
->vm_flags
|= VM_MIXEDMAP
;
2160 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2162 EXPORT_SYMBOL(vm_insert_page
);
2164 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2165 unsigned long pfn
, pgprot_t prot
)
2167 struct mm_struct
*mm
= vma
->vm_mm
;
2173 pte
= get_locked_pte(mm
, addr
, &ptl
);
2177 if (!pte_none(*pte
))
2180 /* Ok, finally just insert the thing.. */
2181 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
2182 set_pte_at(mm
, addr
, pte
, entry
);
2183 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2187 pte_unmap_unlock(pte
, ptl
);
2193 * vm_insert_pfn - insert single pfn into user vma
2194 * @vma: user vma to map to
2195 * @addr: target user address of this page
2196 * @pfn: source kernel pfn
2198 * Similar to vm_insert_page, this allows drivers to insert individual pages
2199 * they've allocated into a user vma. Same comments apply.
2201 * This function should only be called from a vm_ops->fault handler, and
2202 * in that case the handler should return NULL.
2204 * vma cannot be a COW mapping.
2206 * As this is called only for pages that do not currently exist, we
2207 * do not need to flush old virtual caches or the TLB.
2209 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2213 pgprot_t pgprot
= vma
->vm_page_prot
;
2215 * Technically, architectures with pte_special can avoid all these
2216 * restrictions (same for remap_pfn_range). However we would like
2217 * consistency in testing and feature parity among all, so we should
2218 * try to keep these invariants in place for everybody.
2220 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2221 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2222 (VM_PFNMAP
|VM_MIXEDMAP
));
2223 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2224 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2226 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2228 if (track_pfn_insert(vma
, &pgprot
, pfn
))
2231 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
2235 EXPORT_SYMBOL(vm_insert_pfn
);
2237 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2240 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
2242 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2246 * If we don't have pte special, then we have to use the pfn_valid()
2247 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2248 * refcount the page if pfn_valid is true (hence insert_page rather
2249 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2250 * without pte special, it would there be refcounted as a normal page.
2252 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
2255 page
= pfn_to_page(pfn
);
2256 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2258 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
2260 EXPORT_SYMBOL(vm_insert_mixed
);
2263 * maps a range of physical memory into the requested pages. the old
2264 * mappings are removed. any references to nonexistent pages results
2265 * in null mappings (currently treated as "copy-on-access")
2267 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2268 unsigned long addr
, unsigned long end
,
2269 unsigned long pfn
, pgprot_t prot
)
2274 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2277 arch_enter_lazy_mmu_mode();
2279 BUG_ON(!pte_none(*pte
));
2280 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2282 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2283 arch_leave_lazy_mmu_mode();
2284 pte_unmap_unlock(pte
- 1, ptl
);
2288 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2289 unsigned long addr
, unsigned long end
,
2290 unsigned long pfn
, pgprot_t prot
)
2295 pfn
-= addr
>> PAGE_SHIFT
;
2296 pmd
= pmd_alloc(mm
, pud
, addr
);
2299 VM_BUG_ON(pmd_trans_huge(*pmd
));
2301 next
= pmd_addr_end(addr
, end
);
2302 if (remap_pte_range(mm
, pmd
, addr
, next
,
2303 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2305 } while (pmd
++, addr
= next
, addr
!= end
);
2309 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2310 unsigned long addr
, unsigned long end
,
2311 unsigned long pfn
, pgprot_t prot
)
2316 pfn
-= addr
>> PAGE_SHIFT
;
2317 pud
= pud_alloc(mm
, pgd
, addr
);
2321 next
= pud_addr_end(addr
, end
);
2322 if (remap_pmd_range(mm
, pud
, addr
, next
,
2323 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2325 } while (pud
++, addr
= next
, addr
!= end
);
2330 * remap_pfn_range - remap kernel memory to userspace
2331 * @vma: user vma to map to
2332 * @addr: target user address to start at
2333 * @pfn: physical address of kernel memory
2334 * @size: size of map area
2335 * @prot: page protection flags for this mapping
2337 * Note: this is only safe if the mm semaphore is held when called.
2339 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2340 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2344 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2345 struct mm_struct
*mm
= vma
->vm_mm
;
2349 * Physically remapped pages are special. Tell the
2350 * rest of the world about it:
2351 * VM_IO tells people not to look at these pages
2352 * (accesses can have side effects).
2353 * VM_PFNMAP tells the core MM that the base pages are just
2354 * raw PFN mappings, and do not have a "struct page" associated
2357 * Disable vma merging and expanding with mremap().
2359 * Omit vma from core dump, even when VM_IO turned off.
2361 * There's a horrible special case to handle copy-on-write
2362 * behaviour that some programs depend on. We mark the "original"
2363 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2364 * See vm_normal_page() for details.
2366 if (is_cow_mapping(vma
->vm_flags
)) {
2367 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2369 vma
->vm_pgoff
= pfn
;
2372 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
2376 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2378 BUG_ON(addr
>= end
);
2379 pfn
-= addr
>> PAGE_SHIFT
;
2380 pgd
= pgd_offset(mm
, addr
);
2381 flush_cache_range(vma
, addr
, end
);
2383 next
= pgd_addr_end(addr
, end
);
2384 err
= remap_pud_range(mm
, pgd
, addr
, next
,
2385 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2388 } while (pgd
++, addr
= next
, addr
!= end
);
2391 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
2395 EXPORT_SYMBOL(remap_pfn_range
);
2398 * vm_iomap_memory - remap memory to userspace
2399 * @vma: user vma to map to
2400 * @start: start of area
2401 * @len: size of area
2403 * This is a simplified io_remap_pfn_range() for common driver use. The
2404 * driver just needs to give us the physical memory range to be mapped,
2405 * we'll figure out the rest from the vma information.
2407 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2408 * whatever write-combining details or similar.
2410 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2412 unsigned long vm_len
, pfn
, pages
;
2414 /* Check that the physical memory area passed in looks valid */
2415 if (start
+ len
< start
)
2418 * You *really* shouldn't map things that aren't page-aligned,
2419 * but we've historically allowed it because IO memory might
2420 * just have smaller alignment.
2422 len
+= start
& ~PAGE_MASK
;
2423 pfn
= start
>> PAGE_SHIFT
;
2424 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2425 if (pfn
+ pages
< pfn
)
2428 /* We start the mapping 'vm_pgoff' pages into the area */
2429 if (vma
->vm_pgoff
> pages
)
2431 pfn
+= vma
->vm_pgoff
;
2432 pages
-= vma
->vm_pgoff
;
2434 /* Can we fit all of the mapping? */
2435 vm_len
= vma
->vm_end
- vma
->vm_start
;
2436 if (vm_len
>> PAGE_SHIFT
> pages
)
2439 /* Ok, let it rip */
2440 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2442 EXPORT_SYMBOL(vm_iomap_memory
);
2444 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2445 unsigned long addr
, unsigned long end
,
2446 pte_fn_t fn
, void *data
)
2451 spinlock_t
*uninitialized_var(ptl
);
2453 pte
= (mm
== &init_mm
) ?
2454 pte_alloc_kernel(pmd
, addr
) :
2455 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2459 BUG_ON(pmd_huge(*pmd
));
2461 arch_enter_lazy_mmu_mode();
2463 token
= pmd_pgtable(*pmd
);
2466 err
= fn(pte
++, token
, addr
, data
);
2469 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2471 arch_leave_lazy_mmu_mode();
2474 pte_unmap_unlock(pte
-1, ptl
);
2478 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2479 unsigned long addr
, unsigned long end
,
2480 pte_fn_t fn
, void *data
)
2486 BUG_ON(pud_huge(*pud
));
2488 pmd
= pmd_alloc(mm
, pud
, addr
);
2492 next
= pmd_addr_end(addr
, end
);
2493 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2496 } while (pmd
++, addr
= next
, addr
!= end
);
2500 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2501 unsigned long addr
, unsigned long end
,
2502 pte_fn_t fn
, void *data
)
2508 pud
= pud_alloc(mm
, pgd
, addr
);
2512 next
= pud_addr_end(addr
, end
);
2513 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2516 } while (pud
++, addr
= next
, addr
!= end
);
2521 * Scan a region of virtual memory, filling in page tables as necessary
2522 * and calling a provided function on each leaf page table.
2524 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2525 unsigned long size
, pte_fn_t fn
, void *data
)
2529 unsigned long end
= addr
+ size
;
2532 BUG_ON(addr
>= end
);
2533 pgd
= pgd_offset(mm
, addr
);
2535 next
= pgd_addr_end(addr
, end
);
2536 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2539 } while (pgd
++, addr
= next
, addr
!= end
);
2543 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2546 * handle_pte_fault chooses page fault handler according to an entry
2547 * which was read non-atomically. Before making any commitment, on
2548 * those architectures or configurations (e.g. i386 with PAE) which
2549 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2550 * must check under lock before unmapping the pte and proceeding
2551 * (but do_wp_page is only called after already making such a check;
2552 * and do_anonymous_page can safely check later on).
2554 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2555 pte_t
*page_table
, pte_t orig_pte
)
2558 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2559 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2560 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2562 same
= pte_same(*page_table
, orig_pte
);
2566 pte_unmap(page_table
);
2570 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2573 * If the source page was a PFN mapping, we don't have
2574 * a "struct page" for it. We do a best-effort copy by
2575 * just copying from the original user address. If that
2576 * fails, we just zero-fill it. Live with it.
2578 if (unlikely(!src
)) {
2579 void *kaddr
= kmap_atomic(dst
);
2580 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2583 * This really shouldn't fail, because the page is there
2584 * in the page tables. But it might just be unreadable,
2585 * in which case we just give up and fill the result with
2588 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2590 kunmap_atomic(kaddr
);
2591 flush_dcache_page(dst
);
2593 copy_user_highpage(dst
, src
, va
, vma
);
2597 * This routine handles present pages, when users try to write
2598 * to a shared page. It is done by copying the page to a new address
2599 * and decrementing the shared-page counter for the old page.
2601 * Note that this routine assumes that the protection checks have been
2602 * done by the caller (the low-level page fault routine in most cases).
2603 * Thus we can safely just mark it writable once we've done any necessary
2606 * We also mark the page dirty at this point even though the page will
2607 * change only once the write actually happens. This avoids a few races,
2608 * and potentially makes it more efficient.
2610 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611 * but allow concurrent faults), with pte both mapped and locked.
2612 * We return with mmap_sem still held, but pte unmapped and unlocked.
2614 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2615 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2616 spinlock_t
*ptl
, pte_t orig_pte
)
2619 struct page
*old_page
, *new_page
= NULL
;
2622 int page_mkwrite
= 0;
2623 struct page
*dirty_page
= NULL
;
2624 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2625 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2627 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2630 * VM_MIXEDMAP !pfn_valid() case
2632 * We should not cow pages in a shared writeable mapping.
2633 * Just mark the pages writable as we can't do any dirty
2634 * accounting on raw pfn maps.
2636 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2637 (VM_WRITE
|VM_SHARED
))
2643 * Take out anonymous pages first, anonymous shared vmas are
2644 * not dirty accountable.
2646 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2647 if (!trylock_page(old_page
)) {
2648 page_cache_get(old_page
);
2649 pte_unmap_unlock(page_table
, ptl
);
2650 lock_page(old_page
);
2651 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2653 if (!pte_same(*page_table
, orig_pte
)) {
2654 unlock_page(old_page
);
2657 page_cache_release(old_page
);
2659 if (reuse_swap_page(old_page
)) {
2661 * The page is all ours. Move it to our anon_vma so
2662 * the rmap code will not search our parent or siblings.
2663 * Protected against the rmap code by the page lock.
2665 page_move_anon_rmap(old_page
, vma
, address
);
2666 unlock_page(old_page
);
2669 unlock_page(old_page
);
2670 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2671 (VM_WRITE
|VM_SHARED
))) {
2673 * Only catch write-faults on shared writable pages,
2674 * read-only shared pages can get COWed by
2675 * get_user_pages(.write=1, .force=1).
2677 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2678 struct vm_fault vmf
;
2681 vmf
.virtual_address
= (void __user
*)(address
&
2683 vmf
.pgoff
= old_page
->index
;
2684 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2685 vmf
.page
= old_page
;
2688 * Notify the address space that the page is about to
2689 * become writable so that it can prohibit this or wait
2690 * for the page to get into an appropriate state.
2692 * We do this without the lock held, so that it can
2693 * sleep if it needs to.
2695 page_cache_get(old_page
);
2696 pte_unmap_unlock(page_table
, ptl
);
2698 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2700 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2702 goto unwritable_page
;
2704 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2705 lock_page(old_page
);
2706 if (!old_page
->mapping
) {
2707 ret
= 0; /* retry the fault */
2708 unlock_page(old_page
);
2709 goto unwritable_page
;
2712 VM_BUG_ON(!PageLocked(old_page
));
2715 * Since we dropped the lock we need to revalidate
2716 * the PTE as someone else may have changed it. If
2717 * they did, we just return, as we can count on the
2718 * MMU to tell us if they didn't also make it writable.
2720 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2722 if (!pte_same(*page_table
, orig_pte
)) {
2723 unlock_page(old_page
);
2729 dirty_page
= old_page
;
2730 get_page(dirty_page
);
2733 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2734 entry
= pte_mkyoung(orig_pte
);
2735 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2736 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2737 update_mmu_cache(vma
, address
, page_table
);
2738 pte_unmap_unlock(page_table
, ptl
);
2739 ret
|= VM_FAULT_WRITE
;
2745 * Yes, Virginia, this is actually required to prevent a race
2746 * with clear_page_dirty_for_io() from clearing the page dirty
2747 * bit after it clear all dirty ptes, but before a racing
2748 * do_wp_page installs a dirty pte.
2750 * __do_fault is protected similarly.
2752 if (!page_mkwrite
) {
2753 wait_on_page_locked(dirty_page
);
2754 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2755 /* file_update_time outside page_lock */
2757 file_update_time(vma
->vm_file
);
2759 put_page(dirty_page
);
2761 struct address_space
*mapping
= dirty_page
->mapping
;
2763 set_page_dirty(dirty_page
);
2764 unlock_page(dirty_page
);
2765 page_cache_release(dirty_page
);
2768 * Some device drivers do not set page.mapping
2769 * but still dirty their pages
2771 balance_dirty_pages_ratelimited(mapping
);
2779 * Ok, we need to copy. Oh, well..
2781 page_cache_get(old_page
);
2783 pte_unmap_unlock(page_table
, ptl
);
2785 if (unlikely(anon_vma_prepare(vma
)))
2788 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2789 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2793 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2796 cow_user_page(new_page
, old_page
, address
, vma
);
2798 __SetPageUptodate(new_page
);
2800 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2803 mmun_start
= address
& PAGE_MASK
;
2804 mmun_end
= mmun_start
+ PAGE_SIZE
;
2805 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2808 * Re-check the pte - we dropped the lock
2810 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2811 if (likely(pte_same(*page_table
, orig_pte
))) {
2813 if (!PageAnon(old_page
)) {
2814 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2815 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2818 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2819 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2820 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2821 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2823 * Clear the pte entry and flush it first, before updating the
2824 * pte with the new entry. This will avoid a race condition
2825 * seen in the presence of one thread doing SMC and another
2828 ptep_clear_flush(vma
, address
, page_table
);
2829 page_add_new_anon_rmap(new_page
, vma
, address
);
2831 * We call the notify macro here because, when using secondary
2832 * mmu page tables (such as kvm shadow page tables), we want the
2833 * new page to be mapped directly into the secondary page table.
2835 set_pte_at_notify(mm
, address
, page_table
, entry
);
2836 update_mmu_cache(vma
, address
, page_table
);
2839 * Only after switching the pte to the new page may
2840 * we remove the mapcount here. Otherwise another
2841 * process may come and find the rmap count decremented
2842 * before the pte is switched to the new page, and
2843 * "reuse" the old page writing into it while our pte
2844 * here still points into it and can be read by other
2847 * The critical issue is to order this
2848 * page_remove_rmap with the ptp_clear_flush above.
2849 * Those stores are ordered by (if nothing else,)
2850 * the barrier present in the atomic_add_negative
2851 * in page_remove_rmap.
2853 * Then the TLB flush in ptep_clear_flush ensures that
2854 * no process can access the old page before the
2855 * decremented mapcount is visible. And the old page
2856 * cannot be reused until after the decremented
2857 * mapcount is visible. So transitively, TLBs to
2858 * old page will be flushed before it can be reused.
2860 page_remove_rmap(old_page
);
2863 /* Free the old page.. */
2864 new_page
= old_page
;
2865 ret
|= VM_FAULT_WRITE
;
2867 mem_cgroup_uncharge_page(new_page
);
2870 page_cache_release(new_page
);
2872 pte_unmap_unlock(page_table
, ptl
);
2873 if (mmun_end
> mmun_start
)
2874 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2877 * Don't let another task, with possibly unlocked vma,
2878 * keep the mlocked page.
2880 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2881 lock_page(old_page
); /* LRU manipulation */
2882 munlock_vma_page(old_page
);
2883 unlock_page(old_page
);
2885 page_cache_release(old_page
);
2889 page_cache_release(new_page
);
2892 page_cache_release(old_page
);
2893 return VM_FAULT_OOM
;
2896 page_cache_release(old_page
);
2900 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2901 unsigned long start_addr
, unsigned long end_addr
,
2902 struct zap_details
*details
)
2904 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2907 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2908 struct zap_details
*details
)
2910 struct vm_area_struct
*vma
;
2911 pgoff_t vba
, vea
, zba
, zea
;
2913 vma_interval_tree_foreach(vma
, root
,
2914 details
->first_index
, details
->last_index
) {
2916 vba
= vma
->vm_pgoff
;
2917 vea
= vba
+ vma_pages(vma
) - 1;
2918 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2919 zba
= details
->first_index
;
2922 zea
= details
->last_index
;
2926 unmap_mapping_range_vma(vma
,
2927 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2928 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2933 static inline void unmap_mapping_range_list(struct list_head
*head
,
2934 struct zap_details
*details
)
2936 struct vm_area_struct
*vma
;
2939 * In nonlinear VMAs there is no correspondence between virtual address
2940 * offset and file offset. So we must perform an exhaustive search
2941 * across *all* the pages in each nonlinear VMA, not just the pages
2942 * whose virtual address lies outside the file truncation point.
2944 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2945 details
->nonlinear_vma
= vma
;
2946 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2951 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2952 * @mapping: the address space containing mmaps to be unmapped.
2953 * @holebegin: byte in first page to unmap, relative to the start of
2954 * the underlying file. This will be rounded down to a PAGE_SIZE
2955 * boundary. Note that this is different from truncate_pagecache(), which
2956 * must keep the partial page. In contrast, we must get rid of
2958 * @holelen: size of prospective hole in bytes. This will be rounded
2959 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2961 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2962 * but 0 when invalidating pagecache, don't throw away private data.
2964 void unmap_mapping_range(struct address_space
*mapping
,
2965 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2967 struct zap_details details
;
2968 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2969 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2971 /* Check for overflow. */
2972 if (sizeof(holelen
) > sizeof(hlen
)) {
2974 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2975 if (holeend
& ~(long long)ULONG_MAX
)
2976 hlen
= ULONG_MAX
- hba
+ 1;
2979 details
.check_mapping
= even_cows
? NULL
: mapping
;
2980 details
.nonlinear_vma
= NULL
;
2981 details
.first_index
= hba
;
2982 details
.last_index
= hba
+ hlen
- 1;
2983 if (details
.last_index
< details
.first_index
)
2984 details
.last_index
= ULONG_MAX
;
2987 mutex_lock(&mapping
->i_mmap_mutex
);
2988 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2989 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2990 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2991 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2992 mutex_unlock(&mapping
->i_mmap_mutex
);
2994 EXPORT_SYMBOL(unmap_mapping_range
);
2997 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2998 * but allow concurrent faults), and pte mapped but not yet locked.
2999 * We return with mmap_sem still held, but pte unmapped and unlocked.
3001 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3002 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3003 unsigned int flags
, pte_t orig_pte
)
3006 struct page
*page
, *swapcache
;
3010 struct mem_cgroup
*ptr
;
3014 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3017 entry
= pte_to_swp_entry(orig_pte
);
3018 if (unlikely(non_swap_entry(entry
))) {
3019 if (is_migration_entry(entry
)) {
3020 migration_entry_wait(mm
, pmd
, address
);
3021 } else if (is_hwpoison_entry(entry
)) {
3022 ret
= VM_FAULT_HWPOISON
;
3024 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3025 ret
= VM_FAULT_SIGBUS
;
3029 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
3030 page
= lookup_swap_cache(entry
);
3032 page
= swapin_readahead(entry
,
3033 GFP_HIGHUSER_MOVABLE
, vma
, address
);
3036 * Back out if somebody else faulted in this pte
3037 * while we released the pte lock.
3039 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3040 if (likely(pte_same(*page_table
, orig_pte
)))
3042 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3046 /* Had to read the page from swap area: Major fault */
3047 ret
= VM_FAULT_MAJOR
;
3048 count_vm_event(PGMAJFAULT
);
3049 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
3050 } else if (PageHWPoison(page
)) {
3052 * hwpoisoned dirty swapcache pages are kept for killing
3053 * owner processes (which may be unknown at hwpoison time)
3055 ret
= VM_FAULT_HWPOISON
;
3056 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3062 locked
= lock_page_or_retry(page
, mm
, flags
);
3064 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3066 ret
|= VM_FAULT_RETRY
;
3071 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3072 * release the swapcache from under us. The page pin, and pte_same
3073 * test below, are not enough to exclude that. Even if it is still
3074 * swapcache, we need to check that the page's swap has not changed.
3076 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
3079 page
= ksm_might_need_to_copy(page
, vma
, address
);
3080 if (unlikely(!page
)) {
3086 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
3092 * Back out if somebody else already faulted in this pte.
3094 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3095 if (unlikely(!pte_same(*page_table
, orig_pte
)))
3098 if (unlikely(!PageUptodate(page
))) {
3099 ret
= VM_FAULT_SIGBUS
;
3104 * The page isn't present yet, go ahead with the fault.
3106 * Be careful about the sequence of operations here.
3107 * To get its accounting right, reuse_swap_page() must be called
3108 * while the page is counted on swap but not yet in mapcount i.e.
3109 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3110 * must be called after the swap_free(), or it will never succeed.
3111 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3112 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3113 * in page->private. In this case, a record in swap_cgroup is silently
3114 * discarded at swap_free().
3117 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3118 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
3119 pte
= mk_pte(page
, vma
->vm_page_prot
);
3120 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
3121 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3122 flags
&= ~FAULT_FLAG_WRITE
;
3123 ret
|= VM_FAULT_WRITE
;
3126 flush_icache_page(vma
, page
);
3127 if (pte_swp_soft_dirty(orig_pte
))
3128 pte
= pte_mksoft_dirty(pte
);
3129 set_pte_at(mm
, address
, page_table
, pte
);
3130 if (page
== swapcache
)
3131 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
3132 else /* ksm created a completely new copy */
3133 page_add_new_anon_rmap(page
, vma
, address
);
3134 /* It's better to call commit-charge after rmap is established */
3135 mem_cgroup_commit_charge_swapin(page
, ptr
);
3138 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3139 try_to_free_swap(page
);
3141 if (page
!= swapcache
) {
3143 * Hold the lock to avoid the swap entry to be reused
3144 * until we take the PT lock for the pte_same() check
3145 * (to avoid false positives from pte_same). For
3146 * further safety release the lock after the swap_free
3147 * so that the swap count won't change under a
3148 * parallel locked swapcache.
3150 unlock_page(swapcache
);
3151 page_cache_release(swapcache
);
3154 if (flags
& FAULT_FLAG_WRITE
) {
3155 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
3156 if (ret
& VM_FAULT_ERROR
)
3157 ret
&= VM_FAULT_ERROR
;
3161 /* No need to invalidate - it was non-present before */
3162 update_mmu_cache(vma
, address
, page_table
);
3164 pte_unmap_unlock(page_table
, ptl
);
3168 mem_cgroup_cancel_charge_swapin(ptr
);
3169 pte_unmap_unlock(page_table
, ptl
);
3173 page_cache_release(page
);
3174 if (page
!= swapcache
) {
3175 unlock_page(swapcache
);
3176 page_cache_release(swapcache
);
3182 * This is like a special single-page "expand_{down|up}wards()",
3183 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3184 * doesn't hit another vma.
3186 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
3188 address
&= PAGE_MASK
;
3189 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
3190 struct vm_area_struct
*prev
= vma
->vm_prev
;
3193 * Is there a mapping abutting this one below?
3195 * That's only ok if it's the same stack mapping
3196 * that has gotten split..
3198 if (prev
&& prev
->vm_end
== address
)
3199 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
3201 expand_downwards(vma
, address
- PAGE_SIZE
);
3203 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
3204 struct vm_area_struct
*next
= vma
->vm_next
;
3206 /* As VM_GROWSDOWN but s/below/above/ */
3207 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
3208 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
3210 expand_upwards(vma
, address
+ PAGE_SIZE
);
3216 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3217 * but allow concurrent faults), and pte mapped but not yet locked.
3218 * We return with mmap_sem still held, but pte unmapped and unlocked.
3220 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3221 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3228 pte_unmap(page_table
);
3230 /* Check if we need to add a guard page to the stack */
3231 if (check_stack_guard_page(vma
, address
) < 0)
3232 return VM_FAULT_SIGBUS
;
3234 /* Use the zero-page for reads */
3235 if (!(flags
& FAULT_FLAG_WRITE
)) {
3236 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
3237 vma
->vm_page_prot
));
3238 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3239 if (!pte_none(*page_table
))
3244 /* Allocate our own private page. */
3245 if (unlikely(anon_vma_prepare(vma
)))
3247 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
3251 * The memory barrier inside __SetPageUptodate makes sure that
3252 * preceeding stores to the page contents become visible before
3253 * the set_pte_at() write.
3255 __SetPageUptodate(page
);
3257 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
3260 entry
= mk_pte(page
, vma
->vm_page_prot
);
3261 if (vma
->vm_flags
& VM_WRITE
)
3262 entry
= pte_mkwrite(pte_mkdirty(entry
));
3264 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3265 if (!pte_none(*page_table
))
3268 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3269 page_add_new_anon_rmap(page
, vma
, address
);
3271 set_pte_at(mm
, address
, page_table
, entry
);
3273 /* No need to invalidate - it was non-present before */
3274 update_mmu_cache(vma
, address
, page_table
);
3276 pte_unmap_unlock(page_table
, ptl
);
3279 mem_cgroup_uncharge_page(page
);
3280 page_cache_release(page
);
3283 page_cache_release(page
);
3285 return VM_FAULT_OOM
;
3289 * __do_fault() tries to create a new page mapping. It aggressively
3290 * tries to share with existing pages, but makes a separate copy if
3291 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3292 * the next page fault.
3294 * As this is called only for pages that do not currently exist, we
3295 * do not need to flush old virtual caches or the TLB.
3297 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3298 * but allow concurrent faults), and pte neither mapped nor locked.
3299 * We return with mmap_sem still held, but pte unmapped and unlocked.
3301 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3302 unsigned long address
, pmd_t
*pmd
,
3303 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3308 struct page
*cow_page
;
3311 struct page
*dirty_page
= NULL
;
3312 struct vm_fault vmf
;
3314 int page_mkwrite
= 0;
3317 * If we do COW later, allocate page befor taking lock_page()
3318 * on the file cache page. This will reduce lock holding time.
3320 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3322 if (unlikely(anon_vma_prepare(vma
)))
3323 return VM_FAULT_OOM
;
3325 cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3327 return VM_FAULT_OOM
;
3329 if (mem_cgroup_newpage_charge(cow_page
, mm
, GFP_KERNEL
)) {
3330 page_cache_release(cow_page
);
3331 return VM_FAULT_OOM
;
3336 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
3341 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
3342 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3346 if (unlikely(PageHWPoison(vmf
.page
))) {
3347 if (ret
& VM_FAULT_LOCKED
)
3348 unlock_page(vmf
.page
);
3349 ret
= VM_FAULT_HWPOISON
;
3354 * For consistency in subsequent calls, make the faulted page always
3357 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3358 lock_page(vmf
.page
);
3360 VM_BUG_ON(!PageLocked(vmf
.page
));
3363 * Should we do an early C-O-W break?
3366 if (flags
& FAULT_FLAG_WRITE
) {
3367 if (!(vma
->vm_flags
& VM_SHARED
)) {
3370 copy_user_highpage(page
, vmf
.page
, address
, vma
);
3371 __SetPageUptodate(page
);
3374 * If the page will be shareable, see if the backing
3375 * address space wants to know that the page is about
3376 * to become writable
3378 if (vma
->vm_ops
->page_mkwrite
) {
3382 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
3383 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
3385 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
3387 goto unwritable_page
;
3389 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
3391 if (!page
->mapping
) {
3392 ret
= 0; /* retry the fault */
3394 goto unwritable_page
;
3397 VM_BUG_ON(!PageLocked(page
));
3404 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3407 * This silly early PAGE_DIRTY setting removes a race
3408 * due to the bad i386 page protection. But it's valid
3409 * for other architectures too.
3411 * Note that if FAULT_FLAG_WRITE is set, we either now have
3412 * an exclusive copy of the page, or this is a shared mapping,
3413 * so we can make it writable and dirty to avoid having to
3414 * handle that later.
3416 /* Only go through if we didn't race with anybody else... */
3417 if (likely(pte_same(*page_table
, orig_pte
))) {
3418 flush_icache_page(vma
, page
);
3419 entry
= mk_pte(page
, vma
->vm_page_prot
);
3420 if (flags
& FAULT_FLAG_WRITE
)
3421 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3422 else if (pte_file(orig_pte
) && pte_file_soft_dirty(orig_pte
))
3423 pte_mksoft_dirty(entry
);
3425 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3426 page_add_new_anon_rmap(page
, vma
, address
);
3428 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
3429 page_add_file_rmap(page
);
3430 if (flags
& FAULT_FLAG_WRITE
) {
3432 get_page(dirty_page
);
3435 set_pte_at(mm
, address
, page_table
, entry
);
3437 /* no need to invalidate: a not-present page won't be cached */
3438 update_mmu_cache(vma
, address
, page_table
);
3441 mem_cgroup_uncharge_page(cow_page
);
3443 page_cache_release(page
);
3445 anon
= 1; /* no anon but release faulted_page */
3448 pte_unmap_unlock(page_table
, ptl
);
3451 struct address_space
*mapping
= page
->mapping
;
3454 if (set_page_dirty(dirty_page
))
3456 unlock_page(dirty_page
);
3457 put_page(dirty_page
);
3458 if ((dirtied
|| page_mkwrite
) && mapping
) {
3460 * Some device drivers do not set page.mapping but still
3463 balance_dirty_pages_ratelimited(mapping
);
3466 /* file_update_time outside page_lock */
3467 if (vma
->vm_file
&& !page_mkwrite
)
3468 file_update_time(vma
->vm_file
);
3470 unlock_page(vmf
.page
);
3472 page_cache_release(vmf
.page
);
3478 page_cache_release(page
);
3481 /* fs's fault handler get error */
3483 mem_cgroup_uncharge_page(cow_page
);
3484 page_cache_release(cow_page
);
3489 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3490 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3491 unsigned int flags
, pte_t orig_pte
)
3493 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3494 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3496 pte_unmap(page_table
);
3497 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3501 * Fault of a previously existing named mapping. Repopulate the pte
3502 * from the encoded file_pte if possible. This enables swappable
3505 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3506 * but allow concurrent faults), and pte mapped but not yet locked.
3507 * We return with mmap_sem still held, but pte unmapped and unlocked.
3509 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3510 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3511 unsigned int flags
, pte_t orig_pte
)
3515 flags
|= FAULT_FLAG_NONLINEAR
;
3517 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3520 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3522 * Page table corrupted: show pte and kill process.
3524 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3525 return VM_FAULT_SIGBUS
;
3528 pgoff
= pte_to_pgoff(orig_pte
);
3529 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3532 int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3533 unsigned long addr
, int current_nid
)
3537 count_vm_numa_event(NUMA_HINT_FAULTS
);
3538 if (current_nid
== numa_node_id())
3539 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3541 return mpol_misplaced(page
, vma
, addr
);
3544 int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3545 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3547 struct page
*page
= NULL
;
3549 int current_nid
= -1;
3551 bool migrated
= false;
3554 * The "pte" at this point cannot be used safely without
3555 * validation through pte_unmap_same(). It's of NUMA type but
3556 * the pfn may be screwed if the read is non atomic.
3558 * ptep_modify_prot_start is not called as this is clearing
3559 * the _PAGE_NUMA bit and it is not really expected that there
3560 * would be concurrent hardware modifications to the PTE.
3562 ptl
= pte_lockptr(mm
, pmd
);
3564 if (unlikely(!pte_same(*ptep
, pte
))) {
3565 pte_unmap_unlock(ptep
, ptl
);
3569 pte
= pte_mknonnuma(pte
);
3570 set_pte_at(mm
, addr
, ptep
, pte
);
3571 update_mmu_cache(vma
, addr
, ptep
);
3573 page
= vm_normal_page(vma
, addr
, pte
);
3575 pte_unmap_unlock(ptep
, ptl
);
3579 current_nid
= page_to_nid(page
);
3580 target_nid
= numa_migrate_prep(page
, vma
, addr
, current_nid
);
3581 pte_unmap_unlock(ptep
, ptl
);
3582 if (target_nid
== -1) {
3584 * Account for the fault against the current node if it not
3585 * being replaced regardless of where the page is located.
3587 current_nid
= numa_node_id();
3592 /* Migrate to the requested node */
3593 migrated
= migrate_misplaced_page(page
, target_nid
);
3595 current_nid
= target_nid
;
3598 if (current_nid
!= -1)
3599 task_numa_fault(current_nid
, 1, migrated
);
3603 /* NUMA hinting page fault entry point for regular pmds */
3604 #ifdef CONFIG_NUMA_BALANCING
3605 static int do_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3606 unsigned long addr
, pmd_t
*pmdp
)
3609 pte_t
*pte
, *orig_pte
;
3610 unsigned long _addr
= addr
& PMD_MASK
;
3611 unsigned long offset
;
3614 int local_nid
= numa_node_id();
3616 spin_lock(&mm
->page_table_lock
);
3618 if (pmd_numa(pmd
)) {
3619 set_pmd_at(mm
, _addr
, pmdp
, pmd_mknonnuma(pmd
));
3622 spin_unlock(&mm
->page_table_lock
);
3627 /* we're in a page fault so some vma must be in the range */
3629 BUG_ON(vma
->vm_start
>= _addr
+ PMD_SIZE
);
3630 offset
= max(_addr
, vma
->vm_start
) & ~PMD_MASK
;
3631 VM_BUG_ON(offset
>= PMD_SIZE
);
3632 orig_pte
= pte
= pte_offset_map_lock(mm
, pmdp
, _addr
, &ptl
);
3633 pte
+= offset
>> PAGE_SHIFT
;
3634 for (addr
= _addr
+ offset
; addr
< _addr
+ PMD_SIZE
; pte
++, addr
+= PAGE_SIZE
) {
3635 pte_t pteval
= *pte
;
3637 int curr_nid
= local_nid
;
3640 if (!pte_present(pteval
))
3642 if (!pte_numa(pteval
))
3644 if (addr
>= vma
->vm_end
) {
3645 vma
= find_vma(mm
, addr
);
3646 /* there's a pte present so there must be a vma */
3648 BUG_ON(addr
< vma
->vm_start
);
3650 if (pte_numa(pteval
)) {
3651 pteval
= pte_mknonnuma(pteval
);
3652 set_pte_at(mm
, addr
, pte
, pteval
);
3654 page
= vm_normal_page(vma
, addr
, pteval
);
3655 if (unlikely(!page
))
3657 /* only check non-shared pages */
3658 if (unlikely(page_mapcount(page
) != 1))
3662 * Note that the NUMA fault is later accounted to either
3663 * the node that is currently running or where the page is
3666 curr_nid
= local_nid
;
3667 target_nid
= numa_migrate_prep(page
, vma
, addr
,
3669 if (target_nid
== -1) {
3674 /* Migrate to the requested node */
3675 pte_unmap_unlock(pte
, ptl
);
3676 migrated
= migrate_misplaced_page(page
, target_nid
);
3678 curr_nid
= target_nid
;
3679 task_numa_fault(curr_nid
, 1, migrated
);
3681 pte
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
3683 pte_unmap_unlock(orig_pte
, ptl
);
3688 static int do_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3689 unsigned long addr
, pmd_t
*pmdp
)
3694 #endif /* CONFIG_NUMA_BALANCING */
3697 * These routines also need to handle stuff like marking pages dirty
3698 * and/or accessed for architectures that don't do it in hardware (most
3699 * RISC architectures). The early dirtying is also good on the i386.
3701 * There is also a hook called "update_mmu_cache()" that architectures
3702 * with external mmu caches can use to update those (ie the Sparc or
3703 * PowerPC hashed page tables that act as extended TLBs).
3705 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3706 * but allow concurrent faults), and pte mapped but not yet locked.
3707 * We return with mmap_sem still held, but pte unmapped and unlocked.
3709 int handle_pte_fault(struct mm_struct
*mm
,
3710 struct vm_area_struct
*vma
, unsigned long address
,
3711 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3717 if (!pte_present(entry
)) {
3718 if (pte_none(entry
)) {
3720 if (likely(vma
->vm_ops
->fault
))
3721 return do_linear_fault(mm
, vma
, address
,
3722 pte
, pmd
, flags
, entry
);
3724 return do_anonymous_page(mm
, vma
, address
,
3727 if (pte_file(entry
))
3728 return do_nonlinear_fault(mm
, vma
, address
,
3729 pte
, pmd
, flags
, entry
);
3730 return do_swap_page(mm
, vma
, address
,
3731 pte
, pmd
, flags
, entry
);
3734 if (pte_numa(entry
))
3735 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3737 ptl
= pte_lockptr(mm
, pmd
);
3739 if (unlikely(!pte_same(*pte
, entry
)))
3741 if (flags
& FAULT_FLAG_WRITE
) {
3742 if (!pte_write(entry
))
3743 return do_wp_page(mm
, vma
, address
,
3744 pte
, pmd
, ptl
, entry
);
3745 entry
= pte_mkdirty(entry
);
3747 entry
= pte_mkyoung(entry
);
3748 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3749 update_mmu_cache(vma
, address
, pte
);
3752 * This is needed only for protection faults but the arch code
3753 * is not yet telling us if this is a protection fault or not.
3754 * This still avoids useless tlb flushes for .text page faults
3757 if (flags
& FAULT_FLAG_WRITE
)
3758 flush_tlb_fix_spurious_fault(vma
, address
);
3761 pte_unmap_unlock(pte
, ptl
);
3766 * By the time we get here, we already hold the mm semaphore
3768 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3769 unsigned long address
, unsigned int flags
)
3776 __set_current_state(TASK_RUNNING
);
3778 count_vm_event(PGFAULT
);
3779 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3781 /* do counter updates before entering really critical section. */
3782 check_sync_rss_stat(current
);
3784 if (unlikely(is_vm_hugetlb_page(vma
)))
3785 return hugetlb_fault(mm
, vma
, address
, flags
);
3788 pgd
= pgd_offset(mm
, address
);
3789 pud
= pud_alloc(mm
, pgd
, address
);
3791 return VM_FAULT_OOM
;
3792 pmd
= pmd_alloc(mm
, pud
, address
);
3794 return VM_FAULT_OOM
;
3795 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3797 return do_huge_pmd_anonymous_page(mm
, vma
, address
,
3800 pmd_t orig_pmd
= *pmd
;
3804 if (pmd_trans_huge(orig_pmd
)) {
3805 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3808 * If the pmd is splitting, return and retry the
3809 * the fault. Alternative: wait until the split
3810 * is done, and goto retry.
3812 if (pmd_trans_splitting(orig_pmd
))
3815 if (pmd_numa(orig_pmd
))
3816 return do_huge_pmd_numa_page(mm
, vma
, address
,
3819 if (dirty
&& !pmd_write(orig_pmd
)) {
3820 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3823 * If COW results in an oom, the huge pmd will
3824 * have been split, so retry the fault on the
3825 * pte for a smaller charge.
3827 if (unlikely(ret
& VM_FAULT_OOM
))
3831 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3840 return do_pmd_numa_page(mm
, vma
, address
, pmd
);
3843 * Use __pte_alloc instead of pte_alloc_map, because we can't
3844 * run pte_offset_map on the pmd, if an huge pmd could
3845 * materialize from under us from a different thread.
3847 if (unlikely(pmd_none(*pmd
)) &&
3848 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3849 return VM_FAULT_OOM
;
3850 /* if an huge pmd materialized from under us just retry later */
3851 if (unlikely(pmd_trans_huge(*pmd
)))
3854 * A regular pmd is established and it can't morph into a huge pmd
3855 * from under us anymore at this point because we hold the mmap_sem
3856 * read mode and khugepaged takes it in write mode. So now it's
3857 * safe to run pte_offset_map().
3859 pte
= pte_offset_map(pmd
, address
);
3861 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3864 #ifndef __PAGETABLE_PUD_FOLDED
3866 * Allocate page upper directory.
3867 * We've already handled the fast-path in-line.
3869 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3871 pud_t
*new = pud_alloc_one(mm
, address
);
3875 smp_wmb(); /* See comment in __pte_alloc */
3877 spin_lock(&mm
->page_table_lock
);
3878 if (pgd_present(*pgd
)) /* Another has populated it */
3881 pgd_populate(mm
, pgd
, new);
3882 spin_unlock(&mm
->page_table_lock
);
3885 #endif /* __PAGETABLE_PUD_FOLDED */
3887 #ifndef __PAGETABLE_PMD_FOLDED
3889 * Allocate page middle directory.
3890 * We've already handled the fast-path in-line.
3892 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3894 pmd_t
*new = pmd_alloc_one(mm
, address
);
3898 smp_wmb(); /* See comment in __pte_alloc */
3900 spin_lock(&mm
->page_table_lock
);
3901 #ifndef __ARCH_HAS_4LEVEL_HACK
3902 if (pud_present(*pud
)) /* Another has populated it */
3905 pud_populate(mm
, pud
, new);
3907 if (pgd_present(*pud
)) /* Another has populated it */
3910 pgd_populate(mm
, pud
, new);
3911 #endif /* __ARCH_HAS_4LEVEL_HACK */
3912 spin_unlock(&mm
->page_table_lock
);
3915 #endif /* __PAGETABLE_PMD_FOLDED */
3917 #if !defined(__HAVE_ARCH_GATE_AREA)
3919 #if defined(AT_SYSINFO_EHDR)
3920 static struct vm_area_struct gate_vma
;
3922 static int __init
gate_vma_init(void)
3924 gate_vma
.vm_mm
= NULL
;
3925 gate_vma
.vm_start
= FIXADDR_USER_START
;
3926 gate_vma
.vm_end
= FIXADDR_USER_END
;
3927 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3928 gate_vma
.vm_page_prot
= __P101
;
3932 __initcall(gate_vma_init
);
3935 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
3937 #ifdef AT_SYSINFO_EHDR
3944 int in_gate_area_no_mm(unsigned long addr
)
3946 #ifdef AT_SYSINFO_EHDR
3947 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3953 #endif /* __HAVE_ARCH_GATE_AREA */
3955 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3956 pte_t
**ptepp
, spinlock_t
**ptlp
)
3963 pgd
= pgd_offset(mm
, address
);
3964 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3967 pud
= pud_offset(pgd
, address
);
3968 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3971 pmd
= pmd_offset(pud
, address
);
3972 VM_BUG_ON(pmd_trans_huge(*pmd
));
3973 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3976 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3980 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3983 if (!pte_present(*ptep
))
3988 pte_unmap_unlock(ptep
, *ptlp
);
3993 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3994 pte_t
**ptepp
, spinlock_t
**ptlp
)
3998 /* (void) is needed to make gcc happy */
3999 (void) __cond_lock(*ptlp
,
4000 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
4005 * follow_pfn - look up PFN at a user virtual address
4006 * @vma: memory mapping
4007 * @address: user virtual address
4008 * @pfn: location to store found PFN
4010 * Only IO mappings and raw PFN mappings are allowed.
4012 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4014 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4021 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4024 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4027 *pfn
= pte_pfn(*ptep
);
4028 pte_unmap_unlock(ptep
, ptl
);
4031 EXPORT_SYMBOL(follow_pfn
);
4033 #ifdef CONFIG_HAVE_IOREMAP_PROT
4034 int follow_phys(struct vm_area_struct
*vma
,
4035 unsigned long address
, unsigned int flags
,
4036 unsigned long *prot
, resource_size_t
*phys
)
4042 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4045 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4049 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4052 *prot
= pgprot_val(pte_pgprot(pte
));
4053 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4057 pte_unmap_unlock(ptep
, ptl
);
4062 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4063 void *buf
, int len
, int write
)
4065 resource_size_t phys_addr
;
4066 unsigned long prot
= 0;
4067 void __iomem
*maddr
;
4068 int offset
= addr
& (PAGE_SIZE
-1);
4070 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4073 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
4075 memcpy_toio(maddr
+ offset
, buf
, len
);
4077 memcpy_fromio(buf
, maddr
+ offset
, len
);
4085 * Access another process' address space as given in mm. If non-NULL, use the
4086 * given task for page fault accounting.
4088 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4089 unsigned long addr
, void *buf
, int len
, int write
)
4091 struct vm_area_struct
*vma
;
4092 void *old_buf
= buf
;
4094 down_read(&mm
->mmap_sem
);
4095 /* ignore errors, just check how much was successfully transferred */
4097 int bytes
, ret
, offset
;
4099 struct page
*page
= NULL
;
4101 ret
= get_user_pages(tsk
, mm
, addr
, 1,
4102 write
, 1, &page
, &vma
);
4105 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4106 * we can access using slightly different code.
4108 #ifdef CONFIG_HAVE_IOREMAP_PROT
4109 vma
= find_vma(mm
, addr
);
4110 if (!vma
|| vma
->vm_start
> addr
)
4112 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4113 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4121 offset
= addr
& (PAGE_SIZE
-1);
4122 if (bytes
> PAGE_SIZE
-offset
)
4123 bytes
= PAGE_SIZE
-offset
;
4127 copy_to_user_page(vma
, page
, addr
,
4128 maddr
+ offset
, buf
, bytes
);
4129 set_page_dirty_lock(page
);
4131 copy_from_user_page(vma
, page
, addr
,
4132 buf
, maddr
+ offset
, bytes
);
4135 page_cache_release(page
);
4141 up_read(&mm
->mmap_sem
);
4143 return buf
- old_buf
;
4147 * access_remote_vm - access another process' address space
4148 * @mm: the mm_struct of the target address space
4149 * @addr: start address to access
4150 * @buf: source or destination buffer
4151 * @len: number of bytes to transfer
4152 * @write: whether the access is a write
4154 * The caller must hold a reference on @mm.
4156 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4157 void *buf
, int len
, int write
)
4159 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
4163 * Access another process' address space.
4164 * Source/target buffer must be kernel space,
4165 * Do not walk the page table directly, use get_user_pages
4167 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4168 void *buf
, int len
, int write
)
4170 struct mm_struct
*mm
;
4173 mm
= get_task_mm(tsk
);
4177 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
4184 * Print the name of a VMA.
4186 void print_vma_addr(char *prefix
, unsigned long ip
)
4188 struct mm_struct
*mm
= current
->mm
;
4189 struct vm_area_struct
*vma
;
4192 * Do not print if we are in atomic
4193 * contexts (in exception stacks, etc.):
4195 if (preempt_count())
4198 down_read(&mm
->mmap_sem
);
4199 vma
= find_vma(mm
, ip
);
4200 if (vma
&& vma
->vm_file
) {
4201 struct file
*f
= vma
->vm_file
;
4202 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4206 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
4209 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4211 vma
->vm_end
- vma
->vm_start
);
4212 free_page((unsigned long)buf
);
4215 up_read(&mm
->mmap_sem
);
4218 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4219 void might_fault(void)
4222 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4223 * holding the mmap_sem, this is safe because kernel memory doesn't
4224 * get paged out, therefore we'll never actually fault, and the
4225 * below annotations will generate false positives.
4227 if (segment_eq(get_fs(), KERNEL_DS
))
4231 * it would be nicer only to annotate paths which are not under
4232 * pagefault_disable, however that requires a larger audit and
4233 * providing helpers like get_user_atomic.
4238 __might_sleep(__FILE__
, __LINE__
, 0);
4241 might_lock_read(¤t
->mm
->mmap_sem
);
4243 EXPORT_SYMBOL(might_fault
);
4246 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4247 static void clear_gigantic_page(struct page
*page
,
4249 unsigned int pages_per_huge_page
)
4252 struct page
*p
= page
;
4255 for (i
= 0; i
< pages_per_huge_page
;
4256 i
++, p
= mem_map_next(p
, page
, i
)) {
4258 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4261 void clear_huge_page(struct page
*page
,
4262 unsigned long addr
, unsigned int pages_per_huge_page
)
4266 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4267 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4272 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4274 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4278 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4280 struct vm_area_struct
*vma
,
4281 unsigned int pages_per_huge_page
)
4284 struct page
*dst_base
= dst
;
4285 struct page
*src_base
= src
;
4287 for (i
= 0; i
< pages_per_huge_page
; ) {
4289 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4292 dst
= mem_map_next(dst
, dst_base
, i
);
4293 src
= mem_map_next(src
, src_base
, i
);
4297 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4298 unsigned long addr
, struct vm_area_struct
*vma
,
4299 unsigned int pages_per_huge_page
)
4303 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4304 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4305 pages_per_huge_page
);
4310 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4312 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4315 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */