2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
25 #include "free-space-cache.h"
26 #include "transaction.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
34 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
35 struct btrfs_free_space
*info
);
36 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
37 struct btrfs_free_space
*info
);
39 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
40 struct btrfs_path
*path
,
44 struct btrfs_key location
;
45 struct btrfs_disk_key disk_key
;
46 struct btrfs_free_space_header
*header
;
47 struct extent_buffer
*leaf
;
48 struct inode
*inode
= NULL
;
51 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
55 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
59 btrfs_release_path(path
);
60 return ERR_PTR(-ENOENT
);
63 leaf
= path
->nodes
[0];
64 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
65 struct btrfs_free_space_header
);
66 btrfs_free_space_key(leaf
, header
, &disk_key
);
67 btrfs_disk_key_to_cpu(&location
, &disk_key
);
68 btrfs_release_path(path
);
70 inode
= btrfs_iget(root
->fs_info
->sb
, &location
, root
, NULL
);
72 return ERR_PTR(-ENOENT
);
75 if (is_bad_inode(inode
)) {
77 return ERR_PTR(-ENOENT
);
80 mapping_set_gfp_mask(inode
->i_mapping
,
81 mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
);
86 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
87 struct btrfs_block_group_cache
88 *block_group
, struct btrfs_path
*path
)
90 struct inode
*inode
= NULL
;
91 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
93 spin_lock(&block_group
->lock
);
94 if (block_group
->inode
)
95 inode
= igrab(block_group
->inode
);
96 spin_unlock(&block_group
->lock
);
100 inode
= __lookup_free_space_inode(root
, path
,
101 block_group
->key
.objectid
);
105 spin_lock(&block_group
->lock
);
106 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
107 btrfs_info(root
->fs_info
,
108 "Old style space inode found, converting.");
109 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
110 BTRFS_INODE_NODATACOW
;
111 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
114 if (!block_group
->iref
) {
115 block_group
->inode
= igrab(inode
);
116 block_group
->iref
= 1;
118 spin_unlock(&block_group
->lock
);
123 static int __create_free_space_inode(struct btrfs_root
*root
,
124 struct btrfs_trans_handle
*trans
,
125 struct btrfs_path
*path
,
128 struct btrfs_key key
;
129 struct btrfs_disk_key disk_key
;
130 struct btrfs_free_space_header
*header
;
131 struct btrfs_inode_item
*inode_item
;
132 struct extent_buffer
*leaf
;
133 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
136 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
140 /* We inline crc's for the free disk space cache */
141 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
142 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
144 leaf
= path
->nodes
[0];
145 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
146 struct btrfs_inode_item
);
147 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
148 memset_extent_buffer(leaf
, 0, (unsigned long)inode_item
,
149 sizeof(*inode_item
));
150 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
151 btrfs_set_inode_size(leaf
, inode_item
, 0);
152 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
153 btrfs_set_inode_uid(leaf
, inode_item
, 0);
154 btrfs_set_inode_gid(leaf
, inode_item
, 0);
155 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
156 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
157 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
158 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
159 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
160 btrfs_mark_buffer_dirty(leaf
);
161 btrfs_release_path(path
);
163 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
167 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
168 sizeof(struct btrfs_free_space_header
));
170 btrfs_release_path(path
);
173 leaf
= path
->nodes
[0];
174 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
175 struct btrfs_free_space_header
);
176 memset_extent_buffer(leaf
, 0, (unsigned long)header
, sizeof(*header
));
177 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
178 btrfs_mark_buffer_dirty(leaf
);
179 btrfs_release_path(path
);
184 int create_free_space_inode(struct btrfs_root
*root
,
185 struct btrfs_trans_handle
*trans
,
186 struct btrfs_block_group_cache
*block_group
,
187 struct btrfs_path
*path
)
192 ret
= btrfs_find_free_objectid(root
, &ino
);
196 return __create_free_space_inode(root
, trans
, path
, ino
,
197 block_group
->key
.objectid
);
200 int btrfs_check_trunc_cache_free_space(struct btrfs_root
*root
,
201 struct btrfs_block_rsv
*rsv
)
206 /* 1 for slack space, 1 for updating the inode */
207 needed_bytes
= btrfs_calc_trunc_metadata_size(root
, 1) +
208 btrfs_calc_trans_metadata_size(root
, 1);
210 spin_lock(&rsv
->lock
);
211 if (rsv
->reserved
< needed_bytes
)
215 spin_unlock(&rsv
->lock
);
219 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
220 struct btrfs_trans_handle
*trans
,
221 struct btrfs_path
*path
,
227 oldsize
= i_size_read(inode
);
228 btrfs_i_size_write(inode
, 0);
229 truncate_pagecache(inode
, oldsize
, 0);
232 * We don't need an orphan item because truncating the free space cache
233 * will never be split across transactions.
235 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
236 0, BTRFS_EXTENT_DATA_KEY
);
238 btrfs_abort_transaction(trans
, root
, ret
);
242 ret
= btrfs_update_inode(trans
, root
, inode
);
244 btrfs_abort_transaction(trans
, root
, ret
);
249 static int readahead_cache(struct inode
*inode
)
251 struct file_ra_state
*ra
;
252 unsigned long last_index
;
254 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
258 file_ra_state_init(ra
, inode
->i_mapping
);
259 last_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
261 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
272 struct btrfs_root
*root
;
276 unsigned check_crcs
:1;
279 static int io_ctl_init(struct io_ctl
*io_ctl
, struct inode
*inode
,
280 struct btrfs_root
*root
)
282 memset(io_ctl
, 0, sizeof(struct io_ctl
));
283 io_ctl
->num_pages
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
285 io_ctl
->pages
= kzalloc(sizeof(struct page
*) * io_ctl
->num_pages
,
290 if (btrfs_ino(inode
) != BTRFS_FREE_INO_OBJECTID
)
291 io_ctl
->check_crcs
= 1;
295 static void io_ctl_free(struct io_ctl
*io_ctl
)
297 kfree(io_ctl
->pages
);
300 static void io_ctl_unmap_page(struct io_ctl
*io_ctl
)
303 kunmap(io_ctl
->page
);
309 static void io_ctl_map_page(struct io_ctl
*io_ctl
, int clear
)
311 BUG_ON(io_ctl
->index
>= io_ctl
->num_pages
);
312 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
313 io_ctl
->cur
= kmap(io_ctl
->page
);
314 io_ctl
->orig
= io_ctl
->cur
;
315 io_ctl
->size
= PAGE_CACHE_SIZE
;
317 memset(io_ctl
->cur
, 0, PAGE_CACHE_SIZE
);
320 static void io_ctl_drop_pages(struct io_ctl
*io_ctl
)
324 io_ctl_unmap_page(io_ctl
);
326 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
327 if (io_ctl
->pages
[i
]) {
328 ClearPageChecked(io_ctl
->pages
[i
]);
329 unlock_page(io_ctl
->pages
[i
]);
330 page_cache_release(io_ctl
->pages
[i
]);
335 static int io_ctl_prepare_pages(struct io_ctl
*io_ctl
, struct inode
*inode
,
339 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
342 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
343 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
345 io_ctl_drop_pages(io_ctl
);
348 io_ctl
->pages
[i
] = page
;
349 if (uptodate
&& !PageUptodate(page
)) {
350 btrfs_readpage(NULL
, page
);
352 if (!PageUptodate(page
)) {
353 printk(KERN_ERR
"btrfs: error reading free "
355 io_ctl_drop_pages(io_ctl
);
361 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
362 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
363 set_page_extent_mapped(io_ctl
->pages
[i
]);
369 static void io_ctl_set_generation(struct io_ctl
*io_ctl
, u64 generation
)
373 io_ctl_map_page(io_ctl
, 1);
376 * Skip the csum areas. If we don't check crcs then we just have a
377 * 64bit chunk at the front of the first page.
379 if (io_ctl
->check_crcs
) {
380 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
381 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
383 io_ctl
->cur
+= sizeof(u64
);
384 io_ctl
->size
-= sizeof(u64
) * 2;
388 *val
= cpu_to_le64(generation
);
389 io_ctl
->cur
+= sizeof(u64
);
392 static int io_ctl_check_generation(struct io_ctl
*io_ctl
, u64 generation
)
397 * Skip the crc area. If we don't check crcs then we just have a 64bit
398 * chunk at the front of the first page.
400 if (io_ctl
->check_crcs
) {
401 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
402 io_ctl
->size
-= sizeof(u64
) +
403 (sizeof(u32
) * io_ctl
->num_pages
);
405 io_ctl
->cur
+= sizeof(u64
);
406 io_ctl
->size
-= sizeof(u64
) * 2;
410 if (le64_to_cpu(*gen
) != generation
) {
411 printk_ratelimited(KERN_ERR
"btrfs: space cache generation "
412 "(%Lu) does not match inode (%Lu)\n", *gen
,
414 io_ctl_unmap_page(io_ctl
);
417 io_ctl
->cur
+= sizeof(u64
);
421 static void io_ctl_set_crc(struct io_ctl
*io_ctl
, int index
)
427 if (!io_ctl
->check_crcs
) {
428 io_ctl_unmap_page(io_ctl
);
433 offset
= sizeof(u32
) * io_ctl
->num_pages
;
435 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
436 PAGE_CACHE_SIZE
- offset
);
437 btrfs_csum_final(crc
, (char *)&crc
);
438 io_ctl_unmap_page(io_ctl
);
439 tmp
= kmap(io_ctl
->pages
[0]);
442 kunmap(io_ctl
->pages
[0]);
445 static int io_ctl_check_crc(struct io_ctl
*io_ctl
, int index
)
451 if (!io_ctl
->check_crcs
) {
452 io_ctl_map_page(io_ctl
, 0);
457 offset
= sizeof(u32
) * io_ctl
->num_pages
;
459 tmp
= kmap(io_ctl
->pages
[0]);
462 kunmap(io_ctl
->pages
[0]);
464 io_ctl_map_page(io_ctl
, 0);
465 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
466 PAGE_CACHE_SIZE
- offset
);
467 btrfs_csum_final(crc
, (char *)&crc
);
469 printk_ratelimited(KERN_ERR
"btrfs: csum mismatch on free "
471 io_ctl_unmap_page(io_ctl
);
478 static int io_ctl_add_entry(struct io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
481 struct btrfs_free_space_entry
*entry
;
487 entry
->offset
= cpu_to_le64(offset
);
488 entry
->bytes
= cpu_to_le64(bytes
);
489 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
490 BTRFS_FREE_SPACE_EXTENT
;
491 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
492 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
494 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
497 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
499 /* No more pages to map */
500 if (io_ctl
->index
>= io_ctl
->num_pages
)
503 /* map the next page */
504 io_ctl_map_page(io_ctl
, 1);
508 static int io_ctl_add_bitmap(struct io_ctl
*io_ctl
, void *bitmap
)
514 * If we aren't at the start of the current page, unmap this one and
515 * map the next one if there is any left.
517 if (io_ctl
->cur
!= io_ctl
->orig
) {
518 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
519 if (io_ctl
->index
>= io_ctl
->num_pages
)
521 io_ctl_map_page(io_ctl
, 0);
524 memcpy(io_ctl
->cur
, bitmap
, PAGE_CACHE_SIZE
);
525 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
526 if (io_ctl
->index
< io_ctl
->num_pages
)
527 io_ctl_map_page(io_ctl
, 0);
531 static void io_ctl_zero_remaining_pages(struct io_ctl
*io_ctl
)
534 * If we're not on the boundary we know we've modified the page and we
535 * need to crc the page.
537 if (io_ctl
->cur
!= io_ctl
->orig
)
538 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
540 io_ctl_unmap_page(io_ctl
);
542 while (io_ctl
->index
< io_ctl
->num_pages
) {
543 io_ctl_map_page(io_ctl
, 1);
544 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
548 static int io_ctl_read_entry(struct io_ctl
*io_ctl
,
549 struct btrfs_free_space
*entry
, u8
*type
)
551 struct btrfs_free_space_entry
*e
;
555 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
561 entry
->offset
= le64_to_cpu(e
->offset
);
562 entry
->bytes
= le64_to_cpu(e
->bytes
);
564 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
565 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
567 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
570 io_ctl_unmap_page(io_ctl
);
575 static int io_ctl_read_bitmap(struct io_ctl
*io_ctl
,
576 struct btrfs_free_space
*entry
)
580 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
584 memcpy(entry
->bitmap
, io_ctl
->cur
, PAGE_CACHE_SIZE
);
585 io_ctl_unmap_page(io_ctl
);
591 * Since we attach pinned extents after the fact we can have contiguous sections
592 * of free space that are split up in entries. This poses a problem with the
593 * tree logging stuff since it could have allocated across what appears to be 2
594 * entries since we would have merged the entries when adding the pinned extents
595 * back to the free space cache. So run through the space cache that we just
596 * loaded and merge contiguous entries. This will make the log replay stuff not
597 * blow up and it will make for nicer allocator behavior.
599 static void merge_space_tree(struct btrfs_free_space_ctl
*ctl
)
601 struct btrfs_free_space
*e
, *prev
= NULL
;
605 spin_lock(&ctl
->tree_lock
);
606 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
607 e
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
610 if (e
->bitmap
|| prev
->bitmap
)
612 if (prev
->offset
+ prev
->bytes
== e
->offset
) {
613 unlink_free_space(ctl
, prev
);
614 unlink_free_space(ctl
, e
);
615 prev
->bytes
+= e
->bytes
;
616 kmem_cache_free(btrfs_free_space_cachep
, e
);
617 link_free_space(ctl
, prev
);
619 spin_unlock(&ctl
->tree_lock
);
625 spin_unlock(&ctl
->tree_lock
);
628 static int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
629 struct btrfs_free_space_ctl
*ctl
,
630 struct btrfs_path
*path
, u64 offset
)
632 struct btrfs_free_space_header
*header
;
633 struct extent_buffer
*leaf
;
634 struct io_ctl io_ctl
;
635 struct btrfs_key key
;
636 struct btrfs_free_space
*e
, *n
;
637 struct list_head bitmaps
;
644 INIT_LIST_HEAD(&bitmaps
);
646 /* Nothing in the space cache, goodbye */
647 if (!i_size_read(inode
))
650 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
654 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
658 btrfs_release_path(path
);
664 leaf
= path
->nodes
[0];
665 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
666 struct btrfs_free_space_header
);
667 num_entries
= btrfs_free_space_entries(leaf
, header
);
668 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
669 generation
= btrfs_free_space_generation(leaf
, header
);
670 btrfs_release_path(path
);
672 if (BTRFS_I(inode
)->generation
!= generation
) {
673 btrfs_err(root
->fs_info
,
674 "free space inode generation (%llu) "
675 "did not match free space cache generation (%llu)",
676 (unsigned long long)BTRFS_I(inode
)->generation
,
677 (unsigned long long)generation
);
684 ret
= io_ctl_init(&io_ctl
, inode
, root
);
688 ret
= readahead_cache(inode
);
692 ret
= io_ctl_prepare_pages(&io_ctl
, inode
, 1);
696 ret
= io_ctl_check_crc(&io_ctl
, 0);
700 ret
= io_ctl_check_generation(&io_ctl
, generation
);
704 while (num_entries
) {
705 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
710 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
712 kmem_cache_free(btrfs_free_space_cachep
, e
);
717 kmem_cache_free(btrfs_free_space_cachep
, e
);
721 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
722 spin_lock(&ctl
->tree_lock
);
723 ret
= link_free_space(ctl
, e
);
724 spin_unlock(&ctl
->tree_lock
);
726 btrfs_err(root
->fs_info
,
727 "Duplicate entries in free space cache, dumping");
728 kmem_cache_free(btrfs_free_space_cachep
, e
);
732 BUG_ON(!num_bitmaps
);
734 e
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
737 btrfs_free_space_cachep
, e
);
740 spin_lock(&ctl
->tree_lock
);
741 ret
= link_free_space(ctl
, e
);
742 ctl
->total_bitmaps
++;
743 ctl
->op
->recalc_thresholds(ctl
);
744 spin_unlock(&ctl
->tree_lock
);
746 btrfs_err(root
->fs_info
,
747 "Duplicate entries in free space cache, dumping");
748 kmem_cache_free(btrfs_free_space_cachep
, e
);
751 list_add_tail(&e
->list
, &bitmaps
);
757 io_ctl_unmap_page(&io_ctl
);
760 * We add the bitmaps at the end of the entries in order that
761 * the bitmap entries are added to the cache.
763 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
764 list_del_init(&e
->list
);
765 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
770 io_ctl_drop_pages(&io_ctl
);
771 merge_space_tree(ctl
);
774 io_ctl_free(&io_ctl
);
777 io_ctl_drop_pages(&io_ctl
);
778 __btrfs_remove_free_space_cache(ctl
);
782 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
783 struct btrfs_block_group_cache
*block_group
)
785 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
786 struct btrfs_root
*root
= fs_info
->tree_root
;
788 struct btrfs_path
*path
;
791 u64 used
= btrfs_block_group_used(&block_group
->item
);
794 * If this block group has been marked to be cleared for one reason or
795 * another then we can't trust the on disk cache, so just return.
797 spin_lock(&block_group
->lock
);
798 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
799 spin_unlock(&block_group
->lock
);
802 spin_unlock(&block_group
->lock
);
804 path
= btrfs_alloc_path();
807 path
->search_commit_root
= 1;
808 path
->skip_locking
= 1;
810 inode
= lookup_free_space_inode(root
, block_group
, path
);
812 btrfs_free_path(path
);
816 /* We may have converted the inode and made the cache invalid. */
817 spin_lock(&block_group
->lock
);
818 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
819 spin_unlock(&block_group
->lock
);
820 btrfs_free_path(path
);
823 spin_unlock(&block_group
->lock
);
825 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
826 path
, block_group
->key
.objectid
);
827 btrfs_free_path(path
);
831 spin_lock(&ctl
->tree_lock
);
832 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
833 block_group
->bytes_super
));
834 spin_unlock(&ctl
->tree_lock
);
837 __btrfs_remove_free_space_cache(ctl
);
838 btrfs_err(fs_info
, "block group %llu has wrong amount of free space",
839 block_group
->key
.objectid
);
844 /* This cache is bogus, make sure it gets cleared */
845 spin_lock(&block_group
->lock
);
846 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
847 spin_unlock(&block_group
->lock
);
850 btrfs_err(fs_info
, "failed to load free space cache for block group %llu",
851 block_group
->key
.objectid
);
859 * __btrfs_write_out_cache - write out cached info to an inode
860 * @root - the root the inode belongs to
861 * @ctl - the free space cache we are going to write out
862 * @block_group - the block_group for this cache if it belongs to a block_group
863 * @trans - the trans handle
864 * @path - the path to use
865 * @offset - the offset for the key we'll insert
867 * This function writes out a free space cache struct to disk for quick recovery
868 * on mount. This will return 0 if it was successfull in writing the cache out,
869 * and -1 if it was not.
871 static int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
872 struct btrfs_free_space_ctl
*ctl
,
873 struct btrfs_block_group_cache
*block_group
,
874 struct btrfs_trans_handle
*trans
,
875 struct btrfs_path
*path
, u64 offset
)
877 struct btrfs_free_space_header
*header
;
878 struct extent_buffer
*leaf
;
879 struct rb_node
*node
;
880 struct list_head
*pos
, *n
;
881 struct extent_state
*cached_state
= NULL
;
882 struct btrfs_free_cluster
*cluster
= NULL
;
883 struct extent_io_tree
*unpin
= NULL
;
884 struct io_ctl io_ctl
;
885 struct list_head bitmap_list
;
886 struct btrfs_key key
;
887 u64 start
, extent_start
, extent_end
, len
;
893 INIT_LIST_HEAD(&bitmap_list
);
895 if (!i_size_read(inode
))
898 ret
= io_ctl_init(&io_ctl
, inode
, root
);
902 /* Get the cluster for this block_group if it exists */
903 if (block_group
&& !list_empty(&block_group
->cluster_list
))
904 cluster
= list_entry(block_group
->cluster_list
.next
,
905 struct btrfs_free_cluster
,
908 /* Lock all pages first so we can lock the extent safely. */
909 io_ctl_prepare_pages(&io_ctl
, inode
, 0);
911 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
914 node
= rb_first(&ctl
->free_space_offset
);
915 if (!node
&& cluster
) {
916 node
= rb_first(&cluster
->root
);
920 /* Make sure we can fit our crcs into the first page */
921 if (io_ctl
.check_crcs
&&
922 (io_ctl
.num_pages
* sizeof(u32
)) >= PAGE_CACHE_SIZE
)
925 io_ctl_set_generation(&io_ctl
, trans
->transid
);
927 /* Write out the extent entries */
929 struct btrfs_free_space
*e
;
931 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
934 ret
= io_ctl_add_entry(&io_ctl
, e
->offset
, e
->bytes
,
940 list_add_tail(&e
->list
, &bitmap_list
);
943 node
= rb_next(node
);
944 if (!node
&& cluster
) {
945 node
= rb_first(&cluster
->root
);
951 * We want to add any pinned extents to our free space cache
952 * so we don't leak the space
956 * We shouldn't have switched the pinned extents yet so this is the
959 unpin
= root
->fs_info
->pinned_extents
;
962 start
= block_group
->key
.objectid
;
964 while (block_group
&& (start
< block_group
->key
.objectid
+
965 block_group
->key
.offset
)) {
966 ret
= find_first_extent_bit(unpin
, start
,
967 &extent_start
, &extent_end
,
974 /* This pinned extent is out of our range */
975 if (extent_start
>= block_group
->key
.objectid
+
976 block_group
->key
.offset
)
979 extent_start
= max(extent_start
, start
);
980 extent_end
= min(block_group
->key
.objectid
+
981 block_group
->key
.offset
, extent_end
+ 1);
982 len
= extent_end
- extent_start
;
985 ret
= io_ctl_add_entry(&io_ctl
, extent_start
, len
, NULL
);
992 /* Write out the bitmaps */
993 list_for_each_safe(pos
, n
, &bitmap_list
) {
994 struct btrfs_free_space
*entry
=
995 list_entry(pos
, struct btrfs_free_space
, list
);
997 ret
= io_ctl_add_bitmap(&io_ctl
, entry
->bitmap
);
1000 list_del_init(&entry
->list
);
1003 /* Zero out the rest of the pages just to make sure */
1004 io_ctl_zero_remaining_pages(&io_ctl
);
1006 ret
= btrfs_dirty_pages(root
, inode
, io_ctl
.pages
, io_ctl
.num_pages
,
1007 0, i_size_read(inode
), &cached_state
);
1008 io_ctl_drop_pages(&io_ctl
);
1009 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1010 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
1016 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1018 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
1019 key
.offset
= offset
;
1022 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1024 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1025 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
1029 leaf
= path
->nodes
[0];
1031 struct btrfs_key found_key
;
1032 BUG_ON(!path
->slots
[0]);
1034 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1035 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
1036 found_key
.offset
!= offset
) {
1037 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1039 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0,
1041 btrfs_release_path(path
);
1046 BTRFS_I(inode
)->generation
= trans
->transid
;
1047 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1048 struct btrfs_free_space_header
);
1049 btrfs_set_free_space_entries(leaf
, header
, entries
);
1050 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1051 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1052 btrfs_mark_buffer_dirty(leaf
);
1053 btrfs_release_path(path
);
1057 io_ctl_free(&io_ctl
);
1059 invalidate_inode_pages2(inode
->i_mapping
);
1060 BTRFS_I(inode
)->generation
= 0;
1062 btrfs_update_inode(trans
, root
, inode
);
1066 list_for_each_safe(pos
, n
, &bitmap_list
) {
1067 struct btrfs_free_space
*entry
=
1068 list_entry(pos
, struct btrfs_free_space
, list
);
1069 list_del_init(&entry
->list
);
1071 io_ctl_drop_pages(&io_ctl
);
1072 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1073 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
1077 int btrfs_write_out_cache(struct btrfs_root
*root
,
1078 struct btrfs_trans_handle
*trans
,
1079 struct btrfs_block_group_cache
*block_group
,
1080 struct btrfs_path
*path
)
1082 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1083 struct inode
*inode
;
1086 root
= root
->fs_info
->tree_root
;
1088 spin_lock(&block_group
->lock
);
1089 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1090 spin_unlock(&block_group
->lock
);
1093 spin_unlock(&block_group
->lock
);
1095 inode
= lookup_free_space_inode(root
, block_group
, path
);
1099 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, block_group
, trans
,
1100 path
, block_group
->key
.objectid
);
1102 spin_lock(&block_group
->lock
);
1103 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1104 spin_unlock(&block_group
->lock
);
1107 btrfs_err(root
->fs_info
,
1108 "failed to write free space cache for block group %llu",
1109 block_group
->key
.objectid
);
1117 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1120 BUG_ON(offset
< bitmap_start
);
1121 offset
-= bitmap_start
;
1122 return (unsigned long)(div_u64(offset
, unit
));
1125 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1127 return (unsigned long)(div_u64(bytes
, unit
));
1130 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1134 u64 bytes_per_bitmap
;
1136 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1137 bitmap_start
= offset
- ctl
->start
;
1138 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
1139 bitmap_start
*= bytes_per_bitmap
;
1140 bitmap_start
+= ctl
->start
;
1142 return bitmap_start
;
1145 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1146 struct rb_node
*node
, int bitmap
)
1148 struct rb_node
**p
= &root
->rb_node
;
1149 struct rb_node
*parent
= NULL
;
1150 struct btrfs_free_space
*info
;
1154 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1156 if (offset
< info
->offset
) {
1158 } else if (offset
> info
->offset
) {
1159 p
= &(*p
)->rb_right
;
1162 * we could have a bitmap entry and an extent entry
1163 * share the same offset. If this is the case, we want
1164 * the extent entry to always be found first if we do a
1165 * linear search through the tree, since we want to have
1166 * the quickest allocation time, and allocating from an
1167 * extent is faster than allocating from a bitmap. So
1168 * if we're inserting a bitmap and we find an entry at
1169 * this offset, we want to go right, or after this entry
1170 * logically. If we are inserting an extent and we've
1171 * found a bitmap, we want to go left, or before
1179 p
= &(*p
)->rb_right
;
1181 if (!info
->bitmap
) {
1190 rb_link_node(node
, parent
, p
);
1191 rb_insert_color(node
, root
);
1197 * searches the tree for the given offset.
1199 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1200 * want a section that has at least bytes size and comes at or after the given
1203 static struct btrfs_free_space
*
1204 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1205 u64 offset
, int bitmap_only
, int fuzzy
)
1207 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1208 struct btrfs_free_space
*entry
, *prev
= NULL
;
1210 /* find entry that is closest to the 'offset' */
1217 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1220 if (offset
< entry
->offset
)
1222 else if (offset
> entry
->offset
)
1235 * bitmap entry and extent entry may share same offset,
1236 * in that case, bitmap entry comes after extent entry.
1241 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1242 if (entry
->offset
!= offset
)
1245 WARN_ON(!entry
->bitmap
);
1248 if (entry
->bitmap
) {
1250 * if previous extent entry covers the offset,
1251 * we should return it instead of the bitmap entry
1253 n
= rb_prev(&entry
->offset_index
);
1255 prev
= rb_entry(n
, struct btrfs_free_space
,
1257 if (!prev
->bitmap
&&
1258 prev
->offset
+ prev
->bytes
> offset
)
1268 /* find last entry before the 'offset' */
1270 if (entry
->offset
> offset
) {
1271 n
= rb_prev(&entry
->offset_index
);
1273 entry
= rb_entry(n
, struct btrfs_free_space
,
1275 BUG_ON(entry
->offset
> offset
);
1284 if (entry
->bitmap
) {
1285 n
= rb_prev(&entry
->offset_index
);
1287 prev
= rb_entry(n
, struct btrfs_free_space
,
1289 if (!prev
->bitmap
&&
1290 prev
->offset
+ prev
->bytes
> offset
)
1293 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1295 } else if (entry
->offset
+ entry
->bytes
> offset
)
1302 if (entry
->bitmap
) {
1303 if (entry
->offset
+ BITS_PER_BITMAP
*
1307 if (entry
->offset
+ entry
->bytes
> offset
)
1311 n
= rb_next(&entry
->offset_index
);
1314 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1320 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1321 struct btrfs_free_space
*info
)
1323 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1324 ctl
->free_extents
--;
1327 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1328 struct btrfs_free_space
*info
)
1330 __unlink_free_space(ctl
, info
);
1331 ctl
->free_space
-= info
->bytes
;
1334 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1335 struct btrfs_free_space
*info
)
1339 BUG_ON(!info
->bitmap
&& !info
->bytes
);
1340 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1341 &info
->offset_index
, (info
->bitmap
!= NULL
));
1345 ctl
->free_space
+= info
->bytes
;
1346 ctl
->free_extents
++;
1350 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1352 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1356 u64 size
= block_group
->key
.offset
;
1357 u64 bytes_per_bg
= BITS_PER_BITMAP
* ctl
->unit
;
1358 int max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1360 max_bitmaps
= max(max_bitmaps
, 1);
1362 BUG_ON(ctl
->total_bitmaps
> max_bitmaps
);
1365 * The goal is to keep the total amount of memory used per 1gb of space
1366 * at or below 32k, so we need to adjust how much memory we allow to be
1367 * used by extent based free space tracking
1369 if (size
< 1024 * 1024 * 1024)
1370 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1372 max_bytes
= MAX_CACHE_BYTES_PER_GIG
*
1373 div64_u64(size
, 1024 * 1024 * 1024);
1376 * we want to account for 1 more bitmap than what we have so we can make
1377 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1378 * we add more bitmaps.
1380 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * PAGE_CACHE_SIZE
;
1382 if (bitmap_bytes
>= max_bytes
) {
1383 ctl
->extents_thresh
= 0;
1388 * we want the extent entry threshold to always be at most 1/2 the maxw
1389 * bytes we can have, or whatever is less than that.
1391 extent_bytes
= max_bytes
- bitmap_bytes
;
1392 extent_bytes
= min_t(u64
, extent_bytes
, div64_u64(max_bytes
, 2));
1394 ctl
->extents_thresh
=
1395 div64_u64(extent_bytes
, (sizeof(struct btrfs_free_space
)));
1398 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1399 struct btrfs_free_space
*info
,
1400 u64 offset
, u64 bytes
)
1402 unsigned long start
, count
;
1404 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1405 count
= bytes_to_bits(bytes
, ctl
->unit
);
1406 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1408 bitmap_clear(info
->bitmap
, start
, count
);
1410 info
->bytes
-= bytes
;
1413 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1414 struct btrfs_free_space
*info
, u64 offset
,
1417 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1418 ctl
->free_space
-= bytes
;
1421 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1422 struct btrfs_free_space
*info
, u64 offset
,
1425 unsigned long start
, count
;
1427 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1428 count
= bytes_to_bits(bytes
, ctl
->unit
);
1429 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1431 bitmap_set(info
->bitmap
, start
, count
);
1433 info
->bytes
+= bytes
;
1434 ctl
->free_space
+= bytes
;
1437 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1438 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1441 unsigned long found_bits
= 0;
1442 unsigned long bits
, i
;
1443 unsigned long next_zero
;
1445 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1446 max_t(u64
, *offset
, bitmap_info
->offset
));
1447 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1449 for_each_set_bit_from(i
, bitmap_info
->bitmap
, BITS_PER_BITMAP
) {
1450 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1451 BITS_PER_BITMAP
, i
);
1452 if ((next_zero
- i
) >= bits
) {
1453 found_bits
= next_zero
- i
;
1460 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1461 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1468 static struct btrfs_free_space
*
1469 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
,
1470 unsigned long align
)
1472 struct btrfs_free_space
*entry
;
1473 struct rb_node
*node
;
1479 if (!ctl
->free_space_offset
.rb_node
)
1482 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1486 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1487 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1488 if (entry
->bytes
< *bytes
)
1491 /* make sure the space returned is big enough
1492 * to match our requested alignment
1494 if (*bytes
>= align
) {
1495 ctl_off
= entry
->offset
- ctl
->start
;
1496 tmp
= ctl_off
+ align
- 1;;
1498 tmp
= tmp
* align
+ ctl
->start
;
1499 align_off
= tmp
- entry
->offset
;
1502 tmp
= entry
->offset
;
1505 if (entry
->bytes
< *bytes
+ align_off
)
1508 if (entry
->bitmap
) {
1509 ret
= search_bitmap(ctl
, entry
, &tmp
, bytes
);
1518 *bytes
= entry
->bytes
- align_off
;
1525 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1526 struct btrfs_free_space
*info
, u64 offset
)
1528 info
->offset
= offset_to_bitmap(ctl
, offset
);
1530 INIT_LIST_HEAD(&info
->list
);
1531 link_free_space(ctl
, info
);
1532 ctl
->total_bitmaps
++;
1534 ctl
->op
->recalc_thresholds(ctl
);
1537 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1538 struct btrfs_free_space
*bitmap_info
)
1540 unlink_free_space(ctl
, bitmap_info
);
1541 kfree(bitmap_info
->bitmap
);
1542 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1543 ctl
->total_bitmaps
--;
1544 ctl
->op
->recalc_thresholds(ctl
);
1547 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1548 struct btrfs_free_space
*bitmap_info
,
1549 u64
*offset
, u64
*bytes
)
1552 u64 search_start
, search_bytes
;
1556 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1559 * We need to search for bits in this bitmap. We could only cover some
1560 * of the extent in this bitmap thanks to how we add space, so we need
1561 * to search for as much as it as we can and clear that amount, and then
1562 * go searching for the next bit.
1564 search_start
= *offset
;
1565 search_bytes
= ctl
->unit
;
1566 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1567 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
);
1568 if (ret
< 0 || search_start
!= *offset
)
1571 /* We may have found more bits than what we need */
1572 search_bytes
= min(search_bytes
, *bytes
);
1574 /* Cannot clear past the end of the bitmap */
1575 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1577 bitmap_clear_bits(ctl
, bitmap_info
, search_start
, search_bytes
);
1578 *offset
+= search_bytes
;
1579 *bytes
-= search_bytes
;
1582 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1583 if (!bitmap_info
->bytes
)
1584 free_bitmap(ctl
, bitmap_info
);
1587 * no entry after this bitmap, but we still have bytes to
1588 * remove, so something has gone wrong.
1593 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1597 * if the next entry isn't a bitmap we need to return to let the
1598 * extent stuff do its work.
1600 if (!bitmap_info
->bitmap
)
1604 * Ok the next item is a bitmap, but it may not actually hold
1605 * the information for the rest of this free space stuff, so
1606 * look for it, and if we don't find it return so we can try
1607 * everything over again.
1609 search_start
= *offset
;
1610 search_bytes
= ctl
->unit
;
1611 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1613 if (ret
< 0 || search_start
!= *offset
)
1617 } else if (!bitmap_info
->bytes
)
1618 free_bitmap(ctl
, bitmap_info
);
1623 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1624 struct btrfs_free_space
*info
, u64 offset
,
1627 u64 bytes_to_set
= 0;
1630 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1632 bytes_to_set
= min(end
- offset
, bytes
);
1634 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1636 return bytes_to_set
;
1640 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1641 struct btrfs_free_space
*info
)
1643 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1646 * If we are below the extents threshold then we can add this as an
1647 * extent, and don't have to deal with the bitmap
1649 if (ctl
->free_extents
< ctl
->extents_thresh
) {
1651 * If this block group has some small extents we don't want to
1652 * use up all of our free slots in the cache with them, we want
1653 * to reserve them to larger extents, however if we have plent
1654 * of cache left then go ahead an dadd them, no sense in adding
1655 * the overhead of a bitmap if we don't have to.
1657 if (info
->bytes
<= block_group
->sectorsize
* 4) {
1658 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
1666 * The original block groups from mkfs can be really small, like 8
1667 * megabytes, so don't bother with a bitmap for those entries. However
1668 * some block groups can be smaller than what a bitmap would cover but
1669 * are still large enough that they could overflow the 32k memory limit,
1670 * so allow those block groups to still be allowed to have a bitmap
1673 if (((BITS_PER_BITMAP
* ctl
->unit
) >> 1) > block_group
->key
.offset
)
1679 static struct btrfs_free_space_op free_space_op
= {
1680 .recalc_thresholds
= recalculate_thresholds
,
1681 .use_bitmap
= use_bitmap
,
1684 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
1685 struct btrfs_free_space
*info
)
1687 struct btrfs_free_space
*bitmap_info
;
1688 struct btrfs_block_group_cache
*block_group
= NULL
;
1690 u64 bytes
, offset
, bytes_added
;
1693 bytes
= info
->bytes
;
1694 offset
= info
->offset
;
1696 if (!ctl
->op
->use_bitmap(ctl
, info
))
1699 if (ctl
->op
== &free_space_op
)
1700 block_group
= ctl
->private;
1703 * Since we link bitmaps right into the cluster we need to see if we
1704 * have a cluster here, and if so and it has our bitmap we need to add
1705 * the free space to that bitmap.
1707 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
1708 struct btrfs_free_cluster
*cluster
;
1709 struct rb_node
*node
;
1710 struct btrfs_free_space
*entry
;
1712 cluster
= list_entry(block_group
->cluster_list
.next
,
1713 struct btrfs_free_cluster
,
1715 spin_lock(&cluster
->lock
);
1716 node
= rb_first(&cluster
->root
);
1718 spin_unlock(&cluster
->lock
);
1719 goto no_cluster_bitmap
;
1722 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1723 if (!entry
->bitmap
) {
1724 spin_unlock(&cluster
->lock
);
1725 goto no_cluster_bitmap
;
1728 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
1729 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
1731 bytes
-= bytes_added
;
1732 offset
+= bytes_added
;
1734 spin_unlock(&cluster
->lock
);
1742 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1749 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
1750 bytes
-= bytes_added
;
1751 offset
+= bytes_added
;
1761 if (info
&& info
->bitmap
) {
1762 add_new_bitmap(ctl
, info
, offset
);
1767 spin_unlock(&ctl
->tree_lock
);
1769 /* no pre-allocated info, allocate a new one */
1771 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
1774 spin_lock(&ctl
->tree_lock
);
1780 /* allocate the bitmap */
1781 info
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
1782 spin_lock(&ctl
->tree_lock
);
1783 if (!info
->bitmap
) {
1793 kfree(info
->bitmap
);
1794 kmem_cache_free(btrfs_free_space_cachep
, info
);
1800 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
1801 struct btrfs_free_space
*info
, bool update_stat
)
1803 struct btrfs_free_space
*left_info
;
1804 struct btrfs_free_space
*right_info
;
1805 bool merged
= false;
1806 u64 offset
= info
->offset
;
1807 u64 bytes
= info
->bytes
;
1810 * first we want to see if there is free space adjacent to the range we
1811 * are adding, if there is remove that struct and add a new one to
1812 * cover the entire range
1814 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
1815 if (right_info
&& rb_prev(&right_info
->offset_index
))
1816 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
1817 struct btrfs_free_space
, offset_index
);
1819 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
1821 if (right_info
&& !right_info
->bitmap
) {
1823 unlink_free_space(ctl
, right_info
);
1825 __unlink_free_space(ctl
, right_info
);
1826 info
->bytes
+= right_info
->bytes
;
1827 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
1831 if (left_info
&& !left_info
->bitmap
&&
1832 left_info
->offset
+ left_info
->bytes
== offset
) {
1834 unlink_free_space(ctl
, left_info
);
1836 __unlink_free_space(ctl
, left_info
);
1837 info
->offset
= left_info
->offset
;
1838 info
->bytes
+= left_info
->bytes
;
1839 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
1846 int __btrfs_add_free_space(struct btrfs_free_space_ctl
*ctl
,
1847 u64 offset
, u64 bytes
)
1849 struct btrfs_free_space
*info
;
1852 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
1856 info
->offset
= offset
;
1857 info
->bytes
= bytes
;
1859 spin_lock(&ctl
->tree_lock
);
1861 if (try_merge_free_space(ctl
, info
, true))
1865 * There was no extent directly to the left or right of this new
1866 * extent then we know we're going to have to allocate a new extent, so
1867 * before we do that see if we need to drop this into a bitmap
1869 ret
= insert_into_bitmap(ctl
, info
);
1877 ret
= link_free_space(ctl
, info
);
1879 kmem_cache_free(btrfs_free_space_cachep
, info
);
1881 spin_unlock(&ctl
->tree_lock
);
1884 printk(KERN_CRIT
"btrfs: unable to add free space :%d\n", ret
);
1885 BUG_ON(ret
== -EEXIST
);
1891 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
1892 u64 offset
, u64 bytes
)
1894 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1895 struct btrfs_free_space
*info
;
1897 bool re_search
= false;
1899 spin_lock(&ctl
->tree_lock
);
1906 info
= tree_search_offset(ctl
, offset
, 0, 0);
1909 * oops didn't find an extent that matched the space we wanted
1910 * to remove, look for a bitmap instead
1912 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1916 * If we found a partial bit of our free space in a
1917 * bitmap but then couldn't find the other part this may
1918 * be a problem, so WARN about it.
1926 if (!info
->bitmap
) {
1927 unlink_free_space(ctl
, info
);
1928 if (offset
== info
->offset
) {
1929 u64 to_free
= min(bytes
, info
->bytes
);
1931 info
->bytes
-= to_free
;
1932 info
->offset
+= to_free
;
1934 ret
= link_free_space(ctl
, info
);
1937 kmem_cache_free(btrfs_free_space_cachep
, info
);
1944 u64 old_end
= info
->bytes
+ info
->offset
;
1946 info
->bytes
= offset
- info
->offset
;
1947 ret
= link_free_space(ctl
, info
);
1952 /* Not enough bytes in this entry to satisfy us */
1953 if (old_end
< offset
+ bytes
) {
1954 bytes
-= old_end
- offset
;
1957 } else if (old_end
== offset
+ bytes
) {
1961 spin_unlock(&ctl
->tree_lock
);
1963 ret
= btrfs_add_free_space(block_group
, offset
+ bytes
,
1964 old_end
- (offset
+ bytes
));
1970 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
1971 if (ret
== -EAGAIN
) {
1976 spin_unlock(&ctl
->tree_lock
);
1981 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
1984 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1985 struct btrfs_free_space
*info
;
1989 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
1990 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1991 if (info
->bytes
>= bytes
&& !block_group
->ro
)
1993 printk(KERN_CRIT
"entry offset %llu, bytes %llu, bitmap %s\n",
1994 (unsigned long long)info
->offset
,
1995 (unsigned long long)info
->bytes
,
1996 (info
->bitmap
) ? "yes" : "no");
1998 printk(KERN_INFO
"block group has cluster?: %s\n",
1999 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
2000 printk(KERN_INFO
"%d blocks of free space at or bigger than bytes is"
2004 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
2006 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2008 spin_lock_init(&ctl
->tree_lock
);
2009 ctl
->unit
= block_group
->sectorsize
;
2010 ctl
->start
= block_group
->key
.objectid
;
2011 ctl
->private = block_group
;
2012 ctl
->op
= &free_space_op
;
2015 * we only want to have 32k of ram per block group for keeping
2016 * track of free space, and if we pass 1/2 of that we want to
2017 * start converting things over to using bitmaps
2019 ctl
->extents_thresh
= ((1024 * 32) / 2) /
2020 sizeof(struct btrfs_free_space
);
2024 * for a given cluster, put all of its extents back into the free
2025 * space cache. If the block group passed doesn't match the block group
2026 * pointed to by the cluster, someone else raced in and freed the
2027 * cluster already. In that case, we just return without changing anything
2030 __btrfs_return_cluster_to_free_space(
2031 struct btrfs_block_group_cache
*block_group
,
2032 struct btrfs_free_cluster
*cluster
)
2034 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2035 struct btrfs_free_space
*entry
;
2036 struct rb_node
*node
;
2038 spin_lock(&cluster
->lock
);
2039 if (cluster
->block_group
!= block_group
)
2042 cluster
->block_group
= NULL
;
2043 cluster
->window_start
= 0;
2044 list_del_init(&cluster
->block_group_list
);
2046 node
= rb_first(&cluster
->root
);
2050 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2051 node
= rb_next(&entry
->offset_index
);
2052 rb_erase(&entry
->offset_index
, &cluster
->root
);
2054 bitmap
= (entry
->bitmap
!= NULL
);
2056 try_merge_free_space(ctl
, entry
, false);
2057 tree_insert_offset(&ctl
->free_space_offset
,
2058 entry
->offset
, &entry
->offset_index
, bitmap
);
2060 cluster
->root
= RB_ROOT
;
2063 spin_unlock(&cluster
->lock
);
2064 btrfs_put_block_group(block_group
);
2068 static void __btrfs_remove_free_space_cache_locked(
2069 struct btrfs_free_space_ctl
*ctl
)
2071 struct btrfs_free_space
*info
;
2072 struct rb_node
*node
;
2074 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2075 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2076 if (!info
->bitmap
) {
2077 unlink_free_space(ctl
, info
);
2078 kmem_cache_free(btrfs_free_space_cachep
, info
);
2080 free_bitmap(ctl
, info
);
2082 if (need_resched()) {
2083 spin_unlock(&ctl
->tree_lock
);
2085 spin_lock(&ctl
->tree_lock
);
2090 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2092 spin_lock(&ctl
->tree_lock
);
2093 __btrfs_remove_free_space_cache_locked(ctl
);
2094 spin_unlock(&ctl
->tree_lock
);
2097 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
2099 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2100 struct btrfs_free_cluster
*cluster
;
2101 struct list_head
*head
;
2103 spin_lock(&ctl
->tree_lock
);
2104 while ((head
= block_group
->cluster_list
.next
) !=
2105 &block_group
->cluster_list
) {
2106 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2109 WARN_ON(cluster
->block_group
!= block_group
);
2110 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2111 if (need_resched()) {
2112 spin_unlock(&ctl
->tree_lock
);
2114 spin_lock(&ctl
->tree_lock
);
2117 __btrfs_remove_free_space_cache_locked(ctl
);
2118 spin_unlock(&ctl
->tree_lock
);
2122 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
2123 u64 offset
, u64 bytes
, u64 empty_size
)
2125 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2126 struct btrfs_free_space
*entry
= NULL
;
2127 u64 bytes_search
= bytes
+ empty_size
;
2130 u64 align_gap_len
= 0;
2132 spin_lock(&ctl
->tree_lock
);
2133 entry
= find_free_space(ctl
, &offset
, &bytes_search
,
2134 block_group
->full_stripe_len
);
2139 if (entry
->bitmap
) {
2140 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2142 free_bitmap(ctl
, entry
);
2145 unlink_free_space(ctl
, entry
);
2146 align_gap_len
= offset
- entry
->offset
;
2147 align_gap
= entry
->offset
;
2149 entry
->offset
= offset
+ bytes
;
2150 WARN_ON(entry
->bytes
< bytes
+ align_gap_len
);
2152 entry
->bytes
-= bytes
+ align_gap_len
;
2154 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2156 link_free_space(ctl
, entry
);
2160 spin_unlock(&ctl
->tree_lock
);
2163 __btrfs_add_free_space(ctl
, align_gap
, align_gap_len
);
2168 * given a cluster, put all of its extents back into the free space
2169 * cache. If a block group is passed, this function will only free
2170 * a cluster that belongs to the passed block group.
2172 * Otherwise, it'll get a reference on the block group pointed to by the
2173 * cluster and remove the cluster from it.
2175 int btrfs_return_cluster_to_free_space(
2176 struct btrfs_block_group_cache
*block_group
,
2177 struct btrfs_free_cluster
*cluster
)
2179 struct btrfs_free_space_ctl
*ctl
;
2182 /* first, get a safe pointer to the block group */
2183 spin_lock(&cluster
->lock
);
2185 block_group
= cluster
->block_group
;
2187 spin_unlock(&cluster
->lock
);
2190 } else if (cluster
->block_group
!= block_group
) {
2191 /* someone else has already freed it don't redo their work */
2192 spin_unlock(&cluster
->lock
);
2195 atomic_inc(&block_group
->count
);
2196 spin_unlock(&cluster
->lock
);
2198 ctl
= block_group
->free_space_ctl
;
2200 /* now return any extents the cluster had on it */
2201 spin_lock(&ctl
->tree_lock
);
2202 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2203 spin_unlock(&ctl
->tree_lock
);
2205 /* finally drop our ref */
2206 btrfs_put_block_group(block_group
);
2210 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
2211 struct btrfs_free_cluster
*cluster
,
2212 struct btrfs_free_space
*entry
,
2213 u64 bytes
, u64 min_start
)
2215 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2217 u64 search_start
= cluster
->window_start
;
2218 u64 search_bytes
= bytes
;
2221 search_start
= min_start
;
2222 search_bytes
= bytes
;
2224 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
);
2229 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2235 * given a cluster, try to allocate 'bytes' from it, returns 0
2236 * if it couldn't find anything suitably large, or a logical disk offset
2237 * if things worked out
2239 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2240 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2243 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2244 struct btrfs_free_space
*entry
= NULL
;
2245 struct rb_node
*node
;
2248 spin_lock(&cluster
->lock
);
2249 if (bytes
> cluster
->max_size
)
2252 if (cluster
->block_group
!= block_group
)
2255 node
= rb_first(&cluster
->root
);
2259 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2261 if (entry
->bytes
< bytes
||
2262 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2263 node
= rb_next(&entry
->offset_index
);
2266 entry
= rb_entry(node
, struct btrfs_free_space
,
2271 if (entry
->bitmap
) {
2272 ret
= btrfs_alloc_from_bitmap(block_group
,
2273 cluster
, entry
, bytes
,
2274 cluster
->window_start
);
2276 node
= rb_next(&entry
->offset_index
);
2279 entry
= rb_entry(node
, struct btrfs_free_space
,
2283 cluster
->window_start
+= bytes
;
2285 ret
= entry
->offset
;
2287 entry
->offset
+= bytes
;
2288 entry
->bytes
-= bytes
;
2291 if (entry
->bytes
== 0)
2292 rb_erase(&entry
->offset_index
, &cluster
->root
);
2296 spin_unlock(&cluster
->lock
);
2301 spin_lock(&ctl
->tree_lock
);
2303 ctl
->free_space
-= bytes
;
2304 if (entry
->bytes
== 0) {
2305 ctl
->free_extents
--;
2306 if (entry
->bitmap
) {
2307 kfree(entry
->bitmap
);
2308 ctl
->total_bitmaps
--;
2309 ctl
->op
->recalc_thresholds(ctl
);
2311 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2314 spin_unlock(&ctl
->tree_lock
);
2319 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2320 struct btrfs_free_space
*entry
,
2321 struct btrfs_free_cluster
*cluster
,
2322 u64 offset
, u64 bytes
,
2323 u64 cont1_bytes
, u64 min_bytes
)
2325 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2326 unsigned long next_zero
;
2328 unsigned long want_bits
;
2329 unsigned long min_bits
;
2330 unsigned long found_bits
;
2331 unsigned long start
= 0;
2332 unsigned long total_found
= 0;
2335 i
= offset_to_bit(entry
->offset
, ctl
->unit
,
2336 max_t(u64
, offset
, entry
->offset
));
2337 want_bits
= bytes_to_bits(bytes
, ctl
->unit
);
2338 min_bits
= bytes_to_bits(min_bytes
, ctl
->unit
);
2342 for_each_set_bit_from(i
, entry
->bitmap
, BITS_PER_BITMAP
) {
2343 next_zero
= find_next_zero_bit(entry
->bitmap
,
2344 BITS_PER_BITMAP
, i
);
2345 if (next_zero
- i
>= min_bits
) {
2346 found_bits
= next_zero
- i
;
2357 cluster
->max_size
= 0;
2360 total_found
+= found_bits
;
2362 if (cluster
->max_size
< found_bits
* ctl
->unit
)
2363 cluster
->max_size
= found_bits
* ctl
->unit
;
2365 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
2370 cluster
->window_start
= start
* ctl
->unit
+ entry
->offset
;
2371 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2372 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2373 &entry
->offset_index
, 1);
2374 BUG_ON(ret
); /* -EEXIST; Logic error */
2376 trace_btrfs_setup_cluster(block_group
, cluster
,
2377 total_found
* ctl
->unit
, 1);
2382 * This searches the block group for just extents to fill the cluster with.
2383 * Try to find a cluster with at least bytes total bytes, at least one
2384 * extent of cont1_bytes, and other clusters of at least min_bytes.
2387 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2388 struct btrfs_free_cluster
*cluster
,
2389 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2390 u64 cont1_bytes
, u64 min_bytes
)
2392 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2393 struct btrfs_free_space
*first
= NULL
;
2394 struct btrfs_free_space
*entry
= NULL
;
2395 struct btrfs_free_space
*last
;
2396 struct rb_node
*node
;
2402 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2407 * We don't want bitmaps, so just move along until we find a normal
2410 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
2411 if (entry
->bitmap
&& list_empty(&entry
->list
))
2412 list_add_tail(&entry
->list
, bitmaps
);
2413 node
= rb_next(&entry
->offset_index
);
2416 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2419 window_start
= entry
->offset
;
2420 window_free
= entry
->bytes
;
2421 max_extent
= entry
->bytes
;
2425 for (node
= rb_next(&entry
->offset_index
); node
;
2426 node
= rb_next(&entry
->offset_index
)) {
2427 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2429 if (entry
->bitmap
) {
2430 if (list_empty(&entry
->list
))
2431 list_add_tail(&entry
->list
, bitmaps
);
2435 if (entry
->bytes
< min_bytes
)
2439 window_free
+= entry
->bytes
;
2440 if (entry
->bytes
> max_extent
)
2441 max_extent
= entry
->bytes
;
2444 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
2447 cluster
->window_start
= first
->offset
;
2449 node
= &first
->offset_index
;
2452 * now we've found our entries, pull them out of the free space
2453 * cache and put them into the cluster rbtree
2458 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2459 node
= rb_next(&entry
->offset_index
);
2460 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
2463 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2464 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2465 &entry
->offset_index
, 0);
2466 total_size
+= entry
->bytes
;
2467 BUG_ON(ret
); /* -EEXIST; Logic error */
2468 } while (node
&& entry
!= last
);
2470 cluster
->max_size
= max_extent
;
2471 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
2476 * This specifically looks for bitmaps that may work in the cluster, we assume
2477 * that we have already failed to find extents that will work.
2480 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2481 struct btrfs_free_cluster
*cluster
,
2482 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2483 u64 cont1_bytes
, u64 min_bytes
)
2485 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2486 struct btrfs_free_space
*entry
;
2488 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
2490 if (ctl
->total_bitmaps
== 0)
2494 * The bitmap that covers offset won't be in the list unless offset
2495 * is just its start offset.
2497 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
2498 if (entry
->offset
!= bitmap_offset
) {
2499 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2500 if (entry
&& list_empty(&entry
->list
))
2501 list_add(&entry
->list
, bitmaps
);
2504 list_for_each_entry(entry
, bitmaps
, list
) {
2505 if (entry
->bytes
< bytes
)
2507 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2508 bytes
, cont1_bytes
, min_bytes
);
2514 * The bitmaps list has all the bitmaps that record free space
2515 * starting after offset, so no more search is required.
2521 * here we try to find a cluster of blocks in a block group. The goal
2522 * is to find at least bytes+empty_size.
2523 * We might not find them all in one contiguous area.
2525 * returns zero and sets up cluster if things worked out, otherwise
2526 * it returns -enospc
2528 int btrfs_find_space_cluster(struct btrfs_trans_handle
*trans
,
2529 struct btrfs_root
*root
,
2530 struct btrfs_block_group_cache
*block_group
,
2531 struct btrfs_free_cluster
*cluster
,
2532 u64 offset
, u64 bytes
, u64 empty_size
)
2534 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2535 struct btrfs_free_space
*entry
, *tmp
;
2542 * Choose the minimum extent size we'll require for this
2543 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2544 * For metadata, allow allocates with smaller extents. For
2545 * data, keep it dense.
2547 if (btrfs_test_opt(root
, SSD_SPREAD
)) {
2548 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
2549 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2550 cont1_bytes
= bytes
;
2551 min_bytes
= block_group
->sectorsize
;
2553 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
2554 min_bytes
= block_group
->sectorsize
;
2557 spin_lock(&ctl
->tree_lock
);
2560 * If we know we don't have enough space to make a cluster don't even
2561 * bother doing all the work to try and find one.
2563 if (ctl
->free_space
< bytes
) {
2564 spin_unlock(&ctl
->tree_lock
);
2568 spin_lock(&cluster
->lock
);
2570 /* someone already found a cluster, hooray */
2571 if (cluster
->block_group
) {
2576 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
2579 INIT_LIST_HEAD(&bitmaps
);
2580 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
2582 cont1_bytes
, min_bytes
);
2584 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
2585 offset
, bytes
+ empty_size
,
2586 cont1_bytes
, min_bytes
);
2588 /* Clear our temporary list */
2589 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
2590 list_del_init(&entry
->list
);
2593 atomic_inc(&block_group
->count
);
2594 list_add_tail(&cluster
->block_group_list
,
2595 &block_group
->cluster_list
);
2596 cluster
->block_group
= block_group
;
2598 trace_btrfs_failed_cluster_setup(block_group
);
2601 spin_unlock(&cluster
->lock
);
2602 spin_unlock(&ctl
->tree_lock
);
2608 * simple code to zero out a cluster
2610 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
2612 spin_lock_init(&cluster
->lock
);
2613 spin_lock_init(&cluster
->refill_lock
);
2614 cluster
->root
= RB_ROOT
;
2615 cluster
->max_size
= 0;
2616 INIT_LIST_HEAD(&cluster
->block_group_list
);
2617 cluster
->block_group
= NULL
;
2620 static int do_trimming(struct btrfs_block_group_cache
*block_group
,
2621 u64
*total_trimmed
, u64 start
, u64 bytes
,
2622 u64 reserved_start
, u64 reserved_bytes
)
2624 struct btrfs_space_info
*space_info
= block_group
->space_info
;
2625 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2630 spin_lock(&space_info
->lock
);
2631 spin_lock(&block_group
->lock
);
2632 if (!block_group
->ro
) {
2633 block_group
->reserved
+= reserved_bytes
;
2634 space_info
->bytes_reserved
+= reserved_bytes
;
2637 spin_unlock(&block_group
->lock
);
2638 spin_unlock(&space_info
->lock
);
2640 ret
= btrfs_error_discard_extent(fs_info
->extent_root
,
2641 start
, bytes
, &trimmed
);
2643 *total_trimmed
+= trimmed
;
2645 btrfs_add_free_space(block_group
, reserved_start
, reserved_bytes
);
2648 spin_lock(&space_info
->lock
);
2649 spin_lock(&block_group
->lock
);
2650 if (block_group
->ro
)
2651 space_info
->bytes_readonly
+= reserved_bytes
;
2652 block_group
->reserved
-= reserved_bytes
;
2653 space_info
->bytes_reserved
-= reserved_bytes
;
2654 spin_unlock(&space_info
->lock
);
2655 spin_unlock(&block_group
->lock
);
2661 static int trim_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2662 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
2664 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2665 struct btrfs_free_space
*entry
;
2666 struct rb_node
*node
;
2672 while (start
< end
) {
2673 spin_lock(&ctl
->tree_lock
);
2675 if (ctl
->free_space
< minlen
) {
2676 spin_unlock(&ctl
->tree_lock
);
2680 entry
= tree_search_offset(ctl
, start
, 0, 1);
2682 spin_unlock(&ctl
->tree_lock
);
2687 while (entry
->bitmap
) {
2688 node
= rb_next(&entry
->offset_index
);
2690 spin_unlock(&ctl
->tree_lock
);
2693 entry
= rb_entry(node
, struct btrfs_free_space
,
2697 if (entry
->offset
>= end
) {
2698 spin_unlock(&ctl
->tree_lock
);
2702 extent_start
= entry
->offset
;
2703 extent_bytes
= entry
->bytes
;
2704 start
= max(start
, extent_start
);
2705 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
2706 if (bytes
< minlen
) {
2707 spin_unlock(&ctl
->tree_lock
);
2711 unlink_free_space(ctl
, entry
);
2712 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2714 spin_unlock(&ctl
->tree_lock
);
2716 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
2717 extent_start
, extent_bytes
);
2723 if (fatal_signal_pending(current
)) {
2734 static int trim_bitmaps(struct btrfs_block_group_cache
*block_group
,
2735 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
2737 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2738 struct btrfs_free_space
*entry
;
2742 u64 offset
= offset_to_bitmap(ctl
, start
);
2744 while (offset
< end
) {
2745 bool next_bitmap
= false;
2747 spin_lock(&ctl
->tree_lock
);
2749 if (ctl
->free_space
< minlen
) {
2750 spin_unlock(&ctl
->tree_lock
);
2754 entry
= tree_search_offset(ctl
, offset
, 1, 0);
2756 spin_unlock(&ctl
->tree_lock
);
2762 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
);
2763 if (ret2
|| start
>= end
) {
2764 spin_unlock(&ctl
->tree_lock
);
2769 bytes
= min(bytes
, end
- start
);
2770 if (bytes
< minlen
) {
2771 spin_unlock(&ctl
->tree_lock
);
2775 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
2776 if (entry
->bytes
== 0)
2777 free_bitmap(ctl
, entry
);
2779 spin_unlock(&ctl
->tree_lock
);
2781 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
2787 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
2790 if (start
>= offset
+ BITS_PER_BITMAP
* ctl
->unit
)
2791 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
2794 if (fatal_signal_pending(current
)) {
2805 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
2806 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
2812 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
);
2816 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
);
2822 * Find the left-most item in the cache tree, and then return the
2823 * smallest inode number in the item.
2825 * Note: the returned inode number may not be the smallest one in
2826 * the tree, if the left-most item is a bitmap.
2828 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
2830 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
2831 struct btrfs_free_space
*entry
= NULL
;
2834 spin_lock(&ctl
->tree_lock
);
2836 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
2839 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
2840 struct btrfs_free_space
, offset_index
);
2842 if (!entry
->bitmap
) {
2843 ino
= entry
->offset
;
2845 unlink_free_space(ctl
, entry
);
2849 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2851 link_free_space(ctl
, entry
);
2857 ret
= search_bitmap(ctl
, entry
, &offset
, &count
);
2858 /* Logic error; Should be empty if it can't find anything */
2862 bitmap_clear_bits(ctl
, entry
, offset
, 1);
2863 if (entry
->bytes
== 0)
2864 free_bitmap(ctl
, entry
);
2867 spin_unlock(&ctl
->tree_lock
);
2872 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
2873 struct btrfs_path
*path
)
2875 struct inode
*inode
= NULL
;
2877 spin_lock(&root
->cache_lock
);
2878 if (root
->cache_inode
)
2879 inode
= igrab(root
->cache_inode
);
2880 spin_unlock(&root
->cache_lock
);
2884 inode
= __lookup_free_space_inode(root
, path
, 0);
2888 spin_lock(&root
->cache_lock
);
2889 if (!btrfs_fs_closing(root
->fs_info
))
2890 root
->cache_inode
= igrab(inode
);
2891 spin_unlock(&root
->cache_lock
);
2896 int create_free_ino_inode(struct btrfs_root
*root
,
2897 struct btrfs_trans_handle
*trans
,
2898 struct btrfs_path
*path
)
2900 return __create_free_space_inode(root
, trans
, path
,
2901 BTRFS_FREE_INO_OBJECTID
, 0);
2904 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2906 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2907 struct btrfs_path
*path
;
2908 struct inode
*inode
;
2910 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
2912 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2916 * If we're unmounting then just return, since this does a search on the
2917 * normal root and not the commit root and we could deadlock.
2919 if (btrfs_fs_closing(fs_info
))
2922 path
= btrfs_alloc_path();
2926 inode
= lookup_free_ino_inode(root
, path
);
2930 if (root_gen
!= BTRFS_I(inode
)->generation
)
2933 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
2937 "failed to load free ino cache for root %llu",
2938 root
->root_key
.objectid
);
2942 btrfs_free_path(path
);
2946 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
2947 struct btrfs_trans_handle
*trans
,
2948 struct btrfs_path
*path
)
2950 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2951 struct inode
*inode
;
2954 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2957 inode
= lookup_free_ino_inode(root
, path
);
2961 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, trans
, path
, 0);
2963 btrfs_delalloc_release_metadata(inode
, inode
->i_size
);
2965 btrfs_err(root
->fs_info
,
2966 "failed to write free ino cache for root %llu",
2967 root
->root_key
.objectid
);
2975 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2976 static struct btrfs_block_group_cache
*init_test_block_group(void)
2978 struct btrfs_block_group_cache
*cache
;
2980 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
2983 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
2985 if (!cache
->free_space_ctl
) {
2990 cache
->key
.objectid
= 0;
2991 cache
->key
.offset
= 1024 * 1024 * 1024;
2992 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
2993 cache
->sectorsize
= 4096;
2995 spin_lock_init(&cache
->lock
);
2996 INIT_LIST_HEAD(&cache
->list
);
2997 INIT_LIST_HEAD(&cache
->cluster_list
);
2998 INIT_LIST_HEAD(&cache
->new_bg_list
);
3000 btrfs_init_free_space_ctl(cache
);
3006 * Checks to see if the given range is in the free space cache. This is really
3007 * just used to check the absence of space, so if there is free space in the
3008 * range at all we will return 1.
3010 static int check_exists(struct btrfs_block_group_cache
*cache
, u64 offset
,
3013 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3014 struct btrfs_free_space
*info
;
3017 spin_lock(&ctl
->tree_lock
);
3018 info
= tree_search_offset(ctl
, offset
, 0, 0);
3020 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3028 u64 bit_off
, bit_bytes
;
3030 struct btrfs_free_space
*tmp
;
3033 bit_bytes
= ctl
->unit
;
3034 ret
= search_bitmap(ctl
, info
, &bit_off
, &bit_bytes
);
3036 if (bit_off
== offset
) {
3039 } else if (bit_off
> offset
&&
3040 offset
+ bytes
> bit_off
) {
3046 n
= rb_prev(&info
->offset_index
);
3048 tmp
= rb_entry(n
, struct btrfs_free_space
,
3050 if (tmp
->offset
+ tmp
->bytes
< offset
)
3052 if (offset
+ bytes
< tmp
->offset
) {
3053 n
= rb_prev(&info
->offset_index
);
3060 n
= rb_next(&info
->offset_index
);
3062 tmp
= rb_entry(n
, struct btrfs_free_space
,
3064 if (offset
+ bytes
< tmp
->offset
)
3066 if (tmp
->offset
+ tmp
->bytes
< offset
) {
3067 n
= rb_next(&info
->offset_index
);
3077 if (info
->offset
== offset
) {
3082 if (offset
> info
->offset
&& offset
< info
->offset
+ info
->bytes
)
3085 spin_unlock(&ctl
->tree_lock
);
3090 * Use this if you need to make a bitmap or extent entry specifically, it
3091 * doesn't do any of the merging that add_free_space does, this acts a lot like
3092 * how the free space cache loading stuff works, so you can get really weird
3095 static int add_free_space_entry(struct btrfs_block_group_cache
*cache
,
3096 u64 offset
, u64 bytes
, bool bitmap
)
3098 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3099 struct btrfs_free_space
*info
= NULL
, *bitmap_info
;
3106 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
3112 spin_lock(&ctl
->tree_lock
);
3113 info
->offset
= offset
;
3114 info
->bytes
= bytes
;
3115 ret
= link_free_space(ctl
, info
);
3116 spin_unlock(&ctl
->tree_lock
);
3118 kmem_cache_free(btrfs_free_space_cachep
, info
);
3123 map
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
3125 kmem_cache_free(btrfs_free_space_cachep
, info
);
3130 spin_lock(&ctl
->tree_lock
);
3131 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3136 add_new_bitmap(ctl
, info
, offset
);
3140 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
3141 bytes
-= bytes_added
;
3142 offset
+= bytes_added
;
3143 spin_unlock(&ctl
->tree_lock
);
3153 #define test_msg(fmt, ...) printk(KERN_INFO "btrfs: selftest: " fmt, ##__VA_ARGS__)
3156 * This test just does basic sanity checking, making sure we can add an exten
3157 * entry and remove space from either end and the middle, and make sure we can
3158 * remove space that covers adjacent extent entries.
3160 static int test_extents(struct btrfs_block_group_cache
*cache
)
3164 test_msg("Running extent only tests\n");
3166 /* First just make sure we can remove an entire entry */
3167 ret
= btrfs_add_free_space(cache
, 0, 4 * 1024 * 1024);
3169 test_msg("Error adding initial extents %d\n", ret
);
3173 ret
= btrfs_remove_free_space(cache
, 0, 4 * 1024 * 1024);
3175 test_msg("Error removing extent %d\n", ret
);
3179 if (check_exists(cache
, 0, 4 * 1024 * 1024)) {
3180 test_msg("Full remove left some lingering space\n");
3184 /* Ok edge and middle cases now */
3185 ret
= btrfs_add_free_space(cache
, 0, 4 * 1024 * 1024);
3187 test_msg("Error adding half extent %d\n", ret
);
3191 ret
= btrfs_remove_free_space(cache
, 3 * 1024 * 1024, 1 * 1024 * 1024);
3193 test_msg("Error removing tail end %d\n", ret
);
3197 ret
= btrfs_remove_free_space(cache
, 0, 1 * 1024 * 1024);
3199 test_msg("Error removing front end %d\n", ret
);
3203 ret
= btrfs_remove_free_space(cache
, 2 * 1024 * 1024, 4096);
3205 test_msg("Error removing middle piece %d\n", ret
);
3209 if (check_exists(cache
, 0, 1 * 1024 * 1024)) {
3210 test_msg("Still have space at the front\n");
3214 if (check_exists(cache
, 2 * 1024 * 1024, 4096)) {
3215 test_msg("Still have space in the middle\n");
3219 if (check_exists(cache
, 3 * 1024 * 1024, 1 * 1024 * 1024)) {
3220 test_msg("Still have space at the end\n");
3225 __btrfs_remove_free_space_cache(cache
->free_space_ctl
);
3230 static int test_bitmaps(struct btrfs_block_group_cache
*cache
)
3232 u64 next_bitmap_offset
;
3235 test_msg("Running bitmap only tests\n");
3237 ret
= add_free_space_entry(cache
, 0, 4 * 1024 * 1024, 1);
3239 test_msg("Couldn't create a bitmap entry %d\n", ret
);
3243 ret
= btrfs_remove_free_space(cache
, 0, 4 * 1024 * 1024);
3245 test_msg("Error removing bitmap full range %d\n", ret
);
3249 if (check_exists(cache
, 0, 4 * 1024 * 1024)) {
3250 test_msg("Left some space in bitmap\n");
3254 ret
= add_free_space_entry(cache
, 0, 4 * 1024 * 1024, 1);
3256 test_msg("Couldn't add to our bitmap entry %d\n", ret
);
3260 ret
= btrfs_remove_free_space(cache
, 1 * 1024 * 1024, 2 * 1024 * 1024);
3262 test_msg("Couldn't remove middle chunk %d\n", ret
);
3267 * The first bitmap we have starts at offset 0 so the next one is just
3268 * at the end of the first bitmap.
3270 next_bitmap_offset
= (u64
)(BITS_PER_BITMAP
* 4096);
3272 /* Test a bit straddling two bitmaps */
3273 ret
= add_free_space_entry(cache
, next_bitmap_offset
-
3274 (2 * 1024 * 1024), 4 * 1024 * 1024, 1);
3276 test_msg("Couldn't add space that straddles two bitmaps %d\n",
3281 ret
= btrfs_remove_free_space(cache
, next_bitmap_offset
-
3282 (1 * 1024 * 1024), 2 * 1024 * 1024);
3284 test_msg("Couldn't remove overlapping space %d\n", ret
);
3288 if (check_exists(cache
, next_bitmap_offset
- (1 * 1024 * 1024),
3290 test_msg("Left some space when removing overlapping\n");
3294 __btrfs_remove_free_space_cache(cache
->free_space_ctl
);
3299 /* This is the high grade jackassery */
3300 static int test_bitmaps_and_extents(struct btrfs_block_group_cache
*cache
)
3302 u64 bitmap_offset
= (u64
)(BITS_PER_BITMAP
* 4096);
3305 test_msg("Running bitmap and extent tests\n");
3308 * First let's do something simple, an extent at the same offset as the
3309 * bitmap, but the free space completely in the extent and then
3310 * completely in the bitmap.
3312 ret
= add_free_space_entry(cache
, 4 * 1024 * 1024, 1 * 1024 * 1024, 1);
3314 test_msg("Couldn't create bitmap entry %d\n", ret
);
3318 ret
= add_free_space_entry(cache
, 0, 1 * 1024 * 1024, 0);
3320 test_msg("Couldn't add extent entry %d\n", ret
);
3324 ret
= btrfs_remove_free_space(cache
, 0, 1 * 1024 * 1024);
3326 test_msg("Couldn't remove extent entry %d\n", ret
);
3330 if (check_exists(cache
, 0, 1 * 1024 * 1024)) {
3331 test_msg("Left remnants after our remove\n");
3335 /* Now to add back the extent entry and remove from the bitmap */
3336 ret
= add_free_space_entry(cache
, 0, 1 * 1024 * 1024, 0);
3338 test_msg("Couldn't re-add extent entry %d\n", ret
);
3342 ret
= btrfs_remove_free_space(cache
, 4 * 1024 * 1024, 1 * 1024 * 1024);
3344 test_msg("Couldn't remove from bitmap %d\n", ret
);
3348 if (check_exists(cache
, 4 * 1024 * 1024, 1 * 1024 * 1024)) {
3349 test_msg("Left remnants in the bitmap\n");
3354 * Ok so a little more evil, extent entry and bitmap at the same offset,
3355 * removing an overlapping chunk.
3357 ret
= add_free_space_entry(cache
, 1 * 1024 * 1024, 4 * 1024 * 1024, 1);
3359 test_msg("Couldn't add to a bitmap %d\n", ret
);
3363 ret
= btrfs_remove_free_space(cache
, 512 * 1024, 3 * 1024 * 1024);
3365 test_msg("Couldn't remove overlapping space %d\n", ret
);
3369 if (check_exists(cache
, 512 * 1024, 3 * 1024 * 1024)) {
3370 test_msg("Left over peices after removing overlapping\n");
3374 __btrfs_remove_free_space_cache(cache
->free_space_ctl
);
3376 /* Now with the extent entry offset into the bitmap */
3377 ret
= add_free_space_entry(cache
, 4 * 1024 * 1024, 4 * 1024 * 1024, 1);
3379 test_msg("Couldn't add space to the bitmap %d\n", ret
);
3383 ret
= add_free_space_entry(cache
, 2 * 1024 * 1024, 2 * 1024 * 1024, 0);
3385 test_msg("Couldn't add extent to the cache %d\n", ret
);
3389 ret
= btrfs_remove_free_space(cache
, 3 * 1024 * 1024, 4 * 1024 * 1024);
3391 test_msg("Problem removing overlapping space %d\n", ret
);
3395 if (check_exists(cache
, 3 * 1024 * 1024, 4 * 1024 * 1024)) {
3396 test_msg("Left something behind when removing space");
3401 * This has blown up in the past, the extent entry starts before the
3402 * bitmap entry, but we're trying to remove an offset that falls
3403 * completely within the bitmap range and is in both the extent entry
3404 * and the bitmap entry, looks like this
3410 __btrfs_remove_free_space_cache(cache
->free_space_ctl
);
3411 ret
= add_free_space_entry(cache
, bitmap_offset
+ 4 * 1024 * 1024,
3412 4 * 1024 * 1024, 1);
3414 test_msg("Couldn't add bitmap %d\n", ret
);
3418 ret
= add_free_space_entry(cache
, bitmap_offset
- 1 * 1024 * 1024,
3419 5 * 1024 * 1024, 0);
3421 test_msg("Couldn't add extent entry %d\n", ret
);
3425 ret
= btrfs_remove_free_space(cache
, bitmap_offset
+ 1 * 1024 * 1024,
3428 test_msg("Failed to free our space %d\n", ret
);
3432 if (check_exists(cache
, bitmap_offset
+ 1 * 1024 * 1024,
3434 test_msg("Left stuff over\n");
3438 __btrfs_remove_free_space_cache(cache
->free_space_ctl
);
3441 * This blew up before, we have part of the free space in a bitmap and
3442 * then the entirety of the rest of the space in an extent. This used
3443 * to return -EAGAIN back from btrfs_remove_extent, make sure this
3446 ret
= add_free_space_entry(cache
, 1 * 1024 * 1024, 2 * 1024 * 1024, 1);
3448 test_msg("Couldn't add bitmap entry %d\n", ret
);
3452 ret
= add_free_space_entry(cache
, 3 * 1024 * 1024, 1 * 1024 * 1024, 0);
3454 test_msg("Couldn't add extent entry %d\n", ret
);
3458 ret
= btrfs_remove_free_space(cache
, 1 * 1024 * 1024, 3 * 1024 * 1024);
3460 test_msg("Error removing bitmap and extent overlapping %d\n", ret
);
3464 __btrfs_remove_free_space_cache(cache
->free_space_ctl
);
3468 void btrfs_test_free_space_cache(void)
3470 struct btrfs_block_group_cache
*cache
;
3472 test_msg("Running btrfs free space cache tests\n");
3474 cache
= init_test_block_group();
3476 test_msg("Couldn't run the tests\n");
3480 if (test_extents(cache
))
3482 if (test_bitmaps(cache
))
3484 if (test_bitmaps_and_extents(cache
))
3487 __btrfs_remove_free_space_cache(cache
->free_space_ctl
);
3488 kfree(cache
->free_space_ctl
);
3490 test_msg("Free space cache tests finished\n");
3493 #else /* !CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3494 void btrfs_test_free_space_cache(void) {}
3495 #endif /* !CONFIG_BTRFS_FS_RUN_SANITY_TESTS */