FRV: Shrink TIF_WORK_MASK [ver #2]
[linux-2.6.git] / kernel / signal.c
blob677102789cf22d4847936782f6c6f67085421927
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #include <linux/uprobes.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/signal.h>
36 #include <asm/param.h>
37 #include <asm/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/siginfo.h>
40 #include <asm/cacheflush.h>
41 #include "audit.h" /* audit_signal_info() */
44 * SLAB caches for signal bits.
47 static struct kmem_cache *sigqueue_cachep;
49 int print_fatal_signals __read_mostly;
51 static void __user *sig_handler(struct task_struct *t, int sig)
53 return t->sighand->action[sig - 1].sa.sa_handler;
56 static int sig_handler_ignored(void __user *handler, int sig)
58 /* Is it explicitly or implicitly ignored? */
59 return handler == SIG_IGN ||
60 (handler == SIG_DFL && sig_kernel_ignore(sig));
63 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
65 void __user *handler;
67 handler = sig_handler(t, sig);
69 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
70 handler == SIG_DFL && !force)
71 return 1;
73 return sig_handler_ignored(handler, sig);
76 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 * Blocked signals are never ignored, since the
80 * signal handler may change by the time it is
81 * unblocked.
83 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
84 return 0;
86 if (!sig_task_ignored(t, sig, force))
87 return 0;
90 * Tracers may want to know about even ignored signals.
92 return !t->ptrace;
96 * Re-calculate pending state from the set of locally pending
97 * signals, globally pending signals, and blocked signals.
99 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
101 unsigned long ready;
102 long i;
104 switch (_NSIG_WORDS) {
105 default:
106 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
107 ready |= signal->sig[i] &~ blocked->sig[i];
108 break;
110 case 4: ready = signal->sig[3] &~ blocked->sig[3];
111 ready |= signal->sig[2] &~ blocked->sig[2];
112 ready |= signal->sig[1] &~ blocked->sig[1];
113 ready |= signal->sig[0] &~ blocked->sig[0];
114 break;
116 case 2: ready = signal->sig[1] &~ blocked->sig[1];
117 ready |= signal->sig[0] &~ blocked->sig[0];
118 break;
120 case 1: ready = signal->sig[0] &~ blocked->sig[0];
122 return ready != 0;
125 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
127 static int recalc_sigpending_tsk(struct task_struct *t)
129 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
130 PENDING(&t->pending, &t->blocked) ||
131 PENDING(&t->signal->shared_pending, &t->blocked)) {
132 set_tsk_thread_flag(t, TIF_SIGPENDING);
133 return 1;
136 * We must never clear the flag in another thread, or in current
137 * when it's possible the current syscall is returning -ERESTART*.
138 * So we don't clear it here, and only callers who know they should do.
140 return 0;
144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
145 * This is superfluous when called on current, the wakeup is a harmless no-op.
147 void recalc_sigpending_and_wake(struct task_struct *t)
149 if (recalc_sigpending_tsk(t))
150 signal_wake_up(t, 0);
153 void recalc_sigpending(void)
155 if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
160 /* Given the mask, find the first available signal that should be serviced. */
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
166 int next_signal(struct sigpending *pending, sigset_t *mask)
168 unsigned long i, *s, *m, x;
169 int sig = 0;
171 s = pending->signal.sig;
172 m = mask->sig;
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
195 break;
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
204 case 1:
205 /* Nothing to do */
206 break;
209 return sig;
212 static inline void print_dropped_signal(int sig)
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
216 if (!print_fatal_signals)
217 return;
219 if (!__ratelimit(&ratelimit_state))
220 return;
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
227 * task_set_jobctl_pending - set jobctl pending bits
228 * @task: target task
229 * @mask: pending bits to set
231 * Clear @mask from @task->jobctl. @mask must be subset of
232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
233 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
234 * cleared. If @task is already being killed or exiting, this function
235 * becomes noop.
237 * CONTEXT:
238 * Must be called with @task->sighand->siglock held.
240 * RETURNS:
241 * %true if @mask is set, %false if made noop because @task was dying.
243 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
245 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
246 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
247 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
249 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
250 return false;
252 if (mask & JOBCTL_STOP_SIGMASK)
253 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
255 task->jobctl |= mask;
256 return true;
260 * task_clear_jobctl_trapping - clear jobctl trapping bit
261 * @task: target task
263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
264 * Clear it and wake up the ptracer. Note that we don't need any further
265 * locking. @task->siglock guarantees that @task->parent points to the
266 * ptracer.
268 * CONTEXT:
269 * Must be called with @task->sighand->siglock held.
271 void task_clear_jobctl_trapping(struct task_struct *task)
273 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
274 task->jobctl &= ~JOBCTL_TRAPPING;
275 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
280 * task_clear_jobctl_pending - clear jobctl pending bits
281 * @task: target task
282 * @mask: pending bits to clear
284 * Clear @mask from @task->jobctl. @mask must be subset of
285 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
286 * STOP bits are cleared together.
288 * If clearing of @mask leaves no stop or trap pending, this function calls
289 * task_clear_jobctl_trapping().
291 * CONTEXT:
292 * Must be called with @task->sighand->siglock held.
294 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
296 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
298 if (mask & JOBCTL_STOP_PENDING)
299 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
301 task->jobctl &= ~mask;
303 if (!(task->jobctl & JOBCTL_PENDING_MASK))
304 task_clear_jobctl_trapping(task);
308 * task_participate_group_stop - participate in a group stop
309 * @task: task participating in a group stop
311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
312 * Group stop states are cleared and the group stop count is consumed if
313 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
314 * stop, the appropriate %SIGNAL_* flags are set.
316 * CONTEXT:
317 * Must be called with @task->sighand->siglock held.
319 * RETURNS:
320 * %true if group stop completion should be notified to the parent, %false
321 * otherwise.
323 static bool task_participate_group_stop(struct task_struct *task)
325 struct signal_struct *sig = task->signal;
326 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
328 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
330 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
332 if (!consume)
333 return false;
335 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
336 sig->group_stop_count--;
339 * Tell the caller to notify completion iff we are entering into a
340 * fresh group stop. Read comment in do_signal_stop() for details.
342 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
343 sig->flags = SIGNAL_STOP_STOPPED;
344 return true;
346 return false;
350 * allocate a new signal queue record
351 * - this may be called without locks if and only if t == current, otherwise an
352 * appropriate lock must be held to stop the target task from exiting
354 static struct sigqueue *
355 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
357 struct sigqueue *q = NULL;
358 struct user_struct *user;
361 * Protect access to @t credentials. This can go away when all
362 * callers hold rcu read lock.
364 rcu_read_lock();
365 user = get_uid(__task_cred(t)->user);
366 atomic_inc(&user->sigpending);
367 rcu_read_unlock();
369 if (override_rlimit ||
370 atomic_read(&user->sigpending) <=
371 task_rlimit(t, RLIMIT_SIGPENDING)) {
372 q = kmem_cache_alloc(sigqueue_cachep, flags);
373 } else {
374 print_dropped_signal(sig);
377 if (unlikely(q == NULL)) {
378 atomic_dec(&user->sigpending);
379 free_uid(user);
380 } else {
381 INIT_LIST_HEAD(&q->list);
382 q->flags = 0;
383 q->user = user;
386 return q;
389 static void __sigqueue_free(struct sigqueue *q)
391 if (q->flags & SIGQUEUE_PREALLOC)
392 return;
393 atomic_dec(&q->user->sigpending);
394 free_uid(q->user);
395 kmem_cache_free(sigqueue_cachep, q);
398 void flush_sigqueue(struct sigpending *queue)
400 struct sigqueue *q;
402 sigemptyset(&queue->signal);
403 while (!list_empty(&queue->list)) {
404 q = list_entry(queue->list.next, struct sigqueue , list);
405 list_del_init(&q->list);
406 __sigqueue_free(q);
411 * Flush all pending signals for a task.
413 void __flush_signals(struct task_struct *t)
415 clear_tsk_thread_flag(t, TIF_SIGPENDING);
416 flush_sigqueue(&t->pending);
417 flush_sigqueue(&t->signal->shared_pending);
420 void flush_signals(struct task_struct *t)
422 unsigned long flags;
424 spin_lock_irqsave(&t->sighand->siglock, flags);
425 __flush_signals(t);
426 spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 static void __flush_itimer_signals(struct sigpending *pending)
431 sigset_t signal, retain;
432 struct sigqueue *q, *n;
434 signal = pending->signal;
435 sigemptyset(&retain);
437 list_for_each_entry_safe(q, n, &pending->list, list) {
438 int sig = q->info.si_signo;
440 if (likely(q->info.si_code != SI_TIMER)) {
441 sigaddset(&retain, sig);
442 } else {
443 sigdelset(&signal, sig);
444 list_del_init(&q->list);
445 __sigqueue_free(q);
449 sigorsets(&pending->signal, &signal, &retain);
452 void flush_itimer_signals(void)
454 struct task_struct *tsk = current;
455 unsigned long flags;
457 spin_lock_irqsave(&tsk->sighand->siglock, flags);
458 __flush_itimer_signals(&tsk->pending);
459 __flush_itimer_signals(&tsk->signal->shared_pending);
460 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 void ignore_signals(struct task_struct *t)
465 int i;
467 for (i = 0; i < _NSIG; ++i)
468 t->sighand->action[i].sa.sa_handler = SIG_IGN;
470 flush_signals(t);
474 * Flush all handlers for a task.
477 void
478 flush_signal_handlers(struct task_struct *t, int force_default)
480 int i;
481 struct k_sigaction *ka = &t->sighand->action[0];
482 for (i = _NSIG ; i != 0 ; i--) {
483 if (force_default || ka->sa.sa_handler != SIG_IGN)
484 ka->sa.sa_handler = SIG_DFL;
485 ka->sa.sa_flags = 0;
486 sigemptyset(&ka->sa.sa_mask);
487 ka++;
491 int unhandled_signal(struct task_struct *tsk, int sig)
493 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
494 if (is_global_init(tsk))
495 return 1;
496 if (handler != SIG_IGN && handler != SIG_DFL)
497 return 0;
498 /* if ptraced, let the tracer determine */
499 return !tsk->ptrace;
503 * Notify the system that a driver wants to block all signals for this
504 * process, and wants to be notified if any signals at all were to be
505 * sent/acted upon. If the notifier routine returns non-zero, then the
506 * signal will be acted upon after all. If the notifier routine returns 0,
507 * then then signal will be blocked. Only one block per process is
508 * allowed. priv is a pointer to private data that the notifier routine
509 * can use to determine if the signal should be blocked or not.
511 void
512 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
514 unsigned long flags;
516 spin_lock_irqsave(&current->sighand->siglock, flags);
517 current->notifier_mask = mask;
518 current->notifier_data = priv;
519 current->notifier = notifier;
520 spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 /* Notify the system that blocking has ended. */
525 void
526 unblock_all_signals(void)
528 unsigned long flags;
530 spin_lock_irqsave(&current->sighand->siglock, flags);
531 current->notifier = NULL;
532 current->notifier_data = NULL;
533 recalc_sigpending();
534 spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
539 struct sigqueue *q, *first = NULL;
542 * Collect the siginfo appropriate to this signal. Check if
543 * there is another siginfo for the same signal.
545 list_for_each_entry(q, &list->list, list) {
546 if (q->info.si_signo == sig) {
547 if (first)
548 goto still_pending;
549 first = q;
553 sigdelset(&list->signal, sig);
555 if (first) {
556 still_pending:
557 list_del_init(&first->list);
558 copy_siginfo(info, &first->info);
559 __sigqueue_free(first);
560 } else {
562 * Ok, it wasn't in the queue. This must be
563 * a fast-pathed signal or we must have been
564 * out of queue space. So zero out the info.
566 info->si_signo = sig;
567 info->si_errno = 0;
568 info->si_code = SI_USER;
569 info->si_pid = 0;
570 info->si_uid = 0;
574 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
575 siginfo_t *info)
577 int sig = next_signal(pending, mask);
579 if (sig) {
580 if (current->notifier) {
581 if (sigismember(current->notifier_mask, sig)) {
582 if (!(current->notifier)(current->notifier_data)) {
583 clear_thread_flag(TIF_SIGPENDING);
584 return 0;
589 collect_signal(sig, pending, info);
592 return sig;
596 * Dequeue a signal and return the element to the caller, which is
597 * expected to free it.
599 * All callers have to hold the siglock.
601 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
603 int signr;
605 /* We only dequeue private signals from ourselves, we don't let
606 * signalfd steal them
608 signr = __dequeue_signal(&tsk->pending, mask, info);
609 if (!signr) {
610 signr = __dequeue_signal(&tsk->signal->shared_pending,
611 mask, info);
613 * itimer signal ?
615 * itimers are process shared and we restart periodic
616 * itimers in the signal delivery path to prevent DoS
617 * attacks in the high resolution timer case. This is
618 * compliant with the old way of self-restarting
619 * itimers, as the SIGALRM is a legacy signal and only
620 * queued once. Changing the restart behaviour to
621 * restart the timer in the signal dequeue path is
622 * reducing the timer noise on heavy loaded !highres
623 * systems too.
625 if (unlikely(signr == SIGALRM)) {
626 struct hrtimer *tmr = &tsk->signal->real_timer;
628 if (!hrtimer_is_queued(tmr) &&
629 tsk->signal->it_real_incr.tv64 != 0) {
630 hrtimer_forward(tmr, tmr->base->get_time(),
631 tsk->signal->it_real_incr);
632 hrtimer_restart(tmr);
637 recalc_sigpending();
638 if (!signr)
639 return 0;
641 if (unlikely(sig_kernel_stop(signr))) {
643 * Set a marker that we have dequeued a stop signal. Our
644 * caller might release the siglock and then the pending
645 * stop signal it is about to process is no longer in the
646 * pending bitmasks, but must still be cleared by a SIGCONT
647 * (and overruled by a SIGKILL). So those cases clear this
648 * shared flag after we've set it. Note that this flag may
649 * remain set after the signal we return is ignored or
650 * handled. That doesn't matter because its only purpose
651 * is to alert stop-signal processing code when another
652 * processor has come along and cleared the flag.
654 current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
658 * Release the siglock to ensure proper locking order
659 * of timer locks outside of siglocks. Note, we leave
660 * irqs disabled here, since the posix-timers code is
661 * about to disable them again anyway.
663 spin_unlock(&tsk->sighand->siglock);
664 do_schedule_next_timer(info);
665 spin_lock(&tsk->sighand->siglock);
667 return signr;
671 * Tell a process that it has a new active signal..
673 * NOTE! we rely on the previous spin_lock to
674 * lock interrupts for us! We can only be called with
675 * "siglock" held, and the local interrupt must
676 * have been disabled when that got acquired!
678 * No need to set need_resched since signal event passing
679 * goes through ->blocked
681 void signal_wake_up(struct task_struct *t, int resume)
683 unsigned int mask;
685 set_tsk_thread_flag(t, TIF_SIGPENDING);
688 * For SIGKILL, we want to wake it up in the stopped/traced/killable
689 * case. We don't check t->state here because there is a race with it
690 * executing another processor and just now entering stopped state.
691 * By using wake_up_state, we ensure the process will wake up and
692 * handle its death signal.
694 mask = TASK_INTERRUPTIBLE;
695 if (resume)
696 mask |= TASK_WAKEKILL;
697 if (!wake_up_state(t, mask))
698 kick_process(t);
702 * Remove signals in mask from the pending set and queue.
703 * Returns 1 if any signals were found.
705 * All callers must be holding the siglock.
707 * This version takes a sigset mask and looks at all signals,
708 * not just those in the first mask word.
710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
712 struct sigqueue *q, *n;
713 sigset_t m;
715 sigandsets(&m, mask, &s->signal);
716 if (sigisemptyset(&m))
717 return 0;
719 sigandnsets(&s->signal, &s->signal, mask);
720 list_for_each_entry_safe(q, n, &s->list, list) {
721 if (sigismember(mask, q->info.si_signo)) {
722 list_del_init(&q->list);
723 __sigqueue_free(q);
726 return 1;
729 * Remove signals in mask from the pending set and queue.
730 * Returns 1 if any signals were found.
732 * All callers must be holding the siglock.
734 static int rm_from_queue(unsigned long mask, struct sigpending *s)
736 struct sigqueue *q, *n;
738 if (!sigtestsetmask(&s->signal, mask))
739 return 0;
741 sigdelsetmask(&s->signal, mask);
742 list_for_each_entry_safe(q, n, &s->list, list) {
743 if (q->info.si_signo < SIGRTMIN &&
744 (mask & sigmask(q->info.si_signo))) {
745 list_del_init(&q->list);
746 __sigqueue_free(q);
749 return 1;
752 static inline int is_si_special(const struct siginfo *info)
754 return info <= SEND_SIG_FORCED;
757 static inline bool si_fromuser(const struct siginfo *info)
759 return info == SEND_SIG_NOINFO ||
760 (!is_si_special(info) && SI_FROMUSER(info));
764 * called with RCU read lock from check_kill_permission()
766 static int kill_ok_by_cred(struct task_struct *t)
768 const struct cred *cred = current_cred();
769 const struct cred *tcred = __task_cred(t);
771 if (uid_eq(cred->euid, tcred->suid) ||
772 uid_eq(cred->euid, tcred->uid) ||
773 uid_eq(cred->uid, tcred->suid) ||
774 uid_eq(cred->uid, tcred->uid))
775 return 1;
777 if (ns_capable(tcred->user_ns, CAP_KILL))
778 return 1;
780 return 0;
784 * Bad permissions for sending the signal
785 * - the caller must hold the RCU read lock
787 static int check_kill_permission(int sig, struct siginfo *info,
788 struct task_struct *t)
790 struct pid *sid;
791 int error;
793 if (!valid_signal(sig))
794 return -EINVAL;
796 if (!si_fromuser(info))
797 return 0;
799 error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 if (error)
801 return error;
803 if (!same_thread_group(current, t) &&
804 !kill_ok_by_cred(t)) {
805 switch (sig) {
806 case SIGCONT:
807 sid = task_session(t);
809 * We don't return the error if sid == NULL. The
810 * task was unhashed, the caller must notice this.
812 if (!sid || sid == task_session(current))
813 break;
814 default:
815 return -EPERM;
819 return security_task_kill(t, info, sig, 0);
823 * ptrace_trap_notify - schedule trap to notify ptracer
824 * @t: tracee wanting to notify tracer
826 * This function schedules sticky ptrace trap which is cleared on the next
827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
828 * ptracer.
830 * If @t is running, STOP trap will be taken. If trapped for STOP and
831 * ptracer is listening for events, tracee is woken up so that it can
832 * re-trap for the new event. If trapped otherwise, STOP trap will be
833 * eventually taken without returning to userland after the existing traps
834 * are finished by PTRACE_CONT.
836 * CONTEXT:
837 * Must be called with @task->sighand->siglock held.
839 static void ptrace_trap_notify(struct task_struct *t)
841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 assert_spin_locked(&t->sighand->siglock);
844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
849 * Handle magic process-wide effects of stop/continue signals. Unlike
850 * the signal actions, these happen immediately at signal-generation
851 * time regardless of blocking, ignoring, or handling. This does the
852 * actual continuing for SIGCONT, but not the actual stopping for stop
853 * signals. The process stop is done as a signal action for SIG_DFL.
855 * Returns true if the signal should be actually delivered, otherwise
856 * it should be dropped.
858 static int prepare_signal(int sig, struct task_struct *p, bool force)
860 struct signal_struct *signal = p->signal;
861 struct task_struct *t;
863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
865 * The process is in the middle of dying, nothing to do.
867 } else if (sig_kernel_stop(sig)) {
869 * This is a stop signal. Remove SIGCONT from all queues.
871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 t = p;
873 do {
874 rm_from_queue(sigmask(SIGCONT), &t->pending);
875 } while_each_thread(p, t);
876 } else if (sig == SIGCONT) {
877 unsigned int why;
879 * Remove all stop signals from all queues, wake all threads.
881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 t = p;
883 do {
884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 if (likely(!(t->ptrace & PT_SEIZED)))
887 wake_up_state(t, __TASK_STOPPED);
888 else
889 ptrace_trap_notify(t);
890 } while_each_thread(p, t);
893 * Notify the parent with CLD_CONTINUED if we were stopped.
895 * If we were in the middle of a group stop, we pretend it
896 * was already finished, and then continued. Since SIGCHLD
897 * doesn't queue we report only CLD_STOPPED, as if the next
898 * CLD_CONTINUED was dropped.
900 why = 0;
901 if (signal->flags & SIGNAL_STOP_STOPPED)
902 why |= SIGNAL_CLD_CONTINUED;
903 else if (signal->group_stop_count)
904 why |= SIGNAL_CLD_STOPPED;
906 if (why) {
908 * The first thread which returns from do_signal_stop()
909 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 * notify its parent. See get_signal_to_deliver().
912 signal->flags = why | SIGNAL_STOP_CONTINUED;
913 signal->group_stop_count = 0;
914 signal->group_exit_code = 0;
918 return !sig_ignored(p, sig, force);
922 * Test if P wants to take SIG. After we've checked all threads with this,
923 * it's equivalent to finding no threads not blocking SIG. Any threads not
924 * blocking SIG were ruled out because they are not running and already
925 * have pending signals. Such threads will dequeue from the shared queue
926 * as soon as they're available, so putting the signal on the shared queue
927 * will be equivalent to sending it to one such thread.
929 static inline int wants_signal(int sig, struct task_struct *p)
931 if (sigismember(&p->blocked, sig))
932 return 0;
933 if (p->flags & PF_EXITING)
934 return 0;
935 if (sig == SIGKILL)
936 return 1;
937 if (task_is_stopped_or_traced(p))
938 return 0;
939 return task_curr(p) || !signal_pending(p);
942 static void complete_signal(int sig, struct task_struct *p, int group)
944 struct signal_struct *signal = p->signal;
945 struct task_struct *t;
948 * Now find a thread we can wake up to take the signal off the queue.
950 * If the main thread wants the signal, it gets first crack.
951 * Probably the least surprising to the average bear.
953 if (wants_signal(sig, p))
954 t = p;
955 else if (!group || thread_group_empty(p))
957 * There is just one thread and it does not need to be woken.
958 * It will dequeue unblocked signals before it runs again.
960 return;
961 else {
963 * Otherwise try to find a suitable thread.
965 t = signal->curr_target;
966 while (!wants_signal(sig, t)) {
967 t = next_thread(t);
968 if (t == signal->curr_target)
970 * No thread needs to be woken.
971 * Any eligible threads will see
972 * the signal in the queue soon.
974 return;
976 signal->curr_target = t;
980 * Found a killable thread. If the signal will be fatal,
981 * then start taking the whole group down immediately.
983 if (sig_fatal(p, sig) &&
984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 !sigismember(&t->real_blocked, sig) &&
986 (sig == SIGKILL || !t->ptrace)) {
988 * This signal will be fatal to the whole group.
990 if (!sig_kernel_coredump(sig)) {
992 * Start a group exit and wake everybody up.
993 * This way we don't have other threads
994 * running and doing things after a slower
995 * thread has the fatal signal pending.
997 signal->flags = SIGNAL_GROUP_EXIT;
998 signal->group_exit_code = sig;
999 signal->group_stop_count = 0;
1000 t = p;
1001 do {
1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 sigaddset(&t->pending.signal, SIGKILL);
1004 signal_wake_up(t, 1);
1005 } while_each_thread(p, t);
1006 return;
1011 * The signal is already in the shared-pending queue.
1012 * Tell the chosen thread to wake up and dequeue it.
1014 signal_wake_up(t, sig == SIGKILL);
1015 return;
1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1023 #ifdef CONFIG_USER_NS
1024 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1026 if (current_user_ns() == task_cred_xxx(t, user_ns))
1027 return;
1029 if (SI_FROMKERNEL(info))
1030 return;
1032 rcu_read_lock();
1033 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034 make_kuid(current_user_ns(), info->si_uid));
1035 rcu_read_unlock();
1037 #else
1038 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1040 return;
1042 #endif
1044 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045 int group, int from_ancestor_ns)
1047 struct sigpending *pending;
1048 struct sigqueue *q;
1049 int override_rlimit;
1050 int ret = 0, result;
1052 assert_spin_locked(&t->sighand->siglock);
1054 result = TRACE_SIGNAL_IGNORED;
1055 if (!prepare_signal(sig, t,
1056 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057 goto ret;
1059 pending = group ? &t->signal->shared_pending : &t->pending;
1061 * Short-circuit ignored signals and support queuing
1062 * exactly one non-rt signal, so that we can get more
1063 * detailed information about the cause of the signal.
1065 result = TRACE_SIGNAL_ALREADY_PENDING;
1066 if (legacy_queue(pending, sig))
1067 goto ret;
1069 result = TRACE_SIGNAL_DELIVERED;
1071 * fast-pathed signals for kernel-internal things like SIGSTOP
1072 * or SIGKILL.
1074 if (info == SEND_SIG_FORCED)
1075 goto out_set;
1078 * Real-time signals must be queued if sent by sigqueue, or
1079 * some other real-time mechanism. It is implementation
1080 * defined whether kill() does so. We attempt to do so, on
1081 * the principle of least surprise, but since kill is not
1082 * allowed to fail with EAGAIN when low on memory we just
1083 * make sure at least one signal gets delivered and don't
1084 * pass on the info struct.
1086 if (sig < SIGRTMIN)
1087 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088 else
1089 override_rlimit = 0;
1091 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092 override_rlimit);
1093 if (q) {
1094 list_add_tail(&q->list, &pending->list);
1095 switch ((unsigned long) info) {
1096 case (unsigned long) SEND_SIG_NOINFO:
1097 q->info.si_signo = sig;
1098 q->info.si_errno = 0;
1099 q->info.si_code = SI_USER;
1100 q->info.si_pid = task_tgid_nr_ns(current,
1101 task_active_pid_ns(t));
1102 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1103 break;
1104 case (unsigned long) SEND_SIG_PRIV:
1105 q->info.si_signo = sig;
1106 q->info.si_errno = 0;
1107 q->info.si_code = SI_KERNEL;
1108 q->info.si_pid = 0;
1109 q->info.si_uid = 0;
1110 break;
1111 default:
1112 copy_siginfo(&q->info, info);
1113 if (from_ancestor_ns)
1114 q->info.si_pid = 0;
1115 break;
1118 userns_fixup_signal_uid(&q->info, t);
1120 } else if (!is_si_special(info)) {
1121 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1123 * Queue overflow, abort. We may abort if the
1124 * signal was rt and sent by user using something
1125 * other than kill().
1127 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128 ret = -EAGAIN;
1129 goto ret;
1130 } else {
1132 * This is a silent loss of information. We still
1133 * send the signal, but the *info bits are lost.
1135 result = TRACE_SIGNAL_LOSE_INFO;
1139 out_set:
1140 signalfd_notify(t, sig);
1141 sigaddset(&pending->signal, sig);
1142 complete_signal(sig, t, group);
1143 ret:
1144 trace_signal_generate(sig, info, t, group, result);
1145 return ret;
1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149 int group)
1151 int from_ancestor_ns = 0;
1153 #ifdef CONFIG_PID_NS
1154 from_ancestor_ns = si_fromuser(info) &&
1155 !task_pid_nr_ns(current, task_active_pid_ns(t));
1156 #endif
1158 return __send_signal(sig, info, t, group, from_ancestor_ns);
1161 static void print_fatal_signal(struct pt_regs *regs, int signr)
1163 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164 current->comm, task_pid_nr(current), signr);
1166 #if defined(__i386__) && !defined(__arch_um__)
1167 printk("code at %08lx: ", regs->ip);
1169 int i;
1170 for (i = 0; i < 16; i++) {
1171 unsigned char insn;
1173 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174 break;
1175 printk("%02x ", insn);
1178 #endif
1179 printk("\n");
1180 preempt_disable();
1181 show_regs(regs);
1182 preempt_enable();
1185 static int __init setup_print_fatal_signals(char *str)
1187 get_option (&str, &print_fatal_signals);
1189 return 1;
1192 __setup("print-fatal-signals=", setup_print_fatal_signals);
1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1197 return send_signal(sig, info, p, 1);
1200 static int
1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1203 return send_signal(sig, info, t, 0);
1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207 bool group)
1209 unsigned long flags;
1210 int ret = -ESRCH;
1212 if (lock_task_sighand(p, &flags)) {
1213 ret = send_signal(sig, info, p, group);
1214 unlock_task_sighand(p, &flags);
1217 return ret;
1221 * Force a signal that the process can't ignore: if necessary
1222 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1224 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225 * since we do not want to have a signal handler that was blocked
1226 * be invoked when user space had explicitly blocked it.
1228 * We don't want to have recursive SIGSEGV's etc, for example,
1229 * that is why we also clear SIGNAL_UNKILLABLE.
1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1234 unsigned long int flags;
1235 int ret, blocked, ignored;
1236 struct k_sigaction *action;
1238 spin_lock_irqsave(&t->sighand->siglock, flags);
1239 action = &t->sighand->action[sig-1];
1240 ignored = action->sa.sa_handler == SIG_IGN;
1241 blocked = sigismember(&t->blocked, sig);
1242 if (blocked || ignored) {
1243 action->sa.sa_handler = SIG_DFL;
1244 if (blocked) {
1245 sigdelset(&t->blocked, sig);
1246 recalc_sigpending_and_wake(t);
1249 if (action->sa.sa_handler == SIG_DFL)
1250 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251 ret = specific_send_sig_info(sig, info, t);
1252 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1254 return ret;
1258 * Nuke all other threads in the group.
1260 int zap_other_threads(struct task_struct *p)
1262 struct task_struct *t = p;
1263 int count = 0;
1265 p->signal->group_stop_count = 0;
1267 while_each_thread(p, t) {
1268 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269 count++;
1271 /* Don't bother with already dead threads */
1272 if (t->exit_state)
1273 continue;
1274 sigaddset(&t->pending.signal, SIGKILL);
1275 signal_wake_up(t, 1);
1278 return count;
1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282 unsigned long *flags)
1284 struct sighand_struct *sighand;
1286 for (;;) {
1287 local_irq_save(*flags);
1288 rcu_read_lock();
1289 sighand = rcu_dereference(tsk->sighand);
1290 if (unlikely(sighand == NULL)) {
1291 rcu_read_unlock();
1292 local_irq_restore(*flags);
1293 break;
1296 spin_lock(&sighand->siglock);
1297 if (likely(sighand == tsk->sighand)) {
1298 rcu_read_unlock();
1299 break;
1301 spin_unlock(&sighand->siglock);
1302 rcu_read_unlock();
1303 local_irq_restore(*flags);
1306 return sighand;
1310 * send signal info to all the members of a group
1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1314 int ret;
1316 rcu_read_lock();
1317 ret = check_kill_permission(sig, info, p);
1318 rcu_read_unlock();
1320 if (!ret && sig)
1321 ret = do_send_sig_info(sig, info, p, true);
1323 return ret;
1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328 * control characters do (^C, ^Z etc)
1329 * - the caller must hold at least a readlock on tasklist_lock
1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1333 struct task_struct *p = NULL;
1334 int retval, success;
1336 success = 0;
1337 retval = -ESRCH;
1338 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339 int err = group_send_sig_info(sig, info, p);
1340 success |= !err;
1341 retval = err;
1342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343 return success ? 0 : retval;
1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1348 int error = -ESRCH;
1349 struct task_struct *p;
1351 rcu_read_lock();
1352 retry:
1353 p = pid_task(pid, PIDTYPE_PID);
1354 if (p) {
1355 error = group_send_sig_info(sig, info, p);
1356 if (unlikely(error == -ESRCH))
1358 * The task was unhashed in between, try again.
1359 * If it is dead, pid_task() will return NULL,
1360 * if we race with de_thread() it will find the
1361 * new leader.
1363 goto retry;
1365 rcu_read_unlock();
1367 return error;
1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1372 int error;
1373 rcu_read_lock();
1374 error = kill_pid_info(sig, info, find_vpid(pid));
1375 rcu_read_unlock();
1376 return error;
1379 static int kill_as_cred_perm(const struct cred *cred,
1380 struct task_struct *target)
1382 const struct cred *pcred = __task_cred(target);
1383 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1385 return 0;
1386 return 1;
1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391 const struct cred *cred, u32 secid)
1393 int ret = -EINVAL;
1394 struct task_struct *p;
1395 unsigned long flags;
1397 if (!valid_signal(sig))
1398 return ret;
1400 rcu_read_lock();
1401 p = pid_task(pid, PIDTYPE_PID);
1402 if (!p) {
1403 ret = -ESRCH;
1404 goto out_unlock;
1406 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407 ret = -EPERM;
1408 goto out_unlock;
1410 ret = security_task_kill(p, info, sig, secid);
1411 if (ret)
1412 goto out_unlock;
1414 if (sig) {
1415 if (lock_task_sighand(p, &flags)) {
1416 ret = __send_signal(sig, info, p, 1, 0);
1417 unlock_task_sighand(p, &flags);
1418 } else
1419 ret = -ESRCH;
1421 out_unlock:
1422 rcu_read_unlock();
1423 return ret;
1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1428 * kill_something_info() interprets pid in interesting ways just like kill(2).
1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431 * is probably wrong. Should make it like BSD or SYSV.
1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1436 int ret;
1438 if (pid > 0) {
1439 rcu_read_lock();
1440 ret = kill_pid_info(sig, info, find_vpid(pid));
1441 rcu_read_unlock();
1442 return ret;
1445 read_lock(&tasklist_lock);
1446 if (pid != -1) {
1447 ret = __kill_pgrp_info(sig, info,
1448 pid ? find_vpid(-pid) : task_pgrp(current));
1449 } else {
1450 int retval = 0, count = 0;
1451 struct task_struct * p;
1453 for_each_process(p) {
1454 if (task_pid_vnr(p) > 1 &&
1455 !same_thread_group(p, current)) {
1456 int err = group_send_sig_info(sig, info, p);
1457 ++count;
1458 if (err != -EPERM)
1459 retval = err;
1462 ret = count ? retval : -ESRCH;
1464 read_unlock(&tasklist_lock);
1466 return ret;
1470 * These are for backward compatibility with the rest of the kernel source.
1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1476 * Make sure legacy kernel users don't send in bad values
1477 * (normal paths check this in check_kill_permission).
1479 if (!valid_signal(sig))
1480 return -EINVAL;
1482 return do_send_sig_info(sig, info, p, false);
1485 #define __si_special(priv) \
1486 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1489 send_sig(int sig, struct task_struct *p, int priv)
1491 return send_sig_info(sig, __si_special(priv), p);
1494 void
1495 force_sig(int sig, struct task_struct *p)
1497 force_sig_info(sig, SEND_SIG_PRIV, p);
1501 * When things go south during signal handling, we
1502 * will force a SIGSEGV. And if the signal that caused
1503 * the problem was already a SIGSEGV, we'll want to
1504 * make sure we don't even try to deliver the signal..
1507 force_sigsegv(int sig, struct task_struct *p)
1509 if (sig == SIGSEGV) {
1510 unsigned long flags;
1511 spin_lock_irqsave(&p->sighand->siglock, flags);
1512 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1515 force_sig(SIGSEGV, p);
1516 return 0;
1519 int kill_pgrp(struct pid *pid, int sig, int priv)
1521 int ret;
1523 read_lock(&tasklist_lock);
1524 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525 read_unlock(&tasklist_lock);
1527 return ret;
1529 EXPORT_SYMBOL(kill_pgrp);
1531 int kill_pid(struct pid *pid, int sig, int priv)
1533 return kill_pid_info(sig, __si_special(priv), pid);
1535 EXPORT_SYMBOL(kill_pid);
1538 * These functions support sending signals using preallocated sigqueue
1539 * structures. This is needed "because realtime applications cannot
1540 * afford to lose notifications of asynchronous events, like timer
1541 * expirations or I/O completions". In the case of POSIX Timers
1542 * we allocate the sigqueue structure from the timer_create. If this
1543 * allocation fails we are able to report the failure to the application
1544 * with an EAGAIN error.
1546 struct sigqueue *sigqueue_alloc(void)
1548 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1550 if (q)
1551 q->flags |= SIGQUEUE_PREALLOC;
1553 return q;
1556 void sigqueue_free(struct sigqueue *q)
1558 unsigned long flags;
1559 spinlock_t *lock = &current->sighand->siglock;
1561 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1563 * We must hold ->siglock while testing q->list
1564 * to serialize with collect_signal() or with
1565 * __exit_signal()->flush_sigqueue().
1567 spin_lock_irqsave(lock, flags);
1568 q->flags &= ~SIGQUEUE_PREALLOC;
1570 * If it is queued it will be freed when dequeued,
1571 * like the "regular" sigqueue.
1573 if (!list_empty(&q->list))
1574 q = NULL;
1575 spin_unlock_irqrestore(lock, flags);
1577 if (q)
1578 __sigqueue_free(q);
1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1583 int sig = q->info.si_signo;
1584 struct sigpending *pending;
1585 unsigned long flags;
1586 int ret, result;
1588 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1590 ret = -1;
1591 if (!likely(lock_task_sighand(t, &flags)))
1592 goto ret;
1594 ret = 1; /* the signal is ignored */
1595 result = TRACE_SIGNAL_IGNORED;
1596 if (!prepare_signal(sig, t, false))
1597 goto out;
1599 ret = 0;
1600 if (unlikely(!list_empty(&q->list))) {
1602 * If an SI_TIMER entry is already queue just increment
1603 * the overrun count.
1605 BUG_ON(q->info.si_code != SI_TIMER);
1606 q->info.si_overrun++;
1607 result = TRACE_SIGNAL_ALREADY_PENDING;
1608 goto out;
1610 q->info.si_overrun = 0;
1612 signalfd_notify(t, sig);
1613 pending = group ? &t->signal->shared_pending : &t->pending;
1614 list_add_tail(&q->list, &pending->list);
1615 sigaddset(&pending->signal, sig);
1616 complete_signal(sig, t, group);
1617 result = TRACE_SIGNAL_DELIVERED;
1618 out:
1619 trace_signal_generate(sig, &q->info, t, group, result);
1620 unlock_task_sighand(t, &flags);
1621 ret:
1622 return ret;
1626 * Let a parent know about the death of a child.
1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1629 * Returns true if our parent ignored us and so we've switched to
1630 * self-reaping.
1632 bool do_notify_parent(struct task_struct *tsk, int sig)
1634 struct siginfo info;
1635 unsigned long flags;
1636 struct sighand_struct *psig;
1637 bool autoreap = false;
1639 BUG_ON(sig == -1);
1641 /* do_notify_parent_cldstop should have been called instead. */
1642 BUG_ON(task_is_stopped_or_traced(tsk));
1644 BUG_ON(!tsk->ptrace &&
1645 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1647 if (sig != SIGCHLD) {
1649 * This is only possible if parent == real_parent.
1650 * Check if it has changed security domain.
1652 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653 sig = SIGCHLD;
1656 info.si_signo = sig;
1657 info.si_errno = 0;
1659 * We are under tasklist_lock here so our parent is tied to
1660 * us and cannot change.
1662 * task_active_pid_ns will always return the same pid namespace
1663 * until a task passes through release_task.
1665 * write_lock() currently calls preempt_disable() which is the
1666 * same as rcu_read_lock(), but according to Oleg, this is not
1667 * correct to rely on this
1669 rcu_read_lock();
1670 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672 task_uid(tsk));
1673 rcu_read_unlock();
1675 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1678 info.si_status = tsk->exit_code & 0x7f;
1679 if (tsk->exit_code & 0x80)
1680 info.si_code = CLD_DUMPED;
1681 else if (tsk->exit_code & 0x7f)
1682 info.si_code = CLD_KILLED;
1683 else {
1684 info.si_code = CLD_EXITED;
1685 info.si_status = tsk->exit_code >> 8;
1688 psig = tsk->parent->sighand;
1689 spin_lock_irqsave(&psig->siglock, flags);
1690 if (!tsk->ptrace && sig == SIGCHLD &&
1691 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1694 * We are exiting and our parent doesn't care. POSIX.1
1695 * defines special semantics for setting SIGCHLD to SIG_IGN
1696 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697 * automatically and not left for our parent's wait4 call.
1698 * Rather than having the parent do it as a magic kind of
1699 * signal handler, we just set this to tell do_exit that we
1700 * can be cleaned up without becoming a zombie. Note that
1701 * we still call __wake_up_parent in this case, because a
1702 * blocked sys_wait4 might now return -ECHILD.
1704 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705 * is implementation-defined: we do (if you don't want
1706 * it, just use SIG_IGN instead).
1708 autoreap = true;
1709 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710 sig = 0;
1712 if (valid_signal(sig) && sig)
1713 __group_send_sig_info(sig, &info, tsk->parent);
1714 __wake_up_parent(tsk, tsk->parent);
1715 spin_unlock_irqrestore(&psig->siglock, flags);
1717 return autoreap;
1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722 * @tsk: task reporting the state change
1723 * @for_ptracer: the notification is for ptracer
1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1726 * Notify @tsk's parent that the stopped/continued state has changed. If
1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1730 * CONTEXT:
1731 * Must be called with tasklist_lock at least read locked.
1733 static void do_notify_parent_cldstop(struct task_struct *tsk,
1734 bool for_ptracer, int why)
1736 struct siginfo info;
1737 unsigned long flags;
1738 struct task_struct *parent;
1739 struct sighand_struct *sighand;
1741 if (for_ptracer) {
1742 parent = tsk->parent;
1743 } else {
1744 tsk = tsk->group_leader;
1745 parent = tsk->real_parent;
1748 info.si_signo = SIGCHLD;
1749 info.si_errno = 0;
1751 * see comment in do_notify_parent() about the following 4 lines
1753 rcu_read_lock();
1754 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756 rcu_read_unlock();
1758 info.si_utime = cputime_to_clock_t(tsk->utime);
1759 info.si_stime = cputime_to_clock_t(tsk->stime);
1761 info.si_code = why;
1762 switch (why) {
1763 case CLD_CONTINUED:
1764 info.si_status = SIGCONT;
1765 break;
1766 case CLD_STOPPED:
1767 info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 break;
1769 case CLD_TRAPPED:
1770 info.si_status = tsk->exit_code & 0x7f;
1771 break;
1772 default:
1773 BUG();
1776 sighand = parent->sighand;
1777 spin_lock_irqsave(&sighand->siglock, flags);
1778 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780 __group_send_sig_info(SIGCHLD, &info, parent);
1782 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1784 __wake_up_parent(tsk, parent);
1785 spin_unlock_irqrestore(&sighand->siglock, flags);
1788 static inline int may_ptrace_stop(void)
1790 if (!likely(current->ptrace))
1791 return 0;
1793 * Are we in the middle of do_coredump?
1794 * If so and our tracer is also part of the coredump stopping
1795 * is a deadlock situation, and pointless because our tracer
1796 * is dead so don't allow us to stop.
1797 * If SIGKILL was already sent before the caller unlocked
1798 * ->siglock we must see ->core_state != NULL. Otherwise it
1799 * is safe to enter schedule().
1801 if (unlikely(current->mm->core_state) &&
1802 unlikely(current->mm == current->parent->mm))
1803 return 0;
1805 return 1;
1809 * Return non-zero if there is a SIGKILL that should be waking us up.
1810 * Called with the siglock held.
1812 static int sigkill_pending(struct task_struct *tsk)
1814 return sigismember(&tsk->pending.signal, SIGKILL) ||
1815 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1819 * This must be called with current->sighand->siglock held.
1821 * This should be the path for all ptrace stops.
1822 * We always set current->last_siginfo while stopped here.
1823 * That makes it a way to test a stopped process for
1824 * being ptrace-stopped vs being job-control-stopped.
1826 * If we actually decide not to stop at all because the tracer
1827 * is gone, we keep current->exit_code unless clear_code.
1829 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830 __releases(&current->sighand->siglock)
1831 __acquires(&current->sighand->siglock)
1833 bool gstop_done = false;
1835 if (arch_ptrace_stop_needed(exit_code, info)) {
1837 * The arch code has something special to do before a
1838 * ptrace stop. This is allowed to block, e.g. for faults
1839 * on user stack pages. We can't keep the siglock while
1840 * calling arch_ptrace_stop, so we must release it now.
1841 * To preserve proper semantics, we must do this before
1842 * any signal bookkeeping like checking group_stop_count.
1843 * Meanwhile, a SIGKILL could come in before we retake the
1844 * siglock. That must prevent us from sleeping in TASK_TRACED.
1845 * So after regaining the lock, we must check for SIGKILL.
1847 spin_unlock_irq(&current->sighand->siglock);
1848 arch_ptrace_stop(exit_code, info);
1849 spin_lock_irq(&current->sighand->siglock);
1850 if (sigkill_pending(current))
1851 return;
1855 * We're committing to trapping. TRACED should be visible before
1856 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857 * Also, transition to TRACED and updates to ->jobctl should be
1858 * atomic with respect to siglock and should be done after the arch
1859 * hook as siglock is released and regrabbed across it.
1861 set_current_state(TASK_TRACED);
1863 current->last_siginfo = info;
1864 current->exit_code = exit_code;
1867 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1869 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870 * could be clear now. We act as if SIGCONT is received after
1871 * TASK_TRACED is entered - ignore it.
1873 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874 gstop_done = task_participate_group_stop(current);
1876 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1881 /* entering a trap, clear TRAPPING */
1882 task_clear_jobctl_trapping(current);
1884 spin_unlock_irq(&current->sighand->siglock);
1885 read_lock(&tasklist_lock);
1886 if (may_ptrace_stop()) {
1888 * Notify parents of the stop.
1890 * While ptraced, there are two parents - the ptracer and
1891 * the real_parent of the group_leader. The ptracer should
1892 * know about every stop while the real parent is only
1893 * interested in the completion of group stop. The states
1894 * for the two don't interact with each other. Notify
1895 * separately unless they're gonna be duplicates.
1897 do_notify_parent_cldstop(current, true, why);
1898 if (gstop_done && ptrace_reparented(current))
1899 do_notify_parent_cldstop(current, false, why);
1902 * Don't want to allow preemption here, because
1903 * sys_ptrace() needs this task to be inactive.
1905 * XXX: implement read_unlock_no_resched().
1907 preempt_disable();
1908 read_unlock(&tasklist_lock);
1909 preempt_enable_no_resched();
1910 schedule();
1911 } else {
1913 * By the time we got the lock, our tracer went away.
1914 * Don't drop the lock yet, another tracer may come.
1916 * If @gstop_done, the ptracer went away between group stop
1917 * completion and here. During detach, it would have set
1918 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920 * the real parent of the group stop completion is enough.
1922 if (gstop_done)
1923 do_notify_parent_cldstop(current, false, why);
1925 __set_current_state(TASK_RUNNING);
1926 if (clear_code)
1927 current->exit_code = 0;
1928 read_unlock(&tasklist_lock);
1932 * While in TASK_TRACED, we were considered "frozen enough".
1933 * Now that we woke up, it's crucial if we're supposed to be
1934 * frozen that we freeze now before running anything substantial.
1936 try_to_freeze();
1939 * We are back. Now reacquire the siglock before touching
1940 * last_siginfo, so that we are sure to have synchronized with
1941 * any signal-sending on another CPU that wants to examine it.
1943 spin_lock_irq(&current->sighand->siglock);
1944 current->last_siginfo = NULL;
1946 /* LISTENING can be set only during STOP traps, clear it */
1947 current->jobctl &= ~JOBCTL_LISTENING;
1950 * Queued signals ignored us while we were stopped for tracing.
1951 * So check for any that we should take before resuming user mode.
1952 * This sets TIF_SIGPENDING, but never clears it.
1954 recalc_sigpending_tsk(current);
1957 static void ptrace_do_notify(int signr, int exit_code, int why)
1959 siginfo_t info;
1961 memset(&info, 0, sizeof info);
1962 info.si_signo = signr;
1963 info.si_code = exit_code;
1964 info.si_pid = task_pid_vnr(current);
1965 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1967 /* Let the debugger run. */
1968 ptrace_stop(exit_code, why, 1, &info);
1971 void ptrace_notify(int exit_code)
1973 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1975 spin_lock_irq(&current->sighand->siglock);
1976 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1977 spin_unlock_irq(&current->sighand->siglock);
1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1982 * @signr: signr causing group stop if initiating
1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1985 * and participate in it. If already set, participate in the existing
1986 * group stop. If participated in a group stop (and thus slept), %true is
1987 * returned with siglock released.
1989 * If ptraced, this function doesn't handle stop itself. Instead,
1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1991 * untouched. The caller must ensure that INTERRUPT trap handling takes
1992 * places afterwards.
1994 * CONTEXT:
1995 * Must be called with @current->sighand->siglock held, which is released
1996 * on %true return.
1998 * RETURNS:
1999 * %false if group stop is already cancelled or ptrace trap is scheduled.
2000 * %true if participated in group stop.
2002 static bool do_signal_stop(int signr)
2003 __releases(&current->sighand->siglock)
2005 struct signal_struct *sig = current->signal;
2007 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2008 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2009 struct task_struct *t;
2011 /* signr will be recorded in task->jobctl for retries */
2012 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2014 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2015 unlikely(signal_group_exit(sig)))
2016 return false;
2018 * There is no group stop already in progress. We must
2019 * initiate one now.
2021 * While ptraced, a task may be resumed while group stop is
2022 * still in effect and then receive a stop signal and
2023 * initiate another group stop. This deviates from the
2024 * usual behavior as two consecutive stop signals can't
2025 * cause two group stops when !ptraced. That is why we
2026 * also check !task_is_stopped(t) below.
2028 * The condition can be distinguished by testing whether
2029 * SIGNAL_STOP_STOPPED is already set. Don't generate
2030 * group_exit_code in such case.
2032 * This is not necessary for SIGNAL_STOP_CONTINUED because
2033 * an intervening stop signal is required to cause two
2034 * continued events regardless of ptrace.
2036 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2037 sig->group_exit_code = signr;
2039 sig->group_stop_count = 0;
2041 if (task_set_jobctl_pending(current, signr | gstop))
2042 sig->group_stop_count++;
2044 for (t = next_thread(current); t != current;
2045 t = next_thread(t)) {
2047 * Setting state to TASK_STOPPED for a group
2048 * stop is always done with the siglock held,
2049 * so this check has no races.
2051 if (!task_is_stopped(t) &&
2052 task_set_jobctl_pending(t, signr | gstop)) {
2053 sig->group_stop_count++;
2054 if (likely(!(t->ptrace & PT_SEIZED)))
2055 signal_wake_up(t, 0);
2056 else
2057 ptrace_trap_notify(t);
2062 if (likely(!current->ptrace)) {
2063 int notify = 0;
2066 * If there are no other threads in the group, or if there
2067 * is a group stop in progress and we are the last to stop,
2068 * report to the parent.
2070 if (task_participate_group_stop(current))
2071 notify = CLD_STOPPED;
2073 __set_current_state(TASK_STOPPED);
2074 spin_unlock_irq(&current->sighand->siglock);
2077 * Notify the parent of the group stop completion. Because
2078 * we're not holding either the siglock or tasklist_lock
2079 * here, ptracer may attach inbetween; however, this is for
2080 * group stop and should always be delivered to the real
2081 * parent of the group leader. The new ptracer will get
2082 * its notification when this task transitions into
2083 * TASK_TRACED.
2085 if (notify) {
2086 read_lock(&tasklist_lock);
2087 do_notify_parent_cldstop(current, false, notify);
2088 read_unlock(&tasklist_lock);
2091 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2092 schedule();
2093 return true;
2094 } else {
2096 * While ptraced, group stop is handled by STOP trap.
2097 * Schedule it and let the caller deal with it.
2099 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2100 return false;
2105 * do_jobctl_trap - take care of ptrace jobctl traps
2107 * When PT_SEIZED, it's used for both group stop and explicit
2108 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2109 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2110 * the stop signal; otherwise, %SIGTRAP.
2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2113 * number as exit_code and no siginfo.
2115 * CONTEXT:
2116 * Must be called with @current->sighand->siglock held, which may be
2117 * released and re-acquired before returning with intervening sleep.
2119 static void do_jobctl_trap(void)
2121 struct signal_struct *signal = current->signal;
2122 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2124 if (current->ptrace & PT_SEIZED) {
2125 if (!signal->group_stop_count &&
2126 !(signal->flags & SIGNAL_STOP_STOPPED))
2127 signr = SIGTRAP;
2128 WARN_ON_ONCE(!signr);
2129 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2130 CLD_STOPPED);
2131 } else {
2132 WARN_ON_ONCE(!signr);
2133 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2134 current->exit_code = 0;
2138 static int ptrace_signal(int signr, siginfo_t *info,
2139 struct pt_regs *regs, void *cookie)
2141 ptrace_signal_deliver(regs, cookie);
2143 * We do not check sig_kernel_stop(signr) but set this marker
2144 * unconditionally because we do not know whether debugger will
2145 * change signr. This flag has no meaning unless we are going
2146 * to stop after return from ptrace_stop(). In this case it will
2147 * be checked in do_signal_stop(), we should only stop if it was
2148 * not cleared by SIGCONT while we were sleeping. See also the
2149 * comment in dequeue_signal().
2151 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2154 /* We're back. Did the debugger cancel the sig? */
2155 signr = current->exit_code;
2156 if (signr == 0)
2157 return signr;
2159 current->exit_code = 0;
2162 * Update the siginfo structure if the signal has
2163 * changed. If the debugger wanted something
2164 * specific in the siginfo structure then it should
2165 * have updated *info via PTRACE_SETSIGINFO.
2167 if (signr != info->si_signo) {
2168 info->si_signo = signr;
2169 info->si_errno = 0;
2170 info->si_code = SI_USER;
2171 rcu_read_lock();
2172 info->si_pid = task_pid_vnr(current->parent);
2173 info->si_uid = from_kuid_munged(current_user_ns(),
2174 task_uid(current->parent));
2175 rcu_read_unlock();
2178 /* If the (new) signal is now blocked, requeue it. */
2179 if (sigismember(&current->blocked, signr)) {
2180 specific_send_sig_info(signr, info, current);
2181 signr = 0;
2184 return signr;
2187 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188 struct pt_regs *regs, void *cookie)
2190 struct sighand_struct *sighand = current->sighand;
2191 struct signal_struct *signal = current->signal;
2192 int signr;
2194 if (unlikely(uprobe_deny_signal()))
2195 return 0;
2197 relock:
2199 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2200 * While in TASK_STOPPED, we were considered "frozen enough".
2201 * Now that we woke up, it's crucial if we're supposed to be
2202 * frozen that we freeze now before running anything substantial.
2204 try_to_freeze();
2206 spin_lock_irq(&sighand->siglock);
2208 * Every stopped thread goes here after wakeup. Check to see if
2209 * we should notify the parent, prepare_signal(SIGCONT) encodes
2210 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2212 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2213 int why;
2215 if (signal->flags & SIGNAL_CLD_CONTINUED)
2216 why = CLD_CONTINUED;
2217 else
2218 why = CLD_STOPPED;
2220 signal->flags &= ~SIGNAL_CLD_MASK;
2222 spin_unlock_irq(&sighand->siglock);
2225 * Notify the parent that we're continuing. This event is
2226 * always per-process and doesn't make whole lot of sense
2227 * for ptracers, who shouldn't consume the state via
2228 * wait(2) either, but, for backward compatibility, notify
2229 * the ptracer of the group leader too unless it's gonna be
2230 * a duplicate.
2232 read_lock(&tasklist_lock);
2233 do_notify_parent_cldstop(current, false, why);
2235 if (ptrace_reparented(current->group_leader))
2236 do_notify_parent_cldstop(current->group_leader,
2237 true, why);
2238 read_unlock(&tasklist_lock);
2240 goto relock;
2243 for (;;) {
2244 struct k_sigaction *ka;
2246 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2247 do_signal_stop(0))
2248 goto relock;
2250 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2251 do_jobctl_trap();
2252 spin_unlock_irq(&sighand->siglock);
2253 goto relock;
2256 signr = dequeue_signal(current, &current->blocked, info);
2258 if (!signr)
2259 break; /* will return 0 */
2261 if (unlikely(current->ptrace) && signr != SIGKILL) {
2262 signr = ptrace_signal(signr, info,
2263 regs, cookie);
2264 if (!signr)
2265 continue;
2268 ka = &sighand->action[signr-1];
2270 /* Trace actually delivered signals. */
2271 trace_signal_deliver(signr, info, ka);
2273 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2274 continue;
2275 if (ka->sa.sa_handler != SIG_DFL) {
2276 /* Run the handler. */
2277 *return_ka = *ka;
2279 if (ka->sa.sa_flags & SA_ONESHOT)
2280 ka->sa.sa_handler = SIG_DFL;
2282 break; /* will return non-zero "signr" value */
2286 * Now we are doing the default action for this signal.
2288 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2289 continue;
2292 * Global init gets no signals it doesn't want.
2293 * Container-init gets no signals it doesn't want from same
2294 * container.
2296 * Note that if global/container-init sees a sig_kernel_only()
2297 * signal here, the signal must have been generated internally
2298 * or must have come from an ancestor namespace. In either
2299 * case, the signal cannot be dropped.
2301 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2302 !sig_kernel_only(signr))
2303 continue;
2305 if (sig_kernel_stop(signr)) {
2307 * The default action is to stop all threads in
2308 * the thread group. The job control signals
2309 * do nothing in an orphaned pgrp, but SIGSTOP
2310 * always works. Note that siglock needs to be
2311 * dropped during the call to is_orphaned_pgrp()
2312 * because of lock ordering with tasklist_lock.
2313 * This allows an intervening SIGCONT to be posted.
2314 * We need to check for that and bail out if necessary.
2316 if (signr != SIGSTOP) {
2317 spin_unlock_irq(&sighand->siglock);
2319 /* signals can be posted during this window */
2321 if (is_current_pgrp_orphaned())
2322 goto relock;
2324 spin_lock_irq(&sighand->siglock);
2327 if (likely(do_signal_stop(info->si_signo))) {
2328 /* It released the siglock. */
2329 goto relock;
2333 * We didn't actually stop, due to a race
2334 * with SIGCONT or something like that.
2336 continue;
2339 spin_unlock_irq(&sighand->siglock);
2342 * Anything else is fatal, maybe with a core dump.
2344 current->flags |= PF_SIGNALED;
2346 if (sig_kernel_coredump(signr)) {
2347 if (print_fatal_signals)
2348 print_fatal_signal(regs, info->si_signo);
2350 * If it was able to dump core, this kills all
2351 * other threads in the group and synchronizes with
2352 * their demise. If we lost the race with another
2353 * thread getting here, it set group_exit_code
2354 * first and our do_group_exit call below will use
2355 * that value and ignore the one we pass it.
2357 do_coredump(info->si_signo, info->si_signo, regs);
2361 * Death signals, no core dump.
2363 do_group_exit(info->si_signo);
2364 /* NOTREACHED */
2366 spin_unlock_irq(&sighand->siglock);
2367 return signr;
2371 * signal_delivered -
2372 * @sig: number of signal being delivered
2373 * @info: siginfo_t of signal being delivered
2374 * @ka: sigaction setting that chose the handler
2375 * @regs: user register state
2376 * @stepping: nonzero if debugger single-step or block-step in use
2378 * This function should be called when a signal has succesfully been
2379 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2380 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2381 * is set in @ka->sa.sa_flags. Tracing is notified.
2383 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2384 struct pt_regs *regs, int stepping)
2386 sigset_t blocked;
2388 /* A signal was successfully delivered, and the
2389 saved sigmask was stored on the signal frame,
2390 and will be restored by sigreturn. So we can
2391 simply clear the restore sigmask flag. */
2392 clear_restore_sigmask();
2394 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2395 if (!(ka->sa.sa_flags & SA_NODEFER))
2396 sigaddset(&blocked, sig);
2397 set_current_blocked(&blocked);
2398 tracehook_signal_handler(sig, info, ka, regs, stepping);
2402 * It could be that complete_signal() picked us to notify about the
2403 * group-wide signal. Other threads should be notified now to take
2404 * the shared signals in @which since we will not.
2406 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2408 sigset_t retarget;
2409 struct task_struct *t;
2411 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2412 if (sigisemptyset(&retarget))
2413 return;
2415 t = tsk;
2416 while_each_thread(tsk, t) {
2417 if (t->flags & PF_EXITING)
2418 continue;
2420 if (!has_pending_signals(&retarget, &t->blocked))
2421 continue;
2422 /* Remove the signals this thread can handle. */
2423 sigandsets(&retarget, &retarget, &t->blocked);
2425 if (!signal_pending(t))
2426 signal_wake_up(t, 0);
2428 if (sigisemptyset(&retarget))
2429 break;
2433 void exit_signals(struct task_struct *tsk)
2435 int group_stop = 0;
2436 sigset_t unblocked;
2439 * @tsk is about to have PF_EXITING set - lock out users which
2440 * expect stable threadgroup.
2442 threadgroup_change_begin(tsk);
2444 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2445 tsk->flags |= PF_EXITING;
2446 threadgroup_change_end(tsk);
2447 return;
2450 spin_lock_irq(&tsk->sighand->siglock);
2452 * From now this task is not visible for group-wide signals,
2453 * see wants_signal(), do_signal_stop().
2455 tsk->flags |= PF_EXITING;
2457 threadgroup_change_end(tsk);
2459 if (!signal_pending(tsk))
2460 goto out;
2462 unblocked = tsk->blocked;
2463 signotset(&unblocked);
2464 retarget_shared_pending(tsk, &unblocked);
2466 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2467 task_participate_group_stop(tsk))
2468 group_stop = CLD_STOPPED;
2469 out:
2470 spin_unlock_irq(&tsk->sighand->siglock);
2473 * If group stop has completed, deliver the notification. This
2474 * should always go to the real parent of the group leader.
2476 if (unlikely(group_stop)) {
2477 read_lock(&tasklist_lock);
2478 do_notify_parent_cldstop(tsk, false, group_stop);
2479 read_unlock(&tasklist_lock);
2483 EXPORT_SYMBOL(recalc_sigpending);
2484 EXPORT_SYMBOL_GPL(dequeue_signal);
2485 EXPORT_SYMBOL(flush_signals);
2486 EXPORT_SYMBOL(force_sig);
2487 EXPORT_SYMBOL(send_sig);
2488 EXPORT_SYMBOL(send_sig_info);
2489 EXPORT_SYMBOL(sigprocmask);
2490 EXPORT_SYMBOL(block_all_signals);
2491 EXPORT_SYMBOL(unblock_all_signals);
2495 * System call entry points.
2499 * sys_restart_syscall - restart a system call
2501 SYSCALL_DEFINE0(restart_syscall)
2503 struct restart_block *restart = &current_thread_info()->restart_block;
2504 return restart->fn(restart);
2507 long do_no_restart_syscall(struct restart_block *param)
2509 return -EINTR;
2512 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2514 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2515 sigset_t newblocked;
2516 /* A set of now blocked but previously unblocked signals. */
2517 sigandnsets(&newblocked, newset, &current->blocked);
2518 retarget_shared_pending(tsk, &newblocked);
2520 tsk->blocked = *newset;
2521 recalc_sigpending();
2525 * set_current_blocked - change current->blocked mask
2526 * @newset: new mask
2528 * It is wrong to change ->blocked directly, this helper should be used
2529 * to ensure the process can't miss a shared signal we are going to block.
2531 void set_current_blocked(sigset_t *newset)
2533 struct task_struct *tsk = current;
2534 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535 spin_lock_irq(&tsk->sighand->siglock);
2536 __set_task_blocked(tsk, newset);
2537 spin_unlock_irq(&tsk->sighand->siglock);
2540 void __set_current_blocked(const sigset_t *newset)
2542 struct task_struct *tsk = current;
2544 spin_lock_irq(&tsk->sighand->siglock);
2545 __set_task_blocked(tsk, newset);
2546 spin_unlock_irq(&tsk->sighand->siglock);
2550 * This is also useful for kernel threads that want to temporarily
2551 * (or permanently) block certain signals.
2553 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2554 * interface happily blocks "unblockable" signals like SIGKILL
2555 * and friends.
2557 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2559 struct task_struct *tsk = current;
2560 sigset_t newset;
2562 /* Lockless, only current can change ->blocked, never from irq */
2563 if (oldset)
2564 *oldset = tsk->blocked;
2566 switch (how) {
2567 case SIG_BLOCK:
2568 sigorsets(&newset, &tsk->blocked, set);
2569 break;
2570 case SIG_UNBLOCK:
2571 sigandnsets(&newset, &tsk->blocked, set);
2572 break;
2573 case SIG_SETMASK:
2574 newset = *set;
2575 break;
2576 default:
2577 return -EINVAL;
2580 __set_current_blocked(&newset);
2581 return 0;
2585 * sys_rt_sigprocmask - change the list of currently blocked signals
2586 * @how: whether to add, remove, or set signals
2587 * @nset: stores pending signals
2588 * @oset: previous value of signal mask if non-null
2589 * @sigsetsize: size of sigset_t type
2591 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2592 sigset_t __user *, oset, size_t, sigsetsize)
2594 sigset_t old_set, new_set;
2595 int error;
2597 /* XXX: Don't preclude handling different sized sigset_t's. */
2598 if (sigsetsize != sizeof(sigset_t))
2599 return -EINVAL;
2601 old_set = current->blocked;
2603 if (nset) {
2604 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2605 return -EFAULT;
2606 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2608 error = sigprocmask(how, &new_set, NULL);
2609 if (error)
2610 return error;
2613 if (oset) {
2614 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2615 return -EFAULT;
2618 return 0;
2621 long do_sigpending(void __user *set, unsigned long sigsetsize)
2623 long error = -EINVAL;
2624 sigset_t pending;
2626 if (sigsetsize > sizeof(sigset_t))
2627 goto out;
2629 spin_lock_irq(&current->sighand->siglock);
2630 sigorsets(&pending, &current->pending.signal,
2631 &current->signal->shared_pending.signal);
2632 spin_unlock_irq(&current->sighand->siglock);
2634 /* Outside the lock because only this thread touches it. */
2635 sigandsets(&pending, &current->blocked, &pending);
2637 error = -EFAULT;
2638 if (!copy_to_user(set, &pending, sigsetsize))
2639 error = 0;
2641 out:
2642 return error;
2646 * sys_rt_sigpending - examine a pending signal that has been raised
2647 * while blocked
2648 * @set: stores pending signals
2649 * @sigsetsize: size of sigset_t type or larger
2651 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2653 return do_sigpending(set, sigsetsize);
2656 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2658 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2660 int err;
2662 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2663 return -EFAULT;
2664 if (from->si_code < 0)
2665 return __copy_to_user(to, from, sizeof(siginfo_t))
2666 ? -EFAULT : 0;
2668 * If you change siginfo_t structure, please be sure
2669 * this code is fixed accordingly.
2670 * Please remember to update the signalfd_copyinfo() function
2671 * inside fs/signalfd.c too, in case siginfo_t changes.
2672 * It should never copy any pad contained in the structure
2673 * to avoid security leaks, but must copy the generic
2674 * 3 ints plus the relevant union member.
2676 err = __put_user(from->si_signo, &to->si_signo);
2677 err |= __put_user(from->si_errno, &to->si_errno);
2678 err |= __put_user((short)from->si_code, &to->si_code);
2679 switch (from->si_code & __SI_MASK) {
2680 case __SI_KILL:
2681 err |= __put_user(from->si_pid, &to->si_pid);
2682 err |= __put_user(from->si_uid, &to->si_uid);
2683 break;
2684 case __SI_TIMER:
2685 err |= __put_user(from->si_tid, &to->si_tid);
2686 err |= __put_user(from->si_overrun, &to->si_overrun);
2687 err |= __put_user(from->si_ptr, &to->si_ptr);
2688 break;
2689 case __SI_POLL:
2690 err |= __put_user(from->si_band, &to->si_band);
2691 err |= __put_user(from->si_fd, &to->si_fd);
2692 break;
2693 case __SI_FAULT:
2694 err |= __put_user(from->si_addr, &to->si_addr);
2695 #ifdef __ARCH_SI_TRAPNO
2696 err |= __put_user(from->si_trapno, &to->si_trapno);
2697 #endif
2698 #ifdef BUS_MCEERR_AO
2700 * Other callers might not initialize the si_lsb field,
2701 * so check explicitly for the right codes here.
2703 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2704 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705 #endif
2706 break;
2707 case __SI_CHLD:
2708 err |= __put_user(from->si_pid, &to->si_pid);
2709 err |= __put_user(from->si_uid, &to->si_uid);
2710 err |= __put_user(from->si_status, &to->si_status);
2711 err |= __put_user(from->si_utime, &to->si_utime);
2712 err |= __put_user(from->si_stime, &to->si_stime);
2713 break;
2714 case __SI_RT: /* This is not generated by the kernel as of now. */
2715 case __SI_MESGQ: /* But this is */
2716 err |= __put_user(from->si_pid, &to->si_pid);
2717 err |= __put_user(from->si_uid, &to->si_uid);
2718 err |= __put_user(from->si_ptr, &to->si_ptr);
2719 break;
2720 #ifdef __ARCH_SIGSYS
2721 case __SI_SYS:
2722 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2723 err |= __put_user(from->si_syscall, &to->si_syscall);
2724 err |= __put_user(from->si_arch, &to->si_arch);
2725 break;
2726 #endif
2727 default: /* this is just in case for now ... */
2728 err |= __put_user(from->si_pid, &to->si_pid);
2729 err |= __put_user(from->si_uid, &to->si_uid);
2730 break;
2732 return err;
2735 #endif
2738 * do_sigtimedwait - wait for queued signals specified in @which
2739 * @which: queued signals to wait for
2740 * @info: if non-null, the signal's siginfo is returned here
2741 * @ts: upper bound on process time suspension
2743 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2744 const struct timespec *ts)
2746 struct task_struct *tsk = current;
2747 long timeout = MAX_SCHEDULE_TIMEOUT;
2748 sigset_t mask = *which;
2749 int sig;
2751 if (ts) {
2752 if (!timespec_valid(ts))
2753 return -EINVAL;
2754 timeout = timespec_to_jiffies(ts);
2756 * We can be close to the next tick, add another one
2757 * to ensure we will wait at least the time asked for.
2759 if (ts->tv_sec || ts->tv_nsec)
2760 timeout++;
2764 * Invert the set of allowed signals to get those we want to block.
2766 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2767 signotset(&mask);
2769 spin_lock_irq(&tsk->sighand->siglock);
2770 sig = dequeue_signal(tsk, &mask, info);
2771 if (!sig && timeout) {
2773 * None ready, temporarily unblock those we're interested
2774 * while we are sleeping in so that we'll be awakened when
2775 * they arrive. Unblocking is always fine, we can avoid
2776 * set_current_blocked().
2778 tsk->real_blocked = tsk->blocked;
2779 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2780 recalc_sigpending();
2781 spin_unlock_irq(&tsk->sighand->siglock);
2783 timeout = schedule_timeout_interruptible(timeout);
2785 spin_lock_irq(&tsk->sighand->siglock);
2786 __set_task_blocked(tsk, &tsk->real_blocked);
2787 siginitset(&tsk->real_blocked, 0);
2788 sig = dequeue_signal(tsk, &mask, info);
2790 spin_unlock_irq(&tsk->sighand->siglock);
2792 if (sig)
2793 return sig;
2794 return timeout ? -EINTR : -EAGAIN;
2798 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2799 * in @uthese
2800 * @uthese: queued signals to wait for
2801 * @uinfo: if non-null, the signal's siginfo is returned here
2802 * @uts: upper bound on process time suspension
2803 * @sigsetsize: size of sigset_t type
2805 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2806 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2807 size_t, sigsetsize)
2809 sigset_t these;
2810 struct timespec ts;
2811 siginfo_t info;
2812 int ret;
2814 /* XXX: Don't preclude handling different sized sigset_t's. */
2815 if (sigsetsize != sizeof(sigset_t))
2816 return -EINVAL;
2818 if (copy_from_user(&these, uthese, sizeof(these)))
2819 return -EFAULT;
2821 if (uts) {
2822 if (copy_from_user(&ts, uts, sizeof(ts)))
2823 return -EFAULT;
2826 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2828 if (ret > 0 && uinfo) {
2829 if (copy_siginfo_to_user(uinfo, &info))
2830 ret = -EFAULT;
2833 return ret;
2837 * sys_kill - send a signal to a process
2838 * @pid: the PID of the process
2839 * @sig: signal to be sent
2841 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2843 struct siginfo info;
2845 info.si_signo = sig;
2846 info.si_errno = 0;
2847 info.si_code = SI_USER;
2848 info.si_pid = task_tgid_vnr(current);
2849 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2851 return kill_something_info(sig, &info, pid);
2854 static int
2855 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2857 struct task_struct *p;
2858 int error = -ESRCH;
2860 rcu_read_lock();
2861 p = find_task_by_vpid(pid);
2862 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2863 error = check_kill_permission(sig, info, p);
2865 * The null signal is a permissions and process existence
2866 * probe. No signal is actually delivered.
2868 if (!error && sig) {
2869 error = do_send_sig_info(sig, info, p, false);
2871 * If lock_task_sighand() failed we pretend the task
2872 * dies after receiving the signal. The window is tiny,
2873 * and the signal is private anyway.
2875 if (unlikely(error == -ESRCH))
2876 error = 0;
2879 rcu_read_unlock();
2881 return error;
2884 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2886 struct siginfo info;
2888 info.si_signo = sig;
2889 info.si_errno = 0;
2890 info.si_code = SI_TKILL;
2891 info.si_pid = task_tgid_vnr(current);
2892 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2894 return do_send_specific(tgid, pid, sig, &info);
2898 * sys_tgkill - send signal to one specific thread
2899 * @tgid: the thread group ID of the thread
2900 * @pid: the PID of the thread
2901 * @sig: signal to be sent
2903 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2904 * exists but it's not belonging to the target process anymore. This
2905 * method solves the problem of threads exiting and PIDs getting reused.
2907 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2909 /* This is only valid for single tasks */
2910 if (pid <= 0 || tgid <= 0)
2911 return -EINVAL;
2913 return do_tkill(tgid, pid, sig);
2917 * sys_tkill - send signal to one specific task
2918 * @pid: the PID of the task
2919 * @sig: signal to be sent
2921 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2923 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2925 /* This is only valid for single tasks */
2926 if (pid <= 0)
2927 return -EINVAL;
2929 return do_tkill(0, pid, sig);
2933 * sys_rt_sigqueueinfo - send signal information to a signal
2934 * @pid: the PID of the thread
2935 * @sig: signal to be sent
2936 * @uinfo: signal info to be sent
2938 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2939 siginfo_t __user *, uinfo)
2941 siginfo_t info;
2943 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2944 return -EFAULT;
2946 /* Not even root can pretend to send signals from the kernel.
2947 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2949 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2950 /* We used to allow any < 0 si_code */
2951 WARN_ON_ONCE(info.si_code < 0);
2952 return -EPERM;
2954 info.si_signo = sig;
2956 /* POSIX.1b doesn't mention process groups. */
2957 return kill_proc_info(sig, &info, pid);
2960 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2962 /* This is only valid for single tasks */
2963 if (pid <= 0 || tgid <= 0)
2964 return -EINVAL;
2966 /* Not even root can pretend to send signals from the kernel.
2967 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2969 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2970 /* We used to allow any < 0 si_code */
2971 WARN_ON_ONCE(info->si_code < 0);
2972 return -EPERM;
2974 info->si_signo = sig;
2976 return do_send_specific(tgid, pid, sig, info);
2979 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2980 siginfo_t __user *, uinfo)
2982 siginfo_t info;
2984 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2985 return -EFAULT;
2987 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2990 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2992 struct task_struct *t = current;
2993 struct k_sigaction *k;
2994 sigset_t mask;
2996 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2997 return -EINVAL;
2999 k = &t->sighand->action[sig-1];
3001 spin_lock_irq(&current->sighand->siglock);
3002 if (oact)
3003 *oact = *k;
3005 if (act) {
3006 sigdelsetmask(&act->sa.sa_mask,
3007 sigmask(SIGKILL) | sigmask(SIGSTOP));
3008 *k = *act;
3010 * POSIX 3.3.1.3:
3011 * "Setting a signal action to SIG_IGN for a signal that is
3012 * pending shall cause the pending signal to be discarded,
3013 * whether or not it is blocked."
3015 * "Setting a signal action to SIG_DFL for a signal that is
3016 * pending and whose default action is to ignore the signal
3017 * (for example, SIGCHLD), shall cause the pending signal to
3018 * be discarded, whether or not it is blocked"
3020 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3021 sigemptyset(&mask);
3022 sigaddset(&mask, sig);
3023 rm_from_queue_full(&mask, &t->signal->shared_pending);
3024 do {
3025 rm_from_queue_full(&mask, &t->pending);
3026 t = next_thread(t);
3027 } while (t != current);
3031 spin_unlock_irq(&current->sighand->siglock);
3032 return 0;
3035 int
3036 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3038 stack_t oss;
3039 int error;
3041 oss.ss_sp = (void __user *) current->sas_ss_sp;
3042 oss.ss_size = current->sas_ss_size;
3043 oss.ss_flags = sas_ss_flags(sp);
3045 if (uss) {
3046 void __user *ss_sp;
3047 size_t ss_size;
3048 int ss_flags;
3050 error = -EFAULT;
3051 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3052 goto out;
3053 error = __get_user(ss_sp, &uss->ss_sp) |
3054 __get_user(ss_flags, &uss->ss_flags) |
3055 __get_user(ss_size, &uss->ss_size);
3056 if (error)
3057 goto out;
3059 error = -EPERM;
3060 if (on_sig_stack(sp))
3061 goto out;
3063 error = -EINVAL;
3065 * Note - this code used to test ss_flags incorrectly:
3066 * old code may have been written using ss_flags==0
3067 * to mean ss_flags==SS_ONSTACK (as this was the only
3068 * way that worked) - this fix preserves that older
3069 * mechanism.
3071 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3072 goto out;
3074 if (ss_flags == SS_DISABLE) {
3075 ss_size = 0;
3076 ss_sp = NULL;
3077 } else {
3078 error = -ENOMEM;
3079 if (ss_size < MINSIGSTKSZ)
3080 goto out;
3083 current->sas_ss_sp = (unsigned long) ss_sp;
3084 current->sas_ss_size = ss_size;
3087 error = 0;
3088 if (uoss) {
3089 error = -EFAULT;
3090 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3091 goto out;
3092 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3093 __put_user(oss.ss_size, &uoss->ss_size) |
3094 __put_user(oss.ss_flags, &uoss->ss_flags);
3097 out:
3098 return error;
3101 #ifdef __ARCH_WANT_SYS_SIGPENDING
3104 * sys_sigpending - examine pending signals
3105 * @set: where mask of pending signal is returned
3107 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3109 return do_sigpending(set, sizeof(*set));
3112 #endif
3114 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3116 * sys_sigprocmask - examine and change blocked signals
3117 * @how: whether to add, remove, or set signals
3118 * @nset: signals to add or remove (if non-null)
3119 * @oset: previous value of signal mask if non-null
3121 * Some platforms have their own version with special arguments;
3122 * others support only sys_rt_sigprocmask.
3125 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3126 old_sigset_t __user *, oset)
3128 old_sigset_t old_set, new_set;
3129 sigset_t new_blocked;
3131 old_set = current->blocked.sig[0];
3133 if (nset) {
3134 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3135 return -EFAULT;
3136 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3138 new_blocked = current->blocked;
3140 switch (how) {
3141 case SIG_BLOCK:
3142 sigaddsetmask(&new_blocked, new_set);
3143 break;
3144 case SIG_UNBLOCK:
3145 sigdelsetmask(&new_blocked, new_set);
3146 break;
3147 case SIG_SETMASK:
3148 new_blocked.sig[0] = new_set;
3149 break;
3150 default:
3151 return -EINVAL;
3154 __set_current_blocked(&new_blocked);
3157 if (oset) {
3158 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3159 return -EFAULT;
3162 return 0;
3164 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3166 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3168 * sys_rt_sigaction - alter an action taken by a process
3169 * @sig: signal to be sent
3170 * @act: new sigaction
3171 * @oact: used to save the previous sigaction
3172 * @sigsetsize: size of sigset_t type
3174 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3175 const struct sigaction __user *, act,
3176 struct sigaction __user *, oact,
3177 size_t, sigsetsize)
3179 struct k_sigaction new_sa, old_sa;
3180 int ret = -EINVAL;
3182 /* XXX: Don't preclude handling different sized sigset_t's. */
3183 if (sigsetsize != sizeof(sigset_t))
3184 goto out;
3186 if (act) {
3187 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3188 return -EFAULT;
3191 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3193 if (!ret && oact) {
3194 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3195 return -EFAULT;
3197 out:
3198 return ret;
3200 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3202 #ifdef __ARCH_WANT_SYS_SGETMASK
3205 * For backwards compatibility. Functionality superseded by sigprocmask.
3207 SYSCALL_DEFINE0(sgetmask)
3209 /* SMP safe */
3210 return current->blocked.sig[0];
3213 SYSCALL_DEFINE1(ssetmask, int, newmask)
3215 int old = current->blocked.sig[0];
3216 sigset_t newset;
3218 set_current_blocked(&newset);
3220 return old;
3222 #endif /* __ARCH_WANT_SGETMASK */
3224 #ifdef __ARCH_WANT_SYS_SIGNAL
3226 * For backwards compatibility. Functionality superseded by sigaction.
3228 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3230 struct k_sigaction new_sa, old_sa;
3231 int ret;
3233 new_sa.sa.sa_handler = handler;
3234 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3235 sigemptyset(&new_sa.sa.sa_mask);
3237 ret = do_sigaction(sig, &new_sa, &old_sa);
3239 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3241 #endif /* __ARCH_WANT_SYS_SIGNAL */
3243 #ifdef __ARCH_WANT_SYS_PAUSE
3245 SYSCALL_DEFINE0(pause)
3247 while (!signal_pending(current)) {
3248 current->state = TASK_INTERRUPTIBLE;
3249 schedule();
3251 return -ERESTARTNOHAND;
3254 #endif
3256 int sigsuspend(sigset_t *set)
3258 current->saved_sigmask = current->blocked;
3259 set_current_blocked(set);
3261 current->state = TASK_INTERRUPTIBLE;
3262 schedule();
3263 set_restore_sigmask();
3264 return -ERESTARTNOHAND;
3267 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3269 * sys_rt_sigsuspend - replace the signal mask for a value with the
3270 * @unewset value until a signal is received
3271 * @unewset: new signal mask value
3272 * @sigsetsize: size of sigset_t type
3274 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3276 sigset_t newset;
3278 /* XXX: Don't preclude handling different sized sigset_t's. */
3279 if (sigsetsize != sizeof(sigset_t))
3280 return -EINVAL;
3282 if (copy_from_user(&newset, unewset, sizeof(newset)))
3283 return -EFAULT;
3284 return sigsuspend(&newset);
3286 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3288 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3290 return NULL;
3293 void __init signals_init(void)
3295 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3298 #ifdef CONFIG_KGDB_KDB
3299 #include <linux/kdb.h>
3301 * kdb_send_sig_info - Allows kdb to send signals without exposing
3302 * signal internals. This function checks if the required locks are
3303 * available before calling the main signal code, to avoid kdb
3304 * deadlocks.
3306 void
3307 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3309 static struct task_struct *kdb_prev_t;
3310 int sig, new_t;
3311 if (!spin_trylock(&t->sighand->siglock)) {
3312 kdb_printf("Can't do kill command now.\n"
3313 "The sigmask lock is held somewhere else in "
3314 "kernel, try again later\n");
3315 return;
3317 spin_unlock(&t->sighand->siglock);
3318 new_t = kdb_prev_t != t;
3319 kdb_prev_t = t;
3320 if (t->state != TASK_RUNNING && new_t) {
3321 kdb_printf("Process is not RUNNING, sending a signal from "
3322 "kdb risks deadlock\n"
3323 "on the run queue locks. "
3324 "The signal has _not_ been sent.\n"
3325 "Reissue the kill command if you want to risk "
3326 "the deadlock.\n");
3327 return;
3329 sig = info->si_signo;
3330 if (send_sig_info(sig, info, t))
3331 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3332 sig, t->pid);
3333 else
3334 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3336 #endif /* CONFIG_KGDB_KDB */