MIPS: ralink: Add support for systick timer found on newer ralink SoC
[linux-2.6.git] / mm / memory.c
blobaf84bc0ec17c213054b023815ae197fefde7ffb6
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
70 #include "internal.h"
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
86 * A number of key systems in x86 including ioremap() rely on the assumption
87 * that high_memory defines the upper bound on direct map memory, then end
88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90 * and ZONE_HIGHMEM.
92 void * high_memory;
94 EXPORT_SYMBOL(high_memory);
97 * Randomize the address space (stacks, mmaps, brk, etc.).
99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100 * as ancient (libc5 based) binaries can segfault. )
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
105 #else
107 #endif
109 static int __init disable_randmaps(char *s)
111 randomize_va_space = 0;
112 return 1;
114 __setup("norandmaps", disable_randmaps);
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
122 static int __init init_zero_pfn(void)
124 zero_pfn = page_to_pfn(ZERO_PAGE(0));
125 return 0;
127 core_initcall(init_zero_pfn);
130 #if defined(SPLIT_RSS_COUNTING)
132 void sync_mm_rss(struct mm_struct *mm)
134 int i;
136 for (i = 0; i < NR_MM_COUNTERS; i++) {
137 if (current->rss_stat.count[i]) {
138 add_mm_counter(mm, i, current->rss_stat.count[i]);
139 current->rss_stat.count[i] = 0;
142 current->rss_stat.events = 0;
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
147 struct task_struct *task = current;
149 if (likely(task->mm == mm))
150 task->rss_stat.count[member] += val;
151 else
152 add_mm_counter(mm, member, val);
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH (64)
159 static void check_sync_rss_stat(struct task_struct *task)
161 if (unlikely(task != current))
162 return;
163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164 sync_mm_rss(task->mm);
166 #else /* SPLIT_RSS_COUNTING */
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
171 static void check_sync_rss_stat(struct task_struct *task)
175 #endif /* SPLIT_RSS_COUNTING */
177 #ifdef HAVE_GENERIC_MMU_GATHER
179 static int tlb_next_batch(struct mmu_gather *tlb)
181 struct mmu_gather_batch *batch;
183 batch = tlb->active;
184 if (batch->next) {
185 tlb->active = batch->next;
186 return 1;
189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190 return 0;
192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193 if (!batch)
194 return 0;
196 tlb->batch_count++;
197 batch->next = NULL;
198 batch->nr = 0;
199 batch->max = MAX_GATHER_BATCH;
201 tlb->active->next = batch;
202 tlb->active = batch;
204 return 1;
207 /* tlb_gather_mmu
208 * Called to initialize an (on-stack) mmu_gather structure for page-table
209 * tear-down from @mm. The @fullmm argument is used when @mm is without
210 * users and we're going to destroy the full address space (exit/execve).
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
214 tlb->mm = mm;
216 /* Is it from 0 to ~0? */
217 tlb->fullmm = !(start | (end+1));
218 tlb->need_flush_all = 0;
219 tlb->start = start;
220 tlb->end = end;
221 tlb->need_flush = 0;
222 tlb->local.next = NULL;
223 tlb->local.nr = 0;
224 tlb->local.max = ARRAY_SIZE(tlb->__pages);
225 tlb->active = &tlb->local;
226 tlb->batch_count = 0;
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
229 tlb->batch = NULL;
230 #endif
233 void tlb_flush_mmu(struct mmu_gather *tlb)
235 struct mmu_gather_batch *batch;
237 if (!tlb->need_flush)
238 return;
239 tlb->need_flush = 0;
240 tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb);
243 #endif
245 for (batch = &tlb->local; batch; batch = batch->next) {
246 free_pages_and_swap_cache(batch->pages, batch->nr);
247 batch->nr = 0;
249 tlb->active = &tlb->local;
252 /* tlb_finish_mmu
253 * Called at the end of the shootdown operation to free up any resources
254 * that were required.
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 struct mmu_gather_batch *batch, *next;
260 tlb_flush_mmu(tlb);
262 /* keep the page table cache within bounds */
263 check_pgt_cache();
265 for (batch = tlb->local.next; batch; batch = next) {
266 next = batch->next;
267 free_pages((unsigned long)batch, 0);
269 tlb->local.next = NULL;
272 /* __tlb_remove_page
273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274 * handling the additional races in SMP caused by other CPUs caching valid
275 * mappings in their TLBs. Returns the number of free page slots left.
276 * When out of page slots we must call tlb_flush_mmu().
278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
280 struct mmu_gather_batch *batch;
282 VM_BUG_ON(!tlb->need_flush);
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
289 batch = tlb->active;
291 VM_BUG_ON(batch->nr > batch->max);
293 return batch->max - batch->nr;
296 #endif /* HAVE_GENERIC_MMU_GATHER */
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301 * See the comment near struct mmu_table_batch.
304 static void tlb_remove_table_smp_sync(void *arg)
306 /* Simply deliver the interrupt */
309 static void tlb_remove_table_one(void *table)
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
322 static void tlb_remove_table_rcu(struct rcu_head *head)
324 struct mmu_table_batch *batch;
325 int i;
327 batch = container_of(head, struct mmu_table_batch, rcu);
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
332 free_page((unsigned long)batch);
335 void tlb_table_flush(struct mmu_gather *tlb)
337 struct mmu_table_batch **batch = &tlb->batch;
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 struct mmu_table_batch **batch = &tlb->batch;
349 tlb->need_flush = 1;
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
366 (*batch)->nr = 0;
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
381 void pgd_clear_bad(pgd_t *pgd)
383 pgd_ERROR(*pgd);
384 pgd_clear(pgd);
387 void pud_clear_bad(pud_t *pud)
389 pud_ERROR(*pud);
390 pud_clear(pud);
393 void pmd_clear_bad(pmd_t *pmd)
395 pmd_ERROR(*pmd);
396 pmd_clear(pmd);
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 unsigned long addr)
406 pgtable_t token = pmd_pgtable(*pmd);
407 pmd_clear(pmd);
408 pte_free_tlb(tlb, token, addr);
409 tlb->mm->nr_ptes--;
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
416 pmd_t *pmd;
417 unsigned long next;
418 unsigned long start;
420 start = addr;
421 pmd = pmd_offset(pud, addr);
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
426 free_pte_range(tlb, pmd, addr);
427 } while (pmd++, addr = next, addr != end);
429 start &= PUD_MASK;
430 if (start < floor)
431 return;
432 if (ceiling) {
433 ceiling &= PUD_MASK;
434 if (!ceiling)
435 return;
437 if (end - 1 > ceiling - 1)
438 return;
440 pmd = pmd_offset(pud, start);
441 pud_clear(pud);
442 pmd_free_tlb(tlb, pmd, start);
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
449 pud_t *pud;
450 unsigned long next;
451 unsigned long start;
453 start = addr;
454 pud = pud_offset(pgd, addr);
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 } while (pud++, addr = next, addr != end);
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
470 if (end - 1 > ceiling - 1)
471 return;
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
475 pud_free_tlb(tlb, pud, start);
479 * This function frees user-level page tables of a process.
481 * Must be called with pagetable lock held.
483 void free_pgd_range(struct mmu_gather *tlb,
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
487 pgd_t *pgd;
488 unsigned long next;
491 * The next few lines have given us lots of grief...
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
532 pgd = pgd_offset(tlb->mm, addr);
533 do {
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
536 continue;
537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 } while (pgd++, addr = next, addr != end);
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 unsigned long floor, unsigned long ceiling)
544 while (vma) {
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
549 * Hide vma from rmap and truncate_pagecache before freeing
550 * pgtables
552 unlink_anon_vmas(vma);
553 unlink_file_vma(vma);
555 if (is_vm_hugetlb_page(vma)) {
556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 } else {
560 * Optimization: gather nearby vmas into one call down
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 && !is_vm_hugetlb_page(next)) {
564 vma = next;
565 next = vma->vm_next;
566 unlink_anon_vmas(vma);
567 unlink_file_vma(vma);
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
572 vma = next;
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 pmd_t *pmd, unsigned long address)
579 pgtable_t new = pte_alloc_one(mm, address);
580 int wait_split_huge_page;
581 if (!new)
582 return -ENOMEM;
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599 spin_lock(&mm->page_table_lock);
600 wait_split_huge_page = 0;
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
602 mm->nr_ptes++;
603 pmd_populate(mm, pmd, new);
604 new = NULL;
605 } else if (unlikely(pmd_trans_splitting(*pmd)))
606 wait_split_huge_page = 1;
607 spin_unlock(&mm->page_table_lock);
608 if (new)
609 pte_free(mm, new);
610 if (wait_split_huge_page)
611 wait_split_huge_page(vma->anon_vma, pmd);
612 return 0;
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 if (!new)
619 return -ENOMEM;
621 smp_wmb(); /* See comment in __pte_alloc */
623 spin_lock(&init_mm.page_table_lock);
624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
625 pmd_populate_kernel(&init_mm, pmd, new);
626 new = NULL;
627 } else
628 VM_BUG_ON(pmd_trans_splitting(*pmd));
629 spin_unlock(&init_mm.page_table_lock);
630 if (new)
631 pte_free_kernel(&init_mm, new);
632 return 0;
635 static inline void init_rss_vec(int *rss)
637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 int i;
644 if (current->mm == mm)
645 sync_mm_rss(mm);
646 for (i = 0; i < NR_MM_COUNTERS; i++)
647 if (rss[i])
648 add_mm_counter(mm, i, rss[i]);
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
656 * The calling function must still handle the error.
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte, struct page *page)
661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 pud_t *pud = pud_offset(pgd, addr);
663 pmd_t *pmd = pmd_offset(pud, addr);
664 struct address_space *mapping;
665 pgoff_t index;
666 static unsigned long resume;
667 static unsigned long nr_shown;
668 static unsigned long nr_unshown;
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
674 if (nr_shown == 60) {
675 if (time_before(jiffies, resume)) {
676 nr_unshown++;
677 return;
679 if (nr_unshown) {
680 printk(KERN_ALERT
681 "BUG: Bad page map: %lu messages suppressed\n",
682 nr_unshown);
683 nr_unshown = 0;
685 nr_shown = 0;
687 if (nr_shown++ == 0)
688 resume = jiffies + 60 * HZ;
690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 index = linear_page_index(vma, addr);
693 printk(KERN_ALERT
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
695 current->comm,
696 (long long)pte_val(pte), (long long)pmd_val(*pmd));
697 if (page)
698 dump_page(page);
699 printk(KERN_ALERT
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 if (vma->vm_ops)
706 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
707 vma->vm_ops->fault);
708 if (vma->vm_file && vma->vm_file->f_op)
709 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
710 vma->vm_file->f_op->mmap);
711 dump_stack();
712 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
715 static inline bool is_cow_mapping(vm_flags_t flags)
717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
721 * vm_normal_page -- This function gets the "struct page" associated with a pte.
723 * "Special" mappings do not wish to be associated with a "struct page" (either
724 * it doesn't exist, or it exists but they don't want to touch it). In this
725 * case, NULL is returned here. "Normal" mappings do have a struct page.
727 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
728 * pte bit, in which case this function is trivial. Secondly, an architecture
729 * may not have a spare pte bit, which requires a more complicated scheme,
730 * described below.
732 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
733 * special mapping (even if there are underlying and valid "struct pages").
734 * COWed pages of a VM_PFNMAP are always normal.
736 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
737 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
738 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
739 * mapping will always honor the rule
741 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
743 * And for normal mappings this is false.
745 * This restricts such mappings to be a linear translation from virtual address
746 * to pfn. To get around this restriction, we allow arbitrary mappings so long
747 * as the vma is not a COW mapping; in that case, we know that all ptes are
748 * special (because none can have been COWed).
751 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
753 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
754 * page" backing, however the difference is that _all_ pages with a struct
755 * page (that is, those where pfn_valid is true) are refcounted and considered
756 * normal pages by the VM. The disadvantage is that pages are refcounted
757 * (which can be slower and simply not an option for some PFNMAP users). The
758 * advantage is that we don't have to follow the strict linearity rule of
759 * PFNMAP mappings in order to support COWable mappings.
762 #ifdef __HAVE_ARCH_PTE_SPECIAL
763 # define HAVE_PTE_SPECIAL 1
764 #else
765 # define HAVE_PTE_SPECIAL 0
766 #endif
767 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
768 pte_t pte)
770 unsigned long pfn = pte_pfn(pte);
772 if (HAVE_PTE_SPECIAL) {
773 if (likely(!pte_special(pte)))
774 goto check_pfn;
775 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
776 return NULL;
777 if (!is_zero_pfn(pfn))
778 print_bad_pte(vma, addr, pte, NULL);
779 return NULL;
782 /* !HAVE_PTE_SPECIAL case follows: */
784 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
785 if (vma->vm_flags & VM_MIXEDMAP) {
786 if (!pfn_valid(pfn))
787 return NULL;
788 goto out;
789 } else {
790 unsigned long off;
791 off = (addr - vma->vm_start) >> PAGE_SHIFT;
792 if (pfn == vma->vm_pgoff + off)
793 return NULL;
794 if (!is_cow_mapping(vma->vm_flags))
795 return NULL;
799 if (is_zero_pfn(pfn))
800 return NULL;
801 check_pfn:
802 if (unlikely(pfn > highest_memmap_pfn)) {
803 print_bad_pte(vma, addr, pte, NULL);
804 return NULL;
808 * NOTE! We still have PageReserved() pages in the page tables.
809 * eg. VDSO mappings can cause them to exist.
811 out:
812 return pfn_to_page(pfn);
816 * copy one vm_area from one task to the other. Assumes the page tables
817 * already present in the new task to be cleared in the whole range
818 * covered by this vma.
821 static inline unsigned long
822 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
823 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
824 unsigned long addr, int *rss)
826 unsigned long vm_flags = vma->vm_flags;
827 pte_t pte = *src_pte;
828 struct page *page;
830 /* pte contains position in swap or file, so copy. */
831 if (unlikely(!pte_present(pte))) {
832 if (!pte_file(pte)) {
833 swp_entry_t entry = pte_to_swp_entry(pte);
835 if (swap_duplicate(entry) < 0)
836 return entry.val;
838 /* make sure dst_mm is on swapoff's mmlist. */
839 if (unlikely(list_empty(&dst_mm->mmlist))) {
840 spin_lock(&mmlist_lock);
841 if (list_empty(&dst_mm->mmlist))
842 list_add(&dst_mm->mmlist,
843 &src_mm->mmlist);
844 spin_unlock(&mmlist_lock);
846 if (likely(!non_swap_entry(entry)))
847 rss[MM_SWAPENTS]++;
848 else if (is_migration_entry(entry)) {
849 page = migration_entry_to_page(entry);
851 if (PageAnon(page))
852 rss[MM_ANONPAGES]++;
853 else
854 rss[MM_FILEPAGES]++;
856 if (is_write_migration_entry(entry) &&
857 is_cow_mapping(vm_flags)) {
859 * COW mappings require pages in both
860 * parent and child to be set to read.
862 make_migration_entry_read(&entry);
863 pte = swp_entry_to_pte(entry);
864 set_pte_at(src_mm, addr, src_pte, pte);
868 goto out_set_pte;
872 * If it's a COW mapping, write protect it both
873 * in the parent and the child
875 if (is_cow_mapping(vm_flags)) {
876 ptep_set_wrprotect(src_mm, addr, src_pte);
877 pte = pte_wrprotect(pte);
881 * If it's a shared mapping, mark it clean in
882 * the child
884 if (vm_flags & VM_SHARED)
885 pte = pte_mkclean(pte);
886 pte = pte_mkold(pte);
888 page = vm_normal_page(vma, addr, pte);
889 if (page) {
890 get_page(page);
891 page_dup_rmap(page);
892 if (PageAnon(page))
893 rss[MM_ANONPAGES]++;
894 else
895 rss[MM_FILEPAGES]++;
898 out_set_pte:
899 set_pte_at(dst_mm, addr, dst_pte, pte);
900 return 0;
903 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
904 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
905 unsigned long addr, unsigned long end)
907 pte_t *orig_src_pte, *orig_dst_pte;
908 pte_t *src_pte, *dst_pte;
909 spinlock_t *src_ptl, *dst_ptl;
910 int progress = 0;
911 int rss[NR_MM_COUNTERS];
912 swp_entry_t entry = (swp_entry_t){0};
914 again:
915 init_rss_vec(rss);
917 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
918 if (!dst_pte)
919 return -ENOMEM;
920 src_pte = pte_offset_map(src_pmd, addr);
921 src_ptl = pte_lockptr(src_mm, src_pmd);
922 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
923 orig_src_pte = src_pte;
924 orig_dst_pte = dst_pte;
925 arch_enter_lazy_mmu_mode();
927 do {
929 * We are holding two locks at this point - either of them
930 * could generate latencies in another task on another CPU.
932 if (progress >= 32) {
933 progress = 0;
934 if (need_resched() ||
935 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
936 break;
938 if (pte_none(*src_pte)) {
939 progress++;
940 continue;
942 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
943 vma, addr, rss);
944 if (entry.val)
945 break;
946 progress += 8;
947 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
949 arch_leave_lazy_mmu_mode();
950 spin_unlock(src_ptl);
951 pte_unmap(orig_src_pte);
952 add_mm_rss_vec(dst_mm, rss);
953 pte_unmap_unlock(orig_dst_pte, dst_ptl);
954 cond_resched();
956 if (entry.val) {
957 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
958 return -ENOMEM;
959 progress = 0;
961 if (addr != end)
962 goto again;
963 return 0;
966 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
967 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
968 unsigned long addr, unsigned long end)
970 pmd_t *src_pmd, *dst_pmd;
971 unsigned long next;
973 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
974 if (!dst_pmd)
975 return -ENOMEM;
976 src_pmd = pmd_offset(src_pud, addr);
977 do {
978 next = pmd_addr_end(addr, end);
979 if (pmd_trans_huge(*src_pmd)) {
980 int err;
981 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
982 err = copy_huge_pmd(dst_mm, src_mm,
983 dst_pmd, src_pmd, addr, vma);
984 if (err == -ENOMEM)
985 return -ENOMEM;
986 if (!err)
987 continue;
988 /* fall through */
990 if (pmd_none_or_clear_bad(src_pmd))
991 continue;
992 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
993 vma, addr, next))
994 return -ENOMEM;
995 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
996 return 0;
999 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1001 unsigned long addr, unsigned long end)
1003 pud_t *src_pud, *dst_pud;
1004 unsigned long next;
1006 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1007 if (!dst_pud)
1008 return -ENOMEM;
1009 src_pud = pud_offset(src_pgd, addr);
1010 do {
1011 next = pud_addr_end(addr, end);
1012 if (pud_none_or_clear_bad(src_pud))
1013 continue;
1014 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1015 vma, addr, next))
1016 return -ENOMEM;
1017 } while (dst_pud++, src_pud++, addr = next, addr != end);
1018 return 0;
1021 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022 struct vm_area_struct *vma)
1024 pgd_t *src_pgd, *dst_pgd;
1025 unsigned long next;
1026 unsigned long addr = vma->vm_start;
1027 unsigned long end = vma->vm_end;
1028 unsigned long mmun_start; /* For mmu_notifiers */
1029 unsigned long mmun_end; /* For mmu_notifiers */
1030 bool is_cow;
1031 int ret;
1034 * Don't copy ptes where a page fault will fill them correctly.
1035 * Fork becomes much lighter when there are big shared or private
1036 * readonly mappings. The tradeoff is that copy_page_range is more
1037 * efficient than faulting.
1039 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1040 VM_PFNMAP | VM_MIXEDMAP))) {
1041 if (!vma->anon_vma)
1042 return 0;
1045 if (is_vm_hugetlb_page(vma))
1046 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1048 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1050 * We do not free on error cases below as remove_vma
1051 * gets called on error from higher level routine
1053 ret = track_pfn_copy(vma);
1054 if (ret)
1055 return ret;
1059 * We need to invalidate the secondary MMU mappings only when
1060 * there could be a permission downgrade on the ptes of the
1061 * parent mm. And a permission downgrade will only happen if
1062 * is_cow_mapping() returns true.
1064 is_cow = is_cow_mapping(vma->vm_flags);
1065 mmun_start = addr;
1066 mmun_end = end;
1067 if (is_cow)
1068 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1069 mmun_end);
1071 ret = 0;
1072 dst_pgd = pgd_offset(dst_mm, addr);
1073 src_pgd = pgd_offset(src_mm, addr);
1074 do {
1075 next = pgd_addr_end(addr, end);
1076 if (pgd_none_or_clear_bad(src_pgd))
1077 continue;
1078 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1079 vma, addr, next))) {
1080 ret = -ENOMEM;
1081 break;
1083 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1085 if (is_cow)
1086 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1087 return ret;
1090 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1091 struct vm_area_struct *vma, pmd_t *pmd,
1092 unsigned long addr, unsigned long end,
1093 struct zap_details *details)
1095 struct mm_struct *mm = tlb->mm;
1096 int force_flush = 0;
1097 int rss[NR_MM_COUNTERS];
1098 spinlock_t *ptl;
1099 pte_t *start_pte;
1100 pte_t *pte;
1102 again:
1103 init_rss_vec(rss);
1104 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1105 pte = start_pte;
1106 arch_enter_lazy_mmu_mode();
1107 do {
1108 pte_t ptent = *pte;
1109 if (pte_none(ptent)) {
1110 continue;
1113 if (pte_present(ptent)) {
1114 struct page *page;
1116 page = vm_normal_page(vma, addr, ptent);
1117 if (unlikely(details) && page) {
1119 * unmap_shared_mapping_pages() wants to
1120 * invalidate cache without truncating:
1121 * unmap shared but keep private pages.
1123 if (details->check_mapping &&
1124 details->check_mapping != page->mapping)
1125 continue;
1127 * Each page->index must be checked when
1128 * invalidating or truncating nonlinear.
1130 if (details->nonlinear_vma &&
1131 (page->index < details->first_index ||
1132 page->index > details->last_index))
1133 continue;
1135 ptent = ptep_get_and_clear_full(mm, addr, pte,
1136 tlb->fullmm);
1137 tlb_remove_tlb_entry(tlb, pte, addr);
1138 if (unlikely(!page))
1139 continue;
1140 if (unlikely(details) && details->nonlinear_vma
1141 && linear_page_index(details->nonlinear_vma,
1142 addr) != page->index) {
1143 pte_t ptfile = pgoff_to_pte(page->index);
1144 if (pte_soft_dirty(ptent))
1145 pte_file_mksoft_dirty(ptfile);
1146 set_pte_at(mm, addr, pte, ptfile);
1148 if (PageAnon(page))
1149 rss[MM_ANONPAGES]--;
1150 else {
1151 if (pte_dirty(ptent))
1152 set_page_dirty(page);
1153 if (pte_young(ptent) &&
1154 likely(!(vma->vm_flags & VM_SEQ_READ)))
1155 mark_page_accessed(page);
1156 rss[MM_FILEPAGES]--;
1158 page_remove_rmap(page);
1159 if (unlikely(page_mapcount(page) < 0))
1160 print_bad_pte(vma, addr, ptent, page);
1161 force_flush = !__tlb_remove_page(tlb, page);
1162 if (force_flush)
1163 break;
1164 continue;
1167 * If details->check_mapping, we leave swap entries;
1168 * if details->nonlinear_vma, we leave file entries.
1170 if (unlikely(details))
1171 continue;
1172 if (pte_file(ptent)) {
1173 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174 print_bad_pte(vma, addr, ptent, NULL);
1175 } else {
1176 swp_entry_t entry = pte_to_swp_entry(ptent);
1178 if (!non_swap_entry(entry))
1179 rss[MM_SWAPENTS]--;
1180 else if (is_migration_entry(entry)) {
1181 struct page *page;
1183 page = migration_entry_to_page(entry);
1185 if (PageAnon(page))
1186 rss[MM_ANONPAGES]--;
1187 else
1188 rss[MM_FILEPAGES]--;
1190 if (unlikely(!free_swap_and_cache(entry)))
1191 print_bad_pte(vma, addr, ptent, NULL);
1193 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194 } while (pte++, addr += PAGE_SIZE, addr != end);
1196 add_mm_rss_vec(mm, rss);
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(start_pte, ptl);
1201 * mmu_gather ran out of room to batch pages, we break out of
1202 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 * and page-free while holding it.
1205 if (force_flush) {
1206 unsigned long old_end;
1208 force_flush = 0;
1211 * Flush the TLB just for the previous segment,
1212 * then update the range to be the remaining
1213 * TLB range.
1215 old_end = tlb->end;
1216 tlb->end = addr;
1218 tlb_flush_mmu(tlb);
1220 tlb->start = addr;
1221 tlb->end = old_end;
1223 if (addr != end)
1224 goto again;
1227 return addr;
1230 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pud_t *pud,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1235 pmd_t *pmd;
1236 unsigned long next;
1238 pmd = pmd_offset(pud, addr);
1239 do {
1240 next = pmd_addr_end(addr, end);
1241 if (pmd_trans_huge(*pmd)) {
1242 if (next - addr != HPAGE_PMD_SIZE) {
1243 #ifdef CONFIG_DEBUG_VM
1244 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1245 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1246 __func__, addr, end,
1247 vma->vm_start,
1248 vma->vm_end);
1249 BUG();
1251 #endif
1252 split_huge_page_pmd(vma, addr, pmd);
1253 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1254 goto next;
1255 /* fall through */
1258 * Here there can be other concurrent MADV_DONTNEED or
1259 * trans huge page faults running, and if the pmd is
1260 * none or trans huge it can change under us. This is
1261 * because MADV_DONTNEED holds the mmap_sem in read
1262 * mode.
1264 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1265 goto next;
1266 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1267 next:
1268 cond_resched();
1269 } while (pmd++, addr = next, addr != end);
1271 return addr;
1274 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1275 struct vm_area_struct *vma, pgd_t *pgd,
1276 unsigned long addr, unsigned long end,
1277 struct zap_details *details)
1279 pud_t *pud;
1280 unsigned long next;
1282 pud = pud_offset(pgd, addr);
1283 do {
1284 next = pud_addr_end(addr, end);
1285 if (pud_none_or_clear_bad(pud))
1286 continue;
1287 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1288 } while (pud++, addr = next, addr != end);
1290 return addr;
1293 static void unmap_page_range(struct mmu_gather *tlb,
1294 struct vm_area_struct *vma,
1295 unsigned long addr, unsigned long end,
1296 struct zap_details *details)
1298 pgd_t *pgd;
1299 unsigned long next;
1301 if (details && !details->check_mapping && !details->nonlinear_vma)
1302 details = NULL;
1304 BUG_ON(addr >= end);
1305 mem_cgroup_uncharge_start();
1306 tlb_start_vma(tlb, vma);
1307 pgd = pgd_offset(vma->vm_mm, addr);
1308 do {
1309 next = pgd_addr_end(addr, end);
1310 if (pgd_none_or_clear_bad(pgd))
1311 continue;
1312 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1313 } while (pgd++, addr = next, addr != end);
1314 tlb_end_vma(tlb, vma);
1315 mem_cgroup_uncharge_end();
1319 static void unmap_single_vma(struct mmu_gather *tlb,
1320 struct vm_area_struct *vma, unsigned long start_addr,
1321 unsigned long end_addr,
1322 struct zap_details *details)
1324 unsigned long start = max(vma->vm_start, start_addr);
1325 unsigned long end;
1327 if (start >= vma->vm_end)
1328 return;
1329 end = min(vma->vm_end, end_addr);
1330 if (end <= vma->vm_start)
1331 return;
1333 if (vma->vm_file)
1334 uprobe_munmap(vma, start, end);
1336 if (unlikely(vma->vm_flags & VM_PFNMAP))
1337 untrack_pfn(vma, 0, 0);
1339 if (start != end) {
1340 if (unlikely(is_vm_hugetlb_page(vma))) {
1342 * It is undesirable to test vma->vm_file as it
1343 * should be non-null for valid hugetlb area.
1344 * However, vm_file will be NULL in the error
1345 * cleanup path of do_mmap_pgoff. When
1346 * hugetlbfs ->mmap method fails,
1347 * do_mmap_pgoff() nullifies vma->vm_file
1348 * before calling this function to clean up.
1349 * Since no pte has actually been setup, it is
1350 * safe to do nothing in this case.
1352 if (vma->vm_file) {
1353 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1354 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1355 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1357 } else
1358 unmap_page_range(tlb, vma, start, end, details);
1363 * unmap_vmas - unmap a range of memory covered by a list of vma's
1364 * @tlb: address of the caller's struct mmu_gather
1365 * @vma: the starting vma
1366 * @start_addr: virtual address at which to start unmapping
1367 * @end_addr: virtual address at which to end unmapping
1369 * Unmap all pages in the vma list.
1371 * Only addresses between `start' and `end' will be unmapped.
1373 * The VMA list must be sorted in ascending virtual address order.
1375 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1376 * range after unmap_vmas() returns. So the only responsibility here is to
1377 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1378 * drops the lock and schedules.
1380 void unmap_vmas(struct mmu_gather *tlb,
1381 struct vm_area_struct *vma, unsigned long start_addr,
1382 unsigned long end_addr)
1384 struct mm_struct *mm = vma->vm_mm;
1386 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1387 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1388 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1389 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1393 * zap_page_range - remove user pages in a given range
1394 * @vma: vm_area_struct holding the applicable pages
1395 * @start: starting address of pages to zap
1396 * @size: number of bytes to zap
1397 * @details: details of nonlinear truncation or shared cache invalidation
1399 * Caller must protect the VMA list
1401 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1402 unsigned long size, struct zap_details *details)
1404 struct mm_struct *mm = vma->vm_mm;
1405 struct mmu_gather tlb;
1406 unsigned long end = start + size;
1408 lru_add_drain();
1409 tlb_gather_mmu(&tlb, mm, start, end);
1410 update_hiwater_rss(mm);
1411 mmu_notifier_invalidate_range_start(mm, start, end);
1412 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1413 unmap_single_vma(&tlb, vma, start, end, details);
1414 mmu_notifier_invalidate_range_end(mm, start, end);
1415 tlb_finish_mmu(&tlb, start, end);
1419 * zap_page_range_single - remove user pages in a given range
1420 * @vma: vm_area_struct holding the applicable pages
1421 * @address: starting address of pages to zap
1422 * @size: number of bytes to zap
1423 * @details: details of nonlinear truncation or shared cache invalidation
1425 * The range must fit into one VMA.
1427 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1428 unsigned long size, struct zap_details *details)
1430 struct mm_struct *mm = vma->vm_mm;
1431 struct mmu_gather tlb;
1432 unsigned long end = address + size;
1434 lru_add_drain();
1435 tlb_gather_mmu(&tlb, mm, address, end);
1436 update_hiwater_rss(mm);
1437 mmu_notifier_invalidate_range_start(mm, address, end);
1438 unmap_single_vma(&tlb, vma, address, end, details);
1439 mmu_notifier_invalidate_range_end(mm, address, end);
1440 tlb_finish_mmu(&tlb, address, end);
1444 * zap_vma_ptes - remove ptes mapping the vma
1445 * @vma: vm_area_struct holding ptes to be zapped
1446 * @address: starting address of pages to zap
1447 * @size: number of bytes to zap
1449 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1451 * The entire address range must be fully contained within the vma.
1453 * Returns 0 if successful.
1455 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1456 unsigned long size)
1458 if (address < vma->vm_start || address + size > vma->vm_end ||
1459 !(vma->vm_flags & VM_PFNMAP))
1460 return -1;
1461 zap_page_range_single(vma, address, size, NULL);
1462 return 0;
1464 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1467 * follow_page_mask - look up a page descriptor from a user-virtual address
1468 * @vma: vm_area_struct mapping @address
1469 * @address: virtual address to look up
1470 * @flags: flags modifying lookup behaviour
1471 * @page_mask: on output, *page_mask is set according to the size of the page
1473 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1475 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1476 * an error pointer if there is a mapping to something not represented
1477 * by a page descriptor (see also vm_normal_page()).
1479 struct page *follow_page_mask(struct vm_area_struct *vma,
1480 unsigned long address, unsigned int flags,
1481 unsigned int *page_mask)
1483 pgd_t *pgd;
1484 pud_t *pud;
1485 pmd_t *pmd;
1486 pte_t *ptep, pte;
1487 spinlock_t *ptl;
1488 struct page *page;
1489 struct mm_struct *mm = vma->vm_mm;
1491 *page_mask = 0;
1493 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1494 if (!IS_ERR(page)) {
1495 BUG_ON(flags & FOLL_GET);
1496 goto out;
1499 page = NULL;
1500 pgd = pgd_offset(mm, address);
1501 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1502 goto no_page_table;
1504 pud = pud_offset(pgd, address);
1505 if (pud_none(*pud))
1506 goto no_page_table;
1507 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1508 BUG_ON(flags & FOLL_GET);
1509 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1510 goto out;
1512 if (unlikely(pud_bad(*pud)))
1513 goto no_page_table;
1515 pmd = pmd_offset(pud, address);
1516 if (pmd_none(*pmd))
1517 goto no_page_table;
1518 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1519 BUG_ON(flags & FOLL_GET);
1520 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1521 goto out;
1523 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1524 goto no_page_table;
1525 if (pmd_trans_huge(*pmd)) {
1526 if (flags & FOLL_SPLIT) {
1527 split_huge_page_pmd(vma, address, pmd);
1528 goto split_fallthrough;
1530 spin_lock(&mm->page_table_lock);
1531 if (likely(pmd_trans_huge(*pmd))) {
1532 if (unlikely(pmd_trans_splitting(*pmd))) {
1533 spin_unlock(&mm->page_table_lock);
1534 wait_split_huge_page(vma->anon_vma, pmd);
1535 } else {
1536 page = follow_trans_huge_pmd(vma, address,
1537 pmd, flags);
1538 spin_unlock(&mm->page_table_lock);
1539 *page_mask = HPAGE_PMD_NR - 1;
1540 goto out;
1542 } else
1543 spin_unlock(&mm->page_table_lock);
1544 /* fall through */
1546 split_fallthrough:
1547 if (unlikely(pmd_bad(*pmd)))
1548 goto no_page_table;
1550 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1552 pte = *ptep;
1553 if (!pte_present(pte)) {
1554 swp_entry_t entry;
1556 * KSM's break_ksm() relies upon recognizing a ksm page
1557 * even while it is being migrated, so for that case we
1558 * need migration_entry_wait().
1560 if (likely(!(flags & FOLL_MIGRATION)))
1561 goto no_page;
1562 if (pte_none(pte) || pte_file(pte))
1563 goto no_page;
1564 entry = pte_to_swp_entry(pte);
1565 if (!is_migration_entry(entry))
1566 goto no_page;
1567 pte_unmap_unlock(ptep, ptl);
1568 migration_entry_wait(mm, pmd, address);
1569 goto split_fallthrough;
1571 if ((flags & FOLL_NUMA) && pte_numa(pte))
1572 goto no_page;
1573 if ((flags & FOLL_WRITE) && !pte_write(pte))
1574 goto unlock;
1576 page = vm_normal_page(vma, address, pte);
1577 if (unlikely(!page)) {
1578 if ((flags & FOLL_DUMP) ||
1579 !is_zero_pfn(pte_pfn(pte)))
1580 goto bad_page;
1581 page = pte_page(pte);
1584 if (flags & FOLL_GET)
1585 get_page_foll(page);
1586 if (flags & FOLL_TOUCH) {
1587 if ((flags & FOLL_WRITE) &&
1588 !pte_dirty(pte) && !PageDirty(page))
1589 set_page_dirty(page);
1591 * pte_mkyoung() would be more correct here, but atomic care
1592 * is needed to avoid losing the dirty bit: it is easier to use
1593 * mark_page_accessed().
1595 mark_page_accessed(page);
1597 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1599 * The preliminary mapping check is mainly to avoid the
1600 * pointless overhead of lock_page on the ZERO_PAGE
1601 * which might bounce very badly if there is contention.
1603 * If the page is already locked, we don't need to
1604 * handle it now - vmscan will handle it later if and
1605 * when it attempts to reclaim the page.
1607 if (page->mapping && trylock_page(page)) {
1608 lru_add_drain(); /* push cached pages to LRU */
1610 * Because we lock page here, and migration is
1611 * blocked by the pte's page reference, and we
1612 * know the page is still mapped, we don't even
1613 * need to check for file-cache page truncation.
1615 mlock_vma_page(page);
1616 unlock_page(page);
1619 unlock:
1620 pte_unmap_unlock(ptep, ptl);
1621 out:
1622 return page;
1624 bad_page:
1625 pte_unmap_unlock(ptep, ptl);
1626 return ERR_PTR(-EFAULT);
1628 no_page:
1629 pte_unmap_unlock(ptep, ptl);
1630 if (!pte_none(pte))
1631 return page;
1633 no_page_table:
1635 * When core dumping an enormous anonymous area that nobody
1636 * has touched so far, we don't want to allocate unnecessary pages or
1637 * page tables. Return error instead of NULL to skip handle_mm_fault,
1638 * then get_dump_page() will return NULL to leave a hole in the dump.
1639 * But we can only make this optimization where a hole would surely
1640 * be zero-filled if handle_mm_fault() actually did handle it.
1642 if ((flags & FOLL_DUMP) &&
1643 (!vma->vm_ops || !vma->vm_ops->fault))
1644 return ERR_PTR(-EFAULT);
1645 return page;
1648 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1650 return stack_guard_page_start(vma, addr) ||
1651 stack_guard_page_end(vma, addr+PAGE_SIZE);
1655 * __get_user_pages() - pin user pages in memory
1656 * @tsk: task_struct of target task
1657 * @mm: mm_struct of target mm
1658 * @start: starting user address
1659 * @nr_pages: number of pages from start to pin
1660 * @gup_flags: flags modifying pin behaviour
1661 * @pages: array that receives pointers to the pages pinned.
1662 * Should be at least nr_pages long. Or NULL, if caller
1663 * only intends to ensure the pages are faulted in.
1664 * @vmas: array of pointers to vmas corresponding to each page.
1665 * Or NULL if the caller does not require them.
1666 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1668 * Returns number of pages pinned. This may be fewer than the number
1669 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1670 * were pinned, returns -errno. Each page returned must be released
1671 * with a put_page() call when it is finished with. vmas will only
1672 * remain valid while mmap_sem is held.
1674 * Must be called with mmap_sem held for read or write.
1676 * __get_user_pages walks a process's page tables and takes a reference to
1677 * each struct page that each user address corresponds to at a given
1678 * instant. That is, it takes the page that would be accessed if a user
1679 * thread accesses the given user virtual address at that instant.
1681 * This does not guarantee that the page exists in the user mappings when
1682 * __get_user_pages returns, and there may even be a completely different
1683 * page there in some cases (eg. if mmapped pagecache has been invalidated
1684 * and subsequently re faulted). However it does guarantee that the page
1685 * won't be freed completely. And mostly callers simply care that the page
1686 * contains data that was valid *at some point in time*. Typically, an IO
1687 * or similar operation cannot guarantee anything stronger anyway because
1688 * locks can't be held over the syscall boundary.
1690 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1691 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1692 * appropriate) must be called after the page is finished with, and
1693 * before put_page is called.
1695 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1696 * or mmap_sem contention, and if waiting is needed to pin all pages,
1697 * *@nonblocking will be set to 0.
1699 * In most cases, get_user_pages or get_user_pages_fast should be used
1700 * instead of __get_user_pages. __get_user_pages should be used only if
1701 * you need some special @gup_flags.
1703 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1704 unsigned long start, unsigned long nr_pages,
1705 unsigned int gup_flags, struct page **pages,
1706 struct vm_area_struct **vmas, int *nonblocking)
1708 long i;
1709 unsigned long vm_flags;
1710 unsigned int page_mask;
1712 if (!nr_pages)
1713 return 0;
1715 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1718 * Require read or write permissions.
1719 * If FOLL_FORCE is set, we only require the "MAY" flags.
1721 vm_flags = (gup_flags & FOLL_WRITE) ?
1722 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1723 vm_flags &= (gup_flags & FOLL_FORCE) ?
1724 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1727 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1728 * would be called on PROT_NONE ranges. We must never invoke
1729 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1730 * page faults would unprotect the PROT_NONE ranges if
1731 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1732 * bitflag. So to avoid that, don't set FOLL_NUMA if
1733 * FOLL_FORCE is set.
1735 if (!(gup_flags & FOLL_FORCE))
1736 gup_flags |= FOLL_NUMA;
1738 i = 0;
1740 do {
1741 struct vm_area_struct *vma;
1743 vma = find_extend_vma(mm, start);
1744 if (!vma && in_gate_area(mm, start)) {
1745 unsigned long pg = start & PAGE_MASK;
1746 pgd_t *pgd;
1747 pud_t *pud;
1748 pmd_t *pmd;
1749 pte_t *pte;
1751 /* user gate pages are read-only */
1752 if (gup_flags & FOLL_WRITE)
1753 return i ? : -EFAULT;
1754 if (pg > TASK_SIZE)
1755 pgd = pgd_offset_k(pg);
1756 else
1757 pgd = pgd_offset_gate(mm, pg);
1758 BUG_ON(pgd_none(*pgd));
1759 pud = pud_offset(pgd, pg);
1760 BUG_ON(pud_none(*pud));
1761 pmd = pmd_offset(pud, pg);
1762 if (pmd_none(*pmd))
1763 return i ? : -EFAULT;
1764 VM_BUG_ON(pmd_trans_huge(*pmd));
1765 pte = pte_offset_map(pmd, pg);
1766 if (pte_none(*pte)) {
1767 pte_unmap(pte);
1768 return i ? : -EFAULT;
1770 vma = get_gate_vma(mm);
1771 if (pages) {
1772 struct page *page;
1774 page = vm_normal_page(vma, start, *pte);
1775 if (!page) {
1776 if (!(gup_flags & FOLL_DUMP) &&
1777 is_zero_pfn(pte_pfn(*pte)))
1778 page = pte_page(*pte);
1779 else {
1780 pte_unmap(pte);
1781 return i ? : -EFAULT;
1784 pages[i] = page;
1785 get_page(page);
1787 pte_unmap(pte);
1788 page_mask = 0;
1789 goto next_page;
1792 if (!vma ||
1793 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1794 !(vm_flags & vma->vm_flags))
1795 return i ? : -EFAULT;
1797 if (is_vm_hugetlb_page(vma)) {
1798 i = follow_hugetlb_page(mm, vma, pages, vmas,
1799 &start, &nr_pages, i, gup_flags);
1800 continue;
1803 do {
1804 struct page *page;
1805 unsigned int foll_flags = gup_flags;
1806 unsigned int page_increm;
1809 * If we have a pending SIGKILL, don't keep faulting
1810 * pages and potentially allocating memory.
1812 if (unlikely(fatal_signal_pending(current)))
1813 return i ? i : -ERESTARTSYS;
1815 cond_resched();
1816 while (!(page = follow_page_mask(vma, start,
1817 foll_flags, &page_mask))) {
1818 int ret;
1819 unsigned int fault_flags = 0;
1821 /* For mlock, just skip the stack guard page. */
1822 if (foll_flags & FOLL_MLOCK) {
1823 if (stack_guard_page(vma, start))
1824 goto next_page;
1826 if (foll_flags & FOLL_WRITE)
1827 fault_flags |= FAULT_FLAG_WRITE;
1828 if (nonblocking)
1829 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1830 if (foll_flags & FOLL_NOWAIT)
1831 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1833 ret = handle_mm_fault(mm, vma, start,
1834 fault_flags);
1836 if (ret & VM_FAULT_ERROR) {
1837 if (ret & VM_FAULT_OOM)
1838 return i ? i : -ENOMEM;
1839 if (ret & (VM_FAULT_HWPOISON |
1840 VM_FAULT_HWPOISON_LARGE)) {
1841 if (i)
1842 return i;
1843 else if (gup_flags & FOLL_HWPOISON)
1844 return -EHWPOISON;
1845 else
1846 return -EFAULT;
1848 if (ret & VM_FAULT_SIGBUS)
1849 return i ? i : -EFAULT;
1850 BUG();
1853 if (tsk) {
1854 if (ret & VM_FAULT_MAJOR)
1855 tsk->maj_flt++;
1856 else
1857 tsk->min_flt++;
1860 if (ret & VM_FAULT_RETRY) {
1861 if (nonblocking)
1862 *nonblocking = 0;
1863 return i;
1867 * The VM_FAULT_WRITE bit tells us that
1868 * do_wp_page has broken COW when necessary,
1869 * even if maybe_mkwrite decided not to set
1870 * pte_write. We can thus safely do subsequent
1871 * page lookups as if they were reads. But only
1872 * do so when looping for pte_write is futile:
1873 * in some cases userspace may also be wanting
1874 * to write to the gotten user page, which a
1875 * read fault here might prevent (a readonly
1876 * page might get reCOWed by userspace write).
1878 if ((ret & VM_FAULT_WRITE) &&
1879 !(vma->vm_flags & VM_WRITE))
1880 foll_flags &= ~FOLL_WRITE;
1882 cond_resched();
1884 if (IS_ERR(page))
1885 return i ? i : PTR_ERR(page);
1886 if (pages) {
1887 pages[i] = page;
1889 flush_anon_page(vma, page, start);
1890 flush_dcache_page(page);
1891 page_mask = 0;
1893 next_page:
1894 if (vmas) {
1895 vmas[i] = vma;
1896 page_mask = 0;
1898 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1899 if (page_increm > nr_pages)
1900 page_increm = nr_pages;
1901 i += page_increm;
1902 start += page_increm * PAGE_SIZE;
1903 nr_pages -= page_increm;
1904 } while (nr_pages && start < vma->vm_end);
1905 } while (nr_pages);
1906 return i;
1908 EXPORT_SYMBOL(__get_user_pages);
1911 * fixup_user_fault() - manually resolve a user page fault
1912 * @tsk: the task_struct to use for page fault accounting, or
1913 * NULL if faults are not to be recorded.
1914 * @mm: mm_struct of target mm
1915 * @address: user address
1916 * @fault_flags:flags to pass down to handle_mm_fault()
1918 * This is meant to be called in the specific scenario where for locking reasons
1919 * we try to access user memory in atomic context (within a pagefault_disable()
1920 * section), this returns -EFAULT, and we want to resolve the user fault before
1921 * trying again.
1923 * Typically this is meant to be used by the futex code.
1925 * The main difference with get_user_pages() is that this function will
1926 * unconditionally call handle_mm_fault() which will in turn perform all the
1927 * necessary SW fixup of the dirty and young bits in the PTE, while
1928 * handle_mm_fault() only guarantees to update these in the struct page.
1930 * This is important for some architectures where those bits also gate the
1931 * access permission to the page because they are maintained in software. On
1932 * such architectures, gup() will not be enough to make a subsequent access
1933 * succeed.
1935 * This should be called with the mm_sem held for read.
1937 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1938 unsigned long address, unsigned int fault_flags)
1940 struct vm_area_struct *vma;
1941 int ret;
1943 vma = find_extend_vma(mm, address);
1944 if (!vma || address < vma->vm_start)
1945 return -EFAULT;
1947 ret = handle_mm_fault(mm, vma, address, fault_flags);
1948 if (ret & VM_FAULT_ERROR) {
1949 if (ret & VM_FAULT_OOM)
1950 return -ENOMEM;
1951 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1952 return -EHWPOISON;
1953 if (ret & VM_FAULT_SIGBUS)
1954 return -EFAULT;
1955 BUG();
1957 if (tsk) {
1958 if (ret & VM_FAULT_MAJOR)
1959 tsk->maj_flt++;
1960 else
1961 tsk->min_flt++;
1963 return 0;
1967 * get_user_pages() - pin user pages in memory
1968 * @tsk: the task_struct to use for page fault accounting, or
1969 * NULL if faults are not to be recorded.
1970 * @mm: mm_struct of target mm
1971 * @start: starting user address
1972 * @nr_pages: number of pages from start to pin
1973 * @write: whether pages will be written to by the caller
1974 * @force: whether to force write access even if user mapping is
1975 * readonly. This will result in the page being COWed even
1976 * in MAP_SHARED mappings. You do not want this.
1977 * @pages: array that receives pointers to the pages pinned.
1978 * Should be at least nr_pages long. Or NULL, if caller
1979 * only intends to ensure the pages are faulted in.
1980 * @vmas: array of pointers to vmas corresponding to each page.
1981 * Or NULL if the caller does not require them.
1983 * Returns number of pages pinned. This may be fewer than the number
1984 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1985 * were pinned, returns -errno. Each page returned must be released
1986 * with a put_page() call when it is finished with. vmas will only
1987 * remain valid while mmap_sem is held.
1989 * Must be called with mmap_sem held for read or write.
1991 * get_user_pages walks a process's page tables and takes a reference to
1992 * each struct page that each user address corresponds to at a given
1993 * instant. That is, it takes the page that would be accessed if a user
1994 * thread accesses the given user virtual address at that instant.
1996 * This does not guarantee that the page exists in the user mappings when
1997 * get_user_pages returns, and there may even be a completely different
1998 * page there in some cases (eg. if mmapped pagecache has been invalidated
1999 * and subsequently re faulted). However it does guarantee that the page
2000 * won't be freed completely. And mostly callers simply care that the page
2001 * contains data that was valid *at some point in time*. Typically, an IO
2002 * or similar operation cannot guarantee anything stronger anyway because
2003 * locks can't be held over the syscall boundary.
2005 * If write=0, the page must not be written to. If the page is written to,
2006 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2007 * after the page is finished with, and before put_page is called.
2009 * get_user_pages is typically used for fewer-copy IO operations, to get a
2010 * handle on the memory by some means other than accesses via the user virtual
2011 * addresses. The pages may be submitted for DMA to devices or accessed via
2012 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2013 * use the correct cache flushing APIs.
2015 * See also get_user_pages_fast, for performance critical applications.
2017 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2018 unsigned long start, unsigned long nr_pages, int write,
2019 int force, struct page **pages, struct vm_area_struct **vmas)
2021 int flags = FOLL_TOUCH;
2023 if (pages)
2024 flags |= FOLL_GET;
2025 if (write)
2026 flags |= FOLL_WRITE;
2027 if (force)
2028 flags |= FOLL_FORCE;
2030 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2031 NULL);
2033 EXPORT_SYMBOL(get_user_pages);
2036 * get_dump_page() - pin user page in memory while writing it to core dump
2037 * @addr: user address
2039 * Returns struct page pointer of user page pinned for dump,
2040 * to be freed afterwards by page_cache_release() or put_page().
2042 * Returns NULL on any kind of failure - a hole must then be inserted into
2043 * the corefile, to preserve alignment with its headers; and also returns
2044 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2045 * allowing a hole to be left in the corefile to save diskspace.
2047 * Called without mmap_sem, but after all other threads have been killed.
2049 #ifdef CONFIG_ELF_CORE
2050 struct page *get_dump_page(unsigned long addr)
2052 struct vm_area_struct *vma;
2053 struct page *page;
2055 if (__get_user_pages(current, current->mm, addr, 1,
2056 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2057 NULL) < 1)
2058 return NULL;
2059 flush_cache_page(vma, addr, page_to_pfn(page));
2060 return page;
2062 #endif /* CONFIG_ELF_CORE */
2064 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2065 spinlock_t **ptl)
2067 pgd_t * pgd = pgd_offset(mm, addr);
2068 pud_t * pud = pud_alloc(mm, pgd, addr);
2069 if (pud) {
2070 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2071 if (pmd) {
2072 VM_BUG_ON(pmd_trans_huge(*pmd));
2073 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2076 return NULL;
2080 * This is the old fallback for page remapping.
2082 * For historical reasons, it only allows reserved pages. Only
2083 * old drivers should use this, and they needed to mark their
2084 * pages reserved for the old functions anyway.
2086 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2087 struct page *page, pgprot_t prot)
2089 struct mm_struct *mm = vma->vm_mm;
2090 int retval;
2091 pte_t *pte;
2092 spinlock_t *ptl;
2094 retval = -EINVAL;
2095 if (PageAnon(page))
2096 goto out;
2097 retval = -ENOMEM;
2098 flush_dcache_page(page);
2099 pte = get_locked_pte(mm, addr, &ptl);
2100 if (!pte)
2101 goto out;
2102 retval = -EBUSY;
2103 if (!pte_none(*pte))
2104 goto out_unlock;
2106 /* Ok, finally just insert the thing.. */
2107 get_page(page);
2108 inc_mm_counter_fast(mm, MM_FILEPAGES);
2109 page_add_file_rmap(page);
2110 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2112 retval = 0;
2113 pte_unmap_unlock(pte, ptl);
2114 return retval;
2115 out_unlock:
2116 pte_unmap_unlock(pte, ptl);
2117 out:
2118 return retval;
2122 * vm_insert_page - insert single page into user vma
2123 * @vma: user vma to map to
2124 * @addr: target user address of this page
2125 * @page: source kernel page
2127 * This allows drivers to insert individual pages they've allocated
2128 * into a user vma.
2130 * The page has to be a nice clean _individual_ kernel allocation.
2131 * If you allocate a compound page, you need to have marked it as
2132 * such (__GFP_COMP), or manually just split the page up yourself
2133 * (see split_page()).
2135 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2136 * took an arbitrary page protection parameter. This doesn't allow
2137 * that. Your vma protection will have to be set up correctly, which
2138 * means that if you want a shared writable mapping, you'd better
2139 * ask for a shared writable mapping!
2141 * The page does not need to be reserved.
2143 * Usually this function is called from f_op->mmap() handler
2144 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2145 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2146 * function from other places, for example from page-fault handler.
2148 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2149 struct page *page)
2151 if (addr < vma->vm_start || addr >= vma->vm_end)
2152 return -EFAULT;
2153 if (!page_count(page))
2154 return -EINVAL;
2155 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2156 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2157 BUG_ON(vma->vm_flags & VM_PFNMAP);
2158 vma->vm_flags |= VM_MIXEDMAP;
2160 return insert_page(vma, addr, page, vma->vm_page_prot);
2162 EXPORT_SYMBOL(vm_insert_page);
2164 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2165 unsigned long pfn, pgprot_t prot)
2167 struct mm_struct *mm = vma->vm_mm;
2168 int retval;
2169 pte_t *pte, entry;
2170 spinlock_t *ptl;
2172 retval = -ENOMEM;
2173 pte = get_locked_pte(mm, addr, &ptl);
2174 if (!pte)
2175 goto out;
2176 retval = -EBUSY;
2177 if (!pte_none(*pte))
2178 goto out_unlock;
2180 /* Ok, finally just insert the thing.. */
2181 entry = pte_mkspecial(pfn_pte(pfn, prot));
2182 set_pte_at(mm, addr, pte, entry);
2183 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2185 retval = 0;
2186 out_unlock:
2187 pte_unmap_unlock(pte, ptl);
2188 out:
2189 return retval;
2193 * vm_insert_pfn - insert single pfn into user vma
2194 * @vma: user vma to map to
2195 * @addr: target user address of this page
2196 * @pfn: source kernel pfn
2198 * Similar to vm_insert_page, this allows drivers to insert individual pages
2199 * they've allocated into a user vma. Same comments apply.
2201 * This function should only be called from a vm_ops->fault handler, and
2202 * in that case the handler should return NULL.
2204 * vma cannot be a COW mapping.
2206 * As this is called only for pages that do not currently exist, we
2207 * do not need to flush old virtual caches or the TLB.
2209 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2210 unsigned long pfn)
2212 int ret;
2213 pgprot_t pgprot = vma->vm_page_prot;
2215 * Technically, architectures with pte_special can avoid all these
2216 * restrictions (same for remap_pfn_range). However we would like
2217 * consistency in testing and feature parity among all, so we should
2218 * try to keep these invariants in place for everybody.
2220 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2221 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2222 (VM_PFNMAP|VM_MIXEDMAP));
2223 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2224 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2226 if (addr < vma->vm_start || addr >= vma->vm_end)
2227 return -EFAULT;
2228 if (track_pfn_insert(vma, &pgprot, pfn))
2229 return -EINVAL;
2231 ret = insert_pfn(vma, addr, pfn, pgprot);
2233 return ret;
2235 EXPORT_SYMBOL(vm_insert_pfn);
2237 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2238 unsigned long pfn)
2240 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2242 if (addr < vma->vm_start || addr >= vma->vm_end)
2243 return -EFAULT;
2246 * If we don't have pte special, then we have to use the pfn_valid()
2247 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2248 * refcount the page if pfn_valid is true (hence insert_page rather
2249 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2250 * without pte special, it would there be refcounted as a normal page.
2252 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2253 struct page *page;
2255 page = pfn_to_page(pfn);
2256 return insert_page(vma, addr, page, vma->vm_page_prot);
2258 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2260 EXPORT_SYMBOL(vm_insert_mixed);
2263 * maps a range of physical memory into the requested pages. the old
2264 * mappings are removed. any references to nonexistent pages results
2265 * in null mappings (currently treated as "copy-on-access")
2267 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2268 unsigned long addr, unsigned long end,
2269 unsigned long pfn, pgprot_t prot)
2271 pte_t *pte;
2272 spinlock_t *ptl;
2274 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2275 if (!pte)
2276 return -ENOMEM;
2277 arch_enter_lazy_mmu_mode();
2278 do {
2279 BUG_ON(!pte_none(*pte));
2280 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2281 pfn++;
2282 } while (pte++, addr += PAGE_SIZE, addr != end);
2283 arch_leave_lazy_mmu_mode();
2284 pte_unmap_unlock(pte - 1, ptl);
2285 return 0;
2288 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2289 unsigned long addr, unsigned long end,
2290 unsigned long pfn, pgprot_t prot)
2292 pmd_t *pmd;
2293 unsigned long next;
2295 pfn -= addr >> PAGE_SHIFT;
2296 pmd = pmd_alloc(mm, pud, addr);
2297 if (!pmd)
2298 return -ENOMEM;
2299 VM_BUG_ON(pmd_trans_huge(*pmd));
2300 do {
2301 next = pmd_addr_end(addr, end);
2302 if (remap_pte_range(mm, pmd, addr, next,
2303 pfn + (addr >> PAGE_SHIFT), prot))
2304 return -ENOMEM;
2305 } while (pmd++, addr = next, addr != end);
2306 return 0;
2309 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2310 unsigned long addr, unsigned long end,
2311 unsigned long pfn, pgprot_t prot)
2313 pud_t *pud;
2314 unsigned long next;
2316 pfn -= addr >> PAGE_SHIFT;
2317 pud = pud_alloc(mm, pgd, addr);
2318 if (!pud)
2319 return -ENOMEM;
2320 do {
2321 next = pud_addr_end(addr, end);
2322 if (remap_pmd_range(mm, pud, addr, next,
2323 pfn + (addr >> PAGE_SHIFT), prot))
2324 return -ENOMEM;
2325 } while (pud++, addr = next, addr != end);
2326 return 0;
2330 * remap_pfn_range - remap kernel memory to userspace
2331 * @vma: user vma to map to
2332 * @addr: target user address to start at
2333 * @pfn: physical address of kernel memory
2334 * @size: size of map area
2335 * @prot: page protection flags for this mapping
2337 * Note: this is only safe if the mm semaphore is held when called.
2339 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2340 unsigned long pfn, unsigned long size, pgprot_t prot)
2342 pgd_t *pgd;
2343 unsigned long next;
2344 unsigned long end = addr + PAGE_ALIGN(size);
2345 struct mm_struct *mm = vma->vm_mm;
2346 int err;
2349 * Physically remapped pages are special. Tell the
2350 * rest of the world about it:
2351 * VM_IO tells people not to look at these pages
2352 * (accesses can have side effects).
2353 * VM_PFNMAP tells the core MM that the base pages are just
2354 * raw PFN mappings, and do not have a "struct page" associated
2355 * with them.
2356 * VM_DONTEXPAND
2357 * Disable vma merging and expanding with mremap().
2358 * VM_DONTDUMP
2359 * Omit vma from core dump, even when VM_IO turned off.
2361 * There's a horrible special case to handle copy-on-write
2362 * behaviour that some programs depend on. We mark the "original"
2363 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2364 * See vm_normal_page() for details.
2366 if (is_cow_mapping(vma->vm_flags)) {
2367 if (addr != vma->vm_start || end != vma->vm_end)
2368 return -EINVAL;
2369 vma->vm_pgoff = pfn;
2372 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2373 if (err)
2374 return -EINVAL;
2376 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2378 BUG_ON(addr >= end);
2379 pfn -= addr >> PAGE_SHIFT;
2380 pgd = pgd_offset(mm, addr);
2381 flush_cache_range(vma, addr, end);
2382 do {
2383 next = pgd_addr_end(addr, end);
2384 err = remap_pud_range(mm, pgd, addr, next,
2385 pfn + (addr >> PAGE_SHIFT), prot);
2386 if (err)
2387 break;
2388 } while (pgd++, addr = next, addr != end);
2390 if (err)
2391 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2393 return err;
2395 EXPORT_SYMBOL(remap_pfn_range);
2398 * vm_iomap_memory - remap memory to userspace
2399 * @vma: user vma to map to
2400 * @start: start of area
2401 * @len: size of area
2403 * This is a simplified io_remap_pfn_range() for common driver use. The
2404 * driver just needs to give us the physical memory range to be mapped,
2405 * we'll figure out the rest from the vma information.
2407 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2408 * whatever write-combining details or similar.
2410 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2412 unsigned long vm_len, pfn, pages;
2414 /* Check that the physical memory area passed in looks valid */
2415 if (start + len < start)
2416 return -EINVAL;
2418 * You *really* shouldn't map things that aren't page-aligned,
2419 * but we've historically allowed it because IO memory might
2420 * just have smaller alignment.
2422 len += start & ~PAGE_MASK;
2423 pfn = start >> PAGE_SHIFT;
2424 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2425 if (pfn + pages < pfn)
2426 return -EINVAL;
2428 /* We start the mapping 'vm_pgoff' pages into the area */
2429 if (vma->vm_pgoff > pages)
2430 return -EINVAL;
2431 pfn += vma->vm_pgoff;
2432 pages -= vma->vm_pgoff;
2434 /* Can we fit all of the mapping? */
2435 vm_len = vma->vm_end - vma->vm_start;
2436 if (vm_len >> PAGE_SHIFT > pages)
2437 return -EINVAL;
2439 /* Ok, let it rip */
2440 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2442 EXPORT_SYMBOL(vm_iomap_memory);
2444 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2445 unsigned long addr, unsigned long end,
2446 pte_fn_t fn, void *data)
2448 pte_t *pte;
2449 int err;
2450 pgtable_t token;
2451 spinlock_t *uninitialized_var(ptl);
2453 pte = (mm == &init_mm) ?
2454 pte_alloc_kernel(pmd, addr) :
2455 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2456 if (!pte)
2457 return -ENOMEM;
2459 BUG_ON(pmd_huge(*pmd));
2461 arch_enter_lazy_mmu_mode();
2463 token = pmd_pgtable(*pmd);
2465 do {
2466 err = fn(pte++, token, addr, data);
2467 if (err)
2468 break;
2469 } while (addr += PAGE_SIZE, addr != end);
2471 arch_leave_lazy_mmu_mode();
2473 if (mm != &init_mm)
2474 pte_unmap_unlock(pte-1, ptl);
2475 return err;
2478 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2479 unsigned long addr, unsigned long end,
2480 pte_fn_t fn, void *data)
2482 pmd_t *pmd;
2483 unsigned long next;
2484 int err;
2486 BUG_ON(pud_huge(*pud));
2488 pmd = pmd_alloc(mm, pud, addr);
2489 if (!pmd)
2490 return -ENOMEM;
2491 do {
2492 next = pmd_addr_end(addr, end);
2493 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2494 if (err)
2495 break;
2496 } while (pmd++, addr = next, addr != end);
2497 return err;
2500 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2501 unsigned long addr, unsigned long end,
2502 pte_fn_t fn, void *data)
2504 pud_t *pud;
2505 unsigned long next;
2506 int err;
2508 pud = pud_alloc(mm, pgd, addr);
2509 if (!pud)
2510 return -ENOMEM;
2511 do {
2512 next = pud_addr_end(addr, end);
2513 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2514 if (err)
2515 break;
2516 } while (pud++, addr = next, addr != end);
2517 return err;
2521 * Scan a region of virtual memory, filling in page tables as necessary
2522 * and calling a provided function on each leaf page table.
2524 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2525 unsigned long size, pte_fn_t fn, void *data)
2527 pgd_t *pgd;
2528 unsigned long next;
2529 unsigned long end = addr + size;
2530 int err;
2532 BUG_ON(addr >= end);
2533 pgd = pgd_offset(mm, addr);
2534 do {
2535 next = pgd_addr_end(addr, end);
2536 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2537 if (err)
2538 break;
2539 } while (pgd++, addr = next, addr != end);
2541 return err;
2543 EXPORT_SYMBOL_GPL(apply_to_page_range);
2546 * handle_pte_fault chooses page fault handler according to an entry
2547 * which was read non-atomically. Before making any commitment, on
2548 * those architectures or configurations (e.g. i386 with PAE) which
2549 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2550 * must check under lock before unmapping the pte and proceeding
2551 * (but do_wp_page is only called after already making such a check;
2552 * and do_anonymous_page can safely check later on).
2554 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2555 pte_t *page_table, pte_t orig_pte)
2557 int same = 1;
2558 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2559 if (sizeof(pte_t) > sizeof(unsigned long)) {
2560 spinlock_t *ptl = pte_lockptr(mm, pmd);
2561 spin_lock(ptl);
2562 same = pte_same(*page_table, orig_pte);
2563 spin_unlock(ptl);
2565 #endif
2566 pte_unmap(page_table);
2567 return same;
2570 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2573 * If the source page was a PFN mapping, we don't have
2574 * a "struct page" for it. We do a best-effort copy by
2575 * just copying from the original user address. If that
2576 * fails, we just zero-fill it. Live with it.
2578 if (unlikely(!src)) {
2579 void *kaddr = kmap_atomic(dst);
2580 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2583 * This really shouldn't fail, because the page is there
2584 * in the page tables. But it might just be unreadable,
2585 * in which case we just give up and fill the result with
2586 * zeroes.
2588 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2589 clear_page(kaddr);
2590 kunmap_atomic(kaddr);
2591 flush_dcache_page(dst);
2592 } else
2593 copy_user_highpage(dst, src, va, vma);
2597 * This routine handles present pages, when users try to write
2598 * to a shared page. It is done by copying the page to a new address
2599 * and decrementing the shared-page counter for the old page.
2601 * Note that this routine assumes that the protection checks have been
2602 * done by the caller (the low-level page fault routine in most cases).
2603 * Thus we can safely just mark it writable once we've done any necessary
2604 * COW.
2606 * We also mark the page dirty at this point even though the page will
2607 * change only once the write actually happens. This avoids a few races,
2608 * and potentially makes it more efficient.
2610 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611 * but allow concurrent faults), with pte both mapped and locked.
2612 * We return with mmap_sem still held, but pte unmapped and unlocked.
2614 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2615 unsigned long address, pte_t *page_table, pmd_t *pmd,
2616 spinlock_t *ptl, pte_t orig_pte)
2617 __releases(ptl)
2619 struct page *old_page, *new_page = NULL;
2620 pte_t entry;
2621 int ret = 0;
2622 int page_mkwrite = 0;
2623 struct page *dirty_page = NULL;
2624 unsigned long mmun_start = 0; /* For mmu_notifiers */
2625 unsigned long mmun_end = 0; /* For mmu_notifiers */
2627 old_page = vm_normal_page(vma, address, orig_pte);
2628 if (!old_page) {
2630 * VM_MIXEDMAP !pfn_valid() case
2632 * We should not cow pages in a shared writeable mapping.
2633 * Just mark the pages writable as we can't do any dirty
2634 * accounting on raw pfn maps.
2636 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2637 (VM_WRITE|VM_SHARED))
2638 goto reuse;
2639 goto gotten;
2643 * Take out anonymous pages first, anonymous shared vmas are
2644 * not dirty accountable.
2646 if (PageAnon(old_page) && !PageKsm(old_page)) {
2647 if (!trylock_page(old_page)) {
2648 page_cache_get(old_page);
2649 pte_unmap_unlock(page_table, ptl);
2650 lock_page(old_page);
2651 page_table = pte_offset_map_lock(mm, pmd, address,
2652 &ptl);
2653 if (!pte_same(*page_table, orig_pte)) {
2654 unlock_page(old_page);
2655 goto unlock;
2657 page_cache_release(old_page);
2659 if (reuse_swap_page(old_page)) {
2661 * The page is all ours. Move it to our anon_vma so
2662 * the rmap code will not search our parent or siblings.
2663 * Protected against the rmap code by the page lock.
2665 page_move_anon_rmap(old_page, vma, address);
2666 unlock_page(old_page);
2667 goto reuse;
2669 unlock_page(old_page);
2670 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2671 (VM_WRITE|VM_SHARED))) {
2673 * Only catch write-faults on shared writable pages,
2674 * read-only shared pages can get COWed by
2675 * get_user_pages(.write=1, .force=1).
2677 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2678 struct vm_fault vmf;
2679 int tmp;
2681 vmf.virtual_address = (void __user *)(address &
2682 PAGE_MASK);
2683 vmf.pgoff = old_page->index;
2684 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2685 vmf.page = old_page;
2688 * Notify the address space that the page is about to
2689 * become writable so that it can prohibit this or wait
2690 * for the page to get into an appropriate state.
2692 * We do this without the lock held, so that it can
2693 * sleep if it needs to.
2695 page_cache_get(old_page);
2696 pte_unmap_unlock(page_table, ptl);
2698 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2699 if (unlikely(tmp &
2700 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2701 ret = tmp;
2702 goto unwritable_page;
2704 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2705 lock_page(old_page);
2706 if (!old_page->mapping) {
2707 ret = 0; /* retry the fault */
2708 unlock_page(old_page);
2709 goto unwritable_page;
2711 } else
2712 VM_BUG_ON(!PageLocked(old_page));
2715 * Since we dropped the lock we need to revalidate
2716 * the PTE as someone else may have changed it. If
2717 * they did, we just return, as we can count on the
2718 * MMU to tell us if they didn't also make it writable.
2720 page_table = pte_offset_map_lock(mm, pmd, address,
2721 &ptl);
2722 if (!pte_same(*page_table, orig_pte)) {
2723 unlock_page(old_page);
2724 goto unlock;
2727 page_mkwrite = 1;
2729 dirty_page = old_page;
2730 get_page(dirty_page);
2732 reuse:
2733 flush_cache_page(vma, address, pte_pfn(orig_pte));
2734 entry = pte_mkyoung(orig_pte);
2735 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2736 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2737 update_mmu_cache(vma, address, page_table);
2738 pte_unmap_unlock(page_table, ptl);
2739 ret |= VM_FAULT_WRITE;
2741 if (!dirty_page)
2742 return ret;
2745 * Yes, Virginia, this is actually required to prevent a race
2746 * with clear_page_dirty_for_io() from clearing the page dirty
2747 * bit after it clear all dirty ptes, but before a racing
2748 * do_wp_page installs a dirty pte.
2750 * __do_fault is protected similarly.
2752 if (!page_mkwrite) {
2753 wait_on_page_locked(dirty_page);
2754 set_page_dirty_balance(dirty_page, page_mkwrite);
2755 /* file_update_time outside page_lock */
2756 if (vma->vm_file)
2757 file_update_time(vma->vm_file);
2759 put_page(dirty_page);
2760 if (page_mkwrite) {
2761 struct address_space *mapping = dirty_page->mapping;
2763 set_page_dirty(dirty_page);
2764 unlock_page(dirty_page);
2765 page_cache_release(dirty_page);
2766 if (mapping) {
2768 * Some device drivers do not set page.mapping
2769 * but still dirty their pages
2771 balance_dirty_pages_ratelimited(mapping);
2775 return ret;
2779 * Ok, we need to copy. Oh, well..
2781 page_cache_get(old_page);
2782 gotten:
2783 pte_unmap_unlock(page_table, ptl);
2785 if (unlikely(anon_vma_prepare(vma)))
2786 goto oom;
2788 if (is_zero_pfn(pte_pfn(orig_pte))) {
2789 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2790 if (!new_page)
2791 goto oom;
2792 } else {
2793 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2794 if (!new_page)
2795 goto oom;
2796 cow_user_page(new_page, old_page, address, vma);
2798 __SetPageUptodate(new_page);
2800 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2801 goto oom_free_new;
2803 mmun_start = address & PAGE_MASK;
2804 mmun_end = mmun_start + PAGE_SIZE;
2805 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2808 * Re-check the pte - we dropped the lock
2810 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2811 if (likely(pte_same(*page_table, orig_pte))) {
2812 if (old_page) {
2813 if (!PageAnon(old_page)) {
2814 dec_mm_counter_fast(mm, MM_FILEPAGES);
2815 inc_mm_counter_fast(mm, MM_ANONPAGES);
2817 } else
2818 inc_mm_counter_fast(mm, MM_ANONPAGES);
2819 flush_cache_page(vma, address, pte_pfn(orig_pte));
2820 entry = mk_pte(new_page, vma->vm_page_prot);
2821 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2823 * Clear the pte entry and flush it first, before updating the
2824 * pte with the new entry. This will avoid a race condition
2825 * seen in the presence of one thread doing SMC and another
2826 * thread doing COW.
2828 ptep_clear_flush(vma, address, page_table);
2829 page_add_new_anon_rmap(new_page, vma, address);
2831 * We call the notify macro here because, when using secondary
2832 * mmu page tables (such as kvm shadow page tables), we want the
2833 * new page to be mapped directly into the secondary page table.
2835 set_pte_at_notify(mm, address, page_table, entry);
2836 update_mmu_cache(vma, address, page_table);
2837 if (old_page) {
2839 * Only after switching the pte to the new page may
2840 * we remove the mapcount here. Otherwise another
2841 * process may come and find the rmap count decremented
2842 * before the pte is switched to the new page, and
2843 * "reuse" the old page writing into it while our pte
2844 * here still points into it and can be read by other
2845 * threads.
2847 * The critical issue is to order this
2848 * page_remove_rmap with the ptp_clear_flush above.
2849 * Those stores are ordered by (if nothing else,)
2850 * the barrier present in the atomic_add_negative
2851 * in page_remove_rmap.
2853 * Then the TLB flush in ptep_clear_flush ensures that
2854 * no process can access the old page before the
2855 * decremented mapcount is visible. And the old page
2856 * cannot be reused until after the decremented
2857 * mapcount is visible. So transitively, TLBs to
2858 * old page will be flushed before it can be reused.
2860 page_remove_rmap(old_page);
2863 /* Free the old page.. */
2864 new_page = old_page;
2865 ret |= VM_FAULT_WRITE;
2866 } else
2867 mem_cgroup_uncharge_page(new_page);
2869 if (new_page)
2870 page_cache_release(new_page);
2871 unlock:
2872 pte_unmap_unlock(page_table, ptl);
2873 if (mmun_end > mmun_start)
2874 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2875 if (old_page) {
2877 * Don't let another task, with possibly unlocked vma,
2878 * keep the mlocked page.
2880 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2881 lock_page(old_page); /* LRU manipulation */
2882 munlock_vma_page(old_page);
2883 unlock_page(old_page);
2885 page_cache_release(old_page);
2887 return ret;
2888 oom_free_new:
2889 page_cache_release(new_page);
2890 oom:
2891 if (old_page)
2892 page_cache_release(old_page);
2893 return VM_FAULT_OOM;
2895 unwritable_page:
2896 page_cache_release(old_page);
2897 return ret;
2900 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2901 unsigned long start_addr, unsigned long end_addr,
2902 struct zap_details *details)
2904 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2907 static inline void unmap_mapping_range_tree(struct rb_root *root,
2908 struct zap_details *details)
2910 struct vm_area_struct *vma;
2911 pgoff_t vba, vea, zba, zea;
2913 vma_interval_tree_foreach(vma, root,
2914 details->first_index, details->last_index) {
2916 vba = vma->vm_pgoff;
2917 vea = vba + vma_pages(vma) - 1;
2918 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2919 zba = details->first_index;
2920 if (zba < vba)
2921 zba = vba;
2922 zea = details->last_index;
2923 if (zea > vea)
2924 zea = vea;
2926 unmap_mapping_range_vma(vma,
2927 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2928 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2929 details);
2933 static inline void unmap_mapping_range_list(struct list_head *head,
2934 struct zap_details *details)
2936 struct vm_area_struct *vma;
2939 * In nonlinear VMAs there is no correspondence between virtual address
2940 * offset and file offset. So we must perform an exhaustive search
2941 * across *all* the pages in each nonlinear VMA, not just the pages
2942 * whose virtual address lies outside the file truncation point.
2944 list_for_each_entry(vma, head, shared.nonlinear) {
2945 details->nonlinear_vma = vma;
2946 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2951 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2952 * @mapping: the address space containing mmaps to be unmapped.
2953 * @holebegin: byte in first page to unmap, relative to the start of
2954 * the underlying file. This will be rounded down to a PAGE_SIZE
2955 * boundary. Note that this is different from truncate_pagecache(), which
2956 * must keep the partial page. In contrast, we must get rid of
2957 * partial pages.
2958 * @holelen: size of prospective hole in bytes. This will be rounded
2959 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2960 * end of the file.
2961 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2962 * but 0 when invalidating pagecache, don't throw away private data.
2964 void unmap_mapping_range(struct address_space *mapping,
2965 loff_t const holebegin, loff_t const holelen, int even_cows)
2967 struct zap_details details;
2968 pgoff_t hba = holebegin >> PAGE_SHIFT;
2969 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2971 /* Check for overflow. */
2972 if (sizeof(holelen) > sizeof(hlen)) {
2973 long long holeend =
2974 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2975 if (holeend & ~(long long)ULONG_MAX)
2976 hlen = ULONG_MAX - hba + 1;
2979 details.check_mapping = even_cows? NULL: mapping;
2980 details.nonlinear_vma = NULL;
2981 details.first_index = hba;
2982 details.last_index = hba + hlen - 1;
2983 if (details.last_index < details.first_index)
2984 details.last_index = ULONG_MAX;
2987 mutex_lock(&mapping->i_mmap_mutex);
2988 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2989 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2990 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2991 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2992 mutex_unlock(&mapping->i_mmap_mutex);
2994 EXPORT_SYMBOL(unmap_mapping_range);
2997 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2998 * but allow concurrent faults), and pte mapped but not yet locked.
2999 * We return with mmap_sem still held, but pte unmapped and unlocked.
3001 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3002 unsigned long address, pte_t *page_table, pmd_t *pmd,
3003 unsigned int flags, pte_t orig_pte)
3005 spinlock_t *ptl;
3006 struct page *page, *swapcache;
3007 swp_entry_t entry;
3008 pte_t pte;
3009 int locked;
3010 struct mem_cgroup *ptr;
3011 int exclusive = 0;
3012 int ret = 0;
3014 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3015 goto out;
3017 entry = pte_to_swp_entry(orig_pte);
3018 if (unlikely(non_swap_entry(entry))) {
3019 if (is_migration_entry(entry)) {
3020 migration_entry_wait(mm, pmd, address);
3021 } else if (is_hwpoison_entry(entry)) {
3022 ret = VM_FAULT_HWPOISON;
3023 } else {
3024 print_bad_pte(vma, address, orig_pte, NULL);
3025 ret = VM_FAULT_SIGBUS;
3027 goto out;
3029 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3030 page = lookup_swap_cache(entry);
3031 if (!page) {
3032 page = swapin_readahead(entry,
3033 GFP_HIGHUSER_MOVABLE, vma, address);
3034 if (!page) {
3036 * Back out if somebody else faulted in this pte
3037 * while we released the pte lock.
3039 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3040 if (likely(pte_same(*page_table, orig_pte)))
3041 ret = VM_FAULT_OOM;
3042 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3043 goto unlock;
3046 /* Had to read the page from swap area: Major fault */
3047 ret = VM_FAULT_MAJOR;
3048 count_vm_event(PGMAJFAULT);
3049 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3050 } else if (PageHWPoison(page)) {
3052 * hwpoisoned dirty swapcache pages are kept for killing
3053 * owner processes (which may be unknown at hwpoison time)
3055 ret = VM_FAULT_HWPOISON;
3056 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3057 swapcache = page;
3058 goto out_release;
3061 swapcache = page;
3062 locked = lock_page_or_retry(page, mm, flags);
3064 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3065 if (!locked) {
3066 ret |= VM_FAULT_RETRY;
3067 goto out_release;
3071 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3072 * release the swapcache from under us. The page pin, and pte_same
3073 * test below, are not enough to exclude that. Even if it is still
3074 * swapcache, we need to check that the page's swap has not changed.
3076 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3077 goto out_page;
3079 page = ksm_might_need_to_copy(page, vma, address);
3080 if (unlikely(!page)) {
3081 ret = VM_FAULT_OOM;
3082 page = swapcache;
3083 goto out_page;
3086 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3087 ret = VM_FAULT_OOM;
3088 goto out_page;
3092 * Back out if somebody else already faulted in this pte.
3094 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3095 if (unlikely(!pte_same(*page_table, orig_pte)))
3096 goto out_nomap;
3098 if (unlikely(!PageUptodate(page))) {
3099 ret = VM_FAULT_SIGBUS;
3100 goto out_nomap;
3104 * The page isn't present yet, go ahead with the fault.
3106 * Be careful about the sequence of operations here.
3107 * To get its accounting right, reuse_swap_page() must be called
3108 * while the page is counted on swap but not yet in mapcount i.e.
3109 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3110 * must be called after the swap_free(), or it will never succeed.
3111 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3112 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3113 * in page->private. In this case, a record in swap_cgroup is silently
3114 * discarded at swap_free().
3117 inc_mm_counter_fast(mm, MM_ANONPAGES);
3118 dec_mm_counter_fast(mm, MM_SWAPENTS);
3119 pte = mk_pte(page, vma->vm_page_prot);
3120 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3121 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3122 flags &= ~FAULT_FLAG_WRITE;
3123 ret |= VM_FAULT_WRITE;
3124 exclusive = 1;
3126 flush_icache_page(vma, page);
3127 if (pte_swp_soft_dirty(orig_pte))
3128 pte = pte_mksoft_dirty(pte);
3129 set_pte_at(mm, address, page_table, pte);
3130 if (page == swapcache)
3131 do_page_add_anon_rmap(page, vma, address, exclusive);
3132 else /* ksm created a completely new copy */
3133 page_add_new_anon_rmap(page, vma, address);
3134 /* It's better to call commit-charge after rmap is established */
3135 mem_cgroup_commit_charge_swapin(page, ptr);
3137 swap_free(entry);
3138 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3139 try_to_free_swap(page);
3140 unlock_page(page);
3141 if (page != swapcache) {
3143 * Hold the lock to avoid the swap entry to be reused
3144 * until we take the PT lock for the pte_same() check
3145 * (to avoid false positives from pte_same). For
3146 * further safety release the lock after the swap_free
3147 * so that the swap count won't change under a
3148 * parallel locked swapcache.
3150 unlock_page(swapcache);
3151 page_cache_release(swapcache);
3154 if (flags & FAULT_FLAG_WRITE) {
3155 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3156 if (ret & VM_FAULT_ERROR)
3157 ret &= VM_FAULT_ERROR;
3158 goto out;
3161 /* No need to invalidate - it was non-present before */
3162 update_mmu_cache(vma, address, page_table);
3163 unlock:
3164 pte_unmap_unlock(page_table, ptl);
3165 out:
3166 return ret;
3167 out_nomap:
3168 mem_cgroup_cancel_charge_swapin(ptr);
3169 pte_unmap_unlock(page_table, ptl);
3170 out_page:
3171 unlock_page(page);
3172 out_release:
3173 page_cache_release(page);
3174 if (page != swapcache) {
3175 unlock_page(swapcache);
3176 page_cache_release(swapcache);
3178 return ret;
3182 * This is like a special single-page "expand_{down|up}wards()",
3183 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3184 * doesn't hit another vma.
3186 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3188 address &= PAGE_MASK;
3189 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3190 struct vm_area_struct *prev = vma->vm_prev;
3193 * Is there a mapping abutting this one below?
3195 * That's only ok if it's the same stack mapping
3196 * that has gotten split..
3198 if (prev && prev->vm_end == address)
3199 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3201 expand_downwards(vma, address - PAGE_SIZE);
3203 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3204 struct vm_area_struct *next = vma->vm_next;
3206 /* As VM_GROWSDOWN but s/below/above/ */
3207 if (next && next->vm_start == address + PAGE_SIZE)
3208 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3210 expand_upwards(vma, address + PAGE_SIZE);
3212 return 0;
3216 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3217 * but allow concurrent faults), and pte mapped but not yet locked.
3218 * We return with mmap_sem still held, but pte unmapped and unlocked.
3220 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3221 unsigned long address, pte_t *page_table, pmd_t *pmd,
3222 unsigned int flags)
3224 struct page *page;
3225 spinlock_t *ptl;
3226 pte_t entry;
3228 pte_unmap(page_table);
3230 /* Check if we need to add a guard page to the stack */
3231 if (check_stack_guard_page(vma, address) < 0)
3232 return VM_FAULT_SIGBUS;
3234 /* Use the zero-page for reads */
3235 if (!(flags & FAULT_FLAG_WRITE)) {
3236 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3237 vma->vm_page_prot));
3238 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3239 if (!pte_none(*page_table))
3240 goto unlock;
3241 goto setpte;
3244 /* Allocate our own private page. */
3245 if (unlikely(anon_vma_prepare(vma)))
3246 goto oom;
3247 page = alloc_zeroed_user_highpage_movable(vma, address);
3248 if (!page)
3249 goto oom;
3251 * The memory barrier inside __SetPageUptodate makes sure that
3252 * preceeding stores to the page contents become visible before
3253 * the set_pte_at() write.
3255 __SetPageUptodate(page);
3257 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3258 goto oom_free_page;
3260 entry = mk_pte(page, vma->vm_page_prot);
3261 if (vma->vm_flags & VM_WRITE)
3262 entry = pte_mkwrite(pte_mkdirty(entry));
3264 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3265 if (!pte_none(*page_table))
3266 goto release;
3268 inc_mm_counter_fast(mm, MM_ANONPAGES);
3269 page_add_new_anon_rmap(page, vma, address);
3270 setpte:
3271 set_pte_at(mm, address, page_table, entry);
3273 /* No need to invalidate - it was non-present before */
3274 update_mmu_cache(vma, address, page_table);
3275 unlock:
3276 pte_unmap_unlock(page_table, ptl);
3277 return 0;
3278 release:
3279 mem_cgroup_uncharge_page(page);
3280 page_cache_release(page);
3281 goto unlock;
3282 oom_free_page:
3283 page_cache_release(page);
3284 oom:
3285 return VM_FAULT_OOM;
3289 * __do_fault() tries to create a new page mapping. It aggressively
3290 * tries to share with existing pages, but makes a separate copy if
3291 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3292 * the next page fault.
3294 * As this is called only for pages that do not currently exist, we
3295 * do not need to flush old virtual caches or the TLB.
3297 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3298 * but allow concurrent faults), and pte neither mapped nor locked.
3299 * We return with mmap_sem still held, but pte unmapped and unlocked.
3301 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3302 unsigned long address, pmd_t *pmd,
3303 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3305 pte_t *page_table;
3306 spinlock_t *ptl;
3307 struct page *page;
3308 struct page *cow_page;
3309 pte_t entry;
3310 int anon = 0;
3311 struct page *dirty_page = NULL;
3312 struct vm_fault vmf;
3313 int ret;
3314 int page_mkwrite = 0;
3317 * If we do COW later, allocate page befor taking lock_page()
3318 * on the file cache page. This will reduce lock holding time.
3320 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3322 if (unlikely(anon_vma_prepare(vma)))
3323 return VM_FAULT_OOM;
3325 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3326 if (!cow_page)
3327 return VM_FAULT_OOM;
3329 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3330 page_cache_release(cow_page);
3331 return VM_FAULT_OOM;
3333 } else
3334 cow_page = NULL;
3336 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3337 vmf.pgoff = pgoff;
3338 vmf.flags = flags;
3339 vmf.page = NULL;
3341 ret = vma->vm_ops->fault(vma, &vmf);
3342 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3343 VM_FAULT_RETRY)))
3344 goto uncharge_out;
3346 if (unlikely(PageHWPoison(vmf.page))) {
3347 if (ret & VM_FAULT_LOCKED)
3348 unlock_page(vmf.page);
3349 ret = VM_FAULT_HWPOISON;
3350 goto uncharge_out;
3354 * For consistency in subsequent calls, make the faulted page always
3355 * locked.
3357 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3358 lock_page(vmf.page);
3359 else
3360 VM_BUG_ON(!PageLocked(vmf.page));
3363 * Should we do an early C-O-W break?
3365 page = vmf.page;
3366 if (flags & FAULT_FLAG_WRITE) {
3367 if (!(vma->vm_flags & VM_SHARED)) {
3368 page = cow_page;
3369 anon = 1;
3370 copy_user_highpage(page, vmf.page, address, vma);
3371 __SetPageUptodate(page);
3372 } else {
3374 * If the page will be shareable, see if the backing
3375 * address space wants to know that the page is about
3376 * to become writable
3378 if (vma->vm_ops->page_mkwrite) {
3379 int tmp;
3381 unlock_page(page);
3382 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3383 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3384 if (unlikely(tmp &
3385 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3386 ret = tmp;
3387 goto unwritable_page;
3389 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3390 lock_page(page);
3391 if (!page->mapping) {
3392 ret = 0; /* retry the fault */
3393 unlock_page(page);
3394 goto unwritable_page;
3396 } else
3397 VM_BUG_ON(!PageLocked(page));
3398 page_mkwrite = 1;
3404 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3407 * This silly early PAGE_DIRTY setting removes a race
3408 * due to the bad i386 page protection. But it's valid
3409 * for other architectures too.
3411 * Note that if FAULT_FLAG_WRITE is set, we either now have
3412 * an exclusive copy of the page, or this is a shared mapping,
3413 * so we can make it writable and dirty to avoid having to
3414 * handle that later.
3416 /* Only go through if we didn't race with anybody else... */
3417 if (likely(pte_same(*page_table, orig_pte))) {
3418 flush_icache_page(vma, page);
3419 entry = mk_pte(page, vma->vm_page_prot);
3420 if (flags & FAULT_FLAG_WRITE)
3421 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3422 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3423 pte_mksoft_dirty(entry);
3424 if (anon) {
3425 inc_mm_counter_fast(mm, MM_ANONPAGES);
3426 page_add_new_anon_rmap(page, vma, address);
3427 } else {
3428 inc_mm_counter_fast(mm, MM_FILEPAGES);
3429 page_add_file_rmap(page);
3430 if (flags & FAULT_FLAG_WRITE) {
3431 dirty_page = page;
3432 get_page(dirty_page);
3435 set_pte_at(mm, address, page_table, entry);
3437 /* no need to invalidate: a not-present page won't be cached */
3438 update_mmu_cache(vma, address, page_table);
3439 } else {
3440 if (cow_page)
3441 mem_cgroup_uncharge_page(cow_page);
3442 if (anon)
3443 page_cache_release(page);
3444 else
3445 anon = 1; /* no anon but release faulted_page */
3448 pte_unmap_unlock(page_table, ptl);
3450 if (dirty_page) {
3451 struct address_space *mapping = page->mapping;
3452 int dirtied = 0;
3454 if (set_page_dirty(dirty_page))
3455 dirtied = 1;
3456 unlock_page(dirty_page);
3457 put_page(dirty_page);
3458 if ((dirtied || page_mkwrite) && mapping) {
3460 * Some device drivers do not set page.mapping but still
3461 * dirty their pages
3463 balance_dirty_pages_ratelimited(mapping);
3466 /* file_update_time outside page_lock */
3467 if (vma->vm_file && !page_mkwrite)
3468 file_update_time(vma->vm_file);
3469 } else {
3470 unlock_page(vmf.page);
3471 if (anon)
3472 page_cache_release(vmf.page);
3475 return ret;
3477 unwritable_page:
3478 page_cache_release(page);
3479 return ret;
3480 uncharge_out:
3481 /* fs's fault handler get error */
3482 if (cow_page) {
3483 mem_cgroup_uncharge_page(cow_page);
3484 page_cache_release(cow_page);
3486 return ret;
3489 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3490 unsigned long address, pte_t *page_table, pmd_t *pmd,
3491 unsigned int flags, pte_t orig_pte)
3493 pgoff_t pgoff = (((address & PAGE_MASK)
3494 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3496 pte_unmap(page_table);
3497 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3501 * Fault of a previously existing named mapping. Repopulate the pte
3502 * from the encoded file_pte if possible. This enables swappable
3503 * nonlinear vmas.
3505 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3506 * but allow concurrent faults), and pte mapped but not yet locked.
3507 * We return with mmap_sem still held, but pte unmapped and unlocked.
3509 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3510 unsigned long address, pte_t *page_table, pmd_t *pmd,
3511 unsigned int flags, pte_t orig_pte)
3513 pgoff_t pgoff;
3515 flags |= FAULT_FLAG_NONLINEAR;
3517 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3518 return 0;
3520 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3522 * Page table corrupted: show pte and kill process.
3524 print_bad_pte(vma, address, orig_pte, NULL);
3525 return VM_FAULT_SIGBUS;
3528 pgoff = pte_to_pgoff(orig_pte);
3529 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3532 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3533 unsigned long addr, int current_nid)
3535 get_page(page);
3537 count_vm_numa_event(NUMA_HINT_FAULTS);
3538 if (current_nid == numa_node_id())
3539 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3541 return mpol_misplaced(page, vma, addr);
3544 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3545 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3547 struct page *page = NULL;
3548 spinlock_t *ptl;
3549 int current_nid = -1;
3550 int target_nid;
3551 bool migrated = false;
3554 * The "pte" at this point cannot be used safely without
3555 * validation through pte_unmap_same(). It's of NUMA type but
3556 * the pfn may be screwed if the read is non atomic.
3558 * ptep_modify_prot_start is not called as this is clearing
3559 * the _PAGE_NUMA bit and it is not really expected that there
3560 * would be concurrent hardware modifications to the PTE.
3562 ptl = pte_lockptr(mm, pmd);
3563 spin_lock(ptl);
3564 if (unlikely(!pte_same(*ptep, pte))) {
3565 pte_unmap_unlock(ptep, ptl);
3566 goto out;
3569 pte = pte_mknonnuma(pte);
3570 set_pte_at(mm, addr, ptep, pte);
3571 update_mmu_cache(vma, addr, ptep);
3573 page = vm_normal_page(vma, addr, pte);
3574 if (!page) {
3575 pte_unmap_unlock(ptep, ptl);
3576 return 0;
3579 current_nid = page_to_nid(page);
3580 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3581 pte_unmap_unlock(ptep, ptl);
3582 if (target_nid == -1) {
3584 * Account for the fault against the current node if it not
3585 * being replaced regardless of where the page is located.
3587 current_nid = numa_node_id();
3588 put_page(page);
3589 goto out;
3592 /* Migrate to the requested node */
3593 migrated = migrate_misplaced_page(page, target_nid);
3594 if (migrated)
3595 current_nid = target_nid;
3597 out:
3598 if (current_nid != -1)
3599 task_numa_fault(current_nid, 1, migrated);
3600 return 0;
3603 /* NUMA hinting page fault entry point for regular pmds */
3604 #ifdef CONFIG_NUMA_BALANCING
3605 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3606 unsigned long addr, pmd_t *pmdp)
3608 pmd_t pmd;
3609 pte_t *pte, *orig_pte;
3610 unsigned long _addr = addr & PMD_MASK;
3611 unsigned long offset;
3612 spinlock_t *ptl;
3613 bool numa = false;
3614 int local_nid = numa_node_id();
3616 spin_lock(&mm->page_table_lock);
3617 pmd = *pmdp;
3618 if (pmd_numa(pmd)) {
3619 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3620 numa = true;
3622 spin_unlock(&mm->page_table_lock);
3624 if (!numa)
3625 return 0;
3627 /* we're in a page fault so some vma must be in the range */
3628 BUG_ON(!vma);
3629 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3630 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3631 VM_BUG_ON(offset >= PMD_SIZE);
3632 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3633 pte += offset >> PAGE_SHIFT;
3634 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3635 pte_t pteval = *pte;
3636 struct page *page;
3637 int curr_nid = local_nid;
3638 int target_nid;
3639 bool migrated;
3640 if (!pte_present(pteval))
3641 continue;
3642 if (!pte_numa(pteval))
3643 continue;
3644 if (addr >= vma->vm_end) {
3645 vma = find_vma(mm, addr);
3646 /* there's a pte present so there must be a vma */
3647 BUG_ON(!vma);
3648 BUG_ON(addr < vma->vm_start);
3650 if (pte_numa(pteval)) {
3651 pteval = pte_mknonnuma(pteval);
3652 set_pte_at(mm, addr, pte, pteval);
3654 page = vm_normal_page(vma, addr, pteval);
3655 if (unlikely(!page))
3656 continue;
3657 /* only check non-shared pages */
3658 if (unlikely(page_mapcount(page) != 1))
3659 continue;
3662 * Note that the NUMA fault is later accounted to either
3663 * the node that is currently running or where the page is
3664 * migrated to.
3666 curr_nid = local_nid;
3667 target_nid = numa_migrate_prep(page, vma, addr,
3668 page_to_nid(page));
3669 if (target_nid == -1) {
3670 put_page(page);
3671 continue;
3674 /* Migrate to the requested node */
3675 pte_unmap_unlock(pte, ptl);
3676 migrated = migrate_misplaced_page(page, target_nid);
3677 if (migrated)
3678 curr_nid = target_nid;
3679 task_numa_fault(curr_nid, 1, migrated);
3681 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3683 pte_unmap_unlock(orig_pte, ptl);
3685 return 0;
3687 #else
3688 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3689 unsigned long addr, pmd_t *pmdp)
3691 BUG();
3692 return 0;
3694 #endif /* CONFIG_NUMA_BALANCING */
3697 * These routines also need to handle stuff like marking pages dirty
3698 * and/or accessed for architectures that don't do it in hardware (most
3699 * RISC architectures). The early dirtying is also good on the i386.
3701 * There is also a hook called "update_mmu_cache()" that architectures
3702 * with external mmu caches can use to update those (ie the Sparc or
3703 * PowerPC hashed page tables that act as extended TLBs).
3705 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3706 * but allow concurrent faults), and pte mapped but not yet locked.
3707 * We return with mmap_sem still held, but pte unmapped and unlocked.
3709 int handle_pte_fault(struct mm_struct *mm,
3710 struct vm_area_struct *vma, unsigned long address,
3711 pte_t *pte, pmd_t *pmd, unsigned int flags)
3713 pte_t entry;
3714 spinlock_t *ptl;
3716 entry = *pte;
3717 if (!pte_present(entry)) {
3718 if (pte_none(entry)) {
3719 if (vma->vm_ops) {
3720 if (likely(vma->vm_ops->fault))
3721 return do_linear_fault(mm, vma, address,
3722 pte, pmd, flags, entry);
3724 return do_anonymous_page(mm, vma, address,
3725 pte, pmd, flags);
3727 if (pte_file(entry))
3728 return do_nonlinear_fault(mm, vma, address,
3729 pte, pmd, flags, entry);
3730 return do_swap_page(mm, vma, address,
3731 pte, pmd, flags, entry);
3734 if (pte_numa(entry))
3735 return do_numa_page(mm, vma, address, entry, pte, pmd);
3737 ptl = pte_lockptr(mm, pmd);
3738 spin_lock(ptl);
3739 if (unlikely(!pte_same(*pte, entry)))
3740 goto unlock;
3741 if (flags & FAULT_FLAG_WRITE) {
3742 if (!pte_write(entry))
3743 return do_wp_page(mm, vma, address,
3744 pte, pmd, ptl, entry);
3745 entry = pte_mkdirty(entry);
3747 entry = pte_mkyoung(entry);
3748 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3749 update_mmu_cache(vma, address, pte);
3750 } else {
3752 * This is needed only for protection faults but the arch code
3753 * is not yet telling us if this is a protection fault or not.
3754 * This still avoids useless tlb flushes for .text page faults
3755 * with threads.
3757 if (flags & FAULT_FLAG_WRITE)
3758 flush_tlb_fix_spurious_fault(vma, address);
3760 unlock:
3761 pte_unmap_unlock(pte, ptl);
3762 return 0;
3766 * By the time we get here, we already hold the mm semaphore
3768 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3769 unsigned long address, unsigned int flags)
3771 pgd_t *pgd;
3772 pud_t *pud;
3773 pmd_t *pmd;
3774 pte_t *pte;
3776 __set_current_state(TASK_RUNNING);
3778 count_vm_event(PGFAULT);
3779 mem_cgroup_count_vm_event(mm, PGFAULT);
3781 /* do counter updates before entering really critical section. */
3782 check_sync_rss_stat(current);
3784 if (unlikely(is_vm_hugetlb_page(vma)))
3785 return hugetlb_fault(mm, vma, address, flags);
3787 retry:
3788 pgd = pgd_offset(mm, address);
3789 pud = pud_alloc(mm, pgd, address);
3790 if (!pud)
3791 return VM_FAULT_OOM;
3792 pmd = pmd_alloc(mm, pud, address);
3793 if (!pmd)
3794 return VM_FAULT_OOM;
3795 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3796 if (!vma->vm_ops)
3797 return do_huge_pmd_anonymous_page(mm, vma, address,
3798 pmd, flags);
3799 } else {
3800 pmd_t orig_pmd = *pmd;
3801 int ret;
3803 barrier();
3804 if (pmd_trans_huge(orig_pmd)) {
3805 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3808 * If the pmd is splitting, return and retry the
3809 * the fault. Alternative: wait until the split
3810 * is done, and goto retry.
3812 if (pmd_trans_splitting(orig_pmd))
3813 return 0;
3815 if (pmd_numa(orig_pmd))
3816 return do_huge_pmd_numa_page(mm, vma, address,
3817 orig_pmd, pmd);
3819 if (dirty && !pmd_write(orig_pmd)) {
3820 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3821 orig_pmd);
3823 * If COW results in an oom, the huge pmd will
3824 * have been split, so retry the fault on the
3825 * pte for a smaller charge.
3827 if (unlikely(ret & VM_FAULT_OOM))
3828 goto retry;
3829 return ret;
3830 } else {
3831 huge_pmd_set_accessed(mm, vma, address, pmd,
3832 orig_pmd, dirty);
3835 return 0;
3839 if (pmd_numa(*pmd))
3840 return do_pmd_numa_page(mm, vma, address, pmd);
3843 * Use __pte_alloc instead of pte_alloc_map, because we can't
3844 * run pte_offset_map on the pmd, if an huge pmd could
3845 * materialize from under us from a different thread.
3847 if (unlikely(pmd_none(*pmd)) &&
3848 unlikely(__pte_alloc(mm, vma, pmd, address)))
3849 return VM_FAULT_OOM;
3850 /* if an huge pmd materialized from under us just retry later */
3851 if (unlikely(pmd_trans_huge(*pmd)))
3852 return 0;
3854 * A regular pmd is established and it can't morph into a huge pmd
3855 * from under us anymore at this point because we hold the mmap_sem
3856 * read mode and khugepaged takes it in write mode. So now it's
3857 * safe to run pte_offset_map().
3859 pte = pte_offset_map(pmd, address);
3861 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3864 #ifndef __PAGETABLE_PUD_FOLDED
3866 * Allocate page upper directory.
3867 * We've already handled the fast-path in-line.
3869 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3871 pud_t *new = pud_alloc_one(mm, address);
3872 if (!new)
3873 return -ENOMEM;
3875 smp_wmb(); /* See comment in __pte_alloc */
3877 spin_lock(&mm->page_table_lock);
3878 if (pgd_present(*pgd)) /* Another has populated it */
3879 pud_free(mm, new);
3880 else
3881 pgd_populate(mm, pgd, new);
3882 spin_unlock(&mm->page_table_lock);
3883 return 0;
3885 #endif /* __PAGETABLE_PUD_FOLDED */
3887 #ifndef __PAGETABLE_PMD_FOLDED
3889 * Allocate page middle directory.
3890 * We've already handled the fast-path in-line.
3892 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3894 pmd_t *new = pmd_alloc_one(mm, address);
3895 if (!new)
3896 return -ENOMEM;
3898 smp_wmb(); /* See comment in __pte_alloc */
3900 spin_lock(&mm->page_table_lock);
3901 #ifndef __ARCH_HAS_4LEVEL_HACK
3902 if (pud_present(*pud)) /* Another has populated it */
3903 pmd_free(mm, new);
3904 else
3905 pud_populate(mm, pud, new);
3906 #else
3907 if (pgd_present(*pud)) /* Another has populated it */
3908 pmd_free(mm, new);
3909 else
3910 pgd_populate(mm, pud, new);
3911 #endif /* __ARCH_HAS_4LEVEL_HACK */
3912 spin_unlock(&mm->page_table_lock);
3913 return 0;
3915 #endif /* __PAGETABLE_PMD_FOLDED */
3917 #if !defined(__HAVE_ARCH_GATE_AREA)
3919 #if defined(AT_SYSINFO_EHDR)
3920 static struct vm_area_struct gate_vma;
3922 static int __init gate_vma_init(void)
3924 gate_vma.vm_mm = NULL;
3925 gate_vma.vm_start = FIXADDR_USER_START;
3926 gate_vma.vm_end = FIXADDR_USER_END;
3927 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3928 gate_vma.vm_page_prot = __P101;
3930 return 0;
3932 __initcall(gate_vma_init);
3933 #endif
3935 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3937 #ifdef AT_SYSINFO_EHDR
3938 return &gate_vma;
3939 #else
3940 return NULL;
3941 #endif
3944 int in_gate_area_no_mm(unsigned long addr)
3946 #ifdef AT_SYSINFO_EHDR
3947 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3948 return 1;
3949 #endif
3950 return 0;
3953 #endif /* __HAVE_ARCH_GATE_AREA */
3955 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3956 pte_t **ptepp, spinlock_t **ptlp)
3958 pgd_t *pgd;
3959 pud_t *pud;
3960 pmd_t *pmd;
3961 pte_t *ptep;
3963 pgd = pgd_offset(mm, address);
3964 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3965 goto out;
3967 pud = pud_offset(pgd, address);
3968 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3969 goto out;
3971 pmd = pmd_offset(pud, address);
3972 VM_BUG_ON(pmd_trans_huge(*pmd));
3973 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3974 goto out;
3976 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3977 if (pmd_huge(*pmd))
3978 goto out;
3980 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3981 if (!ptep)
3982 goto out;
3983 if (!pte_present(*ptep))
3984 goto unlock;
3985 *ptepp = ptep;
3986 return 0;
3987 unlock:
3988 pte_unmap_unlock(ptep, *ptlp);
3989 out:
3990 return -EINVAL;
3993 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3994 pte_t **ptepp, spinlock_t **ptlp)
3996 int res;
3998 /* (void) is needed to make gcc happy */
3999 (void) __cond_lock(*ptlp,
4000 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4001 return res;
4005 * follow_pfn - look up PFN at a user virtual address
4006 * @vma: memory mapping
4007 * @address: user virtual address
4008 * @pfn: location to store found PFN
4010 * Only IO mappings and raw PFN mappings are allowed.
4012 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4014 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4015 unsigned long *pfn)
4017 int ret = -EINVAL;
4018 spinlock_t *ptl;
4019 pte_t *ptep;
4021 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4022 return ret;
4024 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4025 if (ret)
4026 return ret;
4027 *pfn = pte_pfn(*ptep);
4028 pte_unmap_unlock(ptep, ptl);
4029 return 0;
4031 EXPORT_SYMBOL(follow_pfn);
4033 #ifdef CONFIG_HAVE_IOREMAP_PROT
4034 int follow_phys(struct vm_area_struct *vma,
4035 unsigned long address, unsigned int flags,
4036 unsigned long *prot, resource_size_t *phys)
4038 int ret = -EINVAL;
4039 pte_t *ptep, pte;
4040 spinlock_t *ptl;
4042 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4043 goto out;
4045 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4046 goto out;
4047 pte = *ptep;
4049 if ((flags & FOLL_WRITE) && !pte_write(pte))
4050 goto unlock;
4052 *prot = pgprot_val(pte_pgprot(pte));
4053 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4055 ret = 0;
4056 unlock:
4057 pte_unmap_unlock(ptep, ptl);
4058 out:
4059 return ret;
4062 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4063 void *buf, int len, int write)
4065 resource_size_t phys_addr;
4066 unsigned long prot = 0;
4067 void __iomem *maddr;
4068 int offset = addr & (PAGE_SIZE-1);
4070 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4071 return -EINVAL;
4073 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4074 if (write)
4075 memcpy_toio(maddr + offset, buf, len);
4076 else
4077 memcpy_fromio(buf, maddr + offset, len);
4078 iounmap(maddr);
4080 return len;
4082 #endif
4085 * Access another process' address space as given in mm. If non-NULL, use the
4086 * given task for page fault accounting.
4088 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4089 unsigned long addr, void *buf, int len, int write)
4091 struct vm_area_struct *vma;
4092 void *old_buf = buf;
4094 down_read(&mm->mmap_sem);
4095 /* ignore errors, just check how much was successfully transferred */
4096 while (len) {
4097 int bytes, ret, offset;
4098 void *maddr;
4099 struct page *page = NULL;
4101 ret = get_user_pages(tsk, mm, addr, 1,
4102 write, 1, &page, &vma);
4103 if (ret <= 0) {
4105 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4106 * we can access using slightly different code.
4108 #ifdef CONFIG_HAVE_IOREMAP_PROT
4109 vma = find_vma(mm, addr);
4110 if (!vma || vma->vm_start > addr)
4111 break;
4112 if (vma->vm_ops && vma->vm_ops->access)
4113 ret = vma->vm_ops->access(vma, addr, buf,
4114 len, write);
4115 if (ret <= 0)
4116 #endif
4117 break;
4118 bytes = ret;
4119 } else {
4120 bytes = len;
4121 offset = addr & (PAGE_SIZE-1);
4122 if (bytes > PAGE_SIZE-offset)
4123 bytes = PAGE_SIZE-offset;
4125 maddr = kmap(page);
4126 if (write) {
4127 copy_to_user_page(vma, page, addr,
4128 maddr + offset, buf, bytes);
4129 set_page_dirty_lock(page);
4130 } else {
4131 copy_from_user_page(vma, page, addr,
4132 buf, maddr + offset, bytes);
4134 kunmap(page);
4135 page_cache_release(page);
4137 len -= bytes;
4138 buf += bytes;
4139 addr += bytes;
4141 up_read(&mm->mmap_sem);
4143 return buf - old_buf;
4147 * access_remote_vm - access another process' address space
4148 * @mm: the mm_struct of the target address space
4149 * @addr: start address to access
4150 * @buf: source or destination buffer
4151 * @len: number of bytes to transfer
4152 * @write: whether the access is a write
4154 * The caller must hold a reference on @mm.
4156 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4157 void *buf, int len, int write)
4159 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4163 * Access another process' address space.
4164 * Source/target buffer must be kernel space,
4165 * Do not walk the page table directly, use get_user_pages
4167 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4168 void *buf, int len, int write)
4170 struct mm_struct *mm;
4171 int ret;
4173 mm = get_task_mm(tsk);
4174 if (!mm)
4175 return 0;
4177 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4178 mmput(mm);
4180 return ret;
4184 * Print the name of a VMA.
4186 void print_vma_addr(char *prefix, unsigned long ip)
4188 struct mm_struct *mm = current->mm;
4189 struct vm_area_struct *vma;
4192 * Do not print if we are in atomic
4193 * contexts (in exception stacks, etc.):
4195 if (preempt_count())
4196 return;
4198 down_read(&mm->mmap_sem);
4199 vma = find_vma(mm, ip);
4200 if (vma && vma->vm_file) {
4201 struct file *f = vma->vm_file;
4202 char *buf = (char *)__get_free_page(GFP_KERNEL);
4203 if (buf) {
4204 char *p;
4206 p = d_path(&f->f_path, buf, PAGE_SIZE);
4207 if (IS_ERR(p))
4208 p = "?";
4209 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4210 vma->vm_start,
4211 vma->vm_end - vma->vm_start);
4212 free_page((unsigned long)buf);
4215 up_read(&mm->mmap_sem);
4218 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4219 void might_fault(void)
4222 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4223 * holding the mmap_sem, this is safe because kernel memory doesn't
4224 * get paged out, therefore we'll never actually fault, and the
4225 * below annotations will generate false positives.
4227 if (segment_eq(get_fs(), KERNEL_DS))
4228 return;
4231 * it would be nicer only to annotate paths which are not under
4232 * pagefault_disable, however that requires a larger audit and
4233 * providing helpers like get_user_atomic.
4235 if (in_atomic())
4236 return;
4238 __might_sleep(__FILE__, __LINE__, 0);
4240 if (current->mm)
4241 might_lock_read(&current->mm->mmap_sem);
4243 EXPORT_SYMBOL(might_fault);
4244 #endif
4246 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4247 static void clear_gigantic_page(struct page *page,
4248 unsigned long addr,
4249 unsigned int pages_per_huge_page)
4251 int i;
4252 struct page *p = page;
4254 might_sleep();
4255 for (i = 0; i < pages_per_huge_page;
4256 i++, p = mem_map_next(p, page, i)) {
4257 cond_resched();
4258 clear_user_highpage(p, addr + i * PAGE_SIZE);
4261 void clear_huge_page(struct page *page,
4262 unsigned long addr, unsigned int pages_per_huge_page)
4264 int i;
4266 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4267 clear_gigantic_page(page, addr, pages_per_huge_page);
4268 return;
4271 might_sleep();
4272 for (i = 0; i < pages_per_huge_page; i++) {
4273 cond_resched();
4274 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4278 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4279 unsigned long addr,
4280 struct vm_area_struct *vma,
4281 unsigned int pages_per_huge_page)
4283 int i;
4284 struct page *dst_base = dst;
4285 struct page *src_base = src;
4287 for (i = 0; i < pages_per_huge_page; ) {
4288 cond_resched();
4289 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4291 i++;
4292 dst = mem_map_next(dst, dst_base, i);
4293 src = mem_map_next(src, src_base, i);
4297 void copy_user_huge_page(struct page *dst, struct page *src,
4298 unsigned long addr, struct vm_area_struct *vma,
4299 unsigned int pages_per_huge_page)
4301 int i;
4303 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4304 copy_user_gigantic_page(dst, src, addr, vma,
4305 pages_per_huge_page);
4306 return;
4309 might_sleep();
4310 for (i = 0; i < pages_per_huge_page; i++) {
4311 cond_resched();
4312 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4315 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */