ARM: imx: Include linux/err.h
[linux-2.6.git] / fs / namei.c
blob645268f23eb64cb8c2931ce33391beb2d0080c36
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
39 #include "internal.h"
40 #include "mount.h"
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
90 * [10-Sep-98 Alan Modra] Another symlink change.
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 void final_putname(struct filename *name)
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
140 result = audit_reusename(filename);
141 if (result)
142 return result;
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
202 error:
203 final_putname(result);
204 return err;
207 struct filename *
208 getname(const char __user * filename)
210 return getname_flags(filename, 0, NULL);
212 EXPORT_SYMBOL(getname);
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
221 #endif
223 static int check_acl(struct inode *inode, int mask)
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
264 #endif
266 return -EAGAIN;
270 * This does the basic permission checking
272 static int acl_permission_check(struct inode *inode, int mask)
274 unsigned int mode = inode->i_mode;
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
290 * If the DACs are ok we don't need any capability check.
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
311 int generic_permission(struct inode *inode, int mask)
313 int ret;
316 * Do the basic permission checks.
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
341 * Searching includes executable on directories, else just read.
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
348 return -EACCES;
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
357 static inline int do_inode_permission(struct inode *inode, int mask)
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
368 return generic_permission(inode, mask);
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
376 * Check for read/write/execute permissions on an inode.
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
383 int __inode_permission(struct inode *inode, int mask)
385 int retval;
387 if (unlikely(mask & MAY_WRITE)) {
389 * Nobody gets write access to an immutable file.
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
403 return security_inode_permission(inode, mask);
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
412 * Separate out file-system wide checks from inode-specific permission checks.
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
424 return 0;
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438 int inode_permission(struct inode *inode, int mask)
440 int retval;
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
452 * Given a path increment the reference count to the dentry and the vfsmount.
454 void path_get(const struct path *path)
456 mntget(path->mnt);
457 dget(path->dentry);
459 EXPORT_SYMBOL(path_get);
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
465 * Given a path decrement the reference count to the dentry and the vfsmount.
467 void path_put(const struct path *path)
469 dput(path->dentry);
470 mntput(path->mnt);
472 EXPORT_SYMBOL(path_put);
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
485 static inline void lock_rcu_walk(void)
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
491 static inline void unlock_rcu_walk(void)
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
498 * unlazy_walk - try to switch to ref-walk mode.
499 * @nd: nameidata pathwalk data
500 * @dentry: child of nd->path.dentry or NULL
501 * Returns: 0 on success, -ECHILD on failure
503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
505 * @nd or NULL. Must be called from rcu-walk context.
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
509 struct fs_struct *fs = current->fs;
510 struct dentry *parent = nd->path.dentry;
512 BUG_ON(!(nd->flags & LOOKUP_RCU));
515 * Get a reference to the parent first: we're
516 * going to make "path_put(nd->path)" valid in
517 * non-RCU context for "terminate_walk()".
519 * If this doesn't work, return immediately with
520 * RCU walking still active (and then we will do
521 * the RCU walk cleanup in terminate_walk()).
523 if (!lockref_get_not_dead(&parent->d_lockref))
524 return -ECHILD;
527 * After the mntget(), we terminate_walk() will do
528 * the right thing for non-RCU mode, and all our
529 * subsequent exit cases should unlock_rcu_walk()
530 * before returning.
532 mntget(nd->path.mnt);
533 nd->flags &= ~LOOKUP_RCU;
536 * For a negative lookup, the lookup sequence point is the parents
537 * sequence point, and it only needs to revalidate the parent dentry.
539 * For a positive lookup, we need to move both the parent and the
540 * dentry from the RCU domain to be properly refcounted. And the
541 * sequence number in the dentry validates *both* dentry counters,
542 * since we checked the sequence number of the parent after we got
543 * the child sequence number. So we know the parent must still
544 * be valid if the child sequence number is still valid.
546 if (!dentry) {
547 if (read_seqcount_retry(&parent->d_seq, nd->seq))
548 goto out;
549 BUG_ON(nd->inode != parent->d_inode);
550 } else {
551 if (!lockref_get_not_dead(&dentry->d_lockref))
552 goto out;
553 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
554 goto drop_dentry;
558 * Sequence counts matched. Now make sure that the root is
559 * still valid and get it if required.
561 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
562 spin_lock(&fs->lock);
563 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
564 goto unlock_and_drop_dentry;
565 path_get(&nd->root);
566 spin_unlock(&fs->lock);
569 unlock_rcu_walk();
570 return 0;
572 unlock_and_drop_dentry:
573 spin_unlock(&fs->lock);
574 drop_dentry:
575 unlock_rcu_walk();
576 dput(dentry);
577 goto drop_root_mnt;
578 out:
579 unlock_rcu_walk();
580 drop_root_mnt:
581 if (!(nd->flags & LOOKUP_ROOT))
582 nd->root.mnt = NULL;
583 return -ECHILD;
586 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
588 return dentry->d_op->d_revalidate(dentry, flags);
592 * complete_walk - successful completion of path walk
593 * @nd: pointer nameidata
595 * If we had been in RCU mode, drop out of it and legitimize nd->path.
596 * Revalidate the final result, unless we'd already done that during
597 * the path walk or the filesystem doesn't ask for it. Return 0 on
598 * success, -error on failure. In case of failure caller does not
599 * need to drop nd->path.
601 static int complete_walk(struct nameidata *nd)
603 struct dentry *dentry = nd->path.dentry;
604 int status;
606 if (nd->flags & LOOKUP_RCU) {
607 nd->flags &= ~LOOKUP_RCU;
608 if (!(nd->flags & LOOKUP_ROOT))
609 nd->root.mnt = NULL;
611 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
612 unlock_rcu_walk();
613 return -ECHILD;
615 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
616 unlock_rcu_walk();
617 dput(dentry);
618 return -ECHILD;
620 mntget(nd->path.mnt);
621 unlock_rcu_walk();
624 if (likely(!(nd->flags & LOOKUP_JUMPED)))
625 return 0;
627 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
628 return 0;
630 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
631 if (status > 0)
632 return 0;
634 if (!status)
635 status = -ESTALE;
637 path_put(&nd->path);
638 return status;
641 static __always_inline void set_root(struct nameidata *nd)
643 if (!nd->root.mnt)
644 get_fs_root(current->fs, &nd->root);
647 static int link_path_walk(const char *, struct nameidata *);
649 static __always_inline void set_root_rcu(struct nameidata *nd)
651 if (!nd->root.mnt) {
652 struct fs_struct *fs = current->fs;
653 unsigned seq;
655 do {
656 seq = read_seqcount_begin(&fs->seq);
657 nd->root = fs->root;
658 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
659 } while (read_seqcount_retry(&fs->seq, seq));
663 static void path_put_conditional(struct path *path, struct nameidata *nd)
665 dput(path->dentry);
666 if (path->mnt != nd->path.mnt)
667 mntput(path->mnt);
670 static inline void path_to_nameidata(const struct path *path,
671 struct nameidata *nd)
673 if (!(nd->flags & LOOKUP_RCU)) {
674 dput(nd->path.dentry);
675 if (nd->path.mnt != path->mnt)
676 mntput(nd->path.mnt);
678 nd->path.mnt = path->mnt;
679 nd->path.dentry = path->dentry;
683 * Helper to directly jump to a known parsed path from ->follow_link,
684 * caller must have taken a reference to path beforehand.
686 void nd_jump_link(struct nameidata *nd, struct path *path)
688 path_put(&nd->path);
690 nd->path = *path;
691 nd->inode = nd->path.dentry->d_inode;
692 nd->flags |= LOOKUP_JUMPED;
695 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
697 struct inode *inode = link->dentry->d_inode;
698 if (inode->i_op->put_link)
699 inode->i_op->put_link(link->dentry, nd, cookie);
700 path_put(link);
703 int sysctl_protected_symlinks __read_mostly = 0;
704 int sysctl_protected_hardlinks __read_mostly = 0;
707 * may_follow_link - Check symlink following for unsafe situations
708 * @link: The path of the symlink
709 * @nd: nameidata pathwalk data
711 * In the case of the sysctl_protected_symlinks sysctl being enabled,
712 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
713 * in a sticky world-writable directory. This is to protect privileged
714 * processes from failing races against path names that may change out
715 * from under them by way of other users creating malicious symlinks.
716 * It will permit symlinks to be followed only when outside a sticky
717 * world-writable directory, or when the uid of the symlink and follower
718 * match, or when the directory owner matches the symlink's owner.
720 * Returns 0 if following the symlink is allowed, -ve on error.
722 static inline int may_follow_link(struct path *link, struct nameidata *nd)
724 const struct inode *inode;
725 const struct inode *parent;
727 if (!sysctl_protected_symlinks)
728 return 0;
730 /* Allowed if owner and follower match. */
731 inode = link->dentry->d_inode;
732 if (uid_eq(current_cred()->fsuid, inode->i_uid))
733 return 0;
735 /* Allowed if parent directory not sticky and world-writable. */
736 parent = nd->path.dentry->d_inode;
737 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
738 return 0;
740 /* Allowed if parent directory and link owner match. */
741 if (uid_eq(parent->i_uid, inode->i_uid))
742 return 0;
744 audit_log_link_denied("follow_link", link);
745 path_put_conditional(link, nd);
746 path_put(&nd->path);
747 return -EACCES;
751 * safe_hardlink_source - Check for safe hardlink conditions
752 * @inode: the source inode to hardlink from
754 * Return false if at least one of the following conditions:
755 * - inode is not a regular file
756 * - inode is setuid
757 * - inode is setgid and group-exec
758 * - access failure for read and write
760 * Otherwise returns true.
762 static bool safe_hardlink_source(struct inode *inode)
764 umode_t mode = inode->i_mode;
766 /* Special files should not get pinned to the filesystem. */
767 if (!S_ISREG(mode))
768 return false;
770 /* Setuid files should not get pinned to the filesystem. */
771 if (mode & S_ISUID)
772 return false;
774 /* Executable setgid files should not get pinned to the filesystem. */
775 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
776 return false;
778 /* Hardlinking to unreadable or unwritable sources is dangerous. */
779 if (inode_permission(inode, MAY_READ | MAY_WRITE))
780 return false;
782 return true;
786 * may_linkat - Check permissions for creating a hardlink
787 * @link: the source to hardlink from
789 * Block hardlink when all of:
790 * - sysctl_protected_hardlinks enabled
791 * - fsuid does not match inode
792 * - hardlink source is unsafe (see safe_hardlink_source() above)
793 * - not CAP_FOWNER
795 * Returns 0 if successful, -ve on error.
797 static int may_linkat(struct path *link)
799 const struct cred *cred;
800 struct inode *inode;
802 if (!sysctl_protected_hardlinks)
803 return 0;
805 cred = current_cred();
806 inode = link->dentry->d_inode;
808 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
809 * otherwise, it must be a safe source.
811 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
812 capable(CAP_FOWNER))
813 return 0;
815 audit_log_link_denied("linkat", link);
816 return -EPERM;
819 static __always_inline int
820 follow_link(struct path *link, struct nameidata *nd, void **p)
822 struct dentry *dentry = link->dentry;
823 int error;
824 char *s;
826 BUG_ON(nd->flags & LOOKUP_RCU);
828 if (link->mnt == nd->path.mnt)
829 mntget(link->mnt);
831 error = -ELOOP;
832 if (unlikely(current->total_link_count >= 40))
833 goto out_put_nd_path;
835 cond_resched();
836 current->total_link_count++;
838 touch_atime(link);
839 nd_set_link(nd, NULL);
841 error = security_inode_follow_link(link->dentry, nd);
842 if (error)
843 goto out_put_nd_path;
845 nd->last_type = LAST_BIND;
846 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
847 error = PTR_ERR(*p);
848 if (IS_ERR(*p))
849 goto out_put_nd_path;
851 error = 0;
852 s = nd_get_link(nd);
853 if (s) {
854 if (unlikely(IS_ERR(s))) {
855 path_put(&nd->path);
856 put_link(nd, link, *p);
857 return PTR_ERR(s);
859 if (*s == '/') {
860 set_root(nd);
861 path_put(&nd->path);
862 nd->path = nd->root;
863 path_get(&nd->root);
864 nd->flags |= LOOKUP_JUMPED;
866 nd->inode = nd->path.dentry->d_inode;
867 error = link_path_walk(s, nd);
868 if (unlikely(error))
869 put_link(nd, link, *p);
872 return error;
874 out_put_nd_path:
875 *p = NULL;
876 path_put(&nd->path);
877 path_put(link);
878 return error;
881 static int follow_up_rcu(struct path *path)
883 struct mount *mnt = real_mount(path->mnt);
884 struct mount *parent;
885 struct dentry *mountpoint;
887 parent = mnt->mnt_parent;
888 if (&parent->mnt == path->mnt)
889 return 0;
890 mountpoint = mnt->mnt_mountpoint;
891 path->dentry = mountpoint;
892 path->mnt = &parent->mnt;
893 return 1;
897 * follow_up - Find the mountpoint of path's vfsmount
899 * Given a path, find the mountpoint of its source file system.
900 * Replace @path with the path of the mountpoint in the parent mount.
901 * Up is towards /.
903 * Return 1 if we went up a level and 0 if we were already at the
904 * root.
906 int follow_up(struct path *path)
908 struct mount *mnt = real_mount(path->mnt);
909 struct mount *parent;
910 struct dentry *mountpoint;
912 br_read_lock(&vfsmount_lock);
913 parent = mnt->mnt_parent;
914 if (parent == mnt) {
915 br_read_unlock(&vfsmount_lock);
916 return 0;
918 mntget(&parent->mnt);
919 mountpoint = dget(mnt->mnt_mountpoint);
920 br_read_unlock(&vfsmount_lock);
921 dput(path->dentry);
922 path->dentry = mountpoint;
923 mntput(path->mnt);
924 path->mnt = &parent->mnt;
925 return 1;
929 * Perform an automount
930 * - return -EISDIR to tell follow_managed() to stop and return the path we
931 * were called with.
933 static int follow_automount(struct path *path, unsigned flags,
934 bool *need_mntput)
936 struct vfsmount *mnt;
937 int err;
939 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
940 return -EREMOTE;
942 /* We don't want to mount if someone's just doing a stat -
943 * unless they're stat'ing a directory and appended a '/' to
944 * the name.
946 * We do, however, want to mount if someone wants to open or
947 * create a file of any type under the mountpoint, wants to
948 * traverse through the mountpoint or wants to open the
949 * mounted directory. Also, autofs may mark negative dentries
950 * as being automount points. These will need the attentions
951 * of the daemon to instantiate them before they can be used.
953 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
954 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
955 path->dentry->d_inode)
956 return -EISDIR;
958 current->total_link_count++;
959 if (current->total_link_count >= 40)
960 return -ELOOP;
962 mnt = path->dentry->d_op->d_automount(path);
963 if (IS_ERR(mnt)) {
965 * The filesystem is allowed to return -EISDIR here to indicate
966 * it doesn't want to automount. For instance, autofs would do
967 * this so that its userspace daemon can mount on this dentry.
969 * However, we can only permit this if it's a terminal point in
970 * the path being looked up; if it wasn't then the remainder of
971 * the path is inaccessible and we should say so.
973 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
974 return -EREMOTE;
975 return PTR_ERR(mnt);
978 if (!mnt) /* mount collision */
979 return 0;
981 if (!*need_mntput) {
982 /* lock_mount() may release path->mnt on error */
983 mntget(path->mnt);
984 *need_mntput = true;
986 err = finish_automount(mnt, path);
988 switch (err) {
989 case -EBUSY:
990 /* Someone else made a mount here whilst we were busy */
991 return 0;
992 case 0:
993 path_put(path);
994 path->mnt = mnt;
995 path->dentry = dget(mnt->mnt_root);
996 return 0;
997 default:
998 return err;
1004 * Handle a dentry that is managed in some way.
1005 * - Flagged for transit management (autofs)
1006 * - Flagged as mountpoint
1007 * - Flagged as automount point
1009 * This may only be called in refwalk mode.
1011 * Serialization is taken care of in namespace.c
1013 static int follow_managed(struct path *path, unsigned flags)
1015 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1016 unsigned managed;
1017 bool need_mntput = false;
1018 int ret = 0;
1020 /* Given that we're not holding a lock here, we retain the value in a
1021 * local variable for each dentry as we look at it so that we don't see
1022 * the components of that value change under us */
1023 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1024 managed &= DCACHE_MANAGED_DENTRY,
1025 unlikely(managed != 0)) {
1026 /* Allow the filesystem to manage the transit without i_mutex
1027 * being held. */
1028 if (managed & DCACHE_MANAGE_TRANSIT) {
1029 BUG_ON(!path->dentry->d_op);
1030 BUG_ON(!path->dentry->d_op->d_manage);
1031 ret = path->dentry->d_op->d_manage(path->dentry, false);
1032 if (ret < 0)
1033 break;
1036 /* Transit to a mounted filesystem. */
1037 if (managed & DCACHE_MOUNTED) {
1038 struct vfsmount *mounted = lookup_mnt(path);
1039 if (mounted) {
1040 dput(path->dentry);
1041 if (need_mntput)
1042 mntput(path->mnt);
1043 path->mnt = mounted;
1044 path->dentry = dget(mounted->mnt_root);
1045 need_mntput = true;
1046 continue;
1049 /* Something is mounted on this dentry in another
1050 * namespace and/or whatever was mounted there in this
1051 * namespace got unmounted before we managed to get the
1052 * vfsmount_lock */
1055 /* Handle an automount point */
1056 if (managed & DCACHE_NEED_AUTOMOUNT) {
1057 ret = follow_automount(path, flags, &need_mntput);
1058 if (ret < 0)
1059 break;
1060 continue;
1063 /* We didn't change the current path point */
1064 break;
1067 if (need_mntput && path->mnt == mnt)
1068 mntput(path->mnt);
1069 if (ret == -EISDIR)
1070 ret = 0;
1071 return ret < 0 ? ret : need_mntput;
1074 int follow_down_one(struct path *path)
1076 struct vfsmount *mounted;
1078 mounted = lookup_mnt(path);
1079 if (mounted) {
1080 dput(path->dentry);
1081 mntput(path->mnt);
1082 path->mnt = mounted;
1083 path->dentry = dget(mounted->mnt_root);
1084 return 1;
1086 return 0;
1089 static inline bool managed_dentry_might_block(struct dentry *dentry)
1091 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1092 dentry->d_op->d_manage(dentry, true) < 0);
1096 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1097 * we meet a managed dentry that would need blocking.
1099 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1100 struct inode **inode)
1102 for (;;) {
1103 struct mount *mounted;
1105 * Don't forget we might have a non-mountpoint managed dentry
1106 * that wants to block transit.
1108 if (unlikely(managed_dentry_might_block(path->dentry)))
1109 return false;
1111 if (!d_mountpoint(path->dentry))
1112 break;
1114 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1115 if (!mounted)
1116 break;
1117 path->mnt = &mounted->mnt;
1118 path->dentry = mounted->mnt.mnt_root;
1119 nd->flags |= LOOKUP_JUMPED;
1120 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1122 * Update the inode too. We don't need to re-check the
1123 * dentry sequence number here after this d_inode read,
1124 * because a mount-point is always pinned.
1126 *inode = path->dentry->d_inode;
1128 return true;
1131 static void follow_mount_rcu(struct nameidata *nd)
1133 while (d_mountpoint(nd->path.dentry)) {
1134 struct mount *mounted;
1135 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1136 if (!mounted)
1137 break;
1138 nd->path.mnt = &mounted->mnt;
1139 nd->path.dentry = mounted->mnt.mnt_root;
1140 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1146 set_root_rcu(nd);
1148 while (1) {
1149 if (nd->path.dentry == nd->root.dentry &&
1150 nd->path.mnt == nd->root.mnt) {
1151 break;
1153 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1154 struct dentry *old = nd->path.dentry;
1155 struct dentry *parent = old->d_parent;
1156 unsigned seq;
1158 seq = read_seqcount_begin(&parent->d_seq);
1159 if (read_seqcount_retry(&old->d_seq, nd->seq))
1160 goto failed;
1161 nd->path.dentry = parent;
1162 nd->seq = seq;
1163 break;
1165 if (!follow_up_rcu(&nd->path))
1166 break;
1167 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1169 follow_mount_rcu(nd);
1170 nd->inode = nd->path.dentry->d_inode;
1171 return 0;
1173 failed:
1174 nd->flags &= ~LOOKUP_RCU;
1175 if (!(nd->flags & LOOKUP_ROOT))
1176 nd->root.mnt = NULL;
1177 unlock_rcu_walk();
1178 return -ECHILD;
1182 * Follow down to the covering mount currently visible to userspace. At each
1183 * point, the filesystem owning that dentry may be queried as to whether the
1184 * caller is permitted to proceed or not.
1186 int follow_down(struct path *path)
1188 unsigned managed;
1189 int ret;
1191 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1192 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1193 /* Allow the filesystem to manage the transit without i_mutex
1194 * being held.
1196 * We indicate to the filesystem if someone is trying to mount
1197 * something here. This gives autofs the chance to deny anyone
1198 * other than its daemon the right to mount on its
1199 * superstructure.
1201 * The filesystem may sleep at this point.
1203 if (managed & DCACHE_MANAGE_TRANSIT) {
1204 BUG_ON(!path->dentry->d_op);
1205 BUG_ON(!path->dentry->d_op->d_manage);
1206 ret = path->dentry->d_op->d_manage(
1207 path->dentry, false);
1208 if (ret < 0)
1209 return ret == -EISDIR ? 0 : ret;
1212 /* Transit to a mounted filesystem. */
1213 if (managed & DCACHE_MOUNTED) {
1214 struct vfsmount *mounted = lookup_mnt(path);
1215 if (!mounted)
1216 break;
1217 dput(path->dentry);
1218 mntput(path->mnt);
1219 path->mnt = mounted;
1220 path->dentry = dget(mounted->mnt_root);
1221 continue;
1224 /* Don't handle automount points here */
1225 break;
1227 return 0;
1231 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1233 static void follow_mount(struct path *path)
1235 while (d_mountpoint(path->dentry)) {
1236 struct vfsmount *mounted = lookup_mnt(path);
1237 if (!mounted)
1238 break;
1239 dput(path->dentry);
1240 mntput(path->mnt);
1241 path->mnt = mounted;
1242 path->dentry = dget(mounted->mnt_root);
1246 static void follow_dotdot(struct nameidata *nd)
1248 set_root(nd);
1250 while(1) {
1251 struct dentry *old = nd->path.dentry;
1253 if (nd->path.dentry == nd->root.dentry &&
1254 nd->path.mnt == nd->root.mnt) {
1255 break;
1257 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1258 /* rare case of legitimate dget_parent()... */
1259 nd->path.dentry = dget_parent(nd->path.dentry);
1260 dput(old);
1261 break;
1263 if (!follow_up(&nd->path))
1264 break;
1266 follow_mount(&nd->path);
1267 nd->inode = nd->path.dentry->d_inode;
1271 * This looks up the name in dcache, possibly revalidates the old dentry and
1272 * allocates a new one if not found or not valid. In the need_lookup argument
1273 * returns whether i_op->lookup is necessary.
1275 * dir->d_inode->i_mutex must be held
1277 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1278 unsigned int flags, bool *need_lookup)
1280 struct dentry *dentry;
1281 int error;
1283 *need_lookup = false;
1284 dentry = d_lookup(dir, name);
1285 if (dentry) {
1286 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1287 error = d_revalidate(dentry, flags);
1288 if (unlikely(error <= 0)) {
1289 if (error < 0) {
1290 dput(dentry);
1291 return ERR_PTR(error);
1292 } else if (!d_invalidate(dentry)) {
1293 dput(dentry);
1294 dentry = NULL;
1300 if (!dentry) {
1301 dentry = d_alloc(dir, name);
1302 if (unlikely(!dentry))
1303 return ERR_PTR(-ENOMEM);
1305 *need_lookup = true;
1307 return dentry;
1311 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1312 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1314 * dir->d_inode->i_mutex must be held
1316 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1317 unsigned int flags)
1319 struct dentry *old;
1321 /* Don't create child dentry for a dead directory. */
1322 if (unlikely(IS_DEADDIR(dir))) {
1323 dput(dentry);
1324 return ERR_PTR(-ENOENT);
1327 old = dir->i_op->lookup(dir, dentry, flags);
1328 if (unlikely(old)) {
1329 dput(dentry);
1330 dentry = old;
1332 return dentry;
1335 static struct dentry *__lookup_hash(struct qstr *name,
1336 struct dentry *base, unsigned int flags)
1338 bool need_lookup;
1339 struct dentry *dentry;
1341 dentry = lookup_dcache(name, base, flags, &need_lookup);
1342 if (!need_lookup)
1343 return dentry;
1345 return lookup_real(base->d_inode, dentry, flags);
1349 * It's more convoluted than I'd like it to be, but... it's still fairly
1350 * small and for now I'd prefer to have fast path as straight as possible.
1351 * It _is_ time-critical.
1353 static int lookup_fast(struct nameidata *nd,
1354 struct path *path, struct inode **inode)
1356 struct vfsmount *mnt = nd->path.mnt;
1357 struct dentry *dentry, *parent = nd->path.dentry;
1358 int need_reval = 1;
1359 int status = 1;
1360 int err;
1363 * Rename seqlock is not required here because in the off chance
1364 * of a false negative due to a concurrent rename, we're going to
1365 * do the non-racy lookup, below.
1367 if (nd->flags & LOOKUP_RCU) {
1368 unsigned seq;
1369 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1370 if (!dentry)
1371 goto unlazy;
1374 * This sequence count validates that the inode matches
1375 * the dentry name information from lookup.
1377 *inode = dentry->d_inode;
1378 if (read_seqcount_retry(&dentry->d_seq, seq))
1379 return -ECHILD;
1382 * This sequence count validates that the parent had no
1383 * changes while we did the lookup of the dentry above.
1385 * The memory barrier in read_seqcount_begin of child is
1386 * enough, we can use __read_seqcount_retry here.
1388 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1389 return -ECHILD;
1390 nd->seq = seq;
1392 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1393 status = d_revalidate(dentry, nd->flags);
1394 if (unlikely(status <= 0)) {
1395 if (status != -ECHILD)
1396 need_reval = 0;
1397 goto unlazy;
1400 path->mnt = mnt;
1401 path->dentry = dentry;
1402 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1403 goto unlazy;
1404 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1405 goto unlazy;
1406 return 0;
1407 unlazy:
1408 if (unlazy_walk(nd, dentry))
1409 return -ECHILD;
1410 } else {
1411 dentry = __d_lookup(parent, &nd->last);
1414 if (unlikely(!dentry))
1415 goto need_lookup;
1417 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1418 status = d_revalidate(dentry, nd->flags);
1419 if (unlikely(status <= 0)) {
1420 if (status < 0) {
1421 dput(dentry);
1422 return status;
1424 if (!d_invalidate(dentry)) {
1425 dput(dentry);
1426 goto need_lookup;
1430 path->mnt = mnt;
1431 path->dentry = dentry;
1432 err = follow_managed(path, nd->flags);
1433 if (unlikely(err < 0)) {
1434 path_put_conditional(path, nd);
1435 return err;
1437 if (err)
1438 nd->flags |= LOOKUP_JUMPED;
1439 *inode = path->dentry->d_inode;
1440 return 0;
1442 need_lookup:
1443 return 1;
1446 /* Fast lookup failed, do it the slow way */
1447 static int lookup_slow(struct nameidata *nd, struct path *path)
1449 struct dentry *dentry, *parent;
1450 int err;
1452 parent = nd->path.dentry;
1453 BUG_ON(nd->inode != parent->d_inode);
1455 mutex_lock(&parent->d_inode->i_mutex);
1456 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1457 mutex_unlock(&parent->d_inode->i_mutex);
1458 if (IS_ERR(dentry))
1459 return PTR_ERR(dentry);
1460 path->mnt = nd->path.mnt;
1461 path->dentry = dentry;
1462 err = follow_managed(path, nd->flags);
1463 if (unlikely(err < 0)) {
1464 path_put_conditional(path, nd);
1465 return err;
1467 if (err)
1468 nd->flags |= LOOKUP_JUMPED;
1469 return 0;
1472 static inline int may_lookup(struct nameidata *nd)
1474 if (nd->flags & LOOKUP_RCU) {
1475 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1476 if (err != -ECHILD)
1477 return err;
1478 if (unlazy_walk(nd, NULL))
1479 return -ECHILD;
1481 return inode_permission(nd->inode, MAY_EXEC);
1484 static inline int handle_dots(struct nameidata *nd, int type)
1486 if (type == LAST_DOTDOT) {
1487 if (nd->flags & LOOKUP_RCU) {
1488 if (follow_dotdot_rcu(nd))
1489 return -ECHILD;
1490 } else
1491 follow_dotdot(nd);
1493 return 0;
1496 static void terminate_walk(struct nameidata *nd)
1498 if (!(nd->flags & LOOKUP_RCU)) {
1499 path_put(&nd->path);
1500 } else {
1501 nd->flags &= ~LOOKUP_RCU;
1502 if (!(nd->flags & LOOKUP_ROOT))
1503 nd->root.mnt = NULL;
1504 unlock_rcu_walk();
1509 * Do we need to follow links? We _really_ want to be able
1510 * to do this check without having to look at inode->i_op,
1511 * so we keep a cache of "no, this doesn't need follow_link"
1512 * for the common case.
1514 static inline int should_follow_link(struct inode *inode, int follow)
1516 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1517 if (likely(inode->i_op->follow_link))
1518 return follow;
1520 /* This gets set once for the inode lifetime */
1521 spin_lock(&inode->i_lock);
1522 inode->i_opflags |= IOP_NOFOLLOW;
1523 spin_unlock(&inode->i_lock);
1525 return 0;
1528 static inline int walk_component(struct nameidata *nd, struct path *path,
1529 int follow)
1531 struct inode *inode;
1532 int err;
1534 * "." and ".." are special - ".." especially so because it has
1535 * to be able to know about the current root directory and
1536 * parent relationships.
1538 if (unlikely(nd->last_type != LAST_NORM))
1539 return handle_dots(nd, nd->last_type);
1540 err = lookup_fast(nd, path, &inode);
1541 if (unlikely(err)) {
1542 if (err < 0)
1543 goto out_err;
1545 err = lookup_slow(nd, path);
1546 if (err < 0)
1547 goto out_err;
1549 inode = path->dentry->d_inode;
1551 err = -ENOENT;
1552 if (!inode)
1553 goto out_path_put;
1555 if (should_follow_link(inode, follow)) {
1556 if (nd->flags & LOOKUP_RCU) {
1557 if (unlikely(unlazy_walk(nd, path->dentry))) {
1558 err = -ECHILD;
1559 goto out_err;
1562 BUG_ON(inode != path->dentry->d_inode);
1563 return 1;
1565 path_to_nameidata(path, nd);
1566 nd->inode = inode;
1567 return 0;
1569 out_path_put:
1570 path_to_nameidata(path, nd);
1571 out_err:
1572 terminate_walk(nd);
1573 return err;
1577 * This limits recursive symlink follows to 8, while
1578 * limiting consecutive symlinks to 40.
1580 * Without that kind of total limit, nasty chains of consecutive
1581 * symlinks can cause almost arbitrarily long lookups.
1583 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1585 int res;
1587 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1588 path_put_conditional(path, nd);
1589 path_put(&nd->path);
1590 return -ELOOP;
1592 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1594 nd->depth++;
1595 current->link_count++;
1597 do {
1598 struct path link = *path;
1599 void *cookie;
1601 res = follow_link(&link, nd, &cookie);
1602 if (res)
1603 break;
1604 res = walk_component(nd, path, LOOKUP_FOLLOW);
1605 put_link(nd, &link, cookie);
1606 } while (res > 0);
1608 current->link_count--;
1609 nd->depth--;
1610 return res;
1614 * We really don't want to look at inode->i_op->lookup
1615 * when we don't have to. So we keep a cache bit in
1616 * the inode ->i_opflags field that says "yes, we can
1617 * do lookup on this inode".
1619 static inline int can_lookup(struct inode *inode)
1621 if (likely(inode->i_opflags & IOP_LOOKUP))
1622 return 1;
1623 if (likely(!inode->i_op->lookup))
1624 return 0;
1626 /* We do this once for the lifetime of the inode */
1627 spin_lock(&inode->i_lock);
1628 inode->i_opflags |= IOP_LOOKUP;
1629 spin_unlock(&inode->i_lock);
1630 return 1;
1634 * We can do the critical dentry name comparison and hashing
1635 * operations one word at a time, but we are limited to:
1637 * - Architectures with fast unaligned word accesses. We could
1638 * do a "get_unaligned()" if this helps and is sufficiently
1639 * fast.
1641 * - Little-endian machines (so that we can generate the mask
1642 * of low bytes efficiently). Again, we *could* do a byte
1643 * swapping load on big-endian architectures if that is not
1644 * expensive enough to make the optimization worthless.
1646 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1647 * do not trap on the (extremely unlikely) case of a page
1648 * crossing operation.
1650 * - Furthermore, we need an efficient 64-bit compile for the
1651 * 64-bit case in order to generate the "number of bytes in
1652 * the final mask". Again, that could be replaced with a
1653 * efficient population count instruction or similar.
1655 #ifdef CONFIG_DCACHE_WORD_ACCESS
1657 #include <asm/word-at-a-time.h>
1659 #ifdef CONFIG_64BIT
1661 static inline unsigned int fold_hash(unsigned long hash)
1663 hash += hash >> (8*sizeof(int));
1664 return hash;
1667 #else /* 32-bit case */
1669 #define fold_hash(x) (x)
1671 #endif
1673 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1675 unsigned long a, mask;
1676 unsigned long hash = 0;
1678 for (;;) {
1679 a = load_unaligned_zeropad(name);
1680 if (len < sizeof(unsigned long))
1681 break;
1682 hash += a;
1683 hash *= 9;
1684 name += sizeof(unsigned long);
1685 len -= sizeof(unsigned long);
1686 if (!len)
1687 goto done;
1689 mask = ~(~0ul << len*8);
1690 hash += mask & a;
1691 done:
1692 return fold_hash(hash);
1694 EXPORT_SYMBOL(full_name_hash);
1697 * Calculate the length and hash of the path component, and
1698 * return the length of the component;
1700 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1702 unsigned long a, b, adata, bdata, mask, hash, len;
1703 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1705 hash = a = 0;
1706 len = -sizeof(unsigned long);
1707 do {
1708 hash = (hash + a) * 9;
1709 len += sizeof(unsigned long);
1710 a = load_unaligned_zeropad(name+len);
1711 b = a ^ REPEAT_BYTE('/');
1712 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1714 adata = prep_zero_mask(a, adata, &constants);
1715 bdata = prep_zero_mask(b, bdata, &constants);
1717 mask = create_zero_mask(adata | bdata);
1719 hash += a & zero_bytemask(mask);
1720 *hashp = fold_hash(hash);
1722 return len + find_zero(mask);
1725 #else
1727 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1729 unsigned long hash = init_name_hash();
1730 while (len--)
1731 hash = partial_name_hash(*name++, hash);
1732 return end_name_hash(hash);
1734 EXPORT_SYMBOL(full_name_hash);
1737 * We know there's a real path component here of at least
1738 * one character.
1740 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1742 unsigned long hash = init_name_hash();
1743 unsigned long len = 0, c;
1745 c = (unsigned char)*name;
1746 do {
1747 len++;
1748 hash = partial_name_hash(c, hash);
1749 c = (unsigned char)name[len];
1750 } while (c && c != '/');
1751 *hashp = end_name_hash(hash);
1752 return len;
1755 #endif
1758 * Name resolution.
1759 * This is the basic name resolution function, turning a pathname into
1760 * the final dentry. We expect 'base' to be positive and a directory.
1762 * Returns 0 and nd will have valid dentry and mnt on success.
1763 * Returns error and drops reference to input namei data on failure.
1765 static int link_path_walk(const char *name, struct nameidata *nd)
1767 struct path next;
1768 int err;
1770 while (*name=='/')
1771 name++;
1772 if (!*name)
1773 return 0;
1775 /* At this point we know we have a real path component. */
1776 for(;;) {
1777 struct qstr this;
1778 long len;
1779 int type;
1781 err = may_lookup(nd);
1782 if (err)
1783 break;
1785 len = hash_name(name, &this.hash);
1786 this.name = name;
1787 this.len = len;
1789 type = LAST_NORM;
1790 if (name[0] == '.') switch (len) {
1791 case 2:
1792 if (name[1] == '.') {
1793 type = LAST_DOTDOT;
1794 nd->flags |= LOOKUP_JUMPED;
1796 break;
1797 case 1:
1798 type = LAST_DOT;
1800 if (likely(type == LAST_NORM)) {
1801 struct dentry *parent = nd->path.dentry;
1802 nd->flags &= ~LOOKUP_JUMPED;
1803 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1804 err = parent->d_op->d_hash(parent, &this);
1805 if (err < 0)
1806 break;
1810 nd->last = this;
1811 nd->last_type = type;
1813 if (!name[len])
1814 return 0;
1816 * If it wasn't NUL, we know it was '/'. Skip that
1817 * slash, and continue until no more slashes.
1819 do {
1820 len++;
1821 } while (unlikely(name[len] == '/'));
1822 if (!name[len])
1823 return 0;
1825 name += len;
1827 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1828 if (err < 0)
1829 return err;
1831 if (err) {
1832 err = nested_symlink(&next, nd);
1833 if (err)
1834 return err;
1836 if (!can_lookup(nd->inode)) {
1837 err = -ENOTDIR;
1838 break;
1841 terminate_walk(nd);
1842 return err;
1845 static int path_init(int dfd, const char *name, unsigned int flags,
1846 struct nameidata *nd, struct file **fp)
1848 int retval = 0;
1850 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1851 nd->flags = flags | LOOKUP_JUMPED;
1852 nd->depth = 0;
1853 if (flags & LOOKUP_ROOT) {
1854 struct inode *inode = nd->root.dentry->d_inode;
1855 if (*name) {
1856 if (!can_lookup(inode))
1857 return -ENOTDIR;
1858 retval = inode_permission(inode, MAY_EXEC);
1859 if (retval)
1860 return retval;
1862 nd->path = nd->root;
1863 nd->inode = inode;
1864 if (flags & LOOKUP_RCU) {
1865 lock_rcu_walk();
1866 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1867 } else {
1868 path_get(&nd->path);
1870 return 0;
1873 nd->root.mnt = NULL;
1875 if (*name=='/') {
1876 if (flags & LOOKUP_RCU) {
1877 lock_rcu_walk();
1878 set_root_rcu(nd);
1879 } else {
1880 set_root(nd);
1881 path_get(&nd->root);
1883 nd->path = nd->root;
1884 } else if (dfd == AT_FDCWD) {
1885 if (flags & LOOKUP_RCU) {
1886 struct fs_struct *fs = current->fs;
1887 unsigned seq;
1889 lock_rcu_walk();
1891 do {
1892 seq = read_seqcount_begin(&fs->seq);
1893 nd->path = fs->pwd;
1894 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1895 } while (read_seqcount_retry(&fs->seq, seq));
1896 } else {
1897 get_fs_pwd(current->fs, &nd->path);
1899 } else {
1900 /* Caller must check execute permissions on the starting path component */
1901 struct fd f = fdget_raw(dfd);
1902 struct dentry *dentry;
1904 if (!f.file)
1905 return -EBADF;
1907 dentry = f.file->f_path.dentry;
1909 if (*name) {
1910 if (!can_lookup(dentry->d_inode)) {
1911 fdput(f);
1912 return -ENOTDIR;
1916 nd->path = f.file->f_path;
1917 if (flags & LOOKUP_RCU) {
1918 if (f.need_put)
1919 *fp = f.file;
1920 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1921 lock_rcu_walk();
1922 } else {
1923 path_get(&nd->path);
1924 fdput(f);
1928 nd->inode = nd->path.dentry->d_inode;
1929 return 0;
1932 static inline int lookup_last(struct nameidata *nd, struct path *path)
1934 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1935 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1937 nd->flags &= ~LOOKUP_PARENT;
1938 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1941 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1942 static int path_lookupat(int dfd, const char *name,
1943 unsigned int flags, struct nameidata *nd)
1945 struct file *base = NULL;
1946 struct path path;
1947 int err;
1950 * Path walking is largely split up into 2 different synchronisation
1951 * schemes, rcu-walk and ref-walk (explained in
1952 * Documentation/filesystems/path-lookup.txt). These share much of the
1953 * path walk code, but some things particularly setup, cleanup, and
1954 * following mounts are sufficiently divergent that functions are
1955 * duplicated. Typically there is a function foo(), and its RCU
1956 * analogue, foo_rcu().
1958 * -ECHILD is the error number of choice (just to avoid clashes) that
1959 * is returned if some aspect of an rcu-walk fails. Such an error must
1960 * be handled by restarting a traditional ref-walk (which will always
1961 * be able to complete).
1963 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1965 if (unlikely(err))
1966 return err;
1968 current->total_link_count = 0;
1969 err = link_path_walk(name, nd);
1971 if (!err && !(flags & LOOKUP_PARENT)) {
1972 err = lookup_last(nd, &path);
1973 while (err > 0) {
1974 void *cookie;
1975 struct path link = path;
1976 err = may_follow_link(&link, nd);
1977 if (unlikely(err))
1978 break;
1979 nd->flags |= LOOKUP_PARENT;
1980 err = follow_link(&link, nd, &cookie);
1981 if (err)
1982 break;
1983 err = lookup_last(nd, &path);
1984 put_link(nd, &link, cookie);
1988 if (!err)
1989 err = complete_walk(nd);
1991 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1992 if (!can_lookup(nd->inode)) {
1993 path_put(&nd->path);
1994 err = -ENOTDIR;
1998 if (base)
1999 fput(base);
2001 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2002 path_put(&nd->root);
2003 nd->root.mnt = NULL;
2005 return err;
2008 static int filename_lookup(int dfd, struct filename *name,
2009 unsigned int flags, struct nameidata *nd)
2011 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2012 if (unlikely(retval == -ECHILD))
2013 retval = path_lookupat(dfd, name->name, flags, nd);
2014 if (unlikely(retval == -ESTALE))
2015 retval = path_lookupat(dfd, name->name,
2016 flags | LOOKUP_REVAL, nd);
2018 if (likely(!retval))
2019 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2020 return retval;
2023 static int do_path_lookup(int dfd, const char *name,
2024 unsigned int flags, struct nameidata *nd)
2026 struct filename filename = { .name = name };
2028 return filename_lookup(dfd, &filename, flags, nd);
2031 /* does lookup, returns the object with parent locked */
2032 struct dentry *kern_path_locked(const char *name, struct path *path)
2034 struct nameidata nd;
2035 struct dentry *d;
2036 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2037 if (err)
2038 return ERR_PTR(err);
2039 if (nd.last_type != LAST_NORM) {
2040 path_put(&nd.path);
2041 return ERR_PTR(-EINVAL);
2043 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2044 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2045 if (IS_ERR(d)) {
2046 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2047 path_put(&nd.path);
2048 return d;
2050 *path = nd.path;
2051 return d;
2054 int kern_path(const char *name, unsigned int flags, struct path *path)
2056 struct nameidata nd;
2057 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2058 if (!res)
2059 *path = nd.path;
2060 return res;
2064 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2065 * @dentry: pointer to dentry of the base directory
2066 * @mnt: pointer to vfs mount of the base directory
2067 * @name: pointer to file name
2068 * @flags: lookup flags
2069 * @path: pointer to struct path to fill
2071 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2072 const char *name, unsigned int flags,
2073 struct path *path)
2075 struct nameidata nd;
2076 int err;
2077 nd.root.dentry = dentry;
2078 nd.root.mnt = mnt;
2079 BUG_ON(flags & LOOKUP_PARENT);
2080 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2081 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2082 if (!err)
2083 *path = nd.path;
2084 return err;
2088 * Restricted form of lookup. Doesn't follow links, single-component only,
2089 * needs parent already locked. Doesn't follow mounts.
2090 * SMP-safe.
2092 static struct dentry *lookup_hash(struct nameidata *nd)
2094 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2098 * lookup_one_len - filesystem helper to lookup single pathname component
2099 * @name: pathname component to lookup
2100 * @base: base directory to lookup from
2101 * @len: maximum length @len should be interpreted to
2103 * Note that this routine is purely a helper for filesystem usage and should
2104 * not be called by generic code. Also note that by using this function the
2105 * nameidata argument is passed to the filesystem methods and a filesystem
2106 * using this helper needs to be prepared for that.
2108 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2110 struct qstr this;
2111 unsigned int c;
2112 int err;
2114 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2116 this.name = name;
2117 this.len = len;
2118 this.hash = full_name_hash(name, len);
2119 if (!len)
2120 return ERR_PTR(-EACCES);
2122 if (unlikely(name[0] == '.')) {
2123 if (len < 2 || (len == 2 && name[1] == '.'))
2124 return ERR_PTR(-EACCES);
2127 while (len--) {
2128 c = *(const unsigned char *)name++;
2129 if (c == '/' || c == '\0')
2130 return ERR_PTR(-EACCES);
2133 * See if the low-level filesystem might want
2134 * to use its own hash..
2136 if (base->d_flags & DCACHE_OP_HASH) {
2137 int err = base->d_op->d_hash(base, &this);
2138 if (err < 0)
2139 return ERR_PTR(err);
2142 err = inode_permission(base->d_inode, MAY_EXEC);
2143 if (err)
2144 return ERR_PTR(err);
2146 return __lookup_hash(&this, base, 0);
2149 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2150 struct path *path, int *empty)
2152 struct nameidata nd;
2153 struct filename *tmp = getname_flags(name, flags, empty);
2154 int err = PTR_ERR(tmp);
2155 if (!IS_ERR(tmp)) {
2157 BUG_ON(flags & LOOKUP_PARENT);
2159 err = filename_lookup(dfd, tmp, flags, &nd);
2160 putname(tmp);
2161 if (!err)
2162 *path = nd.path;
2164 return err;
2167 int user_path_at(int dfd, const char __user *name, unsigned flags,
2168 struct path *path)
2170 return user_path_at_empty(dfd, name, flags, path, NULL);
2174 * NB: most callers don't do anything directly with the reference to the
2175 * to struct filename, but the nd->last pointer points into the name string
2176 * allocated by getname. So we must hold the reference to it until all
2177 * path-walking is complete.
2179 static struct filename *
2180 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2181 unsigned int flags)
2183 struct filename *s = getname(path);
2184 int error;
2186 /* only LOOKUP_REVAL is allowed in extra flags */
2187 flags &= LOOKUP_REVAL;
2189 if (IS_ERR(s))
2190 return s;
2192 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2193 if (error) {
2194 putname(s);
2195 return ERR_PTR(error);
2198 return s;
2202 * mountpoint_last - look up last component for umount
2203 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2204 * @path: pointer to container for result
2206 * This is a special lookup_last function just for umount. In this case, we
2207 * need to resolve the path without doing any revalidation.
2209 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2210 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2211 * in almost all cases, this lookup will be served out of the dcache. The only
2212 * cases where it won't are if nd->last refers to a symlink or the path is
2213 * bogus and it doesn't exist.
2215 * Returns:
2216 * -error: if there was an error during lookup. This includes -ENOENT if the
2217 * lookup found a negative dentry. The nd->path reference will also be
2218 * put in this case.
2220 * 0: if we successfully resolved nd->path and found it to not to be a
2221 * symlink that needs to be followed. "path" will also be populated.
2222 * The nd->path reference will also be put.
2224 * 1: if we successfully resolved nd->last and found it to be a symlink
2225 * that needs to be followed. "path" will be populated with the path
2226 * to the link, and nd->path will *not* be put.
2228 static int
2229 mountpoint_last(struct nameidata *nd, struct path *path)
2231 int error = 0;
2232 struct dentry *dentry;
2233 struct dentry *dir = nd->path.dentry;
2235 /* If we're in rcuwalk, drop out of it to handle last component */
2236 if (nd->flags & LOOKUP_RCU) {
2237 if (unlazy_walk(nd, NULL)) {
2238 error = -ECHILD;
2239 goto out;
2243 nd->flags &= ~LOOKUP_PARENT;
2245 if (unlikely(nd->last_type != LAST_NORM)) {
2246 error = handle_dots(nd, nd->last_type);
2247 if (error)
2248 goto out;
2249 dentry = dget(nd->path.dentry);
2250 goto done;
2253 mutex_lock(&dir->d_inode->i_mutex);
2254 dentry = d_lookup(dir, &nd->last);
2255 if (!dentry) {
2257 * No cached dentry. Mounted dentries are pinned in the cache,
2258 * so that means that this dentry is probably a symlink or the
2259 * path doesn't actually point to a mounted dentry.
2261 dentry = d_alloc(dir, &nd->last);
2262 if (!dentry) {
2263 error = -ENOMEM;
2264 mutex_unlock(&dir->d_inode->i_mutex);
2265 goto out;
2267 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2268 error = PTR_ERR(dentry);
2269 if (IS_ERR(dentry)) {
2270 mutex_unlock(&dir->d_inode->i_mutex);
2271 goto out;
2274 mutex_unlock(&dir->d_inode->i_mutex);
2276 done:
2277 if (!dentry->d_inode) {
2278 error = -ENOENT;
2279 dput(dentry);
2280 goto out;
2282 path->dentry = dentry;
2283 path->mnt = mntget(nd->path.mnt);
2284 if (should_follow_link(dentry->d_inode, nd->flags & LOOKUP_FOLLOW))
2285 return 1;
2286 follow_mount(path);
2287 error = 0;
2288 out:
2289 terminate_walk(nd);
2290 return error;
2294 * path_mountpoint - look up a path to be umounted
2295 * @dfd: directory file descriptor to start walk from
2296 * @name: full pathname to walk
2297 * @flags: lookup flags
2299 * Look up the given name, but don't attempt to revalidate the last component.
2300 * Returns 0 and "path" will be valid on success; Retuns error otherwise.
2302 static int
2303 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2305 struct file *base = NULL;
2306 struct nameidata nd;
2307 int err;
2309 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2310 if (unlikely(err))
2311 return err;
2313 current->total_link_count = 0;
2314 err = link_path_walk(name, &nd);
2315 if (err)
2316 goto out;
2318 err = mountpoint_last(&nd, path);
2319 while (err > 0) {
2320 void *cookie;
2321 struct path link = *path;
2322 err = may_follow_link(&link, &nd);
2323 if (unlikely(err))
2324 break;
2325 nd.flags |= LOOKUP_PARENT;
2326 err = follow_link(&link, &nd, &cookie);
2327 if (err)
2328 break;
2329 err = mountpoint_last(&nd, path);
2330 put_link(&nd, &link, cookie);
2332 out:
2333 if (base)
2334 fput(base);
2336 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2337 path_put(&nd.root);
2339 return err;
2342 static int
2343 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2344 unsigned int flags)
2346 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2347 if (unlikely(error == -ECHILD))
2348 error = path_mountpoint(dfd, s->name, path, flags);
2349 if (unlikely(error == -ESTALE))
2350 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2351 if (likely(!error))
2352 audit_inode(s, path->dentry, 0);
2353 return error;
2357 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2358 * @dfd: directory file descriptor
2359 * @name: pathname from userland
2360 * @flags: lookup flags
2361 * @path: pointer to container to hold result
2363 * A umount is a special case for path walking. We're not actually interested
2364 * in the inode in this situation, and ESTALE errors can be a problem. We
2365 * simply want track down the dentry and vfsmount attached at the mountpoint
2366 * and avoid revalidating the last component.
2368 * Returns 0 and populates "path" on success.
2371 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2372 struct path *path)
2374 struct filename *s = getname(name);
2375 int error;
2376 if (IS_ERR(s))
2377 return PTR_ERR(s);
2378 error = filename_mountpoint(dfd, s, path, flags);
2379 putname(s);
2380 return error;
2384 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2385 unsigned int flags)
2387 struct filename s = {.name = name};
2388 return filename_mountpoint(dfd, &s, path, flags);
2390 EXPORT_SYMBOL(kern_path_mountpoint);
2393 * It's inline, so penalty for filesystems that don't use sticky bit is
2394 * minimal.
2396 static inline int check_sticky(struct inode *dir, struct inode *inode)
2398 kuid_t fsuid = current_fsuid();
2400 if (!(dir->i_mode & S_ISVTX))
2401 return 0;
2402 if (uid_eq(inode->i_uid, fsuid))
2403 return 0;
2404 if (uid_eq(dir->i_uid, fsuid))
2405 return 0;
2406 return !inode_capable(inode, CAP_FOWNER);
2410 * Check whether we can remove a link victim from directory dir, check
2411 * whether the type of victim is right.
2412 * 1. We can't do it if dir is read-only (done in permission())
2413 * 2. We should have write and exec permissions on dir
2414 * 3. We can't remove anything from append-only dir
2415 * 4. We can't do anything with immutable dir (done in permission())
2416 * 5. If the sticky bit on dir is set we should either
2417 * a. be owner of dir, or
2418 * b. be owner of victim, or
2419 * c. have CAP_FOWNER capability
2420 * 6. If the victim is append-only or immutable we can't do antyhing with
2421 * links pointing to it.
2422 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2423 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2424 * 9. We can't remove a root or mountpoint.
2425 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2426 * nfs_async_unlink().
2428 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2430 int error;
2432 if (!victim->d_inode)
2433 return -ENOENT;
2435 BUG_ON(victim->d_parent->d_inode != dir);
2436 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2438 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2439 if (error)
2440 return error;
2441 if (IS_APPEND(dir))
2442 return -EPERM;
2443 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2444 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2445 return -EPERM;
2446 if (isdir) {
2447 if (!S_ISDIR(victim->d_inode->i_mode))
2448 return -ENOTDIR;
2449 if (IS_ROOT(victim))
2450 return -EBUSY;
2451 } else if (S_ISDIR(victim->d_inode->i_mode))
2452 return -EISDIR;
2453 if (IS_DEADDIR(dir))
2454 return -ENOENT;
2455 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2456 return -EBUSY;
2457 return 0;
2460 /* Check whether we can create an object with dentry child in directory
2461 * dir.
2462 * 1. We can't do it if child already exists (open has special treatment for
2463 * this case, but since we are inlined it's OK)
2464 * 2. We can't do it if dir is read-only (done in permission())
2465 * 3. We should have write and exec permissions on dir
2466 * 4. We can't do it if dir is immutable (done in permission())
2468 static inline int may_create(struct inode *dir, struct dentry *child)
2470 if (child->d_inode)
2471 return -EEXIST;
2472 if (IS_DEADDIR(dir))
2473 return -ENOENT;
2474 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2478 * p1 and p2 should be directories on the same fs.
2480 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2482 struct dentry *p;
2484 if (p1 == p2) {
2485 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2486 return NULL;
2489 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2491 p = d_ancestor(p2, p1);
2492 if (p) {
2493 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2494 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2495 return p;
2498 p = d_ancestor(p1, p2);
2499 if (p) {
2500 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2501 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2502 return p;
2505 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2506 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2507 return NULL;
2510 void unlock_rename(struct dentry *p1, struct dentry *p2)
2512 mutex_unlock(&p1->d_inode->i_mutex);
2513 if (p1 != p2) {
2514 mutex_unlock(&p2->d_inode->i_mutex);
2515 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2519 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2520 bool want_excl)
2522 int error = may_create(dir, dentry);
2523 if (error)
2524 return error;
2526 if (!dir->i_op->create)
2527 return -EACCES; /* shouldn't it be ENOSYS? */
2528 mode &= S_IALLUGO;
2529 mode |= S_IFREG;
2530 error = security_inode_create(dir, dentry, mode);
2531 if (error)
2532 return error;
2533 error = dir->i_op->create(dir, dentry, mode, want_excl);
2534 if (!error)
2535 fsnotify_create(dir, dentry);
2536 return error;
2539 static int may_open(struct path *path, int acc_mode, int flag)
2541 struct dentry *dentry = path->dentry;
2542 struct inode *inode = dentry->d_inode;
2543 int error;
2545 /* O_PATH? */
2546 if (!acc_mode)
2547 return 0;
2549 if (!inode)
2550 return -ENOENT;
2552 switch (inode->i_mode & S_IFMT) {
2553 case S_IFLNK:
2554 return -ELOOP;
2555 case S_IFDIR:
2556 if (acc_mode & MAY_WRITE)
2557 return -EISDIR;
2558 break;
2559 case S_IFBLK:
2560 case S_IFCHR:
2561 if (path->mnt->mnt_flags & MNT_NODEV)
2562 return -EACCES;
2563 /*FALLTHRU*/
2564 case S_IFIFO:
2565 case S_IFSOCK:
2566 flag &= ~O_TRUNC;
2567 break;
2570 error = inode_permission(inode, acc_mode);
2571 if (error)
2572 return error;
2575 * An append-only file must be opened in append mode for writing.
2577 if (IS_APPEND(inode)) {
2578 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2579 return -EPERM;
2580 if (flag & O_TRUNC)
2581 return -EPERM;
2584 /* O_NOATIME can only be set by the owner or superuser */
2585 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2586 return -EPERM;
2588 return 0;
2591 static int handle_truncate(struct file *filp)
2593 struct path *path = &filp->f_path;
2594 struct inode *inode = path->dentry->d_inode;
2595 int error = get_write_access(inode);
2596 if (error)
2597 return error;
2599 * Refuse to truncate files with mandatory locks held on them.
2601 error = locks_verify_locked(inode);
2602 if (!error)
2603 error = security_path_truncate(path);
2604 if (!error) {
2605 error = do_truncate(path->dentry, 0,
2606 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2607 filp);
2609 put_write_access(inode);
2610 return error;
2613 static inline int open_to_namei_flags(int flag)
2615 if ((flag & O_ACCMODE) == 3)
2616 flag--;
2617 return flag;
2620 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2622 int error = security_path_mknod(dir, dentry, mode, 0);
2623 if (error)
2624 return error;
2626 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2627 if (error)
2628 return error;
2630 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2634 * Attempt to atomically look up, create and open a file from a negative
2635 * dentry.
2637 * Returns 0 if successful. The file will have been created and attached to
2638 * @file by the filesystem calling finish_open().
2640 * Returns 1 if the file was looked up only or didn't need creating. The
2641 * caller will need to perform the open themselves. @path will have been
2642 * updated to point to the new dentry. This may be negative.
2644 * Returns an error code otherwise.
2646 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2647 struct path *path, struct file *file,
2648 const struct open_flags *op,
2649 bool got_write, bool need_lookup,
2650 int *opened)
2652 struct inode *dir = nd->path.dentry->d_inode;
2653 unsigned open_flag = open_to_namei_flags(op->open_flag);
2654 umode_t mode;
2655 int error;
2656 int acc_mode;
2657 int create_error = 0;
2658 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2659 bool excl;
2661 BUG_ON(dentry->d_inode);
2663 /* Don't create child dentry for a dead directory. */
2664 if (unlikely(IS_DEADDIR(dir))) {
2665 error = -ENOENT;
2666 goto out;
2669 mode = op->mode;
2670 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2671 mode &= ~current_umask();
2673 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2674 if (excl)
2675 open_flag &= ~O_TRUNC;
2678 * Checking write permission is tricky, bacuse we don't know if we are
2679 * going to actually need it: O_CREAT opens should work as long as the
2680 * file exists. But checking existence breaks atomicity. The trick is
2681 * to check access and if not granted clear O_CREAT from the flags.
2683 * Another problem is returing the "right" error value (e.g. for an
2684 * O_EXCL open we want to return EEXIST not EROFS).
2686 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2687 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2688 if (!(open_flag & O_CREAT)) {
2690 * No O_CREATE -> atomicity not a requirement -> fall
2691 * back to lookup + open
2693 goto no_open;
2694 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2695 /* Fall back and fail with the right error */
2696 create_error = -EROFS;
2697 goto no_open;
2698 } else {
2699 /* No side effects, safe to clear O_CREAT */
2700 create_error = -EROFS;
2701 open_flag &= ~O_CREAT;
2705 if (open_flag & O_CREAT) {
2706 error = may_o_create(&nd->path, dentry, mode);
2707 if (error) {
2708 create_error = error;
2709 if (open_flag & O_EXCL)
2710 goto no_open;
2711 open_flag &= ~O_CREAT;
2715 if (nd->flags & LOOKUP_DIRECTORY)
2716 open_flag |= O_DIRECTORY;
2718 file->f_path.dentry = DENTRY_NOT_SET;
2719 file->f_path.mnt = nd->path.mnt;
2720 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2721 opened);
2722 if (error < 0) {
2723 if (create_error && error == -ENOENT)
2724 error = create_error;
2725 goto out;
2728 if (error) { /* returned 1, that is */
2729 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2730 error = -EIO;
2731 goto out;
2733 if (file->f_path.dentry) {
2734 dput(dentry);
2735 dentry = file->f_path.dentry;
2737 if (*opened & FILE_CREATED)
2738 fsnotify_create(dir, dentry);
2739 if (!dentry->d_inode) {
2740 WARN_ON(*opened & FILE_CREATED);
2741 if (create_error) {
2742 error = create_error;
2743 goto out;
2745 } else {
2746 if (excl && !(*opened & FILE_CREATED)) {
2747 error = -EEXIST;
2748 goto out;
2751 goto looked_up;
2755 * We didn't have the inode before the open, so check open permission
2756 * here.
2758 acc_mode = op->acc_mode;
2759 if (*opened & FILE_CREATED) {
2760 WARN_ON(!(open_flag & O_CREAT));
2761 fsnotify_create(dir, dentry);
2762 acc_mode = MAY_OPEN;
2764 error = may_open(&file->f_path, acc_mode, open_flag);
2765 if (error)
2766 fput(file);
2768 out:
2769 dput(dentry);
2770 return error;
2772 no_open:
2773 if (need_lookup) {
2774 dentry = lookup_real(dir, dentry, nd->flags);
2775 if (IS_ERR(dentry))
2776 return PTR_ERR(dentry);
2778 if (create_error) {
2779 int open_flag = op->open_flag;
2781 error = create_error;
2782 if ((open_flag & O_EXCL)) {
2783 if (!dentry->d_inode)
2784 goto out;
2785 } else if (!dentry->d_inode) {
2786 goto out;
2787 } else if ((open_flag & O_TRUNC) &&
2788 S_ISREG(dentry->d_inode->i_mode)) {
2789 goto out;
2791 /* will fail later, go on to get the right error */
2794 looked_up:
2795 path->dentry = dentry;
2796 path->mnt = nd->path.mnt;
2797 return 1;
2801 * Look up and maybe create and open the last component.
2803 * Must be called with i_mutex held on parent.
2805 * Returns 0 if the file was successfully atomically created (if necessary) and
2806 * opened. In this case the file will be returned attached to @file.
2808 * Returns 1 if the file was not completely opened at this time, though lookups
2809 * and creations will have been performed and the dentry returned in @path will
2810 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2811 * specified then a negative dentry may be returned.
2813 * An error code is returned otherwise.
2815 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2816 * cleared otherwise prior to returning.
2818 static int lookup_open(struct nameidata *nd, struct path *path,
2819 struct file *file,
2820 const struct open_flags *op,
2821 bool got_write, int *opened)
2823 struct dentry *dir = nd->path.dentry;
2824 struct inode *dir_inode = dir->d_inode;
2825 struct dentry *dentry;
2826 int error;
2827 bool need_lookup;
2829 *opened &= ~FILE_CREATED;
2830 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2831 if (IS_ERR(dentry))
2832 return PTR_ERR(dentry);
2834 /* Cached positive dentry: will open in f_op->open */
2835 if (!need_lookup && dentry->d_inode)
2836 goto out_no_open;
2838 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2839 return atomic_open(nd, dentry, path, file, op, got_write,
2840 need_lookup, opened);
2843 if (need_lookup) {
2844 BUG_ON(dentry->d_inode);
2846 dentry = lookup_real(dir_inode, dentry, nd->flags);
2847 if (IS_ERR(dentry))
2848 return PTR_ERR(dentry);
2851 /* Negative dentry, just create the file */
2852 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2853 umode_t mode = op->mode;
2854 if (!IS_POSIXACL(dir->d_inode))
2855 mode &= ~current_umask();
2857 * This write is needed to ensure that a
2858 * rw->ro transition does not occur between
2859 * the time when the file is created and when
2860 * a permanent write count is taken through
2861 * the 'struct file' in finish_open().
2863 if (!got_write) {
2864 error = -EROFS;
2865 goto out_dput;
2867 *opened |= FILE_CREATED;
2868 error = security_path_mknod(&nd->path, dentry, mode, 0);
2869 if (error)
2870 goto out_dput;
2871 error = vfs_create(dir->d_inode, dentry, mode,
2872 nd->flags & LOOKUP_EXCL);
2873 if (error)
2874 goto out_dput;
2876 out_no_open:
2877 path->dentry = dentry;
2878 path->mnt = nd->path.mnt;
2879 return 1;
2881 out_dput:
2882 dput(dentry);
2883 return error;
2887 * Handle the last step of open()
2889 static int do_last(struct nameidata *nd, struct path *path,
2890 struct file *file, const struct open_flags *op,
2891 int *opened, struct filename *name)
2893 struct dentry *dir = nd->path.dentry;
2894 int open_flag = op->open_flag;
2895 bool will_truncate = (open_flag & O_TRUNC) != 0;
2896 bool got_write = false;
2897 int acc_mode = op->acc_mode;
2898 struct inode *inode;
2899 bool symlink_ok = false;
2900 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2901 bool retried = false;
2902 int error;
2904 nd->flags &= ~LOOKUP_PARENT;
2905 nd->flags |= op->intent;
2907 if (nd->last_type != LAST_NORM) {
2908 error = handle_dots(nd, nd->last_type);
2909 if (error)
2910 return error;
2911 goto finish_open;
2914 if (!(open_flag & O_CREAT)) {
2915 if (nd->last.name[nd->last.len])
2916 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2917 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2918 symlink_ok = true;
2919 /* we _can_ be in RCU mode here */
2920 error = lookup_fast(nd, path, &inode);
2921 if (likely(!error))
2922 goto finish_lookup;
2924 if (error < 0)
2925 goto out;
2927 BUG_ON(nd->inode != dir->d_inode);
2928 } else {
2929 /* create side of things */
2931 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2932 * has been cleared when we got to the last component we are
2933 * about to look up
2935 error = complete_walk(nd);
2936 if (error)
2937 return error;
2939 audit_inode(name, dir, LOOKUP_PARENT);
2940 error = -EISDIR;
2941 /* trailing slashes? */
2942 if (nd->last.name[nd->last.len])
2943 goto out;
2946 retry_lookup:
2947 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2948 error = mnt_want_write(nd->path.mnt);
2949 if (!error)
2950 got_write = true;
2952 * do _not_ fail yet - we might not need that or fail with
2953 * a different error; let lookup_open() decide; we'll be
2954 * dropping this one anyway.
2957 mutex_lock(&dir->d_inode->i_mutex);
2958 error = lookup_open(nd, path, file, op, got_write, opened);
2959 mutex_unlock(&dir->d_inode->i_mutex);
2961 if (error <= 0) {
2962 if (error)
2963 goto out;
2965 if ((*opened & FILE_CREATED) ||
2966 !S_ISREG(file_inode(file)->i_mode))
2967 will_truncate = false;
2969 audit_inode(name, file->f_path.dentry, 0);
2970 goto opened;
2973 if (*opened & FILE_CREATED) {
2974 /* Don't check for write permission, don't truncate */
2975 open_flag &= ~O_TRUNC;
2976 will_truncate = false;
2977 acc_mode = MAY_OPEN;
2978 path_to_nameidata(path, nd);
2979 goto finish_open_created;
2983 * create/update audit record if it already exists.
2985 if (path->dentry->d_inode)
2986 audit_inode(name, path->dentry, 0);
2989 * If atomic_open() acquired write access it is dropped now due to
2990 * possible mount and symlink following (this might be optimized away if
2991 * necessary...)
2993 if (got_write) {
2994 mnt_drop_write(nd->path.mnt);
2995 got_write = false;
2998 error = -EEXIST;
2999 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3000 goto exit_dput;
3002 error = follow_managed(path, nd->flags);
3003 if (error < 0)
3004 goto exit_dput;
3006 if (error)
3007 nd->flags |= LOOKUP_JUMPED;
3009 BUG_ON(nd->flags & LOOKUP_RCU);
3010 inode = path->dentry->d_inode;
3011 finish_lookup:
3012 /* we _can_ be in RCU mode here */
3013 error = -ENOENT;
3014 if (!inode) {
3015 path_to_nameidata(path, nd);
3016 goto out;
3019 if (should_follow_link(inode, !symlink_ok)) {
3020 if (nd->flags & LOOKUP_RCU) {
3021 if (unlikely(unlazy_walk(nd, path->dentry))) {
3022 error = -ECHILD;
3023 goto out;
3026 BUG_ON(inode != path->dentry->d_inode);
3027 return 1;
3030 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3031 path_to_nameidata(path, nd);
3032 } else {
3033 save_parent.dentry = nd->path.dentry;
3034 save_parent.mnt = mntget(path->mnt);
3035 nd->path.dentry = path->dentry;
3038 nd->inode = inode;
3039 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3040 finish_open:
3041 error = complete_walk(nd);
3042 if (error) {
3043 path_put(&save_parent);
3044 return error;
3046 audit_inode(name, nd->path.dentry, 0);
3047 error = -EISDIR;
3048 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
3049 goto out;
3050 error = -ENOTDIR;
3051 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
3052 goto out;
3053 if (!S_ISREG(nd->inode->i_mode))
3054 will_truncate = false;
3056 if (will_truncate) {
3057 error = mnt_want_write(nd->path.mnt);
3058 if (error)
3059 goto out;
3060 got_write = true;
3062 finish_open_created:
3063 error = may_open(&nd->path, acc_mode, open_flag);
3064 if (error)
3065 goto out;
3066 file->f_path.mnt = nd->path.mnt;
3067 error = finish_open(file, nd->path.dentry, NULL, opened);
3068 if (error) {
3069 if (error == -EOPENSTALE)
3070 goto stale_open;
3071 goto out;
3073 opened:
3074 error = open_check_o_direct(file);
3075 if (error)
3076 goto exit_fput;
3077 error = ima_file_check(file, op->acc_mode);
3078 if (error)
3079 goto exit_fput;
3081 if (will_truncate) {
3082 error = handle_truncate(file);
3083 if (error)
3084 goto exit_fput;
3086 out:
3087 if (got_write)
3088 mnt_drop_write(nd->path.mnt);
3089 path_put(&save_parent);
3090 terminate_walk(nd);
3091 return error;
3093 exit_dput:
3094 path_put_conditional(path, nd);
3095 goto out;
3096 exit_fput:
3097 fput(file);
3098 goto out;
3100 stale_open:
3101 /* If no saved parent or already retried then can't retry */
3102 if (!save_parent.dentry || retried)
3103 goto out;
3105 BUG_ON(save_parent.dentry != dir);
3106 path_put(&nd->path);
3107 nd->path = save_parent;
3108 nd->inode = dir->d_inode;
3109 save_parent.mnt = NULL;
3110 save_parent.dentry = NULL;
3111 if (got_write) {
3112 mnt_drop_write(nd->path.mnt);
3113 got_write = false;
3115 retried = true;
3116 goto retry_lookup;
3119 static int do_tmpfile(int dfd, struct filename *pathname,
3120 struct nameidata *nd, int flags,
3121 const struct open_flags *op,
3122 struct file *file, int *opened)
3124 static const struct qstr name = QSTR_INIT("/", 1);
3125 struct dentry *dentry, *child;
3126 struct inode *dir;
3127 int error = path_lookupat(dfd, pathname->name,
3128 flags | LOOKUP_DIRECTORY, nd);
3129 if (unlikely(error))
3130 return error;
3131 error = mnt_want_write(nd->path.mnt);
3132 if (unlikely(error))
3133 goto out;
3134 /* we want directory to be writable */
3135 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3136 if (error)
3137 goto out2;
3138 dentry = nd->path.dentry;
3139 dir = dentry->d_inode;
3140 if (!dir->i_op->tmpfile) {
3141 error = -EOPNOTSUPP;
3142 goto out2;
3144 child = d_alloc(dentry, &name);
3145 if (unlikely(!child)) {
3146 error = -ENOMEM;
3147 goto out2;
3149 nd->flags &= ~LOOKUP_DIRECTORY;
3150 nd->flags |= op->intent;
3151 dput(nd->path.dentry);
3152 nd->path.dentry = child;
3153 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3154 if (error)
3155 goto out2;
3156 audit_inode(pathname, nd->path.dentry, 0);
3157 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3158 if (error)
3159 goto out2;
3160 file->f_path.mnt = nd->path.mnt;
3161 error = finish_open(file, nd->path.dentry, NULL, opened);
3162 if (error)
3163 goto out2;
3164 error = open_check_o_direct(file);
3165 if (error) {
3166 fput(file);
3167 } else if (!(op->open_flag & O_EXCL)) {
3168 struct inode *inode = file_inode(file);
3169 spin_lock(&inode->i_lock);
3170 inode->i_state |= I_LINKABLE;
3171 spin_unlock(&inode->i_lock);
3173 out2:
3174 mnt_drop_write(nd->path.mnt);
3175 out:
3176 path_put(&nd->path);
3177 return error;
3180 static struct file *path_openat(int dfd, struct filename *pathname,
3181 struct nameidata *nd, const struct open_flags *op, int flags)
3183 struct file *base = NULL;
3184 struct file *file;
3185 struct path path;
3186 int opened = 0;
3187 int error;
3189 file = get_empty_filp();
3190 if (IS_ERR(file))
3191 return file;
3193 file->f_flags = op->open_flag;
3195 if (unlikely(file->f_flags & __O_TMPFILE)) {
3196 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3197 goto out;
3200 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3201 if (unlikely(error))
3202 goto out;
3204 current->total_link_count = 0;
3205 error = link_path_walk(pathname->name, nd);
3206 if (unlikely(error))
3207 goto out;
3209 error = do_last(nd, &path, file, op, &opened, pathname);
3210 while (unlikely(error > 0)) { /* trailing symlink */
3211 struct path link = path;
3212 void *cookie;
3213 if (!(nd->flags & LOOKUP_FOLLOW)) {
3214 path_put_conditional(&path, nd);
3215 path_put(&nd->path);
3216 error = -ELOOP;
3217 break;
3219 error = may_follow_link(&link, nd);
3220 if (unlikely(error))
3221 break;
3222 nd->flags |= LOOKUP_PARENT;
3223 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3224 error = follow_link(&link, nd, &cookie);
3225 if (unlikely(error))
3226 break;
3227 error = do_last(nd, &path, file, op, &opened, pathname);
3228 put_link(nd, &link, cookie);
3230 out:
3231 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3232 path_put(&nd->root);
3233 if (base)
3234 fput(base);
3235 if (!(opened & FILE_OPENED)) {
3236 BUG_ON(!error);
3237 put_filp(file);
3239 if (unlikely(error)) {
3240 if (error == -EOPENSTALE) {
3241 if (flags & LOOKUP_RCU)
3242 error = -ECHILD;
3243 else
3244 error = -ESTALE;
3246 file = ERR_PTR(error);
3248 return file;
3251 struct file *do_filp_open(int dfd, struct filename *pathname,
3252 const struct open_flags *op)
3254 struct nameidata nd;
3255 int flags = op->lookup_flags;
3256 struct file *filp;
3258 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3259 if (unlikely(filp == ERR_PTR(-ECHILD)))
3260 filp = path_openat(dfd, pathname, &nd, op, flags);
3261 if (unlikely(filp == ERR_PTR(-ESTALE)))
3262 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3263 return filp;
3266 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3267 const char *name, const struct open_flags *op)
3269 struct nameidata nd;
3270 struct file *file;
3271 struct filename filename = { .name = name };
3272 int flags = op->lookup_flags | LOOKUP_ROOT;
3274 nd.root.mnt = mnt;
3275 nd.root.dentry = dentry;
3277 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3278 return ERR_PTR(-ELOOP);
3280 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3281 if (unlikely(file == ERR_PTR(-ECHILD)))
3282 file = path_openat(-1, &filename, &nd, op, flags);
3283 if (unlikely(file == ERR_PTR(-ESTALE)))
3284 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3285 return file;
3288 struct dentry *kern_path_create(int dfd, const char *pathname,
3289 struct path *path, unsigned int lookup_flags)
3291 struct dentry *dentry = ERR_PTR(-EEXIST);
3292 struct nameidata nd;
3293 int err2;
3294 int error;
3295 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3298 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3299 * other flags passed in are ignored!
3301 lookup_flags &= LOOKUP_REVAL;
3303 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3304 if (error)
3305 return ERR_PTR(error);
3308 * Yucky last component or no last component at all?
3309 * (foo/., foo/.., /////)
3311 if (nd.last_type != LAST_NORM)
3312 goto out;
3313 nd.flags &= ~LOOKUP_PARENT;
3314 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3316 /* don't fail immediately if it's r/o, at least try to report other errors */
3317 err2 = mnt_want_write(nd.path.mnt);
3319 * Do the final lookup.
3321 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3322 dentry = lookup_hash(&nd);
3323 if (IS_ERR(dentry))
3324 goto unlock;
3326 error = -EEXIST;
3327 if (dentry->d_inode)
3328 goto fail;
3330 * Special case - lookup gave negative, but... we had foo/bar/
3331 * From the vfs_mknod() POV we just have a negative dentry -
3332 * all is fine. Let's be bastards - you had / on the end, you've
3333 * been asking for (non-existent) directory. -ENOENT for you.
3335 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3336 error = -ENOENT;
3337 goto fail;
3339 if (unlikely(err2)) {
3340 error = err2;
3341 goto fail;
3343 *path = nd.path;
3344 return dentry;
3345 fail:
3346 dput(dentry);
3347 dentry = ERR_PTR(error);
3348 unlock:
3349 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3350 if (!err2)
3351 mnt_drop_write(nd.path.mnt);
3352 out:
3353 path_put(&nd.path);
3354 return dentry;
3356 EXPORT_SYMBOL(kern_path_create);
3358 void done_path_create(struct path *path, struct dentry *dentry)
3360 dput(dentry);
3361 mutex_unlock(&path->dentry->d_inode->i_mutex);
3362 mnt_drop_write(path->mnt);
3363 path_put(path);
3365 EXPORT_SYMBOL(done_path_create);
3367 struct dentry *user_path_create(int dfd, const char __user *pathname,
3368 struct path *path, unsigned int lookup_flags)
3370 struct filename *tmp = getname(pathname);
3371 struct dentry *res;
3372 if (IS_ERR(tmp))
3373 return ERR_CAST(tmp);
3374 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3375 putname(tmp);
3376 return res;
3378 EXPORT_SYMBOL(user_path_create);
3380 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3382 int error = may_create(dir, dentry);
3384 if (error)
3385 return error;
3387 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3388 return -EPERM;
3390 if (!dir->i_op->mknod)
3391 return -EPERM;
3393 error = devcgroup_inode_mknod(mode, dev);
3394 if (error)
3395 return error;
3397 error = security_inode_mknod(dir, dentry, mode, dev);
3398 if (error)
3399 return error;
3401 error = dir->i_op->mknod(dir, dentry, mode, dev);
3402 if (!error)
3403 fsnotify_create(dir, dentry);
3404 return error;
3407 static int may_mknod(umode_t mode)
3409 switch (mode & S_IFMT) {
3410 case S_IFREG:
3411 case S_IFCHR:
3412 case S_IFBLK:
3413 case S_IFIFO:
3414 case S_IFSOCK:
3415 case 0: /* zero mode translates to S_IFREG */
3416 return 0;
3417 case S_IFDIR:
3418 return -EPERM;
3419 default:
3420 return -EINVAL;
3424 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3425 unsigned, dev)
3427 struct dentry *dentry;
3428 struct path path;
3429 int error;
3430 unsigned int lookup_flags = 0;
3432 error = may_mknod(mode);
3433 if (error)
3434 return error;
3435 retry:
3436 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3437 if (IS_ERR(dentry))
3438 return PTR_ERR(dentry);
3440 if (!IS_POSIXACL(path.dentry->d_inode))
3441 mode &= ~current_umask();
3442 error = security_path_mknod(&path, dentry, mode, dev);
3443 if (error)
3444 goto out;
3445 switch (mode & S_IFMT) {
3446 case 0: case S_IFREG:
3447 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3448 break;
3449 case S_IFCHR: case S_IFBLK:
3450 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3451 new_decode_dev(dev));
3452 break;
3453 case S_IFIFO: case S_IFSOCK:
3454 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3455 break;
3457 out:
3458 done_path_create(&path, dentry);
3459 if (retry_estale(error, lookup_flags)) {
3460 lookup_flags |= LOOKUP_REVAL;
3461 goto retry;
3463 return error;
3466 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3468 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3471 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3473 int error = may_create(dir, dentry);
3474 unsigned max_links = dir->i_sb->s_max_links;
3476 if (error)
3477 return error;
3479 if (!dir->i_op->mkdir)
3480 return -EPERM;
3482 mode &= (S_IRWXUGO|S_ISVTX);
3483 error = security_inode_mkdir(dir, dentry, mode);
3484 if (error)
3485 return error;
3487 if (max_links && dir->i_nlink >= max_links)
3488 return -EMLINK;
3490 error = dir->i_op->mkdir(dir, dentry, mode);
3491 if (!error)
3492 fsnotify_mkdir(dir, dentry);
3493 return error;
3496 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3498 struct dentry *dentry;
3499 struct path path;
3500 int error;
3501 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3503 retry:
3504 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3505 if (IS_ERR(dentry))
3506 return PTR_ERR(dentry);
3508 if (!IS_POSIXACL(path.dentry->d_inode))
3509 mode &= ~current_umask();
3510 error = security_path_mkdir(&path, dentry, mode);
3511 if (!error)
3512 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3513 done_path_create(&path, dentry);
3514 if (retry_estale(error, lookup_flags)) {
3515 lookup_flags |= LOOKUP_REVAL;
3516 goto retry;
3518 return error;
3521 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3523 return sys_mkdirat(AT_FDCWD, pathname, mode);
3527 * The dentry_unhash() helper will try to drop the dentry early: we
3528 * should have a usage count of 1 if we're the only user of this
3529 * dentry, and if that is true (possibly after pruning the dcache),
3530 * then we drop the dentry now.
3532 * A low-level filesystem can, if it choses, legally
3533 * do a
3535 * if (!d_unhashed(dentry))
3536 * return -EBUSY;
3538 * if it cannot handle the case of removing a directory
3539 * that is still in use by something else..
3541 void dentry_unhash(struct dentry *dentry)
3543 shrink_dcache_parent(dentry);
3544 spin_lock(&dentry->d_lock);
3545 if (dentry->d_lockref.count == 1)
3546 __d_drop(dentry);
3547 spin_unlock(&dentry->d_lock);
3550 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3552 int error = may_delete(dir, dentry, 1);
3554 if (error)
3555 return error;
3557 if (!dir->i_op->rmdir)
3558 return -EPERM;
3560 dget(dentry);
3561 mutex_lock(&dentry->d_inode->i_mutex);
3563 error = -EBUSY;
3564 if (d_mountpoint(dentry))
3565 goto out;
3567 error = security_inode_rmdir(dir, dentry);
3568 if (error)
3569 goto out;
3571 shrink_dcache_parent(dentry);
3572 error = dir->i_op->rmdir(dir, dentry);
3573 if (error)
3574 goto out;
3576 dentry->d_inode->i_flags |= S_DEAD;
3577 dont_mount(dentry);
3579 out:
3580 mutex_unlock(&dentry->d_inode->i_mutex);
3581 dput(dentry);
3582 if (!error)
3583 d_delete(dentry);
3584 return error;
3587 static long do_rmdir(int dfd, const char __user *pathname)
3589 int error = 0;
3590 struct filename *name;
3591 struct dentry *dentry;
3592 struct nameidata nd;
3593 unsigned int lookup_flags = 0;
3594 retry:
3595 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3596 if (IS_ERR(name))
3597 return PTR_ERR(name);
3599 switch(nd.last_type) {
3600 case LAST_DOTDOT:
3601 error = -ENOTEMPTY;
3602 goto exit1;
3603 case LAST_DOT:
3604 error = -EINVAL;
3605 goto exit1;
3606 case LAST_ROOT:
3607 error = -EBUSY;
3608 goto exit1;
3611 nd.flags &= ~LOOKUP_PARENT;
3612 error = mnt_want_write(nd.path.mnt);
3613 if (error)
3614 goto exit1;
3616 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3617 dentry = lookup_hash(&nd);
3618 error = PTR_ERR(dentry);
3619 if (IS_ERR(dentry))
3620 goto exit2;
3621 if (!dentry->d_inode) {
3622 error = -ENOENT;
3623 goto exit3;
3625 error = security_path_rmdir(&nd.path, dentry);
3626 if (error)
3627 goto exit3;
3628 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3629 exit3:
3630 dput(dentry);
3631 exit2:
3632 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3633 mnt_drop_write(nd.path.mnt);
3634 exit1:
3635 path_put(&nd.path);
3636 putname(name);
3637 if (retry_estale(error, lookup_flags)) {
3638 lookup_flags |= LOOKUP_REVAL;
3639 goto retry;
3641 return error;
3644 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3646 return do_rmdir(AT_FDCWD, pathname);
3649 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3651 int error = may_delete(dir, dentry, 0);
3653 if (error)
3654 return error;
3656 if (!dir->i_op->unlink)
3657 return -EPERM;
3659 mutex_lock(&dentry->d_inode->i_mutex);
3660 if (d_mountpoint(dentry))
3661 error = -EBUSY;
3662 else {
3663 error = security_inode_unlink(dir, dentry);
3664 if (!error) {
3665 error = dir->i_op->unlink(dir, dentry);
3666 if (!error)
3667 dont_mount(dentry);
3670 mutex_unlock(&dentry->d_inode->i_mutex);
3672 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3673 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3674 fsnotify_link_count(dentry->d_inode);
3675 d_delete(dentry);
3678 return error;
3682 * Make sure that the actual truncation of the file will occur outside its
3683 * directory's i_mutex. Truncate can take a long time if there is a lot of
3684 * writeout happening, and we don't want to prevent access to the directory
3685 * while waiting on the I/O.
3687 static long do_unlinkat(int dfd, const char __user *pathname)
3689 int error;
3690 struct filename *name;
3691 struct dentry *dentry;
3692 struct nameidata nd;
3693 struct inode *inode = NULL;
3694 unsigned int lookup_flags = 0;
3695 retry:
3696 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3697 if (IS_ERR(name))
3698 return PTR_ERR(name);
3700 error = -EISDIR;
3701 if (nd.last_type != LAST_NORM)
3702 goto exit1;
3704 nd.flags &= ~LOOKUP_PARENT;
3705 error = mnt_want_write(nd.path.mnt);
3706 if (error)
3707 goto exit1;
3709 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3710 dentry = lookup_hash(&nd);
3711 error = PTR_ERR(dentry);
3712 if (!IS_ERR(dentry)) {
3713 /* Why not before? Because we want correct error value */
3714 if (nd.last.name[nd.last.len])
3715 goto slashes;
3716 inode = dentry->d_inode;
3717 if (!inode)
3718 goto slashes;
3719 ihold(inode);
3720 error = security_path_unlink(&nd.path, dentry);
3721 if (error)
3722 goto exit2;
3723 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3724 exit2:
3725 dput(dentry);
3727 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3728 if (inode)
3729 iput(inode); /* truncate the inode here */
3730 mnt_drop_write(nd.path.mnt);
3731 exit1:
3732 path_put(&nd.path);
3733 putname(name);
3734 if (retry_estale(error, lookup_flags)) {
3735 lookup_flags |= LOOKUP_REVAL;
3736 inode = NULL;
3737 goto retry;
3739 return error;
3741 slashes:
3742 error = !dentry->d_inode ? -ENOENT :
3743 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3744 goto exit2;
3747 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3749 if ((flag & ~AT_REMOVEDIR) != 0)
3750 return -EINVAL;
3752 if (flag & AT_REMOVEDIR)
3753 return do_rmdir(dfd, pathname);
3755 return do_unlinkat(dfd, pathname);
3758 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3760 return do_unlinkat(AT_FDCWD, pathname);
3763 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3765 int error = may_create(dir, dentry);
3767 if (error)
3768 return error;
3770 if (!dir->i_op->symlink)
3771 return -EPERM;
3773 error = security_inode_symlink(dir, dentry, oldname);
3774 if (error)
3775 return error;
3777 error = dir->i_op->symlink(dir, dentry, oldname);
3778 if (!error)
3779 fsnotify_create(dir, dentry);
3780 return error;
3783 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3784 int, newdfd, const char __user *, newname)
3786 int error;
3787 struct filename *from;
3788 struct dentry *dentry;
3789 struct path path;
3790 unsigned int lookup_flags = 0;
3792 from = getname(oldname);
3793 if (IS_ERR(from))
3794 return PTR_ERR(from);
3795 retry:
3796 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3797 error = PTR_ERR(dentry);
3798 if (IS_ERR(dentry))
3799 goto out_putname;
3801 error = security_path_symlink(&path, dentry, from->name);
3802 if (!error)
3803 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3804 done_path_create(&path, dentry);
3805 if (retry_estale(error, lookup_flags)) {
3806 lookup_flags |= LOOKUP_REVAL;
3807 goto retry;
3809 out_putname:
3810 putname(from);
3811 return error;
3814 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3816 return sys_symlinkat(oldname, AT_FDCWD, newname);
3819 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3821 struct inode *inode = old_dentry->d_inode;
3822 unsigned max_links = dir->i_sb->s_max_links;
3823 int error;
3825 if (!inode)
3826 return -ENOENT;
3828 error = may_create(dir, new_dentry);
3829 if (error)
3830 return error;
3832 if (dir->i_sb != inode->i_sb)
3833 return -EXDEV;
3836 * A link to an append-only or immutable file cannot be created.
3838 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3839 return -EPERM;
3840 if (!dir->i_op->link)
3841 return -EPERM;
3842 if (S_ISDIR(inode->i_mode))
3843 return -EPERM;
3845 error = security_inode_link(old_dentry, dir, new_dentry);
3846 if (error)
3847 return error;
3849 mutex_lock(&inode->i_mutex);
3850 /* Make sure we don't allow creating hardlink to an unlinked file */
3851 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3852 error = -ENOENT;
3853 else if (max_links && inode->i_nlink >= max_links)
3854 error = -EMLINK;
3855 else
3856 error = dir->i_op->link(old_dentry, dir, new_dentry);
3858 if (!error && (inode->i_state & I_LINKABLE)) {
3859 spin_lock(&inode->i_lock);
3860 inode->i_state &= ~I_LINKABLE;
3861 spin_unlock(&inode->i_lock);
3863 mutex_unlock(&inode->i_mutex);
3864 if (!error)
3865 fsnotify_link(dir, inode, new_dentry);
3866 return error;
3870 * Hardlinks are often used in delicate situations. We avoid
3871 * security-related surprises by not following symlinks on the
3872 * newname. --KAB
3874 * We don't follow them on the oldname either to be compatible
3875 * with linux 2.0, and to avoid hard-linking to directories
3876 * and other special files. --ADM
3878 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3879 int, newdfd, const char __user *, newname, int, flags)
3881 struct dentry *new_dentry;
3882 struct path old_path, new_path;
3883 int how = 0;
3884 int error;
3886 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3887 return -EINVAL;
3889 * To use null names we require CAP_DAC_READ_SEARCH
3890 * This ensures that not everyone will be able to create
3891 * handlink using the passed filedescriptor.
3893 if (flags & AT_EMPTY_PATH) {
3894 if (!capable(CAP_DAC_READ_SEARCH))
3895 return -ENOENT;
3896 how = LOOKUP_EMPTY;
3899 if (flags & AT_SYMLINK_FOLLOW)
3900 how |= LOOKUP_FOLLOW;
3901 retry:
3902 error = user_path_at(olddfd, oldname, how, &old_path);
3903 if (error)
3904 return error;
3906 new_dentry = user_path_create(newdfd, newname, &new_path,
3907 (how & LOOKUP_REVAL));
3908 error = PTR_ERR(new_dentry);
3909 if (IS_ERR(new_dentry))
3910 goto out;
3912 error = -EXDEV;
3913 if (old_path.mnt != new_path.mnt)
3914 goto out_dput;
3915 error = may_linkat(&old_path);
3916 if (unlikely(error))
3917 goto out_dput;
3918 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3919 if (error)
3920 goto out_dput;
3921 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3922 out_dput:
3923 done_path_create(&new_path, new_dentry);
3924 if (retry_estale(error, how)) {
3925 how |= LOOKUP_REVAL;
3926 goto retry;
3928 out:
3929 path_put(&old_path);
3931 return error;
3934 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3936 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3940 * The worst of all namespace operations - renaming directory. "Perverted"
3941 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3942 * Problems:
3943 * a) we can get into loop creation. Check is done in is_subdir().
3944 * b) race potential - two innocent renames can create a loop together.
3945 * That's where 4.4 screws up. Current fix: serialization on
3946 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3947 * story.
3948 * c) we have to lock _three_ objects - parents and victim (if it exists).
3949 * And that - after we got ->i_mutex on parents (until then we don't know
3950 * whether the target exists). Solution: try to be smart with locking
3951 * order for inodes. We rely on the fact that tree topology may change
3952 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3953 * move will be locked. Thus we can rank directories by the tree
3954 * (ancestors first) and rank all non-directories after them.
3955 * That works since everybody except rename does "lock parent, lookup,
3956 * lock child" and rename is under ->s_vfs_rename_mutex.
3957 * HOWEVER, it relies on the assumption that any object with ->lookup()
3958 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3959 * we'd better make sure that there's no link(2) for them.
3960 * d) conversion from fhandle to dentry may come in the wrong moment - when
3961 * we are removing the target. Solution: we will have to grab ->i_mutex
3962 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3963 * ->i_mutex on parents, which works but leads to some truly excessive
3964 * locking].
3966 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3967 struct inode *new_dir, struct dentry *new_dentry)
3969 int error = 0;
3970 struct inode *target = new_dentry->d_inode;
3971 unsigned max_links = new_dir->i_sb->s_max_links;
3974 * If we are going to change the parent - check write permissions,
3975 * we'll need to flip '..'.
3977 if (new_dir != old_dir) {
3978 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3979 if (error)
3980 return error;
3983 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3984 if (error)
3985 return error;
3987 dget(new_dentry);
3988 if (target)
3989 mutex_lock(&target->i_mutex);
3991 error = -EBUSY;
3992 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3993 goto out;
3995 error = -EMLINK;
3996 if (max_links && !target && new_dir != old_dir &&
3997 new_dir->i_nlink >= max_links)
3998 goto out;
4000 if (target)
4001 shrink_dcache_parent(new_dentry);
4002 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4003 if (error)
4004 goto out;
4006 if (target) {
4007 target->i_flags |= S_DEAD;
4008 dont_mount(new_dentry);
4010 out:
4011 if (target)
4012 mutex_unlock(&target->i_mutex);
4013 dput(new_dentry);
4014 if (!error)
4015 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4016 d_move(old_dentry,new_dentry);
4017 return error;
4020 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4021 struct inode *new_dir, struct dentry *new_dentry)
4023 struct inode *target = new_dentry->d_inode;
4024 int error;
4026 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4027 if (error)
4028 return error;
4030 dget(new_dentry);
4031 if (target)
4032 mutex_lock(&target->i_mutex);
4034 error = -EBUSY;
4035 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4036 goto out;
4038 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4039 if (error)
4040 goto out;
4042 if (target)
4043 dont_mount(new_dentry);
4044 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4045 d_move(old_dentry, new_dentry);
4046 out:
4047 if (target)
4048 mutex_unlock(&target->i_mutex);
4049 dput(new_dentry);
4050 return error;
4053 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4054 struct inode *new_dir, struct dentry *new_dentry)
4056 int error;
4057 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
4058 const unsigned char *old_name;
4060 if (old_dentry->d_inode == new_dentry->d_inode)
4061 return 0;
4063 error = may_delete(old_dir, old_dentry, is_dir);
4064 if (error)
4065 return error;
4067 if (!new_dentry->d_inode)
4068 error = may_create(new_dir, new_dentry);
4069 else
4070 error = may_delete(new_dir, new_dentry, is_dir);
4071 if (error)
4072 return error;
4074 if (!old_dir->i_op->rename)
4075 return -EPERM;
4077 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4079 if (is_dir)
4080 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4081 else
4082 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
4083 if (!error)
4084 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4085 new_dentry->d_inode, old_dentry);
4086 fsnotify_oldname_free(old_name);
4088 return error;
4091 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4092 int, newdfd, const char __user *, newname)
4094 struct dentry *old_dir, *new_dir;
4095 struct dentry *old_dentry, *new_dentry;
4096 struct dentry *trap;
4097 struct nameidata oldnd, newnd;
4098 struct filename *from;
4099 struct filename *to;
4100 unsigned int lookup_flags = 0;
4101 bool should_retry = false;
4102 int error;
4103 retry:
4104 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4105 if (IS_ERR(from)) {
4106 error = PTR_ERR(from);
4107 goto exit;
4110 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4111 if (IS_ERR(to)) {
4112 error = PTR_ERR(to);
4113 goto exit1;
4116 error = -EXDEV;
4117 if (oldnd.path.mnt != newnd.path.mnt)
4118 goto exit2;
4120 old_dir = oldnd.path.dentry;
4121 error = -EBUSY;
4122 if (oldnd.last_type != LAST_NORM)
4123 goto exit2;
4125 new_dir = newnd.path.dentry;
4126 if (newnd.last_type != LAST_NORM)
4127 goto exit2;
4129 error = mnt_want_write(oldnd.path.mnt);
4130 if (error)
4131 goto exit2;
4133 oldnd.flags &= ~LOOKUP_PARENT;
4134 newnd.flags &= ~LOOKUP_PARENT;
4135 newnd.flags |= LOOKUP_RENAME_TARGET;
4137 trap = lock_rename(new_dir, old_dir);
4139 old_dentry = lookup_hash(&oldnd);
4140 error = PTR_ERR(old_dentry);
4141 if (IS_ERR(old_dentry))
4142 goto exit3;
4143 /* source must exist */
4144 error = -ENOENT;
4145 if (!old_dentry->d_inode)
4146 goto exit4;
4147 /* unless the source is a directory trailing slashes give -ENOTDIR */
4148 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
4149 error = -ENOTDIR;
4150 if (oldnd.last.name[oldnd.last.len])
4151 goto exit4;
4152 if (newnd.last.name[newnd.last.len])
4153 goto exit4;
4155 /* source should not be ancestor of target */
4156 error = -EINVAL;
4157 if (old_dentry == trap)
4158 goto exit4;
4159 new_dentry = lookup_hash(&newnd);
4160 error = PTR_ERR(new_dentry);
4161 if (IS_ERR(new_dentry))
4162 goto exit4;
4163 /* target should not be an ancestor of source */
4164 error = -ENOTEMPTY;
4165 if (new_dentry == trap)
4166 goto exit5;
4168 error = security_path_rename(&oldnd.path, old_dentry,
4169 &newnd.path, new_dentry);
4170 if (error)
4171 goto exit5;
4172 error = vfs_rename(old_dir->d_inode, old_dentry,
4173 new_dir->d_inode, new_dentry);
4174 exit5:
4175 dput(new_dentry);
4176 exit4:
4177 dput(old_dentry);
4178 exit3:
4179 unlock_rename(new_dir, old_dir);
4180 mnt_drop_write(oldnd.path.mnt);
4181 exit2:
4182 if (retry_estale(error, lookup_flags))
4183 should_retry = true;
4184 path_put(&newnd.path);
4185 putname(to);
4186 exit1:
4187 path_put(&oldnd.path);
4188 putname(from);
4189 if (should_retry) {
4190 should_retry = false;
4191 lookup_flags |= LOOKUP_REVAL;
4192 goto retry;
4194 exit:
4195 return error;
4198 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4200 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4203 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4205 int len;
4207 len = PTR_ERR(link);
4208 if (IS_ERR(link))
4209 goto out;
4211 len = strlen(link);
4212 if (len > (unsigned) buflen)
4213 len = buflen;
4214 if (copy_to_user(buffer, link, len))
4215 len = -EFAULT;
4216 out:
4217 return len;
4221 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4222 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4223 * using) it for any given inode is up to filesystem.
4225 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4227 struct nameidata nd;
4228 void *cookie;
4229 int res;
4231 nd.depth = 0;
4232 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4233 if (IS_ERR(cookie))
4234 return PTR_ERR(cookie);
4236 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4237 if (dentry->d_inode->i_op->put_link)
4238 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4239 return res;
4242 /* get the link contents into pagecache */
4243 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4245 char *kaddr;
4246 struct page *page;
4247 struct address_space *mapping = dentry->d_inode->i_mapping;
4248 page = read_mapping_page(mapping, 0, NULL);
4249 if (IS_ERR(page))
4250 return (char*)page;
4251 *ppage = page;
4252 kaddr = kmap(page);
4253 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4254 return kaddr;
4257 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4259 struct page *page = NULL;
4260 char *s = page_getlink(dentry, &page);
4261 int res = vfs_readlink(dentry,buffer,buflen,s);
4262 if (page) {
4263 kunmap(page);
4264 page_cache_release(page);
4266 return res;
4269 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4271 struct page *page = NULL;
4272 nd_set_link(nd, page_getlink(dentry, &page));
4273 return page;
4276 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4278 struct page *page = cookie;
4280 if (page) {
4281 kunmap(page);
4282 page_cache_release(page);
4287 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4289 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4291 struct address_space *mapping = inode->i_mapping;
4292 struct page *page;
4293 void *fsdata;
4294 int err;
4295 char *kaddr;
4296 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4297 if (nofs)
4298 flags |= AOP_FLAG_NOFS;
4300 retry:
4301 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4302 flags, &page, &fsdata);
4303 if (err)
4304 goto fail;
4306 kaddr = kmap_atomic(page);
4307 memcpy(kaddr, symname, len-1);
4308 kunmap_atomic(kaddr);
4310 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4311 page, fsdata);
4312 if (err < 0)
4313 goto fail;
4314 if (err < len-1)
4315 goto retry;
4317 mark_inode_dirty(inode);
4318 return 0;
4319 fail:
4320 return err;
4323 int page_symlink(struct inode *inode, const char *symname, int len)
4325 return __page_symlink(inode, symname, len,
4326 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4329 const struct inode_operations page_symlink_inode_operations = {
4330 .readlink = generic_readlink,
4331 .follow_link = page_follow_link_light,
4332 .put_link = page_put_link,
4335 EXPORT_SYMBOL(user_path_at);
4336 EXPORT_SYMBOL(follow_down_one);
4337 EXPORT_SYMBOL(follow_down);
4338 EXPORT_SYMBOL(follow_up);
4339 EXPORT_SYMBOL(get_write_access); /* nfsd */
4340 EXPORT_SYMBOL(lock_rename);
4341 EXPORT_SYMBOL(lookup_one_len);
4342 EXPORT_SYMBOL(page_follow_link_light);
4343 EXPORT_SYMBOL(page_put_link);
4344 EXPORT_SYMBOL(page_readlink);
4345 EXPORT_SYMBOL(__page_symlink);
4346 EXPORT_SYMBOL(page_symlink);
4347 EXPORT_SYMBOL(page_symlink_inode_operations);
4348 EXPORT_SYMBOL(kern_path);
4349 EXPORT_SYMBOL(vfs_path_lookup);
4350 EXPORT_SYMBOL(inode_permission);
4351 EXPORT_SYMBOL(unlock_rename);
4352 EXPORT_SYMBOL(vfs_create);
4353 EXPORT_SYMBOL(vfs_link);
4354 EXPORT_SYMBOL(vfs_mkdir);
4355 EXPORT_SYMBOL(vfs_mknod);
4356 EXPORT_SYMBOL(generic_permission);
4357 EXPORT_SYMBOL(vfs_readlink);
4358 EXPORT_SYMBOL(vfs_rename);
4359 EXPORT_SYMBOL(vfs_rmdir);
4360 EXPORT_SYMBOL(vfs_symlink);
4361 EXPORT_SYMBOL(vfs_unlink);
4362 EXPORT_SYMBOL(dentry_unhash);
4363 EXPORT_SYMBOL(generic_readlink);