2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
14 * Called after updating RLIMIT_CPU to run cpu timer and update
15 * tsk->signal->cputime_expires expiration cache if necessary. Needs
16 * siglock protection since other code may update expiration cache as
19 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
21 cputime_t cputime
= secs_to_cputime(rlim_new
);
23 spin_lock_irq(&task
->sighand
->siglock
);
24 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &cputime
, NULL
);
25 spin_unlock_irq(&task
->sighand
->siglock
);
28 static int check_clock(const clockid_t which_clock
)
31 struct task_struct
*p
;
32 const pid_t pid
= CPUCLOCK_PID(which_clock
);
34 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
41 p
= find_task_by_vpid(pid
);
42 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
43 same_thread_group(p
, current
) : has_group_leader_pid(p
))) {
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
54 union cpu_time_count ret
;
55 ret
.sched
= 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
57 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
59 ret
.cpu
= timespec_to_cputime(tp
);
64 static void sample_to_timespec(const clockid_t which_clock
,
65 union cpu_time_count cpu
,
68 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
69 *tp
= ns_to_timespec(cpu
.sched
);
71 cputime_to_timespec(cpu
.cpu
, tp
);
74 static inline int cpu_time_before(const clockid_t which_clock
,
75 union cpu_time_count now
,
76 union cpu_time_count then
)
78 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
79 return now
.sched
< then
.sched
;
81 return now
.cpu
< then
.cpu
;
84 static inline void cpu_time_add(const clockid_t which_clock
,
85 union cpu_time_count
*acc
,
86 union cpu_time_count val
)
88 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
89 acc
->sched
+= val
.sched
;
94 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
95 union cpu_time_count a
,
96 union cpu_time_count b
)
98 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
107 * Update expiry time from increment, and increase overrun count,
108 * given the current clock sample.
110 static void bump_cpu_timer(struct k_itimer
*timer
,
111 union cpu_time_count now
)
115 if (timer
->it
.cpu
.incr
.sched
== 0)
118 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
119 unsigned long long delta
, incr
;
121 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
123 incr
= timer
->it
.cpu
.incr
.sched
;
124 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
125 /* Don't use (incr*2 < delta), incr*2 might overflow. */
126 for (i
= 0; incr
< delta
- incr
; i
++)
128 for (; i
>= 0; incr
>>= 1, i
--) {
131 timer
->it
.cpu
.expires
.sched
+= incr
;
132 timer
->it_overrun
+= 1 << i
;
136 cputime_t delta
, incr
;
138 if (now
.cpu
< timer
->it
.cpu
.expires
.cpu
)
140 incr
= timer
->it
.cpu
.incr
.cpu
;
141 delta
= now
.cpu
+ incr
- timer
->it
.cpu
.expires
.cpu
;
142 /* Don't use (incr*2 < delta), incr*2 might overflow. */
143 for (i
= 0; incr
< delta
- incr
; i
++)
145 for (; i
>= 0; incr
= incr
>> 1, i
--) {
148 timer
->it
.cpu
.expires
.cpu
+= incr
;
149 timer
->it_overrun
+= 1 << i
;
155 static inline cputime_t
prof_ticks(struct task_struct
*p
)
157 return p
->utime
+ p
->stime
;
159 static inline cputime_t
virt_ticks(struct task_struct
*p
)
165 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
167 int error
= check_clock(which_clock
);
170 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
171 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
173 * If sched_clock is using a cycle counter, we
174 * don't have any idea of its true resolution
175 * exported, but it is much more than 1s/HZ.
184 posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
187 * You can never reset a CPU clock, but we check for other errors
188 * in the call before failing with EPERM.
190 int error
= check_clock(which_clock
);
199 * Sample a per-thread clock for the given task.
201 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
202 union cpu_time_count
*cpu
)
204 switch (CPUCLOCK_WHICH(which_clock
)) {
208 cpu
->cpu
= prof_ticks(p
);
211 cpu
->cpu
= virt_ticks(p
);
214 cpu
->sched
= task_sched_runtime(p
);
220 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
222 struct signal_struct
*sig
= tsk
->signal
;
223 struct task_struct
*t
;
225 times
->utime
= sig
->utime
;
226 times
->stime
= sig
->stime
;
227 times
->sum_exec_runtime
= sig
->sum_sched_runtime
;
230 /* make sure we can trust tsk->thread_group list */
231 if (!likely(pid_alive(tsk
)))
236 times
->utime
+= t
->utime
;
237 times
->stime
+= t
->stime
;
238 times
->sum_exec_runtime
+= task_sched_runtime(t
);
239 } while_each_thread(tsk
, t
);
244 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
246 if (b
->utime
> a
->utime
)
249 if (b
->stime
> a
->stime
)
252 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
253 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
256 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
258 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
259 struct task_cputime sum
;
262 if (!cputimer
->running
) {
264 * The POSIX timer interface allows for absolute time expiry
265 * values through the TIMER_ABSTIME flag, therefore we have
266 * to synchronize the timer to the clock every time we start
269 thread_group_cputime(tsk
, &sum
);
270 raw_spin_lock_irqsave(&cputimer
->lock
, flags
);
271 cputimer
->running
= 1;
272 update_gt_cputime(&cputimer
->cputime
, &sum
);
274 raw_spin_lock_irqsave(&cputimer
->lock
, flags
);
275 *times
= cputimer
->cputime
;
276 raw_spin_unlock_irqrestore(&cputimer
->lock
, flags
);
280 * Sample a process (thread group) clock for the given group_leader task.
281 * Must be called with tasklist_lock held for reading.
283 static int cpu_clock_sample_group(const clockid_t which_clock
,
284 struct task_struct
*p
,
285 union cpu_time_count
*cpu
)
287 struct task_cputime cputime
;
289 switch (CPUCLOCK_WHICH(which_clock
)) {
293 thread_group_cputime(p
, &cputime
);
294 cpu
->cpu
= cputime
.utime
+ cputime
.stime
;
297 thread_group_cputime(p
, &cputime
);
298 cpu
->cpu
= cputime
.utime
;
301 thread_group_cputime(p
, &cputime
);
302 cpu
->sched
= cputime
.sum_exec_runtime
;
309 static int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
311 const pid_t pid
= CPUCLOCK_PID(which_clock
);
313 union cpu_time_count rtn
;
317 * Special case constant value for our own clocks.
318 * We don't have to do any lookup to find ourselves.
320 if (CPUCLOCK_PERTHREAD(which_clock
)) {
322 * Sampling just ourselves we can do with no locking.
324 error
= cpu_clock_sample(which_clock
,
327 read_lock(&tasklist_lock
);
328 error
= cpu_clock_sample_group(which_clock
,
330 read_unlock(&tasklist_lock
);
334 * Find the given PID, and validate that the caller
335 * should be able to see it.
337 struct task_struct
*p
;
339 p
= find_task_by_vpid(pid
);
341 if (CPUCLOCK_PERTHREAD(which_clock
)) {
342 if (same_thread_group(p
, current
)) {
343 error
= cpu_clock_sample(which_clock
,
347 read_lock(&tasklist_lock
);
348 if (thread_group_leader(p
) && p
->sighand
) {
350 cpu_clock_sample_group(which_clock
,
353 read_unlock(&tasklist_lock
);
361 sample_to_timespec(which_clock
, rtn
, tp
);
367 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
368 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
369 * new timer already all-zeros initialized.
371 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
374 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
375 struct task_struct
*p
;
377 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
380 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
383 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
387 p
= find_task_by_vpid(pid
);
388 if (p
&& !same_thread_group(p
, current
))
393 p
= current
->group_leader
;
395 p
= find_task_by_vpid(pid
);
396 if (p
&& !has_group_leader_pid(p
))
400 new_timer
->it
.cpu
.task
= p
;
412 * Clean up a CPU-clock timer that is about to be destroyed.
413 * This is called from timer deletion with the timer already locked.
414 * If we return TIMER_RETRY, it's necessary to release the timer's lock
415 * and try again. (This happens when the timer is in the middle of firing.)
417 static int posix_cpu_timer_del(struct k_itimer
*timer
)
419 struct task_struct
*p
= timer
->it
.cpu
.task
;
422 if (likely(p
!= NULL
)) {
423 read_lock(&tasklist_lock
);
424 if (unlikely(p
->sighand
== NULL
)) {
426 * We raced with the reaping of the task.
427 * The deletion should have cleared us off the list.
429 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
431 spin_lock(&p
->sighand
->siglock
);
432 if (timer
->it
.cpu
.firing
)
435 list_del(&timer
->it
.cpu
.entry
);
436 spin_unlock(&p
->sighand
->siglock
);
438 read_unlock(&tasklist_lock
);
448 * Clean out CPU timers still ticking when a thread exited. The task
449 * pointer is cleared, and the expiry time is replaced with the residual
450 * time for later timer_gettime calls to return.
451 * This must be called with the siglock held.
453 static void cleanup_timers(struct list_head
*head
,
454 cputime_t utime
, cputime_t stime
,
455 unsigned long long sum_exec_runtime
)
457 struct cpu_timer_list
*timer
, *next
;
458 cputime_t ptime
= utime
+ stime
;
460 list_for_each_entry_safe(timer
, next
, head
, entry
) {
461 list_del_init(&timer
->entry
);
462 if (timer
->expires
.cpu
< ptime
) {
463 timer
->expires
.cpu
= 0;
465 timer
->expires
.cpu
-= ptime
;
470 list_for_each_entry_safe(timer
, next
, head
, entry
) {
471 list_del_init(&timer
->entry
);
472 if (timer
->expires
.cpu
< utime
) {
473 timer
->expires
.cpu
= 0;
475 timer
->expires
.cpu
-= utime
;
480 list_for_each_entry_safe(timer
, next
, head
, entry
) {
481 list_del_init(&timer
->entry
);
482 if (timer
->expires
.sched
< sum_exec_runtime
) {
483 timer
->expires
.sched
= 0;
485 timer
->expires
.sched
-= sum_exec_runtime
;
491 * These are both called with the siglock held, when the current thread
492 * is being reaped. When the final (leader) thread in the group is reaped,
493 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
495 void posix_cpu_timers_exit(struct task_struct
*tsk
)
497 cleanup_timers(tsk
->cpu_timers
,
498 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
501 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
503 struct signal_struct
*const sig
= tsk
->signal
;
505 cleanup_timers(tsk
->signal
->cpu_timers
,
506 tsk
->utime
+ sig
->utime
, tsk
->stime
+ sig
->stime
,
507 tsk
->se
.sum_exec_runtime
+ sig
->sum_sched_runtime
);
510 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
513 * That's all for this thread or process.
514 * We leave our residual in expires to be reported.
516 put_task_struct(timer
->it
.cpu
.task
);
517 timer
->it
.cpu
.task
= NULL
;
518 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
519 timer
->it
.cpu
.expires
,
523 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
525 return expires
== 0 || expires
> new_exp
;
529 * Insert the timer on the appropriate list before any timers that
530 * expire later. This must be called with the tasklist_lock held
531 * for reading, interrupts disabled and p->sighand->siglock taken.
533 static void arm_timer(struct k_itimer
*timer
)
535 struct task_struct
*p
= timer
->it
.cpu
.task
;
536 struct list_head
*head
, *listpos
;
537 struct task_cputime
*cputime_expires
;
538 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
539 struct cpu_timer_list
*next
;
541 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
542 head
= p
->cpu_timers
;
543 cputime_expires
= &p
->cputime_expires
;
545 head
= p
->signal
->cpu_timers
;
546 cputime_expires
= &p
->signal
->cputime_expires
;
548 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
551 list_for_each_entry(next
, head
, entry
) {
552 if (cpu_time_before(timer
->it_clock
, nt
->expires
, next
->expires
))
554 listpos
= &next
->entry
;
556 list_add(&nt
->entry
, listpos
);
558 if (listpos
== head
) {
559 union cpu_time_count
*exp
= &nt
->expires
;
562 * We are the new earliest-expiring POSIX 1.b timer, hence
563 * need to update expiration cache. Take into account that
564 * for process timers we share expiration cache with itimers
565 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
568 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
570 if (expires_gt(cputime_expires
->prof_exp
, exp
->cpu
))
571 cputime_expires
->prof_exp
= exp
->cpu
;
574 if (expires_gt(cputime_expires
->virt_exp
, exp
->cpu
))
575 cputime_expires
->virt_exp
= exp
->cpu
;
578 if (cputime_expires
->sched_exp
== 0 ||
579 cputime_expires
->sched_exp
> exp
->sched
)
580 cputime_expires
->sched_exp
= exp
->sched
;
587 * The timer is locked, fire it and arrange for its reload.
589 static void cpu_timer_fire(struct k_itimer
*timer
)
591 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
593 * User don't want any signal.
595 timer
->it
.cpu
.expires
.sched
= 0;
596 } else if (unlikely(timer
->sigq
== NULL
)) {
598 * This a special case for clock_nanosleep,
599 * not a normal timer from sys_timer_create.
601 wake_up_process(timer
->it_process
);
602 timer
->it
.cpu
.expires
.sched
= 0;
603 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
605 * One-shot timer. Clear it as soon as it's fired.
607 posix_timer_event(timer
, 0);
608 timer
->it
.cpu
.expires
.sched
= 0;
609 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
611 * The signal did not get queued because the signal
612 * was ignored, so we won't get any callback to
613 * reload the timer. But we need to keep it
614 * ticking in case the signal is deliverable next time.
616 posix_cpu_timer_schedule(timer
);
621 * Sample a process (thread group) timer for the given group_leader task.
622 * Must be called with tasklist_lock held for reading.
624 static int cpu_timer_sample_group(const clockid_t which_clock
,
625 struct task_struct
*p
,
626 union cpu_time_count
*cpu
)
628 struct task_cputime cputime
;
630 thread_group_cputimer(p
, &cputime
);
631 switch (CPUCLOCK_WHICH(which_clock
)) {
635 cpu
->cpu
= cputime
.utime
+ cputime
.stime
;
638 cpu
->cpu
= cputime
.utime
;
641 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
648 * Guts of sys_timer_settime for CPU timers.
649 * This is called with the timer locked and interrupts disabled.
650 * If we return TIMER_RETRY, it's necessary to release the timer's lock
651 * and try again. (This happens when the timer is in the middle of firing.)
653 static int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
654 struct itimerspec
*new, struct itimerspec
*old
)
656 struct task_struct
*p
= timer
->it
.cpu
.task
;
657 union cpu_time_count old_expires
, new_expires
, old_incr
, val
;
660 if (unlikely(p
== NULL
)) {
662 * Timer refers to a dead task's clock.
667 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
669 read_lock(&tasklist_lock
);
671 * We need the tasklist_lock to protect against reaping that
672 * clears p->sighand. If p has just been reaped, we can no
673 * longer get any information about it at all.
675 if (unlikely(p
->sighand
== NULL
)) {
676 read_unlock(&tasklist_lock
);
678 timer
->it
.cpu
.task
= NULL
;
683 * Disarm any old timer after extracting its expiry time.
685 BUG_ON(!irqs_disabled());
688 old_incr
= timer
->it
.cpu
.incr
;
689 spin_lock(&p
->sighand
->siglock
);
690 old_expires
= timer
->it
.cpu
.expires
;
691 if (unlikely(timer
->it
.cpu
.firing
)) {
692 timer
->it
.cpu
.firing
= -1;
695 list_del_init(&timer
->it
.cpu
.entry
);
698 * We need to sample the current value to convert the new
699 * value from to relative and absolute, and to convert the
700 * old value from absolute to relative. To set a process
701 * timer, we need a sample to balance the thread expiry
702 * times (in arm_timer). With an absolute time, we must
703 * check if it's already passed. In short, we need a sample.
705 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
706 cpu_clock_sample(timer
->it_clock
, p
, &val
);
708 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
712 if (old_expires
.sched
== 0) {
713 old
->it_value
.tv_sec
= 0;
714 old
->it_value
.tv_nsec
= 0;
717 * Update the timer in case it has
718 * overrun already. If it has,
719 * we'll report it as having overrun
720 * and with the next reloaded timer
721 * already ticking, though we are
722 * swallowing that pending
723 * notification here to install the
726 bump_cpu_timer(timer
, val
);
727 if (cpu_time_before(timer
->it_clock
, val
,
728 timer
->it
.cpu
.expires
)) {
729 old_expires
= cpu_time_sub(
731 timer
->it
.cpu
.expires
, val
);
732 sample_to_timespec(timer
->it_clock
,
736 old
->it_value
.tv_nsec
= 1;
737 old
->it_value
.tv_sec
= 0;
744 * We are colliding with the timer actually firing.
745 * Punt after filling in the timer's old value, and
746 * disable this firing since we are already reporting
747 * it as an overrun (thanks to bump_cpu_timer above).
749 spin_unlock(&p
->sighand
->siglock
);
750 read_unlock(&tasklist_lock
);
754 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
755 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
759 * Install the new expiry time (or zero).
760 * For a timer with no notification action, we don't actually
761 * arm the timer (we'll just fake it for timer_gettime).
763 timer
->it
.cpu
.expires
= new_expires
;
764 if (new_expires
.sched
!= 0 &&
765 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
769 spin_unlock(&p
->sighand
->siglock
);
770 read_unlock(&tasklist_lock
);
773 * Install the new reload setting, and
774 * set up the signal and overrun bookkeeping.
776 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
780 * This acts as a modification timestamp for the timer,
781 * so any automatic reload attempt will punt on seeing
782 * that we have reset the timer manually.
784 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
786 timer
->it_overrun_last
= 0;
787 timer
->it_overrun
= -1;
789 if (new_expires
.sched
!= 0 &&
790 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
792 * The designated time already passed, so we notify
793 * immediately, even if the thread never runs to
794 * accumulate more time on this clock.
796 cpu_timer_fire(timer
);
802 sample_to_timespec(timer
->it_clock
,
803 old_incr
, &old
->it_interval
);
808 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
810 union cpu_time_count now
;
811 struct task_struct
*p
= timer
->it
.cpu
.task
;
815 * Easy part: convert the reload time.
817 sample_to_timespec(timer
->it_clock
,
818 timer
->it
.cpu
.incr
, &itp
->it_interval
);
820 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
821 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
825 if (unlikely(p
== NULL
)) {
827 * This task already died and the timer will never fire.
828 * In this case, expires is actually the dead value.
831 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
837 * Sample the clock to take the difference with the expiry time.
839 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
840 cpu_clock_sample(timer
->it_clock
, p
, &now
);
841 clear_dead
= p
->exit_state
;
843 read_lock(&tasklist_lock
);
844 if (unlikely(p
->sighand
== NULL
)) {
846 * The process has been reaped.
847 * We can't even collect a sample any more.
848 * Call the timer disarmed, nothing else to do.
851 timer
->it
.cpu
.task
= NULL
;
852 timer
->it
.cpu
.expires
.sched
= 0;
853 read_unlock(&tasklist_lock
);
856 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
857 clear_dead
= (unlikely(p
->exit_state
) &&
858 thread_group_empty(p
));
860 read_unlock(&tasklist_lock
);
863 if (unlikely(clear_dead
)) {
865 * We've noticed that the thread is dead, but
866 * not yet reaped. Take this opportunity to
869 clear_dead_task(timer
, now
);
873 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
874 sample_to_timespec(timer
->it_clock
,
875 cpu_time_sub(timer
->it_clock
,
876 timer
->it
.cpu
.expires
, now
),
880 * The timer should have expired already, but the firing
881 * hasn't taken place yet. Say it's just about to expire.
883 itp
->it_value
.tv_nsec
= 1;
884 itp
->it_value
.tv_sec
= 0;
889 * Check for any per-thread CPU timers that have fired and move them off
890 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
891 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
893 static void check_thread_timers(struct task_struct
*tsk
,
894 struct list_head
*firing
)
897 struct list_head
*timers
= tsk
->cpu_timers
;
898 struct signal_struct
*const sig
= tsk
->signal
;
902 tsk
->cputime_expires
.prof_exp
= 0;
903 while (!list_empty(timers
)) {
904 struct cpu_timer_list
*t
= list_first_entry(timers
,
905 struct cpu_timer_list
,
907 if (!--maxfire
|| prof_ticks(tsk
) < t
->expires
.cpu
) {
908 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
912 list_move_tail(&t
->entry
, firing
);
917 tsk
->cputime_expires
.virt_exp
= 0;
918 while (!list_empty(timers
)) {
919 struct cpu_timer_list
*t
= list_first_entry(timers
,
920 struct cpu_timer_list
,
922 if (!--maxfire
|| virt_ticks(tsk
) < t
->expires
.cpu
) {
923 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
927 list_move_tail(&t
->entry
, firing
);
932 tsk
->cputime_expires
.sched_exp
= 0;
933 while (!list_empty(timers
)) {
934 struct cpu_timer_list
*t
= list_first_entry(timers
,
935 struct cpu_timer_list
,
937 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
938 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
942 list_move_tail(&t
->entry
, firing
);
946 * Check for the special case thread timers.
948 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
);
949 if (soft
!= RLIM_INFINITY
) {
951 ACCESS_ONCE(sig
->rlim
[RLIMIT_RTTIME
].rlim_max
);
953 if (hard
!= RLIM_INFINITY
&&
954 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
956 * At the hard limit, we just die.
957 * No need to calculate anything else now.
959 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
962 if (tsk
->rt
.timeout
> DIV_ROUND_UP(soft
, USEC_PER_SEC
/HZ
)) {
964 * At the soft limit, send a SIGXCPU every second.
967 soft
+= USEC_PER_SEC
;
968 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
971 "RT Watchdog Timeout: %s[%d]\n",
972 tsk
->comm
, task_pid_nr(tsk
));
973 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
978 static void stop_process_timers(struct signal_struct
*sig
)
980 struct thread_group_cputimer
*cputimer
= &sig
->cputimer
;
983 raw_spin_lock_irqsave(&cputimer
->lock
, flags
);
984 cputimer
->running
= 0;
985 raw_spin_unlock_irqrestore(&cputimer
->lock
, flags
);
988 static u32 onecputick
;
990 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
991 cputime_t
*expires
, cputime_t cur_time
, int signo
)
996 if (cur_time
>= it
->expires
) {
998 it
->expires
+= it
->incr
;
999 it
->error
+= it
->incr_error
;
1000 if (it
->error
>= onecputick
) {
1001 it
->expires
-= cputime_one_jiffy
;
1002 it
->error
-= onecputick
;
1008 trace_itimer_expire(signo
== SIGPROF
?
1009 ITIMER_PROF
: ITIMER_VIRTUAL
,
1010 tsk
->signal
->leader_pid
, cur_time
);
1011 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
1014 if (it
->expires
&& (!*expires
|| it
->expires
< *expires
)) {
1015 *expires
= it
->expires
;
1020 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1022 * @cputime: The struct to compare.
1024 * Checks @cputime to see if all fields are zero. Returns true if all fields
1025 * are zero, false if any field is nonzero.
1027 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1029 if (!cputime
->utime
&& !cputime
->stime
&& !cputime
->sum_exec_runtime
)
1035 * Check for any per-thread CPU timers that have fired and move them
1036 * off the tsk->*_timers list onto the firing list. Per-thread timers
1037 * have already been taken off.
1039 static void check_process_timers(struct task_struct
*tsk
,
1040 struct list_head
*firing
)
1043 struct signal_struct
*const sig
= tsk
->signal
;
1044 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1045 unsigned long long sum_sched_runtime
, sched_expires
;
1046 struct list_head
*timers
= sig
->cpu_timers
;
1047 struct task_cputime cputime
;
1051 * Collect the current process totals.
1053 thread_group_cputimer(tsk
, &cputime
);
1054 utime
= cputime
.utime
;
1055 ptime
= utime
+ cputime
.stime
;
1056 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1059 while (!list_empty(timers
)) {
1060 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1061 struct cpu_timer_list
,
1063 if (!--maxfire
|| ptime
< tl
->expires
.cpu
) {
1064 prof_expires
= tl
->expires
.cpu
;
1068 list_move_tail(&tl
->entry
, firing
);
1074 while (!list_empty(timers
)) {
1075 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1076 struct cpu_timer_list
,
1078 if (!--maxfire
|| utime
< tl
->expires
.cpu
) {
1079 virt_expires
= tl
->expires
.cpu
;
1083 list_move_tail(&tl
->entry
, firing
);
1089 while (!list_empty(timers
)) {
1090 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1091 struct cpu_timer_list
,
1093 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1094 sched_expires
= tl
->expires
.sched
;
1098 list_move_tail(&tl
->entry
, firing
);
1102 * Check for the special case process timers.
1104 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
1106 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
1108 soft
= ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1109 if (soft
!= RLIM_INFINITY
) {
1110 unsigned long psecs
= cputime_to_secs(ptime
);
1111 unsigned long hard
=
1112 ACCESS_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_max
);
1114 if (psecs
>= hard
) {
1116 * At the hard limit, we just die.
1117 * No need to calculate anything else now.
1119 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1122 if (psecs
>= soft
) {
1124 * At the soft limit, send a SIGXCPU every second.
1126 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1129 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
;
1132 x
= secs_to_cputime(soft
);
1133 if (!prof_expires
|| x
< prof_expires
) {
1138 sig
->cputime_expires
.prof_exp
= prof_expires
;
1139 sig
->cputime_expires
.virt_exp
= virt_expires
;
1140 sig
->cputime_expires
.sched_exp
= sched_expires
;
1141 if (task_cputime_zero(&sig
->cputime_expires
))
1142 stop_process_timers(sig
);
1146 * This is called from the signal code (via do_schedule_next_timer)
1147 * when the last timer signal was delivered and we have to reload the timer.
1149 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1151 struct task_struct
*p
= timer
->it
.cpu
.task
;
1152 union cpu_time_count now
;
1154 if (unlikely(p
== NULL
))
1156 * The task was cleaned up already, no future firings.
1161 * Fetch the current sample and update the timer's expiry time.
1163 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1164 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1165 bump_cpu_timer(timer
, now
);
1166 if (unlikely(p
->exit_state
)) {
1167 clear_dead_task(timer
, now
);
1170 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1171 spin_lock(&p
->sighand
->siglock
);
1173 read_lock(&tasklist_lock
);
1174 if (unlikely(p
->sighand
== NULL
)) {
1176 * The process has been reaped.
1177 * We can't even collect a sample any more.
1180 timer
->it
.cpu
.task
= p
= NULL
;
1181 timer
->it
.cpu
.expires
.sched
= 0;
1183 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1185 * We've noticed that the thread is dead, but
1186 * not yet reaped. Take this opportunity to
1187 * drop our task ref.
1189 clear_dead_task(timer
, now
);
1192 spin_lock(&p
->sighand
->siglock
);
1193 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1194 bump_cpu_timer(timer
, now
);
1195 /* Leave the tasklist_lock locked for the call below. */
1199 * Now re-arm for the new expiry time.
1201 BUG_ON(!irqs_disabled());
1203 spin_unlock(&p
->sighand
->siglock
);
1206 read_unlock(&tasklist_lock
);
1209 timer
->it_overrun_last
= timer
->it_overrun
;
1210 timer
->it_overrun
= -1;
1211 ++timer
->it_requeue_pending
;
1215 * task_cputime_expired - Compare two task_cputime entities.
1217 * @sample: The task_cputime structure to be checked for expiration.
1218 * @expires: Expiration times, against which @sample will be checked.
1220 * Checks @sample against @expires to see if any field of @sample has expired.
1221 * Returns true if any field of the former is greater than the corresponding
1222 * field of the latter if the latter field is set. Otherwise returns false.
1224 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1225 const struct task_cputime
*expires
)
1227 if (expires
->utime
&& sample
->utime
>= expires
->utime
)
1229 if (expires
->stime
&& sample
->utime
+ sample
->stime
>= expires
->stime
)
1231 if (expires
->sum_exec_runtime
!= 0 &&
1232 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1238 * fastpath_timer_check - POSIX CPU timers fast path.
1240 * @tsk: The task (thread) being checked.
1242 * Check the task and thread group timers. If both are zero (there are no
1243 * timers set) return false. Otherwise snapshot the task and thread group
1244 * timers and compare them with the corresponding expiration times. Return
1245 * true if a timer has expired, else return false.
1247 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1249 struct signal_struct
*sig
;
1251 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1252 struct task_cputime task_sample
= {
1253 .utime
= tsk
->utime
,
1254 .stime
= tsk
->stime
,
1255 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1258 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1263 if (sig
->cputimer
.running
) {
1264 struct task_cputime group_sample
;
1266 raw_spin_lock(&sig
->cputimer
.lock
);
1267 group_sample
= sig
->cputimer
.cputime
;
1268 raw_spin_unlock(&sig
->cputimer
.lock
);
1270 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1278 * This is called from the timer interrupt handler. The irq handler has
1279 * already updated our counts. We need to check if any timers fire now.
1280 * Interrupts are disabled.
1282 void run_posix_cpu_timers(struct task_struct
*tsk
)
1285 struct k_itimer
*timer
, *next
;
1286 unsigned long flags
;
1288 BUG_ON(!irqs_disabled());
1291 * The fast path checks that there are no expired thread or thread
1292 * group timers. If that's so, just return.
1294 if (!fastpath_timer_check(tsk
))
1297 if (!lock_task_sighand(tsk
, &flags
))
1300 * Here we take off tsk->signal->cpu_timers[N] and
1301 * tsk->cpu_timers[N] all the timers that are firing, and
1302 * put them on the firing list.
1304 check_thread_timers(tsk
, &firing
);
1306 * If there are any active process wide timers (POSIX 1.b, itimers,
1307 * RLIMIT_CPU) cputimer must be running.
1309 if (tsk
->signal
->cputimer
.running
)
1310 check_process_timers(tsk
, &firing
);
1313 * We must release these locks before taking any timer's lock.
1314 * There is a potential race with timer deletion here, as the
1315 * siglock now protects our private firing list. We have set
1316 * the firing flag in each timer, so that a deletion attempt
1317 * that gets the timer lock before we do will give it up and
1318 * spin until we've taken care of that timer below.
1320 unlock_task_sighand(tsk
, &flags
);
1323 * Now that all the timers on our list have the firing flag,
1324 * no one will touch their list entries but us. We'll take
1325 * each timer's lock before clearing its firing flag, so no
1326 * timer call will interfere.
1328 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1331 spin_lock(&timer
->it_lock
);
1332 list_del_init(&timer
->it
.cpu
.entry
);
1333 cpu_firing
= timer
->it
.cpu
.firing
;
1334 timer
->it
.cpu
.firing
= 0;
1336 * The firing flag is -1 if we collided with a reset
1337 * of the timer, which already reported this
1338 * almost-firing as an overrun. So don't generate an event.
1340 if (likely(cpu_firing
>= 0))
1341 cpu_timer_fire(timer
);
1342 spin_unlock(&timer
->it_lock
);
1347 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1348 * The tsk->sighand->siglock must be held by the caller.
1350 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1351 cputime_t
*newval
, cputime_t
*oldval
)
1353 union cpu_time_count now
;
1355 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1356 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1360 * We are setting itimer. The *oldval is absolute and we update
1361 * it to be relative, *newval argument is relative and we update
1362 * it to be absolute.
1365 if (*oldval
<= now
.cpu
) {
1366 /* Just about to fire. */
1367 *oldval
= cputime_one_jiffy
;
1379 * Update expiration cache if we are the earliest timer, or eventually
1380 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1382 switch (clock_idx
) {
1384 if (expires_gt(tsk
->signal
->cputime_expires
.prof_exp
, *newval
))
1385 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1388 if (expires_gt(tsk
->signal
->cputime_expires
.virt_exp
, *newval
))
1389 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1394 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1395 struct timespec
*rqtp
, struct itimerspec
*it
)
1397 struct k_itimer timer
;
1401 * Set up a temporary timer and then wait for it to go off.
1403 memset(&timer
, 0, sizeof timer
);
1404 spin_lock_init(&timer
.it_lock
);
1405 timer
.it_clock
= which_clock
;
1406 timer
.it_overrun
= -1;
1407 error
= posix_cpu_timer_create(&timer
);
1408 timer
.it_process
= current
;
1410 static struct itimerspec zero_it
;
1412 memset(it
, 0, sizeof *it
);
1413 it
->it_value
= *rqtp
;
1415 spin_lock_irq(&timer
.it_lock
);
1416 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1418 spin_unlock_irq(&timer
.it_lock
);
1422 while (!signal_pending(current
)) {
1423 if (timer
.it
.cpu
.expires
.sched
== 0) {
1425 * Our timer fired and was reset.
1427 spin_unlock_irq(&timer
.it_lock
);
1432 * Block until cpu_timer_fire (or a signal) wakes us.
1434 __set_current_state(TASK_INTERRUPTIBLE
);
1435 spin_unlock_irq(&timer
.it_lock
);
1437 spin_lock_irq(&timer
.it_lock
);
1441 * We were interrupted by a signal.
1443 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1444 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1445 spin_unlock_irq(&timer
.it_lock
);
1447 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1449 * It actually did fire already.
1454 error
= -ERESTART_RESTARTBLOCK
;
1460 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1462 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1463 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1465 struct restart_block
*restart_block
=
1466 ¤t_thread_info()->restart_block
;
1467 struct itimerspec it
;
1471 * Diagnose required errors first.
1473 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1474 (CPUCLOCK_PID(which_clock
) == 0 ||
1475 CPUCLOCK_PID(which_clock
) == current
->pid
))
1478 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1480 if (error
== -ERESTART_RESTARTBLOCK
) {
1482 if (flags
& TIMER_ABSTIME
)
1483 return -ERESTARTNOHAND
;
1485 * Report back to the user the time still remaining.
1487 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1490 restart_block
->fn
= posix_cpu_nsleep_restart
;
1491 restart_block
->nanosleep
.clockid
= which_clock
;
1492 restart_block
->nanosleep
.rmtp
= rmtp
;
1493 restart_block
->nanosleep
.expires
= timespec_to_ns(rqtp
);
1498 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1500 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1502 struct itimerspec it
;
1505 t
= ns_to_timespec(restart_block
->nanosleep
.expires
);
1507 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1509 if (error
== -ERESTART_RESTARTBLOCK
) {
1510 struct timespec __user
*rmtp
= restart_block
->nanosleep
.rmtp
;
1512 * Report back to the user the time still remaining.
1514 if (rmtp
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1517 restart_block
->nanosleep
.expires
= timespec_to_ns(&t
);
1523 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1524 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1526 static int process_cpu_clock_getres(const clockid_t which_clock
,
1527 struct timespec
*tp
)
1529 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1531 static int process_cpu_clock_get(const clockid_t which_clock
,
1532 struct timespec
*tp
)
1534 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1536 static int process_cpu_timer_create(struct k_itimer
*timer
)
1538 timer
->it_clock
= PROCESS_CLOCK
;
1539 return posix_cpu_timer_create(timer
);
1541 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1542 struct timespec
*rqtp
,
1543 struct timespec __user
*rmtp
)
1545 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1547 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1551 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1552 struct timespec
*tp
)
1554 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1556 static int thread_cpu_clock_get(const clockid_t which_clock
,
1557 struct timespec
*tp
)
1559 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1561 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1563 timer
->it_clock
= THREAD_CLOCK
;
1564 return posix_cpu_timer_create(timer
);
1567 struct k_clock clock_posix_cpu
= {
1568 .clock_getres
= posix_cpu_clock_getres
,
1569 .clock_set
= posix_cpu_clock_set
,
1570 .clock_get
= posix_cpu_clock_get
,
1571 .timer_create
= posix_cpu_timer_create
,
1572 .nsleep
= posix_cpu_nsleep
,
1573 .nsleep_restart
= posix_cpu_nsleep_restart
,
1574 .timer_set
= posix_cpu_timer_set
,
1575 .timer_del
= posix_cpu_timer_del
,
1576 .timer_get
= posix_cpu_timer_get
,
1579 static __init
int init_posix_cpu_timers(void)
1581 struct k_clock process
= {
1582 .clock_getres
= process_cpu_clock_getres
,
1583 .clock_get
= process_cpu_clock_get
,
1584 .timer_create
= process_cpu_timer_create
,
1585 .nsleep
= process_cpu_nsleep
,
1586 .nsleep_restart
= process_cpu_nsleep_restart
,
1588 struct k_clock thread
= {
1589 .clock_getres
= thread_cpu_clock_getres
,
1590 .clock_get
= thread_cpu_clock_get
,
1591 .timer_create
= thread_cpu_timer_create
,
1595 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1596 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1598 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1599 onecputick
= ts
.tv_nsec
;
1600 WARN_ON(ts
.tv_sec
!= 0);
1604 __initcall(init_posix_cpu_timers
);