2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
97 #include <net/cls_cgroup.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
109 #ifdef CONFIG_NET_LL_RX_POLL
110 unsigned int sysctl_net_busy_read __read_mostly
;
111 unsigned int sysctl_net_busy_poll __read_mostly
;
114 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
115 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
116 unsigned long nr_segs
, loff_t pos
);
117 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
118 unsigned long nr_segs
, loff_t pos
);
119 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
121 static int sock_close(struct inode
*inode
, struct file
*file
);
122 static unsigned int sock_poll(struct file
*file
,
123 struct poll_table_struct
*wait
);
124 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
126 static long compat_sock_ioctl(struct file
*file
,
127 unsigned int cmd
, unsigned long arg
);
129 static int sock_fasync(int fd
, struct file
*filp
, int on
);
130 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
131 int offset
, size_t size
, loff_t
*ppos
, int more
);
132 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
133 struct pipe_inode_info
*pipe
, size_t len
,
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops
= {
142 .owner
= THIS_MODULE
,
144 .aio_read
= sock_aio_read
,
145 .aio_write
= sock_aio_write
,
147 .unlocked_ioctl
= sock_ioctl
,
149 .compat_ioctl
= compat_sock_ioctl
,
152 .open
= sock_no_open
, /* special open code to disallow open via /proc */
153 .release
= sock_close
,
154 .fasync
= sock_fasync
,
155 .sendpage
= sock_sendpage
,
156 .splice_write
= generic_splice_sendpage
,
157 .splice_read
= sock_splice_read
,
161 * The protocol list. Each protocol is registered in here.
164 static DEFINE_SPINLOCK(net_family_lock
);
165 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
168 * Statistics counters of the socket lists
171 static DEFINE_PER_CPU(int, sockets_in_use
);
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
192 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
196 if (copy_from_user(kaddr
, uaddr
, ulen
))
198 return audit_sockaddr(ulen
, kaddr
);
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
218 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
219 void __user
*uaddr
, int __user
*ulen
)
224 err
= get_user(len
, ulen
);
229 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
232 if (audit_sockaddr(klen
, kaddr
))
234 if (copy_to_user(uaddr
, kaddr
, len
))
238 * "fromlen shall refer to the value before truncation.."
241 return __put_user(klen
, ulen
);
244 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
246 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
248 struct socket_alloc
*ei
;
249 struct socket_wq
*wq
;
251 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
254 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
256 kmem_cache_free(sock_inode_cachep
, ei
);
259 init_waitqueue_head(&wq
->wait
);
260 wq
->fasync_list
= NULL
;
261 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
263 ei
->socket
.state
= SS_UNCONNECTED
;
264 ei
->socket
.flags
= 0;
265 ei
->socket
.ops
= NULL
;
266 ei
->socket
.sk
= NULL
;
267 ei
->socket
.file
= NULL
;
269 return &ei
->vfs_inode
;
272 static void sock_destroy_inode(struct inode
*inode
)
274 struct socket_alloc
*ei
;
275 struct socket_wq
*wq
;
277 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
278 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
280 kmem_cache_free(sock_inode_cachep
, ei
);
283 static void init_once(void *foo
)
285 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
287 inode_init_once(&ei
->vfs_inode
);
290 static int init_inodecache(void)
292 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc
),
295 (SLAB_HWCACHE_ALIGN
|
296 SLAB_RECLAIM_ACCOUNT
|
299 if (sock_inode_cachep
== NULL
)
304 static const struct super_operations sockfs_ops
= {
305 .alloc_inode
= sock_alloc_inode
,
306 .destroy_inode
= sock_destroy_inode
,
307 .statfs
= simple_statfs
,
311 * sockfs_dname() is called from d_path().
313 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
315 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
316 dentry
->d_inode
->i_ino
);
319 static const struct dentry_operations sockfs_dentry_operations
= {
320 .d_dname
= sockfs_dname
,
323 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
324 int flags
, const char *dev_name
, void *data
)
326 return mount_pseudo(fs_type
, "socket:", &sockfs_ops
,
327 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
330 static struct vfsmount
*sock_mnt __read_mostly
;
332 static struct file_system_type sock_fs_type
= {
334 .mount
= sockfs_mount
,
335 .kill_sb
= kill_anon_super
,
339 * Obtains the first available file descriptor and sets it up for use.
341 * These functions create file structures and maps them to fd space
342 * of the current process. On success it returns file descriptor
343 * and file struct implicitly stored in sock->file.
344 * Note that another thread may close file descriptor before we return
345 * from this function. We use the fact that now we do not refer
346 * to socket after mapping. If one day we will need it, this
347 * function will increment ref. count on file by 1.
349 * In any case returned fd MAY BE not valid!
350 * This race condition is unavoidable
351 * with shared fd spaces, we cannot solve it inside kernel,
352 * but we take care of internal coherence yet.
355 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
357 struct qstr name
= { .name
= "" };
363 name
.len
= strlen(name
.name
);
364 } else if (sock
->sk
) {
365 name
.name
= sock
->sk
->sk_prot_creator
->name
;
366 name
.len
= strlen(name
.name
);
368 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
369 if (unlikely(!path
.dentry
))
370 return ERR_PTR(-ENOMEM
);
371 path
.mnt
= mntget(sock_mnt
);
373 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
374 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
376 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
378 if (unlikely(IS_ERR(file
))) {
379 /* drop dentry, keep inode */
380 ihold(path
.dentry
->d_inode
);
386 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
387 file
->private_data
= sock
;
390 EXPORT_SYMBOL(sock_alloc_file
);
392 static int sock_map_fd(struct socket
*sock
, int flags
)
394 struct file
*newfile
;
395 int fd
= get_unused_fd_flags(flags
);
396 if (unlikely(fd
< 0))
399 newfile
= sock_alloc_file(sock
, flags
, NULL
);
400 if (likely(!IS_ERR(newfile
))) {
401 fd_install(fd
, newfile
);
406 return PTR_ERR(newfile
);
409 struct socket
*sock_from_file(struct file
*file
, int *err
)
411 if (file
->f_op
== &socket_file_ops
)
412 return file
->private_data
; /* set in sock_map_fd */
417 EXPORT_SYMBOL(sock_from_file
);
420 * sockfd_lookup - Go from a file number to its socket slot
422 * @err: pointer to an error code return
424 * The file handle passed in is locked and the socket it is bound
425 * too is returned. If an error occurs the err pointer is overwritten
426 * with a negative errno code and NULL is returned. The function checks
427 * for both invalid handles and passing a handle which is not a socket.
429 * On a success the socket object pointer is returned.
432 struct socket
*sockfd_lookup(int fd
, int *err
)
443 sock
= sock_from_file(file
, err
);
448 EXPORT_SYMBOL(sockfd_lookup
);
450 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
456 file
= fget_light(fd
, fput_needed
);
458 sock
= sock_from_file(file
, err
);
461 fput_light(file
, *fput_needed
);
466 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
467 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
468 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
469 static ssize_t
sockfs_getxattr(struct dentry
*dentry
,
470 const char *name
, void *value
, size_t size
)
472 const char *proto_name
;
477 if (!strncmp(name
, XATTR_NAME_SOCKPROTONAME
, XATTR_NAME_SOCKPROTONAME_LEN
)) {
478 proto_name
= dentry
->d_name
.name
;
479 proto_size
= strlen(proto_name
);
483 if (proto_size
+ 1 > size
)
486 strncpy(value
, proto_name
, proto_size
+ 1);
488 error
= proto_size
+ 1;
495 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
501 len
= security_inode_listsecurity(dentry
->d_inode
, buffer
, size
);
511 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
516 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
523 static const struct inode_operations sockfs_inode_ops
= {
524 .getxattr
= sockfs_getxattr
,
525 .listxattr
= sockfs_listxattr
,
529 * sock_alloc - allocate a socket
531 * Allocate a new inode and socket object. The two are bound together
532 * and initialised. The socket is then returned. If we are out of inodes
536 static struct socket
*sock_alloc(void)
541 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
545 sock
= SOCKET_I(inode
);
547 kmemcheck_annotate_bitfield(sock
, type
);
548 inode
->i_ino
= get_next_ino();
549 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
550 inode
->i_uid
= current_fsuid();
551 inode
->i_gid
= current_fsgid();
552 inode
->i_op
= &sockfs_inode_ops
;
554 this_cpu_add(sockets_in_use
, 1);
559 * In theory you can't get an open on this inode, but /proc provides
560 * a back door. Remember to keep it shut otherwise you'll let the
561 * creepy crawlies in.
564 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
569 const struct file_operations bad_sock_fops
= {
570 .owner
= THIS_MODULE
,
571 .open
= sock_no_open
,
572 .llseek
= noop_llseek
,
576 * sock_release - close a socket
577 * @sock: socket to close
579 * The socket is released from the protocol stack if it has a release
580 * callback, and the inode is then released if the socket is bound to
581 * an inode not a file.
584 void sock_release(struct socket
*sock
)
587 struct module
*owner
= sock
->ops
->owner
;
589 sock
->ops
->release(sock
);
594 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
595 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
597 if (test_bit(SOCK_EXTERNALLY_ALLOCATED
, &sock
->flags
))
600 this_cpu_sub(sockets_in_use
, 1);
602 iput(SOCK_INODE(sock
));
607 EXPORT_SYMBOL(sock_release
);
609 void sock_tx_timestamp(struct sock
*sk
, __u8
*tx_flags
)
612 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
613 *tx_flags
|= SKBTX_HW_TSTAMP
;
614 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
615 *tx_flags
|= SKBTX_SW_TSTAMP
;
616 if (sock_flag(sk
, SOCK_WIFI_STATUS
))
617 *tx_flags
|= SKBTX_WIFI_STATUS
;
619 EXPORT_SYMBOL(sock_tx_timestamp
);
621 static inline int __sock_sendmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
622 struct msghdr
*msg
, size_t size
)
624 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
631 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
634 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
635 struct msghdr
*msg
, size_t size
)
637 int err
= security_socket_sendmsg(sock
, msg
, size
);
639 return err
?: __sock_sendmsg_nosec(iocb
, sock
, msg
, size
);
642 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
645 struct sock_iocb siocb
;
648 init_sync_kiocb(&iocb
, NULL
);
649 iocb
.private = &siocb
;
650 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
651 if (-EIOCBQUEUED
== ret
)
652 ret
= wait_on_sync_kiocb(&iocb
);
655 EXPORT_SYMBOL(sock_sendmsg
);
657 static int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
660 struct sock_iocb siocb
;
663 init_sync_kiocb(&iocb
, NULL
);
664 iocb
.private = &siocb
;
665 ret
= __sock_sendmsg_nosec(&iocb
, sock
, msg
, size
);
666 if (-EIOCBQUEUED
== ret
)
667 ret
= wait_on_sync_kiocb(&iocb
);
671 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
672 struct kvec
*vec
, size_t num
, size_t size
)
674 mm_segment_t oldfs
= get_fs();
679 * the following is safe, since for compiler definitions of kvec and
680 * iovec are identical, yielding the same in-core layout and alignment
682 msg
->msg_iov
= (struct iovec
*)vec
;
683 msg
->msg_iovlen
= num
;
684 result
= sock_sendmsg(sock
, msg
, size
);
688 EXPORT_SYMBOL(kernel_sendmsg
);
691 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
693 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
696 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
697 struct timespec ts
[3];
699 struct skb_shared_hwtstamps
*shhwtstamps
=
702 /* Race occurred between timestamp enabling and packet
703 receiving. Fill in the current time for now. */
704 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
705 __net_timestamp(skb
);
707 if (need_software_tstamp
) {
708 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
710 skb_get_timestamp(skb
, &tv
);
711 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
714 skb_get_timestampns(skb
, &ts
[0]);
715 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
716 sizeof(ts
[0]), &ts
[0]);
721 memset(ts
, 0, sizeof(ts
));
722 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
) &&
723 ktime_to_timespec_cond(skb
->tstamp
, ts
+ 0))
726 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
727 ktime_to_timespec_cond(shhwtstamps
->syststamp
, ts
+ 1))
729 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
730 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, ts
+ 2))
734 put_cmsg(msg
, SOL_SOCKET
,
735 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
737 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
739 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
744 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
746 if (!skb
->wifi_acked_valid
)
749 ack
= skb
->wifi_acked
;
751 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
753 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
755 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
758 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& skb
->dropcount
)
759 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
760 sizeof(__u32
), &skb
->dropcount
);
763 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
766 sock_recv_timestamp(msg
, sk
, skb
);
767 sock_recv_drops(msg
, sk
, skb
);
769 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
771 static inline int __sock_recvmsg_nosec(struct kiocb
*iocb
, struct socket
*sock
,
772 struct msghdr
*msg
, size_t size
, int flags
)
774 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
782 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
785 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
786 struct msghdr
*msg
, size_t size
, int flags
)
788 int err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
790 return err
?: __sock_recvmsg_nosec(iocb
, sock
, msg
, size
, flags
);
793 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
794 size_t size
, int flags
)
797 struct sock_iocb siocb
;
800 init_sync_kiocb(&iocb
, NULL
);
801 iocb
.private = &siocb
;
802 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
803 if (-EIOCBQUEUED
== ret
)
804 ret
= wait_on_sync_kiocb(&iocb
);
807 EXPORT_SYMBOL(sock_recvmsg
);
809 static int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
810 size_t size
, int flags
)
813 struct sock_iocb siocb
;
816 init_sync_kiocb(&iocb
, NULL
);
817 iocb
.private = &siocb
;
818 ret
= __sock_recvmsg_nosec(&iocb
, sock
, msg
, size
, flags
);
819 if (-EIOCBQUEUED
== ret
)
820 ret
= wait_on_sync_kiocb(&iocb
);
825 * kernel_recvmsg - Receive a message from a socket (kernel space)
826 * @sock: The socket to receive the message from
827 * @msg: Received message
828 * @vec: Input s/g array for message data
829 * @num: Size of input s/g array
830 * @size: Number of bytes to read
831 * @flags: Message flags (MSG_DONTWAIT, etc...)
833 * On return the msg structure contains the scatter/gather array passed in the
834 * vec argument. The array is modified so that it consists of the unfilled
835 * portion of the original array.
837 * The returned value is the total number of bytes received, or an error.
839 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
840 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
842 mm_segment_t oldfs
= get_fs();
847 * the following is safe, since for compiler definitions of kvec and
848 * iovec are identical, yielding the same in-core layout and alignment
850 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
851 result
= sock_recvmsg(sock
, msg
, size
, flags
);
855 EXPORT_SYMBOL(kernel_recvmsg
);
857 static void sock_aio_dtor(struct kiocb
*iocb
)
859 kfree(iocb
->private);
862 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
863 int offset
, size_t size
, loff_t
*ppos
, int more
)
868 sock
= file
->private_data
;
870 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
871 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
874 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
877 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
878 struct pipe_inode_info
*pipe
, size_t len
,
881 struct socket
*sock
= file
->private_data
;
883 if (unlikely(!sock
->ops
->splice_read
))
886 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
889 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
890 struct sock_iocb
*siocb
)
892 if (!is_sync_kiocb(iocb
)) {
893 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
896 iocb
->ki_dtor
= sock_aio_dtor
;
900 iocb
->private = siocb
;
904 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
905 struct file
*file
, const struct iovec
*iov
,
906 unsigned long nr_segs
)
908 struct socket
*sock
= file
->private_data
;
912 for (i
= 0; i
< nr_segs
; i
++)
913 size
+= iov
[i
].iov_len
;
915 msg
->msg_name
= NULL
;
916 msg
->msg_namelen
= 0;
917 msg
->msg_control
= NULL
;
918 msg
->msg_controllen
= 0;
919 msg
->msg_iov
= (struct iovec
*)iov
;
920 msg
->msg_iovlen
= nr_segs
;
921 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
923 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
926 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
927 unsigned long nr_segs
, loff_t pos
)
929 struct sock_iocb siocb
, *x
;
934 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
938 x
= alloc_sock_iocb(iocb
, &siocb
);
941 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
944 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
945 struct file
*file
, const struct iovec
*iov
,
946 unsigned long nr_segs
)
948 struct socket
*sock
= file
->private_data
;
952 for (i
= 0; i
< nr_segs
; i
++)
953 size
+= iov
[i
].iov_len
;
955 msg
->msg_name
= NULL
;
956 msg
->msg_namelen
= 0;
957 msg
->msg_control
= NULL
;
958 msg
->msg_controllen
= 0;
959 msg
->msg_iov
= (struct iovec
*)iov
;
960 msg
->msg_iovlen
= nr_segs
;
961 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
962 if (sock
->type
== SOCK_SEQPACKET
)
963 msg
->msg_flags
|= MSG_EOR
;
965 return __sock_sendmsg(iocb
, sock
, msg
, size
);
968 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
969 unsigned long nr_segs
, loff_t pos
)
971 struct sock_iocb siocb
, *x
;
976 x
= alloc_sock_iocb(iocb
, &siocb
);
980 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
984 * Atomic setting of ioctl hooks to avoid race
985 * with module unload.
988 static DEFINE_MUTEX(br_ioctl_mutex
);
989 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
991 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
993 mutex_lock(&br_ioctl_mutex
);
994 br_ioctl_hook
= hook
;
995 mutex_unlock(&br_ioctl_mutex
);
997 EXPORT_SYMBOL(brioctl_set
);
999 static DEFINE_MUTEX(vlan_ioctl_mutex
);
1000 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1002 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1004 mutex_lock(&vlan_ioctl_mutex
);
1005 vlan_ioctl_hook
= hook
;
1006 mutex_unlock(&vlan_ioctl_mutex
);
1008 EXPORT_SYMBOL(vlan_ioctl_set
);
1010 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1011 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1013 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1015 mutex_lock(&dlci_ioctl_mutex
);
1016 dlci_ioctl_hook
= hook
;
1017 mutex_unlock(&dlci_ioctl_mutex
);
1019 EXPORT_SYMBOL(dlci_ioctl_set
);
1021 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1022 unsigned int cmd
, unsigned long arg
)
1025 void __user
*argp
= (void __user
*)arg
;
1027 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1030 * If this ioctl is unknown try to hand it down
1031 * to the NIC driver.
1033 if (err
== -ENOIOCTLCMD
)
1034 err
= dev_ioctl(net
, cmd
, argp
);
1040 * With an ioctl, arg may well be a user mode pointer, but we don't know
1041 * what to do with it - that's up to the protocol still.
1044 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1046 struct socket
*sock
;
1048 void __user
*argp
= (void __user
*)arg
;
1052 sock
= file
->private_data
;
1055 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
1056 err
= dev_ioctl(net
, cmd
, argp
);
1058 #ifdef CONFIG_WEXT_CORE
1059 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1060 err
= dev_ioctl(net
, cmd
, argp
);
1067 if (get_user(pid
, (int __user
*)argp
))
1069 err
= f_setown(sock
->file
, pid
, 1);
1073 err
= put_user(f_getown(sock
->file
),
1074 (int __user
*)argp
);
1082 request_module("bridge");
1084 mutex_lock(&br_ioctl_mutex
);
1086 err
= br_ioctl_hook(net
, cmd
, argp
);
1087 mutex_unlock(&br_ioctl_mutex
);
1092 if (!vlan_ioctl_hook
)
1093 request_module("8021q");
1095 mutex_lock(&vlan_ioctl_mutex
);
1096 if (vlan_ioctl_hook
)
1097 err
= vlan_ioctl_hook(net
, argp
);
1098 mutex_unlock(&vlan_ioctl_mutex
);
1103 if (!dlci_ioctl_hook
)
1104 request_module("dlci");
1106 mutex_lock(&dlci_ioctl_mutex
);
1107 if (dlci_ioctl_hook
)
1108 err
= dlci_ioctl_hook(cmd
, argp
);
1109 mutex_unlock(&dlci_ioctl_mutex
);
1112 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1118 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1121 struct socket
*sock
= NULL
;
1123 err
= security_socket_create(family
, type
, protocol
, 1);
1127 sock
= sock_alloc();
1134 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1146 EXPORT_SYMBOL(sock_create_lite
);
1148 /* No kernel lock held - perfect */
1149 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1151 unsigned int busy_flag
= 0;
1152 struct socket
*sock
;
1155 * We can't return errors to poll, so it's either yes or no.
1157 sock
= file
->private_data
;
1159 if (sk_can_busy_loop(sock
->sk
)) {
1160 /* this socket can poll_ll so tell the system call */
1161 busy_flag
= POLL_BUSY_LOOP
;
1163 /* once, only if requested by syscall */
1164 if (wait
&& (wait
->_key
& POLL_BUSY_LOOP
))
1165 sk_busy_loop(sock
->sk
, 1);
1168 return busy_flag
| sock
->ops
->poll(file
, sock
, wait
);
1171 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1173 struct socket
*sock
= file
->private_data
;
1175 return sock
->ops
->mmap(file
, sock
, vma
);
1178 static int sock_close(struct inode
*inode
, struct file
*filp
)
1180 sock_release(SOCKET_I(inode
));
1185 * Update the socket async list
1187 * Fasync_list locking strategy.
1189 * 1. fasync_list is modified only under process context socket lock
1190 * i.e. under semaphore.
1191 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1192 * or under socket lock
1195 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1197 struct socket
*sock
= filp
->private_data
;
1198 struct sock
*sk
= sock
->sk
;
1199 struct socket_wq
*wq
;
1205 wq
= rcu_dereference_protected(sock
->wq
, sock_owned_by_user(sk
));
1206 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1208 if (!wq
->fasync_list
)
1209 sock_reset_flag(sk
, SOCK_FASYNC
);
1211 sock_set_flag(sk
, SOCK_FASYNC
);
1217 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1219 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1221 struct socket_wq
*wq
;
1226 wq
= rcu_dereference(sock
->wq
);
1227 if (!wq
|| !wq
->fasync_list
) {
1232 case SOCK_WAKE_WAITD
:
1233 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1236 case SOCK_WAKE_SPACE
:
1237 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1242 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1245 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1250 EXPORT_SYMBOL(sock_wake_async
);
1252 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1253 struct socket
**res
, int kern
)
1256 struct socket
*sock
;
1257 const struct net_proto_family
*pf
;
1260 * Check protocol is in range
1262 if (family
< 0 || family
>= NPROTO
)
1263 return -EAFNOSUPPORT
;
1264 if (type
< 0 || type
>= SOCK_MAX
)
1269 This uglymoron is moved from INET layer to here to avoid
1270 deadlock in module load.
1272 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1276 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1282 err
= security_socket_create(family
, type
, protocol
, kern
);
1287 * Allocate the socket and allow the family to set things up. if
1288 * the protocol is 0, the family is instructed to select an appropriate
1291 sock
= sock_alloc();
1293 net_warn_ratelimited("socket: no more sockets\n");
1294 return -ENFILE
; /* Not exactly a match, but its the
1295 closest posix thing */
1300 #ifdef CONFIG_MODULES
1301 /* Attempt to load a protocol module if the find failed.
1303 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1304 * requested real, full-featured networking support upon configuration.
1305 * Otherwise module support will break!
1307 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1308 request_module("net-pf-%d", family
);
1312 pf
= rcu_dereference(net_families
[family
]);
1313 err
= -EAFNOSUPPORT
;
1318 * We will call the ->create function, that possibly is in a loadable
1319 * module, so we have to bump that loadable module refcnt first.
1321 if (!try_module_get(pf
->owner
))
1324 /* Now protected by module ref count */
1327 err
= pf
->create(net
, sock
, protocol
, kern
);
1329 goto out_module_put
;
1332 * Now to bump the refcnt of the [loadable] module that owns this
1333 * socket at sock_release time we decrement its refcnt.
1335 if (!try_module_get(sock
->ops
->owner
))
1336 goto out_module_busy
;
1339 * Now that we're done with the ->create function, the [loadable]
1340 * module can have its refcnt decremented
1342 module_put(pf
->owner
);
1343 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1345 goto out_sock_release
;
1351 err
= -EAFNOSUPPORT
;
1354 module_put(pf
->owner
);
1361 goto out_sock_release
;
1363 EXPORT_SYMBOL(__sock_create
);
1365 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1367 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1369 EXPORT_SYMBOL(sock_create
);
1371 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1373 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1375 EXPORT_SYMBOL(sock_create_kern
);
1377 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1380 struct socket
*sock
;
1383 /* Check the SOCK_* constants for consistency. */
1384 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1385 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1386 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1387 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1389 flags
= type
& ~SOCK_TYPE_MASK
;
1390 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1392 type
&= SOCK_TYPE_MASK
;
1394 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1395 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1397 retval
= sock_create(family
, type
, protocol
, &sock
);
1401 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1406 /* It may be already another descriptor 8) Not kernel problem. */
1415 * Create a pair of connected sockets.
1418 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1419 int __user
*, usockvec
)
1421 struct socket
*sock1
, *sock2
;
1423 struct file
*newfile1
, *newfile2
;
1426 flags
= type
& ~SOCK_TYPE_MASK
;
1427 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1429 type
&= SOCK_TYPE_MASK
;
1431 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1432 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1435 * Obtain the first socket and check if the underlying protocol
1436 * supports the socketpair call.
1439 err
= sock_create(family
, type
, protocol
, &sock1
);
1443 err
= sock_create(family
, type
, protocol
, &sock2
);
1447 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1449 goto out_release_both
;
1451 fd1
= get_unused_fd_flags(flags
);
1452 if (unlikely(fd1
< 0)) {
1454 goto out_release_both
;
1456 fd2
= get_unused_fd_flags(flags
);
1457 if (unlikely(fd2
< 0)) {
1460 goto out_release_both
;
1463 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1464 if (unlikely(IS_ERR(newfile1
))) {
1465 err
= PTR_ERR(newfile1
);
1468 goto out_release_both
;
1471 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1472 if (IS_ERR(newfile2
)) {
1473 err
= PTR_ERR(newfile2
);
1477 sock_release(sock2
);
1481 audit_fd_pair(fd1
, fd2
);
1482 fd_install(fd1
, newfile1
);
1483 fd_install(fd2
, newfile2
);
1484 /* fd1 and fd2 may be already another descriptors.
1485 * Not kernel problem.
1488 err
= put_user(fd1
, &usockvec
[0]);
1490 err
= put_user(fd2
, &usockvec
[1]);
1499 sock_release(sock2
);
1501 sock_release(sock1
);
1507 * Bind a name to a socket. Nothing much to do here since it's
1508 * the protocol's responsibility to handle the local address.
1510 * We move the socket address to kernel space before we call
1511 * the protocol layer (having also checked the address is ok).
1514 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1516 struct socket
*sock
;
1517 struct sockaddr_storage address
;
1518 int err
, fput_needed
;
1520 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1522 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1524 err
= security_socket_bind(sock
,
1525 (struct sockaddr
*)&address
,
1528 err
= sock
->ops
->bind(sock
,
1532 fput_light(sock
->file
, fput_needed
);
1538 * Perform a listen. Basically, we allow the protocol to do anything
1539 * necessary for a listen, and if that works, we mark the socket as
1540 * ready for listening.
1543 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1545 struct socket
*sock
;
1546 int err
, fput_needed
;
1549 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1551 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1552 if ((unsigned int)backlog
> somaxconn
)
1553 backlog
= somaxconn
;
1555 err
= security_socket_listen(sock
, backlog
);
1557 err
= sock
->ops
->listen(sock
, backlog
);
1559 fput_light(sock
->file
, fput_needed
);
1565 * For accept, we attempt to create a new socket, set up the link
1566 * with the client, wake up the client, then return the new
1567 * connected fd. We collect the address of the connector in kernel
1568 * space and move it to user at the very end. This is unclean because
1569 * we open the socket then return an error.
1571 * 1003.1g adds the ability to recvmsg() to query connection pending
1572 * status to recvmsg. We need to add that support in a way thats
1573 * clean when we restucture accept also.
1576 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1577 int __user
*, upeer_addrlen
, int, flags
)
1579 struct socket
*sock
, *newsock
;
1580 struct file
*newfile
;
1581 int err
, len
, newfd
, fput_needed
;
1582 struct sockaddr_storage address
;
1584 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1587 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1588 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1590 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1595 newsock
= sock_alloc();
1599 newsock
->type
= sock
->type
;
1600 newsock
->ops
= sock
->ops
;
1603 * We don't need try_module_get here, as the listening socket (sock)
1604 * has the protocol module (sock->ops->owner) held.
1606 __module_get(newsock
->ops
->owner
);
1608 newfd
= get_unused_fd_flags(flags
);
1609 if (unlikely(newfd
< 0)) {
1611 sock_release(newsock
);
1614 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1615 if (unlikely(IS_ERR(newfile
))) {
1616 err
= PTR_ERR(newfile
);
1617 put_unused_fd(newfd
);
1618 sock_release(newsock
);
1622 err
= security_socket_accept(sock
, newsock
);
1626 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1630 if (upeer_sockaddr
) {
1631 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1633 err
= -ECONNABORTED
;
1636 err
= move_addr_to_user(&address
,
1637 len
, upeer_sockaddr
, upeer_addrlen
);
1642 /* File flags are not inherited via accept() unlike another OSes. */
1644 fd_install(newfd
, newfile
);
1648 fput_light(sock
->file
, fput_needed
);
1653 put_unused_fd(newfd
);
1657 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1658 int __user
*, upeer_addrlen
)
1660 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1664 * Attempt to connect to a socket with the server address. The address
1665 * is in user space so we verify it is OK and move it to kernel space.
1667 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1670 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1671 * other SEQPACKET protocols that take time to connect() as it doesn't
1672 * include the -EINPROGRESS status for such sockets.
1675 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1678 struct socket
*sock
;
1679 struct sockaddr_storage address
;
1680 int err
, fput_needed
;
1682 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1685 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1690 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1694 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1695 sock
->file
->f_flags
);
1697 fput_light(sock
->file
, fput_needed
);
1703 * Get the local address ('name') of a socket object. Move the obtained
1704 * name to user space.
1707 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1708 int __user
*, usockaddr_len
)
1710 struct socket
*sock
;
1711 struct sockaddr_storage address
;
1712 int len
, err
, fput_needed
;
1714 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1718 err
= security_socket_getsockname(sock
);
1722 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1725 err
= move_addr_to_user(&address
, len
, usockaddr
, usockaddr_len
);
1728 fput_light(sock
->file
, fput_needed
);
1734 * Get the remote address ('name') of a socket object. Move the obtained
1735 * name to user space.
1738 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1739 int __user
*, usockaddr_len
)
1741 struct socket
*sock
;
1742 struct sockaddr_storage address
;
1743 int len
, err
, fput_needed
;
1745 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1747 err
= security_socket_getpeername(sock
);
1749 fput_light(sock
->file
, fput_needed
);
1754 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1757 err
= move_addr_to_user(&address
, len
, usockaddr
,
1759 fput_light(sock
->file
, fput_needed
);
1765 * Send a datagram to a given address. We move the address into kernel
1766 * space and check the user space data area is readable before invoking
1770 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1771 unsigned int, flags
, struct sockaddr __user
*, addr
,
1774 struct socket
*sock
;
1775 struct sockaddr_storage address
;
1783 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1787 iov
.iov_base
= buff
;
1789 msg
.msg_name
= NULL
;
1792 msg
.msg_control
= NULL
;
1793 msg
.msg_controllen
= 0;
1794 msg
.msg_namelen
= 0;
1796 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1799 msg
.msg_name
= (struct sockaddr
*)&address
;
1800 msg
.msg_namelen
= addr_len
;
1802 if (sock
->file
->f_flags
& O_NONBLOCK
)
1803 flags
|= MSG_DONTWAIT
;
1804 msg
.msg_flags
= flags
;
1805 err
= sock_sendmsg(sock
, &msg
, len
);
1808 fput_light(sock
->file
, fput_needed
);
1814 * Send a datagram down a socket.
1817 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1818 unsigned int, flags
)
1820 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1824 * Receive a frame from the socket and optionally record the address of the
1825 * sender. We verify the buffers are writable and if needed move the
1826 * sender address from kernel to user space.
1829 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1830 unsigned int, flags
, struct sockaddr __user
*, addr
,
1831 int __user
*, addr_len
)
1833 struct socket
*sock
;
1836 struct sockaddr_storage address
;
1842 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1846 msg
.msg_control
= NULL
;
1847 msg
.msg_controllen
= 0;
1851 iov
.iov_base
= ubuf
;
1852 msg
.msg_name
= (struct sockaddr
*)&address
;
1853 msg
.msg_namelen
= sizeof(address
);
1854 if (sock
->file
->f_flags
& O_NONBLOCK
)
1855 flags
|= MSG_DONTWAIT
;
1856 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1858 if (err
>= 0 && addr
!= NULL
) {
1859 err2
= move_addr_to_user(&address
,
1860 msg
.msg_namelen
, addr
, addr_len
);
1865 fput_light(sock
->file
, fput_needed
);
1871 * Receive a datagram from a socket.
1874 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1877 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1881 * Set a socket option. Because we don't know the option lengths we have
1882 * to pass the user mode parameter for the protocols to sort out.
1885 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1886 char __user
*, optval
, int, optlen
)
1888 int err
, fput_needed
;
1889 struct socket
*sock
;
1894 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1896 err
= security_socket_setsockopt(sock
, level
, optname
);
1900 if (level
== SOL_SOCKET
)
1902 sock_setsockopt(sock
, level
, optname
, optval
,
1906 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1909 fput_light(sock
->file
, fput_needed
);
1915 * Get a socket option. Because we don't know the option lengths we have
1916 * to pass a user mode parameter for the protocols to sort out.
1919 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1920 char __user
*, optval
, int __user
*, optlen
)
1922 int err
, fput_needed
;
1923 struct socket
*sock
;
1925 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1927 err
= security_socket_getsockopt(sock
, level
, optname
);
1931 if (level
== SOL_SOCKET
)
1933 sock_getsockopt(sock
, level
, optname
, optval
,
1937 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1940 fput_light(sock
->file
, fput_needed
);
1946 * Shutdown a socket.
1949 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1951 int err
, fput_needed
;
1952 struct socket
*sock
;
1954 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1956 err
= security_socket_shutdown(sock
, how
);
1958 err
= sock
->ops
->shutdown(sock
, how
);
1959 fput_light(sock
->file
, fput_needed
);
1964 /* A couple of helpful macros for getting the address of the 32/64 bit
1965 * fields which are the same type (int / unsigned) on our platforms.
1967 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1968 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1969 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1971 struct used_address
{
1972 struct sockaddr_storage name
;
1973 unsigned int name_len
;
1976 static int ___sys_sendmsg(struct socket
*sock
, struct msghdr __user
*msg
,
1977 struct msghdr
*msg_sys
, unsigned int flags
,
1978 struct used_address
*used_address
)
1980 struct compat_msghdr __user
*msg_compat
=
1981 (struct compat_msghdr __user
*)msg
;
1982 struct sockaddr_storage address
;
1983 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1984 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1985 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1986 /* 20 is size of ipv6_pktinfo */
1987 unsigned char *ctl_buf
= ctl
;
1988 int err
, ctl_len
, total_len
;
1991 if (MSG_CMSG_COMPAT
& flags
) {
1992 if (get_compat_msghdr(msg_sys
, msg_compat
))
1994 } else if (copy_from_user(msg_sys
, msg
, sizeof(struct msghdr
)))
1997 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
1999 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2002 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2008 /* This will also move the address data into kernel space */
2009 if (MSG_CMSG_COMPAT
& flags
) {
2010 err
= verify_compat_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2012 err
= verify_iovec(msg_sys
, iov
, &address
, VERIFY_READ
);
2019 if (msg_sys
->msg_controllen
> INT_MAX
)
2021 ctl_len
= msg_sys
->msg_controllen
;
2022 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2024 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2028 ctl_buf
= msg_sys
->msg_control
;
2029 ctl_len
= msg_sys
->msg_controllen
;
2030 } else if (ctl_len
) {
2031 if (ctl_len
> sizeof(ctl
)) {
2032 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2033 if (ctl_buf
== NULL
)
2038 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2039 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2040 * checking falls down on this.
2042 if (copy_from_user(ctl_buf
,
2043 (void __user __force
*)msg_sys
->msg_control
,
2046 msg_sys
->msg_control
= ctl_buf
;
2048 msg_sys
->msg_flags
= flags
;
2050 if (sock
->file
->f_flags
& O_NONBLOCK
)
2051 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2053 * If this is sendmmsg() and current destination address is same as
2054 * previously succeeded address, omit asking LSM's decision.
2055 * used_address->name_len is initialized to UINT_MAX so that the first
2056 * destination address never matches.
2058 if (used_address
&& msg_sys
->msg_name
&&
2059 used_address
->name_len
== msg_sys
->msg_namelen
&&
2060 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2061 used_address
->name_len
)) {
2062 err
= sock_sendmsg_nosec(sock
, msg_sys
, total_len
);
2065 err
= sock_sendmsg(sock
, msg_sys
, total_len
);
2067 * If this is sendmmsg() and sending to current destination address was
2068 * successful, remember it.
2070 if (used_address
&& err
>= 0) {
2071 used_address
->name_len
= msg_sys
->msg_namelen
;
2072 if (msg_sys
->msg_name
)
2073 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2074 used_address
->name_len
);
2079 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2081 if (iov
!= iovstack
)
2088 * BSD sendmsg interface
2091 long __sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2093 int fput_needed
, err
;
2094 struct msghdr msg_sys
;
2095 struct socket
*sock
;
2097 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2101 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
);
2103 fput_light(sock
->file
, fput_needed
);
2108 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned int, flags
)
2110 if (flags
& MSG_CMSG_COMPAT
)
2112 return __sys_sendmsg(fd
, msg
, flags
);
2116 * Linux sendmmsg interface
2119 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2122 int fput_needed
, err
, datagrams
;
2123 struct socket
*sock
;
2124 struct mmsghdr __user
*entry
;
2125 struct compat_mmsghdr __user
*compat_entry
;
2126 struct msghdr msg_sys
;
2127 struct used_address used_address
;
2129 if (vlen
> UIO_MAXIOV
)
2134 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2138 used_address
.name_len
= UINT_MAX
;
2140 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2143 while (datagrams
< vlen
) {
2144 if (MSG_CMSG_COMPAT
& flags
) {
2145 err
= ___sys_sendmsg(sock
, (struct msghdr __user
*)compat_entry
,
2146 &msg_sys
, flags
, &used_address
);
2149 err
= __put_user(err
, &compat_entry
->msg_len
);
2152 err
= ___sys_sendmsg(sock
,
2153 (struct msghdr __user
*)entry
,
2154 &msg_sys
, flags
, &used_address
);
2157 err
= put_user(err
, &entry
->msg_len
);
2166 fput_light(sock
->file
, fput_needed
);
2168 /* We only return an error if no datagrams were able to be sent */
2175 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2176 unsigned int, vlen
, unsigned int, flags
)
2178 if (flags
& MSG_CMSG_COMPAT
)
2180 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
);
2183 static int ___sys_recvmsg(struct socket
*sock
, struct msghdr __user
*msg
,
2184 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2186 struct compat_msghdr __user
*msg_compat
=
2187 (struct compat_msghdr __user
*)msg
;
2188 struct iovec iovstack
[UIO_FASTIOV
];
2189 struct iovec
*iov
= iovstack
;
2190 unsigned long cmsg_ptr
;
2191 int err
, total_len
, len
;
2193 /* kernel mode address */
2194 struct sockaddr_storage addr
;
2196 /* user mode address pointers */
2197 struct sockaddr __user
*uaddr
;
2198 int __user
*uaddr_len
;
2200 if (MSG_CMSG_COMPAT
& flags
) {
2201 if (get_compat_msghdr(msg_sys
, msg_compat
))
2203 } else if (copy_from_user(msg_sys
, msg
, sizeof(struct msghdr
)))
2206 if (msg_sys
->msg_iovlen
> UIO_FASTIOV
) {
2208 if (msg_sys
->msg_iovlen
> UIO_MAXIOV
)
2211 iov
= kmalloc(msg_sys
->msg_iovlen
* sizeof(struct iovec
),
2218 * Save the user-mode address (verify_iovec will change the
2219 * kernel msghdr to use the kernel address space)
2222 uaddr
= (__force
void __user
*)msg_sys
->msg_name
;
2223 uaddr_len
= COMPAT_NAMELEN(msg
);
2224 if (MSG_CMSG_COMPAT
& flags
) {
2225 err
= verify_compat_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2227 err
= verify_iovec(msg_sys
, iov
, &addr
, VERIFY_WRITE
);
2232 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2233 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2235 if (sock
->file
->f_flags
& O_NONBLOCK
)
2236 flags
|= MSG_DONTWAIT
;
2237 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
,
2243 if (uaddr
!= NULL
) {
2244 err
= move_addr_to_user(&addr
,
2245 msg_sys
->msg_namelen
, uaddr
,
2250 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2254 if (MSG_CMSG_COMPAT
& flags
)
2255 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2256 &msg_compat
->msg_controllen
);
2258 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2259 &msg
->msg_controllen
);
2265 if (iov
!= iovstack
)
2272 * BSD recvmsg interface
2275 long __sys_recvmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
2277 int fput_needed
, err
;
2278 struct msghdr msg_sys
;
2279 struct socket
*sock
;
2281 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2285 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2287 fput_light(sock
->file
, fput_needed
);
2292 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
2293 unsigned int, flags
)
2295 if (flags
& MSG_CMSG_COMPAT
)
2297 return __sys_recvmsg(fd
, msg
, flags
);
2301 * Linux recvmmsg interface
2304 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2305 unsigned int flags
, struct timespec
*timeout
)
2307 int fput_needed
, err
, datagrams
;
2308 struct socket
*sock
;
2309 struct mmsghdr __user
*entry
;
2310 struct compat_mmsghdr __user
*compat_entry
;
2311 struct msghdr msg_sys
;
2312 struct timespec end_time
;
2315 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2321 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2325 err
= sock_error(sock
->sk
);
2330 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2332 while (datagrams
< vlen
) {
2334 * No need to ask LSM for more than the first datagram.
2336 if (MSG_CMSG_COMPAT
& flags
) {
2337 err
= ___sys_recvmsg(sock
, (struct msghdr __user
*)compat_entry
,
2338 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2342 err
= __put_user(err
, &compat_entry
->msg_len
);
2345 err
= ___sys_recvmsg(sock
,
2346 (struct msghdr __user
*)entry
,
2347 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2351 err
= put_user(err
, &entry
->msg_len
);
2359 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2360 if (flags
& MSG_WAITFORONE
)
2361 flags
|= MSG_DONTWAIT
;
2364 ktime_get_ts(timeout
);
2365 *timeout
= timespec_sub(end_time
, *timeout
);
2366 if (timeout
->tv_sec
< 0) {
2367 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2371 /* Timeout, return less than vlen datagrams */
2372 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2376 /* Out of band data, return right away */
2377 if (msg_sys
.msg_flags
& MSG_OOB
)
2382 fput_light(sock
->file
, fput_needed
);
2387 if (datagrams
!= 0) {
2389 * We may return less entries than requested (vlen) if the
2390 * sock is non block and there aren't enough datagrams...
2392 if (err
!= -EAGAIN
) {
2394 * ... or if recvmsg returns an error after we
2395 * received some datagrams, where we record the
2396 * error to return on the next call or if the
2397 * app asks about it using getsockopt(SO_ERROR).
2399 sock
->sk
->sk_err
= -err
;
2408 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2409 unsigned int, vlen
, unsigned int, flags
,
2410 struct timespec __user
*, timeout
)
2413 struct timespec timeout_sys
;
2415 if (flags
& MSG_CMSG_COMPAT
)
2419 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2421 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2424 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2426 if (datagrams
> 0 &&
2427 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2428 datagrams
= -EFAULT
;
2433 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2434 /* Argument list sizes for sys_socketcall */
2435 #define AL(x) ((x) * sizeof(unsigned long))
2436 static const unsigned char nargs
[21] = {
2437 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2438 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2439 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2446 * System call vectors.
2448 * Argument checking cleaned up. Saved 20% in size.
2449 * This function doesn't need to set the kernel lock because
2450 * it is set by the callees.
2453 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2455 unsigned long a
[AUDITSC_ARGS
];
2456 unsigned long a0
, a1
;
2460 if (call
< 1 || call
> SYS_SENDMMSG
)
2464 if (len
> sizeof(a
))
2467 /* copy_from_user should be SMP safe. */
2468 if (copy_from_user(a
, args
, len
))
2471 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2480 err
= sys_socket(a0
, a1
, a
[2]);
2483 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2486 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2489 err
= sys_listen(a0
, a1
);
2492 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2493 (int __user
*)a
[2], 0);
2495 case SYS_GETSOCKNAME
:
2497 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2498 (int __user
*)a
[2]);
2500 case SYS_GETPEERNAME
:
2502 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2503 (int __user
*)a
[2]);
2505 case SYS_SOCKETPAIR
:
2506 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2509 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2512 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2513 (struct sockaddr __user
*)a
[4], a
[5]);
2516 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2519 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2520 (struct sockaddr __user
*)a
[4],
2521 (int __user
*)a
[5]);
2524 err
= sys_shutdown(a0
, a1
);
2526 case SYS_SETSOCKOPT
:
2527 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2529 case SYS_GETSOCKOPT
:
2531 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2532 (int __user
*)a
[4]);
2535 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2538 err
= sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3]);
2541 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2544 err
= sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2], a
[3],
2545 (struct timespec __user
*)a
[4]);
2548 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2549 (int __user
*)a
[2], a
[3]);
2558 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2561 * sock_register - add a socket protocol handler
2562 * @ops: description of protocol
2564 * This function is called by a protocol handler that wants to
2565 * advertise its address family, and have it linked into the
2566 * socket interface. The value ops->family coresponds to the
2567 * socket system call protocol family.
2569 int sock_register(const struct net_proto_family
*ops
)
2573 if (ops
->family
>= NPROTO
) {
2574 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2579 spin_lock(&net_family_lock
);
2580 if (rcu_dereference_protected(net_families
[ops
->family
],
2581 lockdep_is_held(&net_family_lock
)))
2584 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2587 spin_unlock(&net_family_lock
);
2589 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2592 EXPORT_SYMBOL(sock_register
);
2595 * sock_unregister - remove a protocol handler
2596 * @family: protocol family to remove
2598 * This function is called by a protocol handler that wants to
2599 * remove its address family, and have it unlinked from the
2600 * new socket creation.
2602 * If protocol handler is a module, then it can use module reference
2603 * counts to protect against new references. If protocol handler is not
2604 * a module then it needs to provide its own protection in
2605 * the ops->create routine.
2607 void sock_unregister(int family
)
2609 BUG_ON(family
< 0 || family
>= NPROTO
);
2611 spin_lock(&net_family_lock
);
2612 RCU_INIT_POINTER(net_families
[family
], NULL
);
2613 spin_unlock(&net_family_lock
);
2617 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2619 EXPORT_SYMBOL(sock_unregister
);
2621 static int __init
sock_init(void)
2625 * Initialize the network sysctl infrastructure.
2627 err
= net_sysctl_init();
2632 * Initialize skbuff SLAB cache
2637 * Initialize the protocols module.
2642 err
= register_filesystem(&sock_fs_type
);
2645 sock_mnt
= kern_mount(&sock_fs_type
);
2646 if (IS_ERR(sock_mnt
)) {
2647 err
= PTR_ERR(sock_mnt
);
2651 /* The real protocol initialization is performed in later initcalls.
2654 #ifdef CONFIG_NETFILTER
2655 err
= netfilter_init();
2660 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2661 skb_timestamping_init();
2668 unregister_filesystem(&sock_fs_type
);
2673 core_initcall(sock_init
); /* early initcall */
2675 #ifdef CONFIG_PROC_FS
2676 void socket_seq_show(struct seq_file
*seq
)
2681 for_each_possible_cpu(cpu
)
2682 counter
+= per_cpu(sockets_in_use
, cpu
);
2684 /* It can be negative, by the way. 8) */
2688 seq_printf(seq
, "sockets: used %d\n", counter
);
2690 #endif /* CONFIG_PROC_FS */
2692 #ifdef CONFIG_COMPAT
2693 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2694 unsigned int cmd
, void __user
*up
)
2696 mm_segment_t old_fs
= get_fs();
2701 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2704 err
= compat_put_timeval(&ktv
, up
);
2709 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2710 unsigned int cmd
, void __user
*up
)
2712 mm_segment_t old_fs
= get_fs();
2713 struct timespec kts
;
2717 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2720 err
= compat_put_timespec(&kts
, up
);
2725 static int dev_ifname32(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2727 struct ifreq __user
*uifr
;
2730 uifr
= compat_alloc_user_space(sizeof(struct ifreq
));
2731 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2734 err
= dev_ioctl(net
, SIOCGIFNAME
, uifr
);
2738 if (copy_in_user(uifr32
, uifr
, sizeof(struct compat_ifreq
)))
2744 static int dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2746 struct compat_ifconf ifc32
;
2748 struct ifconf __user
*uifc
;
2749 struct compat_ifreq __user
*ifr32
;
2750 struct ifreq __user
*ifr
;
2754 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2757 memset(&ifc
, 0, sizeof(ifc
));
2758 if (ifc32
.ifcbuf
== 0) {
2762 uifc
= compat_alloc_user_space(sizeof(struct ifconf
));
2764 size_t len
= ((ifc32
.ifc_len
/ sizeof(struct compat_ifreq
)) + 1) *
2765 sizeof(struct ifreq
);
2766 uifc
= compat_alloc_user_space(sizeof(struct ifconf
) + len
);
2768 ifr
= ifc
.ifc_req
= (void __user
*)(uifc
+ 1);
2769 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2770 for (i
= 0; i
< ifc32
.ifc_len
; i
+= sizeof(struct compat_ifreq
)) {
2771 if (copy_in_user(ifr
, ifr32
, sizeof(struct compat_ifreq
)))
2777 if (copy_to_user(uifc
, &ifc
, sizeof(struct ifconf
)))
2780 err
= dev_ioctl(net
, SIOCGIFCONF
, uifc
);
2784 if (copy_from_user(&ifc
, uifc
, sizeof(struct ifconf
)))
2788 ifr32
= compat_ptr(ifc32
.ifcbuf
);
2790 i
+ sizeof(struct compat_ifreq
) <= ifc32
.ifc_len
&& j
< ifc
.ifc_len
;
2791 i
+= sizeof(struct compat_ifreq
), j
+= sizeof(struct ifreq
)) {
2792 if (copy_in_user(ifr32
, ifr
, sizeof(struct compat_ifreq
)))
2798 if (ifc32
.ifcbuf
== 0) {
2799 /* Translate from 64-bit structure multiple to
2803 i
= ((i
/ sizeof(struct ifreq
)) * sizeof(struct compat_ifreq
));
2808 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2814 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2816 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2817 bool convert_in
= false, convert_out
= false;
2818 size_t buf_size
= ALIGN(sizeof(struct ifreq
), 8);
2819 struct ethtool_rxnfc __user
*rxnfc
;
2820 struct ifreq __user
*ifr
;
2821 u32 rule_cnt
= 0, actual_rule_cnt
;
2826 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2829 compat_rxnfc
= compat_ptr(data
);
2831 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2834 /* Most ethtool structures are defined without padding.
2835 * Unfortunately struct ethtool_rxnfc is an exception.
2840 case ETHTOOL_GRXCLSRLALL
:
2841 /* Buffer size is variable */
2842 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2844 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2846 buf_size
+= rule_cnt
* sizeof(u32
);
2848 case ETHTOOL_GRXRINGS
:
2849 case ETHTOOL_GRXCLSRLCNT
:
2850 case ETHTOOL_GRXCLSRULE
:
2851 case ETHTOOL_SRXCLSRLINS
:
2854 case ETHTOOL_SRXCLSRLDEL
:
2855 buf_size
+= sizeof(struct ethtool_rxnfc
);
2860 ifr
= compat_alloc_user_space(buf_size
);
2861 rxnfc
= (void __user
*)ifr
+ ALIGN(sizeof(struct ifreq
), 8);
2863 if (copy_in_user(&ifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2866 if (put_user(convert_in
? rxnfc
: compat_ptr(data
),
2867 &ifr
->ifr_ifru
.ifru_data
))
2871 /* We expect there to be holes between fs.m_ext and
2872 * fs.ring_cookie and at the end of fs, but nowhere else.
2874 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2875 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2876 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2877 sizeof(rxnfc
->fs
.m_ext
));
2879 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2880 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2881 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2882 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2884 if (copy_in_user(rxnfc
, compat_rxnfc
,
2885 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2886 (void __user
*)rxnfc
) ||
2887 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2888 &compat_rxnfc
->fs
.ring_cookie
,
2889 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2890 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2891 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2892 sizeof(rxnfc
->rule_cnt
)))
2896 ret
= dev_ioctl(net
, SIOCETHTOOL
, ifr
);
2901 if (copy_in_user(compat_rxnfc
, rxnfc
,
2902 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2903 (const void __user
*)rxnfc
) ||
2904 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2905 &rxnfc
->fs
.ring_cookie
,
2906 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2907 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2908 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2909 sizeof(rxnfc
->rule_cnt
)))
2912 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2913 /* As an optimisation, we only copy the actual
2914 * number of rules that the underlying
2915 * function returned. Since Mallory might
2916 * change the rule count in user memory, we
2917 * check that it is less than the rule count
2918 * originally given (as the user buffer size),
2919 * which has been range-checked.
2921 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2923 if (actual_rule_cnt
< rule_cnt
)
2924 rule_cnt
= actual_rule_cnt
;
2925 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2926 &rxnfc
->rule_locs
[0],
2927 rule_cnt
* sizeof(u32
)))
2935 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2938 compat_uptr_t uptr32
;
2939 struct ifreq __user
*uifr
;
2941 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2942 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
2945 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2948 uptr
= compat_ptr(uptr32
);
2950 if (put_user(uptr
, &uifr
->ifr_settings
.ifs_ifsu
.raw_hdlc
))
2953 return dev_ioctl(net
, SIOCWANDEV
, uifr
);
2956 static int bond_ioctl(struct net
*net
, unsigned int cmd
,
2957 struct compat_ifreq __user
*ifr32
)
2960 struct ifreq __user
*uifr
;
2961 mm_segment_t old_fs
;
2967 case SIOCBONDENSLAVE
:
2968 case SIOCBONDRELEASE
:
2969 case SIOCBONDSETHWADDR
:
2970 case SIOCBONDCHANGEACTIVE
:
2971 if (copy_from_user(&kifr
, ifr32
, sizeof(struct compat_ifreq
)))
2976 err
= dev_ioctl(net
, cmd
,
2977 (struct ifreq __user __force
*) &kifr
);
2981 case SIOCBONDSLAVEINFOQUERY
:
2982 case SIOCBONDINFOQUERY
:
2983 uifr
= compat_alloc_user_space(sizeof(*uifr
));
2984 if (copy_in_user(&uifr
->ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2987 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2990 datap
= compat_ptr(data
);
2991 if (put_user(datap
, &uifr
->ifr_ifru
.ifru_data
))
2994 return dev_ioctl(net
, cmd
, uifr
);
2996 return -ENOIOCTLCMD
;
3000 static int siocdevprivate_ioctl(struct net
*net
, unsigned int cmd
,
3001 struct compat_ifreq __user
*u_ifreq32
)
3003 struct ifreq __user
*u_ifreq64
;
3004 char tmp_buf
[IFNAMSIZ
];
3005 void __user
*data64
;
3008 if (copy_from_user(&tmp_buf
[0], &(u_ifreq32
->ifr_ifrn
.ifrn_name
[0]),
3011 if (__get_user(data32
, &u_ifreq32
->ifr_ifru
.ifru_data
))
3013 data64
= compat_ptr(data32
);
3015 u_ifreq64
= compat_alloc_user_space(sizeof(*u_ifreq64
));
3017 /* Don't check these user accesses, just let that get trapped
3018 * in the ioctl handler instead.
3020 if (copy_to_user(&u_ifreq64
->ifr_ifrn
.ifrn_name
[0], &tmp_buf
[0],
3023 if (__put_user(data64
, &u_ifreq64
->ifr_ifru
.ifru_data
))
3026 return dev_ioctl(net
, cmd
, u_ifreq64
);
3029 static int dev_ifsioc(struct net
*net
, struct socket
*sock
,
3030 unsigned int cmd
, struct compat_ifreq __user
*uifr32
)
3032 struct ifreq __user
*uifr
;
3035 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3036 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3039 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3050 case SIOCGIFBRDADDR
:
3051 case SIOCGIFDSTADDR
:
3052 case SIOCGIFNETMASK
:
3057 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3065 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3066 struct compat_ifreq __user
*uifr32
)
3069 struct compat_ifmap __user
*uifmap32
;
3070 mm_segment_t old_fs
;
3073 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3074 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3075 err
|= __get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3076 err
|= __get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3077 err
|= __get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3078 err
|= __get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3079 err
|= __get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3080 err
|= __get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3086 err
= dev_ioctl(net
, cmd
, (void __user __force
*)&ifr
);
3089 if (cmd
== SIOCGIFMAP
&& !err
) {
3090 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3091 err
|= __put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3092 err
|= __put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3093 err
|= __put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3094 err
|= __put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3095 err
|= __put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3096 err
|= __put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3103 static int compat_siocshwtstamp(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3106 compat_uptr_t uptr32
;
3107 struct ifreq __user
*uifr
;
3109 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3110 if (copy_in_user(uifr
, uifr32
, sizeof(struct compat_ifreq
)))
3113 if (get_user(uptr32
, &uifr32
->ifr_data
))
3116 uptr
= compat_ptr(uptr32
);
3118 if (put_user(uptr
, &uifr
->ifr_data
))
3121 return dev_ioctl(net
, SIOCSHWTSTAMP
, uifr
);
3126 struct sockaddr rt_dst
; /* target address */
3127 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3128 struct sockaddr rt_genmask
; /* target network mask (IP) */
3129 unsigned short rt_flags
;
3132 unsigned char rt_tos
;
3133 unsigned char rt_class
;
3135 short rt_metric
; /* +1 for binary compatibility! */
3136 /* char * */ u32 rt_dev
; /* forcing the device at add */
3137 u32 rt_mtu
; /* per route MTU/Window */
3138 u32 rt_window
; /* Window clamping */
3139 unsigned short rt_irtt
; /* Initial RTT */
3142 struct in6_rtmsg32
{
3143 struct in6_addr rtmsg_dst
;
3144 struct in6_addr rtmsg_src
;
3145 struct in6_addr rtmsg_gateway
;
3155 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3156 unsigned int cmd
, void __user
*argp
)
3160 struct in6_rtmsg r6
;
3164 mm_segment_t old_fs
= get_fs();
3166 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3167 struct in6_rtmsg32 __user
*ur6
= argp
;
3168 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3169 3 * sizeof(struct in6_addr
));
3170 ret
|= __get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3171 ret
|= __get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3172 ret
|= __get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3173 ret
|= __get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3174 ret
|= __get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3175 ret
|= __get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3176 ret
|= __get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3180 struct rtentry32 __user
*ur4
= argp
;
3181 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3182 3 * sizeof(struct sockaddr
));
3183 ret
|= __get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3184 ret
|= __get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3185 ret
|= __get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3186 ret
|= __get_user(r4
.rt_window
, &(ur4
->rt_window
));
3187 ret
|= __get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3188 ret
|= __get_user(rtdev
, &(ur4
->rt_dev
));
3190 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3191 r4
.rt_dev
= (char __user __force
*)devname
;
3205 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3212 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3213 * for some operations; this forces use of the newer bridge-utils that
3214 * use compatible ioctls
3216 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3220 if (get_user(tmp
, argp
))
3222 if (tmp
== BRCTL_GET_VERSION
)
3223 return BRCTL_VERSION
+ 1;
3227 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3228 unsigned int cmd
, unsigned long arg
)
3230 void __user
*argp
= compat_ptr(arg
);
3231 struct sock
*sk
= sock
->sk
;
3232 struct net
*net
= sock_net(sk
);
3234 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3235 return siocdevprivate_ioctl(net
, cmd
, argp
);
3240 return old_bridge_ioctl(argp
);
3242 return dev_ifname32(net
, argp
);
3244 return dev_ifconf(net
, argp
);
3246 return ethtool_ioctl(net
, argp
);
3248 return compat_siocwandev(net
, argp
);
3251 return compat_sioc_ifmap(net
, cmd
, argp
);
3252 case SIOCBONDENSLAVE
:
3253 case SIOCBONDRELEASE
:
3254 case SIOCBONDSETHWADDR
:
3255 case SIOCBONDSLAVEINFOQUERY
:
3256 case SIOCBONDINFOQUERY
:
3257 case SIOCBONDCHANGEACTIVE
:
3258 return bond_ioctl(net
, cmd
, argp
);
3261 return routing_ioctl(net
, sock
, cmd
, argp
);
3263 return do_siocgstamp(net
, sock
, cmd
, argp
);
3265 return do_siocgstampns(net
, sock
, cmd
, argp
);
3267 return compat_siocshwtstamp(net
, argp
);
3279 return sock_ioctl(file
, cmd
, arg
);
3296 case SIOCSIFHWBROADCAST
:
3298 case SIOCGIFBRDADDR
:
3299 case SIOCSIFBRDADDR
:
3300 case SIOCGIFDSTADDR
:
3301 case SIOCSIFDSTADDR
:
3302 case SIOCGIFNETMASK
:
3303 case SIOCSIFNETMASK
:
3314 return dev_ifsioc(net
, sock
, cmd
, argp
);
3320 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3323 return -ENOIOCTLCMD
;
3326 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3329 struct socket
*sock
= file
->private_data
;
3330 int ret
= -ENOIOCTLCMD
;
3337 if (sock
->ops
->compat_ioctl
)
3338 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3340 if (ret
== -ENOIOCTLCMD
&&
3341 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3342 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3344 if (ret
== -ENOIOCTLCMD
)
3345 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3351 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3353 return sock
->ops
->bind(sock
, addr
, addrlen
);
3355 EXPORT_SYMBOL(kernel_bind
);
3357 int kernel_listen(struct socket
*sock
, int backlog
)
3359 return sock
->ops
->listen(sock
, backlog
);
3361 EXPORT_SYMBOL(kernel_listen
);
3363 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3365 struct sock
*sk
= sock
->sk
;
3368 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3373 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
3375 sock_release(*newsock
);
3380 (*newsock
)->ops
= sock
->ops
;
3381 __module_get((*newsock
)->ops
->owner
);
3386 EXPORT_SYMBOL(kernel_accept
);
3388 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3391 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3393 EXPORT_SYMBOL(kernel_connect
);
3395 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
3398 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
3400 EXPORT_SYMBOL(kernel_getsockname
);
3402 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
3405 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
3407 EXPORT_SYMBOL(kernel_getpeername
);
3409 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3410 char *optval
, int *optlen
)
3412 mm_segment_t oldfs
= get_fs();
3413 char __user
*uoptval
;
3414 int __user
*uoptlen
;
3417 uoptval
= (char __user __force
*) optval
;
3418 uoptlen
= (int __user __force
*) optlen
;
3421 if (level
== SOL_SOCKET
)
3422 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3424 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3429 EXPORT_SYMBOL(kernel_getsockopt
);
3431 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3432 char *optval
, unsigned int optlen
)
3434 mm_segment_t oldfs
= get_fs();
3435 char __user
*uoptval
;
3438 uoptval
= (char __user __force
*) optval
;
3441 if (level
== SOL_SOCKET
)
3442 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3444 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3449 EXPORT_SYMBOL(kernel_setsockopt
);
3451 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3452 size_t size
, int flags
)
3454 if (sock
->ops
->sendpage
)
3455 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3457 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3459 EXPORT_SYMBOL(kernel_sendpage
);
3461 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
3463 mm_segment_t oldfs
= get_fs();
3467 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
3472 EXPORT_SYMBOL(kernel_sock_ioctl
);
3474 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3476 return sock
->ops
->shutdown(sock
, how
);
3478 EXPORT_SYMBOL(kernel_sock_shutdown
);