2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
50 #include <linux/freezer.h>
52 #include <asm/uaccess.h>
54 #include <trace/events/timer.h>
59 * There are more clockids then hrtimer bases. Thus, we index
60 * into the timer bases by the hrtimer_base_type enum. When trying
61 * to reach a base using a clockid, hrtimer_clockid_to_base()
62 * is used to convert from clockid to the proper hrtimer_base_type.
64 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
67 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
71 .index
= HRTIMER_BASE_MONOTONIC
,
72 .clockid
= CLOCK_MONOTONIC
,
73 .get_time
= &ktime_get
,
74 .resolution
= KTIME_LOW_RES
,
77 .index
= HRTIMER_BASE_REALTIME
,
78 .clockid
= CLOCK_REALTIME
,
79 .get_time
= &ktime_get_real
,
80 .resolution
= KTIME_LOW_RES
,
83 .index
= HRTIMER_BASE_BOOTTIME
,
84 .clockid
= CLOCK_BOOTTIME
,
85 .get_time
= &ktime_get_boottime
,
86 .resolution
= KTIME_LOW_RES
,
89 .index
= HRTIMER_BASE_TAI
,
91 .get_time
= &ktime_get_clocktai
,
92 .resolution
= KTIME_LOW_RES
,
97 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
98 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
99 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
100 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
101 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
104 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
106 return hrtimer_clock_to_base_table
[clock_id
];
111 * Get the coarse grained time at the softirq based on xtime and
114 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
116 ktime_t xtim
, mono
, boot
;
117 struct timespec xts
, tom
, slp
;
120 get_xtime_and_monotonic_and_sleep_offset(&xts
, &tom
, &slp
);
121 tai_offset
= timekeeping_get_tai_offset();
123 xtim
= timespec_to_ktime(xts
);
124 mono
= ktime_add(xtim
, timespec_to_ktime(tom
));
125 boot
= ktime_add(mono
, timespec_to_ktime(slp
));
126 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
127 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
128 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
129 base
->clock_base
[HRTIMER_BASE_TAI
].softirq_time
=
130 ktime_add(xtim
, ktime_set(tai_offset
, 0));
134 * Functions and macros which are different for UP/SMP systems are kept in a
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
152 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
153 unsigned long *flags
)
155 struct hrtimer_clock_base
*base
;
159 if (likely(base
!= NULL
)) {
160 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
161 if (likely(base
== timer
->base
))
163 /* The timer has migrated to another CPU: */
164 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
172 * Get the preferred target CPU for NOHZ
174 static int hrtimer_get_target(int this_cpu
, int pinned
)
176 #ifdef CONFIG_NO_HZ_COMMON
177 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
178 return get_nohz_timer_target();
184 * With HIGHRES=y we do not migrate the timer when it is expiring
185 * before the next event on the target cpu because we cannot reprogram
186 * the target cpu hardware and we would cause it to fire late.
188 * Called with cpu_base->lock of target cpu held.
191 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
193 #ifdef CONFIG_HIGH_RES_TIMERS
196 if (!new_base
->cpu_base
->hres_active
)
199 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
200 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
207 * Switch the timer base to the current CPU when possible.
209 static inline struct hrtimer_clock_base
*
210 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
213 struct hrtimer_clock_base
*new_base
;
214 struct hrtimer_cpu_base
*new_cpu_base
;
215 int this_cpu
= smp_processor_id();
216 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
217 int basenum
= base
->index
;
220 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
221 new_base
= &new_cpu_base
->clock_base
[basenum
];
223 if (base
!= new_base
) {
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
233 if (unlikely(hrtimer_callback_running(timer
)))
236 /* See the comment in lock_timer_base() */
238 raw_spin_unlock(&base
->cpu_base
->lock
);
239 raw_spin_lock(&new_base
->cpu_base
->lock
);
241 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
243 raw_spin_unlock(&new_base
->cpu_base
->lock
);
244 raw_spin_lock(&base
->cpu_base
->lock
);
248 timer
->base
= new_base
;
253 #else /* CONFIG_SMP */
255 static inline struct hrtimer_clock_base
*
256 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
258 struct hrtimer_clock_base
*base
= timer
->base
;
260 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
265 # define switch_hrtimer_base(t, b, p) (b)
267 #endif /* !CONFIG_SMP */
270 * Functions for the union type storage format of ktime_t which are
271 * too large for inlining:
273 #if BITS_PER_LONG < 64
274 # ifndef CONFIG_KTIME_SCALAR
276 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
278 * @nsec: the scalar nsec value to add
280 * Returns the sum of kt and nsec in ktime_t format
282 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
286 if (likely(nsec
< NSEC_PER_SEC
)) {
289 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
291 /* Make sure nsec fits into long */
292 if (unlikely(nsec
> KTIME_SEC_MAX
))
293 return (ktime_t
){ .tv64
= KTIME_MAX
};
295 tmp
= ktime_set((long)nsec
, rem
);
298 return ktime_add(kt
, tmp
);
301 EXPORT_SYMBOL_GPL(ktime_add_ns
);
304 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
306 * @nsec: the scalar nsec value to subtract
308 * Returns the subtraction of @nsec from @kt in ktime_t format
310 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
314 if (likely(nsec
< NSEC_PER_SEC
)) {
317 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
319 tmp
= ktime_set((long)nsec
, rem
);
322 return ktime_sub(kt
, tmp
);
325 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
326 # endif /* !CONFIG_KTIME_SCALAR */
329 * Divide a ktime value by a nanosecond value
331 u64
ktime_divns(const ktime_t kt
, s64 div
)
336 dclc
= ktime_to_ns(kt
);
337 /* Make sure the divisor is less than 2^32: */
343 do_div(dclc
, (unsigned long) div
);
347 #endif /* BITS_PER_LONG >= 64 */
350 * Add two ktime values and do a safety check for overflow:
352 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
354 ktime_t res
= ktime_add(lhs
, rhs
);
357 * We use KTIME_SEC_MAX here, the maximum timeout which we can
358 * return to user space in a timespec:
360 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
361 res
= ktime_set(KTIME_SEC_MAX
, 0);
366 EXPORT_SYMBOL_GPL(ktime_add_safe
);
368 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
370 static struct debug_obj_descr hrtimer_debug_descr
;
372 static void *hrtimer_debug_hint(void *addr
)
374 return ((struct hrtimer
*) addr
)->function
;
378 * fixup_init is called when:
379 * - an active object is initialized
381 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
383 struct hrtimer
*timer
= addr
;
386 case ODEBUG_STATE_ACTIVE
:
387 hrtimer_cancel(timer
);
388 debug_object_init(timer
, &hrtimer_debug_descr
);
396 * fixup_activate is called when:
397 * - an active object is activated
398 * - an unknown object is activated (might be a statically initialized object)
400 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
404 case ODEBUG_STATE_NOTAVAILABLE
:
408 case ODEBUG_STATE_ACTIVE
:
417 * fixup_free is called when:
418 * - an active object is freed
420 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
422 struct hrtimer
*timer
= addr
;
425 case ODEBUG_STATE_ACTIVE
:
426 hrtimer_cancel(timer
);
427 debug_object_free(timer
, &hrtimer_debug_descr
);
434 static struct debug_obj_descr hrtimer_debug_descr
= {
436 .debug_hint
= hrtimer_debug_hint
,
437 .fixup_init
= hrtimer_fixup_init
,
438 .fixup_activate
= hrtimer_fixup_activate
,
439 .fixup_free
= hrtimer_fixup_free
,
442 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
444 debug_object_init(timer
, &hrtimer_debug_descr
);
447 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
449 debug_object_activate(timer
, &hrtimer_debug_descr
);
452 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
454 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
457 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
459 debug_object_free(timer
, &hrtimer_debug_descr
);
462 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
463 enum hrtimer_mode mode
);
465 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
466 enum hrtimer_mode mode
)
468 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
469 __hrtimer_init(timer
, clock_id
, mode
);
471 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
473 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
475 debug_object_free(timer
, &hrtimer_debug_descr
);
479 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
480 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
481 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
485 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
486 enum hrtimer_mode mode
)
488 debug_hrtimer_init(timer
);
489 trace_hrtimer_init(timer
, clockid
, mode
);
492 static inline void debug_activate(struct hrtimer
*timer
)
494 debug_hrtimer_activate(timer
);
495 trace_hrtimer_start(timer
);
498 static inline void debug_deactivate(struct hrtimer
*timer
)
500 debug_hrtimer_deactivate(timer
);
501 trace_hrtimer_cancel(timer
);
504 /* High resolution timer related functions */
505 #ifdef CONFIG_HIGH_RES_TIMERS
508 * High resolution timer enabled ?
510 static int hrtimer_hres_enabled __read_mostly
= 1;
513 * Enable / Disable high resolution mode
515 static int __init
setup_hrtimer_hres(char *str
)
517 if (!strcmp(str
, "off"))
518 hrtimer_hres_enabled
= 0;
519 else if (!strcmp(str
, "on"))
520 hrtimer_hres_enabled
= 1;
526 __setup("highres=", setup_hrtimer_hres
);
529 * hrtimer_high_res_enabled - query, if the highres mode is enabled
531 static inline int hrtimer_is_hres_enabled(void)
533 return hrtimer_hres_enabled
;
537 * Is the high resolution mode active ?
539 static inline int hrtimer_hres_active(void)
541 return __this_cpu_read(hrtimer_bases
.hres_active
);
545 * Reprogram the event source with checking both queues for the
547 * Called with interrupts disabled and base->lock held
550 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
553 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
554 ktime_t expires
, expires_next
;
556 expires_next
.tv64
= KTIME_MAX
;
558 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
559 struct hrtimer
*timer
;
560 struct timerqueue_node
*next
;
562 next
= timerqueue_getnext(&base
->active
);
565 timer
= container_of(next
, struct hrtimer
, node
);
567 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
569 * clock_was_set() has changed base->offset so the
570 * result might be negative. Fix it up to prevent a
571 * false positive in clockevents_program_event()
573 if (expires
.tv64
< 0)
575 if (expires
.tv64
< expires_next
.tv64
)
576 expires_next
= expires
;
579 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
582 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
584 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
585 tick_program_event(cpu_base
->expires_next
, 1);
589 * Shared reprogramming for clock_realtime and clock_monotonic
591 * When a timer is enqueued and expires earlier than the already enqueued
592 * timers, we have to check, whether it expires earlier than the timer for
593 * which the clock event device was armed.
595 * Called with interrupts disabled and base->cpu_base.lock held
597 static int hrtimer_reprogram(struct hrtimer
*timer
,
598 struct hrtimer_clock_base
*base
)
600 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
601 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
604 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
607 * When the callback is running, we do not reprogram the clock event
608 * device. The timer callback is either running on a different CPU or
609 * the callback is executed in the hrtimer_interrupt context. The
610 * reprogramming is handled either by the softirq, which called the
611 * callback or at the end of the hrtimer_interrupt.
613 if (hrtimer_callback_running(timer
))
617 * CLOCK_REALTIME timer might be requested with an absolute
618 * expiry time which is less than base->offset. Nothing wrong
619 * about that, just avoid to call into the tick code, which
620 * has now objections against negative expiry values.
622 if (expires
.tv64
< 0)
625 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
629 * If a hang was detected in the last timer interrupt then we
630 * do not schedule a timer which is earlier than the expiry
631 * which we enforced in the hang detection. We want the system
634 if (cpu_base
->hang_detected
)
638 * Clockevents returns -ETIME, when the event was in the past.
640 res
= tick_program_event(expires
, 0);
641 if (!IS_ERR_VALUE(res
))
642 cpu_base
->expires_next
= expires
;
647 * Initialize the high resolution related parts of cpu_base
649 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
651 base
->expires_next
.tv64
= KTIME_MAX
;
652 base
->hres_active
= 0;
656 * When High resolution timers are active, try to reprogram. Note, that in case
657 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
658 * check happens. The timer gets enqueued into the rbtree. The reprogramming
659 * and expiry check is done in the hrtimer_interrupt or in the softirq.
661 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
662 struct hrtimer_clock_base
*base
)
664 return base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
);
667 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
669 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
670 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
671 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
673 return ktime_get_update_offsets(offs_real
, offs_boot
, offs_tai
);
677 * Retrigger next event is called after clock was set
679 * Called with interrupts disabled via on_each_cpu()
681 static void retrigger_next_event(void *arg
)
683 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
685 if (!hrtimer_hres_active())
688 raw_spin_lock(&base
->lock
);
689 hrtimer_update_base(base
);
690 hrtimer_force_reprogram(base
, 0);
691 raw_spin_unlock(&base
->lock
);
695 * Switch to high resolution mode
697 static int hrtimer_switch_to_hres(void)
699 int i
, cpu
= smp_processor_id();
700 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
703 if (base
->hres_active
)
706 local_irq_save(flags
);
708 if (tick_init_highres()) {
709 local_irq_restore(flags
);
710 printk(KERN_WARNING
"Could not switch to high resolution "
711 "mode on CPU %d\n", cpu
);
714 base
->hres_active
= 1;
715 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
716 base
->clock_base
[i
].resolution
= KTIME_HIGH_RES
;
718 tick_setup_sched_timer();
719 /* "Retrigger" the interrupt to get things going */
720 retrigger_next_event(NULL
);
721 local_irq_restore(flags
);
725 static void clock_was_set_work(struct work_struct
*work
)
730 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
733 * Called from timekeeping and resume code to reprogramm the hrtimer
734 * interrupt device on all cpus.
736 void clock_was_set_delayed(void)
738 schedule_work(&hrtimer_work
);
743 static inline int hrtimer_hres_active(void) { return 0; }
744 static inline int hrtimer_is_hres_enabled(void) { return 0; }
745 static inline int hrtimer_switch_to_hres(void) { return 0; }
747 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
748 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
749 struct hrtimer_clock_base
*base
)
753 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
754 static inline void retrigger_next_event(void *arg
) { }
756 #endif /* CONFIG_HIGH_RES_TIMERS */
759 * Clock realtime was set
761 * Change the offset of the realtime clock vs. the monotonic
764 * We might have to reprogram the high resolution timer interrupt. On
765 * SMP we call the architecture specific code to retrigger _all_ high
766 * resolution timer interrupts. On UP we just disable interrupts and
767 * call the high resolution interrupt code.
769 void clock_was_set(void)
771 #ifdef CONFIG_HIGH_RES_TIMERS
772 /* Retrigger the CPU local events everywhere */
773 on_each_cpu(retrigger_next_event
, NULL
, 1);
775 timerfd_clock_was_set();
779 * During resume we might have to reprogram the high resolution timer
780 * interrupt on all online CPUs. However, all other CPUs will be
781 * stopped with IRQs interrupts disabled so the clock_was_set() call
784 void hrtimers_resume(void)
786 WARN_ONCE(!irqs_disabled(),
787 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
789 /* Retrigger on the local CPU */
790 retrigger_next_event(NULL
);
791 /* And schedule a retrigger for all others */
792 clock_was_set_delayed();
795 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
797 #ifdef CONFIG_TIMER_STATS
798 if (timer
->start_site
)
800 timer
->start_site
= __builtin_return_address(0);
801 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
802 timer
->start_pid
= current
->pid
;
806 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
808 #ifdef CONFIG_TIMER_STATS
809 timer
->start_site
= NULL
;
813 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
815 #ifdef CONFIG_TIMER_STATS
816 if (likely(!timer_stats_active
))
818 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
819 timer
->function
, timer
->start_comm
, 0);
824 * Counterpart to lock_hrtimer_base above:
827 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
829 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
833 * hrtimer_forward - forward the timer expiry
834 * @timer: hrtimer to forward
835 * @now: forward past this time
836 * @interval: the interval to forward
838 * Forward the timer expiry so it will expire in the future.
839 * Returns the number of overruns.
841 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
846 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
851 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
852 interval
.tv64
= timer
->base
->resolution
.tv64
;
854 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
855 s64 incr
= ktime_to_ns(interval
);
857 orun
= ktime_divns(delta
, incr
);
858 hrtimer_add_expires_ns(timer
, incr
* orun
);
859 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
862 * This (and the ktime_add() below) is the
863 * correction for exact:
867 hrtimer_add_expires(timer
, interval
);
871 EXPORT_SYMBOL_GPL(hrtimer_forward
);
874 * enqueue_hrtimer - internal function to (re)start a timer
876 * The timer is inserted in expiry order. Insertion into the
877 * red black tree is O(log(n)). Must hold the base lock.
879 * Returns 1 when the new timer is the leftmost timer in the tree.
881 static int enqueue_hrtimer(struct hrtimer
*timer
,
882 struct hrtimer_clock_base
*base
)
884 debug_activate(timer
);
886 timerqueue_add(&base
->active
, &timer
->node
);
887 base
->cpu_base
->active_bases
|= 1 << base
->index
;
890 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
891 * state of a possibly running callback.
893 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
895 return (&timer
->node
== base
->active
.next
);
899 * __remove_hrtimer - internal function to remove a timer
901 * Caller must hold the base lock.
903 * High resolution timer mode reprograms the clock event device when the
904 * timer is the one which expires next. The caller can disable this by setting
905 * reprogram to zero. This is useful, when the context does a reprogramming
906 * anyway (e.g. timer interrupt)
908 static void __remove_hrtimer(struct hrtimer
*timer
,
909 struct hrtimer_clock_base
*base
,
910 unsigned long newstate
, int reprogram
)
912 struct timerqueue_node
*next_timer
;
913 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
916 next_timer
= timerqueue_getnext(&base
->active
);
917 timerqueue_del(&base
->active
, &timer
->node
);
918 if (&timer
->node
== next_timer
) {
919 #ifdef CONFIG_HIGH_RES_TIMERS
920 /* Reprogram the clock event device. if enabled */
921 if (reprogram
&& hrtimer_hres_active()) {
924 expires
= ktime_sub(hrtimer_get_expires(timer
),
926 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
927 hrtimer_force_reprogram(base
->cpu_base
, 1);
931 if (!timerqueue_getnext(&base
->active
))
932 base
->cpu_base
->active_bases
&= ~(1 << base
->index
);
934 timer
->state
= newstate
;
938 * remove hrtimer, called with base lock held
941 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
943 if (hrtimer_is_queued(timer
)) {
948 * Remove the timer and force reprogramming when high
949 * resolution mode is active and the timer is on the current
950 * CPU. If we remove a timer on another CPU, reprogramming is
951 * skipped. The interrupt event on this CPU is fired and
952 * reprogramming happens in the interrupt handler. This is a
953 * rare case and less expensive than a smp call.
955 debug_deactivate(timer
);
956 timer_stats_hrtimer_clear_start_info(timer
);
957 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
959 * We must preserve the CALLBACK state flag here,
960 * otherwise we could move the timer base in
961 * switch_hrtimer_base.
963 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
964 __remove_hrtimer(timer
, base
, state
, reprogram
);
970 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
971 unsigned long delta_ns
, const enum hrtimer_mode mode
,
974 struct hrtimer_clock_base
*base
, *new_base
;
978 base
= lock_hrtimer_base(timer
, &flags
);
980 /* Remove an active timer from the queue: */
981 ret
= remove_hrtimer(timer
, base
);
983 /* Switch the timer base, if necessary: */
984 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
986 if (mode
& HRTIMER_MODE_REL
) {
987 tim
= ktime_add_safe(tim
, new_base
->get_time());
989 * CONFIG_TIME_LOW_RES is a temporary way for architectures
990 * to signal that they simply return xtime in
991 * do_gettimeoffset(). In this case we want to round up by
992 * resolution when starting a relative timer, to avoid short
993 * timeouts. This will go away with the GTOD framework.
995 #ifdef CONFIG_TIME_LOW_RES
996 tim
= ktime_add_safe(tim
, base
->resolution
);
1000 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
1002 timer_stats_hrtimer_set_start_info(timer
);
1004 leftmost
= enqueue_hrtimer(timer
, new_base
);
1007 * Only allow reprogramming if the new base is on this CPU.
1008 * (it might still be on another CPU if the timer was pending)
1010 * XXX send_remote_softirq() ?
1012 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
)
1013 && hrtimer_enqueue_reprogram(timer
, new_base
)) {
1016 * We need to drop cpu_base->lock to avoid a
1017 * lock ordering issue vs. rq->lock.
1019 raw_spin_unlock(&new_base
->cpu_base
->lock
);
1020 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1021 local_irq_restore(flags
);
1024 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1028 unlock_hrtimer_base(timer
, &flags
);
1034 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1035 * @timer: the timer to be added
1037 * @delta_ns: "slack" range for the timer
1038 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1039 * relative (HRTIMER_MODE_REL)
1043 * 1 when the timer was active
1045 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1046 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1048 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1050 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1053 * hrtimer_start - (re)start an hrtimer on the current CPU
1054 * @timer: the timer to be added
1056 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1057 * relative (HRTIMER_MODE_REL)
1061 * 1 when the timer was active
1064 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1066 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1068 EXPORT_SYMBOL_GPL(hrtimer_start
);
1072 * hrtimer_try_to_cancel - try to deactivate a timer
1073 * @timer: hrtimer to stop
1076 * 0 when the timer was not active
1077 * 1 when the timer was active
1078 * -1 when the timer is currently excuting the callback function and
1081 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1083 struct hrtimer_clock_base
*base
;
1084 unsigned long flags
;
1087 base
= lock_hrtimer_base(timer
, &flags
);
1089 if (!hrtimer_callback_running(timer
))
1090 ret
= remove_hrtimer(timer
, base
);
1092 unlock_hrtimer_base(timer
, &flags
);
1097 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1100 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1101 * @timer: the timer to be cancelled
1104 * 0 when the timer was not active
1105 * 1 when the timer was active
1107 int hrtimer_cancel(struct hrtimer
*timer
)
1110 int ret
= hrtimer_try_to_cancel(timer
);
1117 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1120 * hrtimer_get_remaining - get remaining time for the timer
1121 * @timer: the timer to read
1123 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1125 unsigned long flags
;
1128 lock_hrtimer_base(timer
, &flags
);
1129 rem
= hrtimer_expires_remaining(timer
);
1130 unlock_hrtimer_base(timer
, &flags
);
1134 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1136 #ifdef CONFIG_NO_HZ_COMMON
1138 * hrtimer_get_next_event - get the time until next expiry event
1140 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1143 ktime_t
hrtimer_get_next_event(void)
1145 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1146 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1147 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1148 unsigned long flags
;
1151 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1153 if (!hrtimer_hres_active()) {
1154 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1155 struct hrtimer
*timer
;
1156 struct timerqueue_node
*next
;
1158 next
= timerqueue_getnext(&base
->active
);
1162 timer
= container_of(next
, struct hrtimer
, node
);
1163 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1164 delta
= ktime_sub(delta
, base
->get_time());
1165 if (delta
.tv64
< mindelta
.tv64
)
1166 mindelta
.tv64
= delta
.tv64
;
1170 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1172 if (mindelta
.tv64
< 0)
1178 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1179 enum hrtimer_mode mode
)
1181 struct hrtimer_cpu_base
*cpu_base
;
1184 memset(timer
, 0, sizeof(struct hrtimer
));
1186 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1188 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1189 clock_id
= CLOCK_MONOTONIC
;
1191 base
= hrtimer_clockid_to_base(clock_id
);
1192 timer
->base
= &cpu_base
->clock_base
[base
];
1193 timerqueue_init(&timer
->node
);
1195 #ifdef CONFIG_TIMER_STATS
1196 timer
->start_site
= NULL
;
1197 timer
->start_pid
= -1;
1198 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1203 * hrtimer_init - initialize a timer to the given clock
1204 * @timer: the timer to be initialized
1205 * @clock_id: the clock to be used
1206 * @mode: timer mode abs/rel
1208 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1209 enum hrtimer_mode mode
)
1211 debug_init(timer
, clock_id
, mode
);
1212 __hrtimer_init(timer
, clock_id
, mode
);
1214 EXPORT_SYMBOL_GPL(hrtimer_init
);
1217 * hrtimer_get_res - get the timer resolution for a clock
1218 * @which_clock: which clock to query
1219 * @tp: pointer to timespec variable to store the resolution
1221 * Store the resolution of the clock selected by @which_clock in the
1222 * variable pointed to by @tp.
1224 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1226 struct hrtimer_cpu_base
*cpu_base
;
1227 int base
= hrtimer_clockid_to_base(which_clock
);
1229 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1230 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1234 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1236 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1238 struct hrtimer_clock_base
*base
= timer
->base
;
1239 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1240 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1243 WARN_ON(!irqs_disabled());
1245 debug_deactivate(timer
);
1246 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1247 timer_stats_account_hrtimer(timer
);
1248 fn
= timer
->function
;
1251 * Because we run timers from hardirq context, there is no chance
1252 * they get migrated to another cpu, therefore its safe to unlock
1255 raw_spin_unlock(&cpu_base
->lock
);
1256 trace_hrtimer_expire_entry(timer
, now
);
1257 restart
= fn(timer
);
1258 trace_hrtimer_expire_exit(timer
);
1259 raw_spin_lock(&cpu_base
->lock
);
1262 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1263 * we do not reprogramm the event hardware. Happens either in
1264 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1266 if (restart
!= HRTIMER_NORESTART
) {
1267 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1268 enqueue_hrtimer(timer
, base
);
1271 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1273 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1276 #ifdef CONFIG_HIGH_RES_TIMERS
1279 * High resolution timer interrupt
1280 * Called with interrupts disabled
1282 void hrtimer_interrupt(struct clock_event_device
*dev
)
1284 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1285 ktime_t expires_next
, now
, entry_time
, delta
;
1288 BUG_ON(!cpu_base
->hres_active
);
1289 cpu_base
->nr_events
++;
1290 dev
->next_event
.tv64
= KTIME_MAX
;
1292 raw_spin_lock(&cpu_base
->lock
);
1293 entry_time
= now
= hrtimer_update_base(cpu_base
);
1295 expires_next
.tv64
= KTIME_MAX
;
1297 * We set expires_next to KTIME_MAX here with cpu_base->lock
1298 * held to prevent that a timer is enqueued in our queue via
1299 * the migration code. This does not affect enqueueing of
1300 * timers which run their callback and need to be requeued on
1303 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1305 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1306 struct hrtimer_clock_base
*base
;
1307 struct timerqueue_node
*node
;
1310 if (!(cpu_base
->active_bases
& (1 << i
)))
1313 base
= cpu_base
->clock_base
+ i
;
1314 basenow
= ktime_add(now
, base
->offset
);
1316 while ((node
= timerqueue_getnext(&base
->active
))) {
1317 struct hrtimer
*timer
;
1319 timer
= container_of(node
, struct hrtimer
, node
);
1322 * The immediate goal for using the softexpires is
1323 * minimizing wakeups, not running timers at the
1324 * earliest interrupt after their soft expiration.
1325 * This allows us to avoid using a Priority Search
1326 * Tree, which can answer a stabbing querry for
1327 * overlapping intervals and instead use the simple
1328 * BST we already have.
1329 * We don't add extra wakeups by delaying timers that
1330 * are right-of a not yet expired timer, because that
1331 * timer will have to trigger a wakeup anyway.
1334 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1337 expires
= ktime_sub(hrtimer_get_expires(timer
),
1339 if (expires
.tv64
< 0)
1340 expires
.tv64
= KTIME_MAX
;
1341 if (expires
.tv64
< expires_next
.tv64
)
1342 expires_next
= expires
;
1346 __run_hrtimer(timer
, &basenow
);
1351 * Store the new expiry value so the migration code can verify
1354 cpu_base
->expires_next
= expires_next
;
1355 raw_spin_unlock(&cpu_base
->lock
);
1357 /* Reprogramming necessary ? */
1358 if (expires_next
.tv64
== KTIME_MAX
||
1359 !tick_program_event(expires_next
, 0)) {
1360 cpu_base
->hang_detected
= 0;
1365 * The next timer was already expired due to:
1367 * - long lasting callbacks
1368 * - being scheduled away when running in a VM
1370 * We need to prevent that we loop forever in the hrtimer
1371 * interrupt routine. We give it 3 attempts to avoid
1372 * overreacting on some spurious event.
1374 * Acquire base lock for updating the offsets and retrieving
1377 raw_spin_lock(&cpu_base
->lock
);
1378 now
= hrtimer_update_base(cpu_base
);
1379 cpu_base
->nr_retries
++;
1383 * Give the system a chance to do something else than looping
1384 * here. We stored the entry time, so we know exactly how long
1385 * we spent here. We schedule the next event this amount of
1388 cpu_base
->nr_hangs
++;
1389 cpu_base
->hang_detected
= 1;
1390 raw_spin_unlock(&cpu_base
->lock
);
1391 delta
= ktime_sub(now
, entry_time
);
1392 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1393 cpu_base
->max_hang_time
= delta
;
1395 * Limit it to a sensible value as we enforce a longer
1396 * delay. Give the CPU at least 100ms to catch up.
1398 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1399 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1401 expires_next
= ktime_add(now
, delta
);
1402 tick_program_event(expires_next
, 1);
1403 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1404 ktime_to_ns(delta
));
1408 * local version of hrtimer_peek_ahead_timers() called with interrupts
1411 static void __hrtimer_peek_ahead_timers(void)
1413 struct tick_device
*td
;
1415 if (!hrtimer_hres_active())
1418 td
= &__get_cpu_var(tick_cpu_device
);
1419 if (td
&& td
->evtdev
)
1420 hrtimer_interrupt(td
->evtdev
);
1424 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1426 * hrtimer_peek_ahead_timers will peek at the timer queue of
1427 * the current cpu and check if there are any timers for which
1428 * the soft expires time has passed. If any such timers exist,
1429 * they are run immediately and then removed from the timer queue.
1432 void hrtimer_peek_ahead_timers(void)
1434 unsigned long flags
;
1436 local_irq_save(flags
);
1437 __hrtimer_peek_ahead_timers();
1438 local_irq_restore(flags
);
1441 static void run_hrtimer_softirq(struct softirq_action
*h
)
1443 hrtimer_peek_ahead_timers();
1446 #else /* CONFIG_HIGH_RES_TIMERS */
1448 static inline void __hrtimer_peek_ahead_timers(void) { }
1450 #endif /* !CONFIG_HIGH_RES_TIMERS */
1453 * Called from timer softirq every jiffy, expire hrtimers:
1455 * For HRT its the fall back code to run the softirq in the timer
1456 * softirq context in case the hrtimer initialization failed or has
1457 * not been done yet.
1459 void hrtimer_run_pending(void)
1461 if (hrtimer_hres_active())
1465 * This _is_ ugly: We have to check in the softirq context,
1466 * whether we can switch to highres and / or nohz mode. The
1467 * clocksource switch happens in the timer interrupt with
1468 * xtime_lock held. Notification from there only sets the
1469 * check bit in the tick_oneshot code, otherwise we might
1470 * deadlock vs. xtime_lock.
1472 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1473 hrtimer_switch_to_hres();
1477 * Called from hardirq context every jiffy
1479 void hrtimer_run_queues(void)
1481 struct timerqueue_node
*node
;
1482 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1483 struct hrtimer_clock_base
*base
;
1484 int index
, gettime
= 1;
1486 if (hrtimer_hres_active())
1489 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1490 base
= &cpu_base
->clock_base
[index
];
1491 if (!timerqueue_getnext(&base
->active
))
1495 hrtimer_get_softirq_time(cpu_base
);
1499 raw_spin_lock(&cpu_base
->lock
);
1501 while ((node
= timerqueue_getnext(&base
->active
))) {
1502 struct hrtimer
*timer
;
1504 timer
= container_of(node
, struct hrtimer
, node
);
1505 if (base
->softirq_time
.tv64
<=
1506 hrtimer_get_expires_tv64(timer
))
1509 __run_hrtimer(timer
, &base
->softirq_time
);
1511 raw_spin_unlock(&cpu_base
->lock
);
1516 * Sleep related functions:
1518 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1520 struct hrtimer_sleeper
*t
=
1521 container_of(timer
, struct hrtimer_sleeper
, timer
);
1522 struct task_struct
*task
= t
->task
;
1526 wake_up_process(task
);
1528 return HRTIMER_NORESTART
;
1531 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1533 sl
->timer
.function
= hrtimer_wakeup
;
1536 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1538 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1540 hrtimer_init_sleeper(t
, current
);
1543 set_current_state(TASK_INTERRUPTIBLE
);
1544 hrtimer_start_expires(&t
->timer
, mode
);
1545 if (!hrtimer_active(&t
->timer
))
1548 if (likely(t
->task
))
1549 freezable_schedule();
1551 hrtimer_cancel(&t
->timer
);
1552 mode
= HRTIMER_MODE_ABS
;
1554 } while (t
->task
&& !signal_pending(current
));
1556 __set_current_state(TASK_RUNNING
);
1558 return t
->task
== NULL
;
1561 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1563 struct timespec rmt
;
1566 rem
= hrtimer_expires_remaining(timer
);
1569 rmt
= ktime_to_timespec(rem
);
1571 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1577 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1579 struct hrtimer_sleeper t
;
1580 struct timespec __user
*rmtp
;
1583 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1585 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1587 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1590 rmtp
= restart
->nanosleep
.rmtp
;
1592 ret
= update_rmtp(&t
.timer
, rmtp
);
1597 /* The other values in restart are already filled in */
1598 ret
= -ERESTART_RESTARTBLOCK
;
1600 destroy_hrtimer_on_stack(&t
.timer
);
1604 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1605 const enum hrtimer_mode mode
, const clockid_t clockid
)
1607 struct restart_block
*restart
;
1608 struct hrtimer_sleeper t
;
1610 unsigned long slack
;
1612 slack
= current
->timer_slack_ns
;
1613 if (rt_task(current
))
1616 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1617 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1618 if (do_nanosleep(&t
, mode
))
1621 /* Absolute timers do not update the rmtp value and restart: */
1622 if (mode
== HRTIMER_MODE_ABS
) {
1623 ret
= -ERESTARTNOHAND
;
1628 ret
= update_rmtp(&t
.timer
, rmtp
);
1633 restart
= ¤t_thread_info()->restart_block
;
1634 restart
->fn
= hrtimer_nanosleep_restart
;
1635 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1636 restart
->nanosleep
.rmtp
= rmtp
;
1637 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1639 ret
= -ERESTART_RESTARTBLOCK
;
1641 destroy_hrtimer_on_stack(&t
.timer
);
1645 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1646 struct timespec __user
*, rmtp
)
1650 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1653 if (!timespec_valid(&tu
))
1656 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1660 * Functions related to boot-time initialization:
1662 static void init_hrtimers_cpu(int cpu
)
1664 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1667 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1668 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1669 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1672 hrtimer_init_hres(cpu_base
);
1675 #ifdef CONFIG_HOTPLUG_CPU
1677 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1678 struct hrtimer_clock_base
*new_base
)
1680 struct hrtimer
*timer
;
1681 struct timerqueue_node
*node
;
1683 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1684 timer
= container_of(node
, struct hrtimer
, node
);
1685 BUG_ON(hrtimer_callback_running(timer
));
1686 debug_deactivate(timer
);
1689 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1690 * timer could be seen as !active and just vanish away
1691 * under us on another CPU
1693 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1694 timer
->base
= new_base
;
1696 * Enqueue the timers on the new cpu. This does not
1697 * reprogram the event device in case the timer
1698 * expires before the earliest on this CPU, but we run
1699 * hrtimer_interrupt after we migrated everything to
1700 * sort out already expired timers and reprogram the
1703 enqueue_hrtimer(timer
, new_base
);
1705 /* Clear the migration state bit */
1706 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1710 static void migrate_hrtimers(int scpu
)
1712 struct hrtimer_cpu_base
*old_base
, *new_base
;
1715 BUG_ON(cpu_online(scpu
));
1716 tick_cancel_sched_timer(scpu
);
1718 local_irq_disable();
1719 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1720 new_base
= &__get_cpu_var(hrtimer_bases
);
1722 * The caller is globally serialized and nobody else
1723 * takes two locks at once, deadlock is not possible.
1725 raw_spin_lock(&new_base
->lock
);
1726 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1728 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1729 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1730 &new_base
->clock_base
[i
]);
1733 raw_spin_unlock(&old_base
->lock
);
1734 raw_spin_unlock(&new_base
->lock
);
1736 /* Check, if we got expired work to do */
1737 __hrtimer_peek_ahead_timers();
1741 #endif /* CONFIG_HOTPLUG_CPU */
1743 static int hrtimer_cpu_notify(struct notifier_block
*self
,
1744 unsigned long action
, void *hcpu
)
1746 int scpu
= (long)hcpu
;
1750 case CPU_UP_PREPARE
:
1751 case CPU_UP_PREPARE_FROZEN
:
1752 init_hrtimers_cpu(scpu
);
1755 #ifdef CONFIG_HOTPLUG_CPU
1757 case CPU_DYING_FROZEN
:
1758 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1761 case CPU_DEAD_FROZEN
:
1763 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1764 migrate_hrtimers(scpu
);
1776 static struct notifier_block hrtimers_nb
= {
1777 .notifier_call
= hrtimer_cpu_notify
,
1780 void __init
hrtimers_init(void)
1782 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1783 (void *)(long)smp_processor_id());
1784 register_cpu_notifier(&hrtimers_nb
);
1785 #ifdef CONFIG_HIGH_RES_TIMERS
1786 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1791 * schedule_hrtimeout_range_clock - sleep until timeout
1792 * @expires: timeout value (ktime_t)
1793 * @delta: slack in expires timeout (ktime_t)
1794 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1795 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1798 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1799 const enum hrtimer_mode mode
, int clock
)
1801 struct hrtimer_sleeper t
;
1804 * Optimize when a zero timeout value is given. It does not
1805 * matter whether this is an absolute or a relative time.
1807 if (expires
&& !expires
->tv64
) {
1808 __set_current_state(TASK_RUNNING
);
1813 * A NULL parameter means "infinite"
1817 __set_current_state(TASK_RUNNING
);
1821 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1822 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1824 hrtimer_init_sleeper(&t
, current
);
1826 hrtimer_start_expires(&t
.timer
, mode
);
1827 if (!hrtimer_active(&t
.timer
))
1833 hrtimer_cancel(&t
.timer
);
1834 destroy_hrtimer_on_stack(&t
.timer
);
1836 __set_current_state(TASK_RUNNING
);
1838 return !t
.task
? 0 : -EINTR
;
1842 * schedule_hrtimeout_range - sleep until timeout
1843 * @expires: timeout value (ktime_t)
1844 * @delta: slack in expires timeout (ktime_t)
1845 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1847 * Make the current task sleep until the given expiry time has
1848 * elapsed. The routine will return immediately unless
1849 * the current task state has been set (see set_current_state()).
1851 * The @delta argument gives the kernel the freedom to schedule the
1852 * actual wakeup to a time that is both power and performance friendly.
1853 * The kernel give the normal best effort behavior for "@expires+@delta",
1854 * but may decide to fire the timer earlier, but no earlier than @expires.
1856 * You can set the task state as follows -
1858 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1859 * pass before the routine returns.
1861 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1862 * delivered to the current task.
1864 * The current task state is guaranteed to be TASK_RUNNING when this
1867 * Returns 0 when the timer has expired otherwise -EINTR
1869 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1870 const enum hrtimer_mode mode
)
1872 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1875 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1878 * schedule_hrtimeout - sleep until timeout
1879 * @expires: timeout value (ktime_t)
1880 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1882 * Make the current task sleep until the given expiry time has
1883 * elapsed. The routine will return immediately unless
1884 * the current task state has been set (see set_current_state()).
1886 * You can set the task state as follows -
1888 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1889 * pass before the routine returns.
1891 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1892 * delivered to the current task.
1894 * The current task state is guaranteed to be TASK_RUNNING when this
1897 * Returns 0 when the timer has expired otherwise -EINTR
1899 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1900 const enum hrtimer_mode mode
)
1902 return schedule_hrtimeout_range(expires
, 0, mode
);
1904 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);